
Chapter 3 

MODELS OF GAP DETECTION IN ACOUSTIC HEARING 

1 INTRODUCTION 

Gap detection has often been used as a measure of temporal resolution in the auditory system, 

e.g. Penner (1977), Divenyi and Danner (1977), Fitzgibbons (1984), Formby and Forrest 

(1991). The gap detection task has traditionally been within-channel (i.e. gap markers were the 

same). Across-channel gap detection has been used in acoustic stimulation (Phillips et aI., 

1997) to investigate how temporal gaps between spectrally different sounds are detected, a 

situation that is typical in everyday speech understanding tasks. It has been hypothesized that 

across-channel gap detection thresholds reflect the extent of neural activation (Hanekom and 

Shannon, 1998; chapter 2). In both the acoustic and electrical stimulation cases, it has been 

found that gap thresholds increase as the gap markers are separated in frequency (Divenyi and 

Danner, 1977; Divenyi and Sachs, 1978; Phillips et aI., 1997; Formby and Forrest, 1991; 

Formby, Sherlock, and Forrest, 1996) or presented on two electrode pairs with increasing 

spacing (Hanekom and Shannon, 1998). Examples of the resulting U-shaped gap detection 

"tuning curves" have been given in chapter 2. 

A model of gap detection in acoustic hearing is created in this chapter, with the primary 

objective of investigating which underlying factors bring about the U-shaped gap detection 

curves found in across-channel gap detection tasks. 

1.1 Models of gap detection in acoustic auditory stimulation 

Previous models of auditory duration discrimination or gap detection have been presented by 

Creelman (1962), Formby, Sherlock, and Forrest (1996), Forrest and Formby (1996), and 

Heinz, Goldstein, and Formby (1996). Creelman (1962) modelled duration discrimination of 
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brief signals in a signal detection theoretical context. He hypothesized that an internal counter 

counted the number of spikes elicited by a brief signal to measure the signal duration. The spike 

train was assumed to be Poissonian, so that noise was present in the duration measurement, but 

the signal onset and offset were assumed to be known exactly. Divenyi and Danner (1977) 

expanded this model to include the effects of noise in the determination of the signal offset and 

onset in gap discrimination. These models cannot explain the U-shaped curves found in across

channel gap detection. 

In a series of articles, Formby and co-workers (Formbyet aI., 1996; Forest and Formby, 1996; 

Heinz et aI., 1996) described models for gap detection with sinusoidal markers that differed in 

frequency. They ascribed the increased gap thresholds in across-channel gap detection to 

peripheral filtering. They noted that listeners may enhance gap thresholds when permitted to 

improve signal-to-noise ratio by shifting the auditory filter centre frequency to midway between 

the two marker frequencies. In essence, their single channel model (Forrest and Formby, 1996) 

had a single auditory filter stage (including nonlinear compression to model stimulus 

transduction at the hair cell) that bandpass-filtered the marker frequencies. This auditory filter 

was centred between the two marker frequencies to optimize performance on the gap detection 

task. The simulation used the same 2IFe procedure as used with listeners. The filter outputs 

in the two intervals of the 2IFe procedure were compared and the interval with the largest ratio 

of maximum to minimum output (the max-min statistic) was chosen as the interval containing 

the gap. Simulated gap thresholds could be obtained by taking the average of several model 

runs. The model generated results similar to those of human listeners in a gap detection task, 

except that the asymptotic thresholds for large marker frequency separations could not be 

reproduced. 

The multi-channel model of these authors (Heinz, Goldstein, and Formby, 1996) is similar to 

the single-channel model, but used multiple bandpass filters and calculated the max-min ratio 

for each channel. Each channel then decided which of the two intervals in the 2IFe procedure 

contained the gap, and the final decision was base on a majority vote. Only channels within a 

decision region centred between the two marker frequencies were included in the decision. The 
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model generated results similar to those of human listeners in a gap detection task. 

1.2 Extension of previous models 

The model described in this chapter extends the work of Formby and co-workers in two 

respects: 

(1) Closed form equations are obtained for gap discrimination and gap detection thresholds. 

This makes the model easy to interpret and allows effortless investigation of the effects of 

model parameters. 

(2) The model is developed to be more detailed and closer to the underlying neurophysiology, 

by using spike trains and spike train statistics to derive equations for gap thresholds. This is 

important, as spike train statistics are dramatically different in electrical stimulation of the 

auditory nerve. The models of Formby and co-workers cannot be used for prediction of gap 

thresholds in electric hearing. 

Consequentl y, by using the statistics of the spike train (rather than the max-min statistic based 

on analogue waveforms as in Formby), modelling what happens in both electrical stimulation 

and acoustic stimulation is possible. The basic principle used in the model in this and the next 

chapter is that neural channels stimulated by gap markers that are more closely spaced (in 

frequency or in physical electrode position), result in an easier gap detection task so that gap 

thresholds decrease. Following the arguments of Formby and co-workers, it is assumed that 

the auditory system places a filter between the two areas stimulated by the two markers. The 

exact nature of this filter is unimportant. This may be an "attentional filter" as suggested by 

Divenyi and Danner (1977) and Phillips et al. (1997). The current model makes this notion 

explicit. As the markers move apart, the task of the gap detector becomes more difficult, 

because the difference in spike rate during the marker and within the gap becomes smaller. 

Conceptually, the model presented in this chapter incorporates the following ideas. Two factors 

limit measurement of the duration of a temporal gap. Uncertainty exists about the times at 

which the edges of the gap occur, and when the edges are known (or have been estimated) 
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there is noise in the actual measurement of the duration of the gap. The origin of this noise is 

the Poissonian nature of the spike trains in the central auditory nervous system. 

1.3 Objectives of this chapter 

A model of gap detection in acoustic hearing is created in this chapter, with the objective of 

investigating which underlying factors bring about the V-shaped gap detection curves found 

in across-channel gap detection tasks. This model extends previous models as described above. 

As it is believed that the same underlying mechanisms operate in acoustic and electrical gap 

detection, the intention is to create a model that can also be expanded for the electrical gap 

detection situation (see chapter 4). 

2 A MODEL FOR GAP DETECTION IN ACOUSTIC HEARING 

2.1 Assumptions about the acoustically evoked spike train 

At the auditory periphery, an estimate of when the edges of the gap occur may be influenced 

by three different situations. First, in acoustic stimulation, spike trains are random and Poisson

like for high frequencies (above 5 kHz). In this case, the positions of the edges of a gap will 

be the most difficult to estimate, and gap thresholds may have been expected to be the largest 

of the three cases. Second, for low frequencies (acoustic stimulation below 5000 Hz), spike 

trains are phase-locked to the cycles of the stimulus (e.g., Johnson (1980)). This may have been 

expected to improve the ability to judge the edges of the gap accurately. However, Shailer and 

Moore (1983) showed that a close correspondence exists between the auditory filter bandwidth 

and gap detection thresholds at low frequencies. Also, gap thresholds decrease for increasing 

frequencies (Fitzgibbons, 1983; Fitzgibbons, 1984). This effect has been ascribed to the 

decreasing auditory filter bandwidth at lower frequencies, which presumably leads to more 

ringing in these narrower auditory filters, and to inherent fluctuations in narrowband noise 

(Shailer and Moore, 1983; Shailer and Moore, 1987). The rate of fluctuation is determined 

Department oj Electrical, Electronic and Computer Engineering, University of Pretoria 48 

 
 
 



Chapter 3 Models o[gap detection in acoustic hearing 

approximately by the reciprocal of the bandwidth of the filter. Smaller bandwidth results in 

slower fluctuations, that may be confused with the gap. 

Third, for electrical stimulation, spikes are tightly phase-locked, especially to pulsatile stimulus 

waveforms (Javel, 1990). The only limitation in the correct judgement of the positions of gap 

edges is the small jitter in spike positions relative to a preferred latency. If gap detection was 

based on temporal information only, gap detection might have been expected to be more acute 

than in normal hearing, but results show that gap detection thresholds in cochlear implantees 

are similar to those measured in normal-hearing listeners (Shannon, 1989). 

These observations suggest that temporal phase-locking does not playa major role in 

determining gap thresholds, but that spatial mechanisms (i.e. peripheral filtering) may playa 

more important role, consistent with the models of Formby and co-workers as cited above. Of 

course, peripheral filtering does not playa role in cochlear electrical stimulation, but the current 

distribution from the site of an electrode may playa role similar to an auditory filter. This idea 

is expanded in chapter 4. 

Based on the foregoing observations, the use of Poisson processes in the gap detection model 

to model spike trains seems justifiable, especially for acoustic stimulation. Assuming that spike 

trains are Poisson processes simplifies the mathematical analysis. 

2.2 Nerve fibre model 

The nerve fibre model used in the acoustic gap detection models is described here. The gap 

detection model is based primarily on the rate response profile (called the A-profile in this text, 

where A is the average rate parameter in a Poisson process that describes neural spike train). 

The nerve fibre model has a significant influence on the A-profile, which in turn influences the 

size of ~A when the gap marker frequencies are separated. ~A is the difference in spike rates 

during the gap and markers. The larger this rate difference, the more detectable the transition 

from marker to gap or gap to marker becomes. 
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2.2.1 Nature of the nerve fibre model 

The fibre model described is not a biology-based model, but rather a black box model that 

incorporates the major spike train characteristics that are important in audition. The well

known Hodgkin-Huxley model, e.g. Kistler, Gerstner, and van Hemmen (1997), is an example 

of what is termed here a biology-based model. It incorporates the nerve fibre cell membrane 

dynamics to predict firing characteristics in response to stimuli. Neither the Hodgkin-Huxley 

model, nor the current model has any statistical characteristics. They always fire when 

threshold is reached, unlike biological models that incorporate sources of noise, e.g. Lecar and 

Nossal (1971). 

The nerve fibre model used in this chapter is an average rate model, meaning that it models the 

average spike count characteristics, but not the instantaneous spike characteristics. For 

example, the fibre model does not incorporate phase-locking of spike trains to a preferred 

stimulus phase (see chapter 5). The nerve fibre model can be used for calculating A-profiles and 

predicting average firing rates. Finally, the model is based on pure-tone stimulus data. The 

input to the fibre model is the frequency f and amplitude A of a pure tone stimulus. The output 

is the average firing rate at different locations in the cochlea. 

2.2.2 Nerve fibre model equations 

The nerve fibre model builds on a model by Colburn (1973). The model is straightforward and 

simple to interpret. The average rate for fibre m for a pure tone stimulus of frequency f is 

r m = SR + MR . g(A) . Hm{f) . (3.1) 

In this equation, SR is the spontaneous rate of the fibre, MR is the maximum rate, A is the 

stimulus intensity in dB SPL, g(A) is a function that characterizes spike rate as a function of 

intensity (rate-intensity curve), and Hm(f) is a tuning parameter (explained below). The function 

g(A) is 

1 A - A (m) 
g(A) = -(1 + Erl( thr) • (3.2) 

2 {ia 
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This is an integrated Gaussian that provides an s-shaped curve that can be fitted to typical rate

intensity data. The parameter 0 controls the slope of the curve. Athr(m) is the threshold of fibre 

m in dB SPL. By definition, threshold is reached when the spike rate increases by 10% from 

SR. Thresholds of fibres excited by the stimulus (of frequency f) differ as fibres may be 

stimulated at a frequency different from their CF. Fibres stimulated at their CF have the lowest 

threshold, and the threshold increases as fibres are stimulated with frequencies increasingly 

different from CF. This is described by the tuning function Hm(f). Thus AthrCm) in equation 3.2 

is 

(3.3) 

AthrCm) is the threshold of a fibre at a specific stimulus frequency f, when the best frequency for 

that fibre is CF. Athr,CF is the threshold at CF in dB SPL. Typical values for Athr,CF are 0 to 30 

dB SPL (as determined in cat by Shofner and Sachs, 1986). g(A) takes on values between 0 

and 1 and is centred on Athr, unless the offset parameter Aoff is used, i.e., at Athr there is already 

a 50% increase in spike rate. The offset parameter Aoff is used to ensure that the spike rate has 

increased by 10% at Athr. 

For a fixed value, the parameter 0 results in a fixed slope for the rate-intensity curve. However, 

data show that the slope changes for stimulus frequency I more distant from CF for frequencies 

above CF (Evans, 1975; also see Javel and Viemeister, 2000). A model for 0 is then 

for f ~ f m: 0' = 0'0 ' 

forf>fm: 
f- f. 

0' = 0' + ( __ m) • k 
o fm ' 

(3.4) 

wherelm is the CF of fibre m. Parameter k changes the slope as a function of II-1m I. To fit the 

data in Colburn (1973), 0 0=5 is used, while 0 0=6 and k=20 provides a reasonable fit to the data 

in Evans (1975). 

The tuning function Hm(f) in equations 3.1 and 3.3 characterizes the threshold of a fibre with 
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best frequency CF when the acoustic stimulus frequency is varied. Thus, it is (the inverse of) 

a normalized frequency tuning curve (maximum tuning is 1), so that 20 log Hm gives an 

approximation to the tuning curve, but has threshold at 0 dB. The actual threshold at CF is then 

specified explicitly in equation 3.3 as Athr,cF' Hm(f) is given by 

Hm(/) = ~r for f,;. fm 

= (;r« for f> f m· 

The parameter et controls the rolloff of the tuning curve, and is given by 

a = a 0 for fm ~ 800 Hz 

= ao ' fm forfm> 800Hz. 
800 

(3.5) 

(3.6) 

eto =4 provides a good fit to the AN data. Note that the roll off becomes sharper at higher 

frequencies. These last two are the same equations as given in Colburn (1973). The tip part of 

the data is fitted well, but not the tail. For the current model, the tail is ignored. 

The set of equations from 3.1 to 3.6 define the auditory nerve fibre model. 

2.3 Cramer-Rao Lower Bound for the Poisson change-point problem 

The objective of this section is to derive a simple equation for the gap threshold as a function 

of the difference in spike rates elicited by the pre-gap and post-gap markers. The Poissonian 

nature of the neural spike trains complicates the detection of the edges of a gap, as it makes 

a change in spike rate difficult to detect. The Cramer-Rao Lower Bound (CRLB) for the 

detection of the gap edges is derived for this problem. The CRLB gives the variance in the 

estimate of a (classical) optimal estimator. 

The problem is to calculate the CRLB for the time of a step change in the rate of a Poisson 
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process. It is natural to suspect that the accuracy with which the change-point may be found 

depends on the difference in rates of the Poisson process before and after the step change, as 

well as the time that the detector has to observe the non-homogeneous Poisson process. The 

rate of change of the rate function (i.e. whether it is a step function or a ramp) should also 

influence the accuracy of the change-point detection. 

As far as is known, the CRLB for the Poisson change-point problem has not been addressed 

in literature. Much literature exists on solving the change-point problem for Poisson processes 

(e.g.Bremaud (1981), Karr (1986), Davis (1976), Raftery and Akman (1986), West and Ogden 

(1994), Gal'chuk and Rozovskii (1971)), but the objective of all of these authors was to find 

an algorithm to detect the change-point in a given Poisson process, rather than addressing the 

question of how accurately this could be done. 

A parallel problem is that of determining the change-point of a signal in Gaussian noise that has 

a step change in amplitude. The task in this case is to estimate the time of step change by 

observing the signal plus noise. Samples are taken at regular intervals, whereas in the Poisson 

problem no sampling is done, but the discrete or continuous point process is observed. This 

signal in Gaussian noise problem is solved in e.g. McDonough and Whalen (1995). It may be 

expected that the change point detection accuracy is dependent on the variance of the Gaussian 

noise, as well as the differences in signal amplitude before and after the step, and also the time 

that the detector has for observation before and after the step. The CRLB on this estimate has 

been calculated in Reza and Doroodchi (1996). 

The CRLB for signals in Gaussian noise may then be used as an estimate of the bound for the 

Poisson problem. For a Poisson process, the average rate A equals the variance, so a signal that 

jumps in amplitude from Al to A2 at time t, can be equated to a Poisson process that has a 

jump in rate from AI=AI to A2=A2• The variance of the Gaussian noise is Al before the jump 

and A2 after the jump. This argument redefines the Poisson problem as a signal in Gaussian 

noise problem. 
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To calculate the CRLB, a differentiable function is required to characterize the jump in rate of 

the Poisson process. A sigmoidal function may be used to model the change-point, instead of 

a step change. For a jump from average rate Al to average rate A2 at a change-point time t, the 

rate of the Poisson process is given by equation 3.7, 

(A - A ) 
A ('&') = A + 2 1 

t 1 l+e-a;(t-,;) 

(3.7) 

1 + e -a; (t-,;) 

where a determines the rate of change from Al to A2. As shown in equation 3.26, a is inversely 

proportional to ~t, where ~t is the duration of a transition from Al to A2. Physical factors 

determine ~t, as the transition between marker and gap cannot occur instantaneously. The data 

of Zhang, Salvi, and Saunders (1990) show that spike rate decays exponentially after the offset 

of a gap marker with time constants in the order of 1 ms. Westerman and Smith (1984) 

measured minimum decay time constants of 1 ms in auditory nerve fibres. As shown below 

equation 3.6, this implies values in the order of a=4000. 

The CRLB is lIF(8) with F(8) the Fisher information and 8 a parameter. Snyder (1975) 

derived a general form for the Fisher information for Poisson processes, 

1<16) = J(At(6»)-1(a~t~6»)2dt. (3.8) 
to 

F(8) is a function of the intensity At of the Poisson process only. [to, T] is the period over 

which the CRLB is required. For the signal model in equation 3.7, the Fisher information, 

parameterized by t, may be rewritten as 

(3.9) 
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It follows from equation 3.7 that 

(3.10) 

Accordingly, the Fisher information is 

(3.11 ) 

The integral in equation 3.11 has a solution in closed form, but this solution is a rather 

complicated expression that does not provide insight into the effect of the different variables 

(AI' A2 and ct) on the accuracy with which 't can be estimated. Therefore, equation 3.11 is 

solved numerically. The CRLB gives the variance in the estimate of 't and is calculated as the 

inverse of equation 3.11. 

One approach for obtaining a closed-form expression for the CRLB in terms of Al and A2, is 

to approximate the Poisson process by a Gaussian process as explained above. An equivalence 

between the two processes exists when the Poisson process is interpreted as a discrete Poisson 

process. The discrete Poisson process with intensity Al has an average of Al T points in a time 

interval T. The variance in the number of points in T is also AlT. Accordingly, the discrete 

Poisson process is equivalent to a Gaussian process with a sampling period of T seconds, 

average AIT and variance AlT. The problem of estimating the change-point in a Gaussian 

process has been solved by Reza and Doroodchi (1996). Their model is similar to equation 3.7, 

but they discretized the problem. In their formulation, the objective is to estimate the discrete 

sampling interval no in which the change-point occurs. The solution is 

CRLB = 8 . (~Jk)-l = var (no) , 
(d'?rx T n=O 

(3.12) 

where T is the sampling interval and N samples are observed. ct is the rate of change parameter 

as before, d' is a parameter that measures the distance between the two pdfs, and J k is defined 
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below. If the average value of the two Gaussian pdfs were ml and m2 and the two distributions 

had the same variance 0, 

(3.13) 

d' may be interpreted as a signal-to-noise ratio. For 0 1 "* O2 the average 0 2 = (o~ + 0;)/2is 

used. Substituting AlT for ml and A2T for m2, AlT for 0 1
2 and A2T for 0/, d' is found as 

(3.14) 

Jk in equation 3.12 is given by Reza and Doroodchi as 

(3.15) 

When equation 3.14 is substituted into equation 3.12, a closed-form expression for the CRLB 

in terms of A 1 and A2 is obtained as 

(3.16) 

The solution in equation 3.16 is an approximation to the actual CRLB that can be calculated 

from equation 3.11, but as figure 3.1 shows, the approximation is quite acceptable. The 

variance in equation 3.16 is in number of sampling intervals, so that var(t) = r2 . var(no)' 

If multiple observations of the same signal is available, it is generally true that the signal-to

noise ratio (SNR) for estimating the signal improves. Thus if the same change in rate of the 

Poisson process is observed in M simultaneous but independent Poisson processes, the signal

to-noise ratio (SNR) improves as indicated in equation 3.17, 

SNRM = t SNR i • 
i= 1 
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Generally, SNRj will not be the same in different fibres that convey information about the same 

signal, but in this model the M fibres are within the same critical band (as explained in section 

2.4) so that the SNRj are of comparable magnitudes in these channels. To simplify calculations, 

it is assumed that the SNR j are identical in the M channels, so that SNR M = M. SNR. For the 

CRLB calculation this implies that the minimum variance in the estimate of t is obtained when 

the SNR is the signal-to-noise ratio of the channel with the largest difference between Al and 

A2 (if it is assumed that Al and A2 are not equal on all M channels). 

Figure 3.1 
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This figure shows the standard deviation in the estimate of the position of 

a gap edge, calculated from equation 3.11 (solid line) and equation 3.16 

(dashes). The values calculated from equation 3.16 were multiplied by T 

to obtain the standard deviation in ms. 

For the detection of a gap, Al may be the rate during the marker, while A2 may be the rate 

during the gap. For within-channel gap detection, the task is to detect the change in rate, and 

not to estimate the time of change. Thus, the probability P of detection as a function of dA, 
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where ~A = IA2 - All, is required. The gap threshold is assumed to be at P = 0.76. For across

channel gap detection, the task is to discriminate between gap lengths in the two intervals. 

The final equation for the variance in the estimate of l' is therefore 

var(t) = 
T2 . 4(AI + A2) 1 1 

a T2(A2 - AI? ~ M 
Jk 

n=O 
(3.18) 

4(AI + A2) 1 1 

a (A2 - AI)2 ~ M 
Jk 

n=O 

The summation in equation 3.18 does not lend itself to physical interpretation. Arriving at an 

even simpler form of equation 3.18 by the following derivation is possible. Suppose the task 

is to estimate the time of change l' of the average value of a Gaussian process (figure 3.2), from 

a value Al to a value A2. The Gaussian process has a standard deviation Oy. Let the change take 

place within ~t seconds. The task is to estimate the time of change l' at the centre of the 

transition. This task is the same as estimating the time at which the Gaussian process has an 

average value exactly halfway between Al and A2. Because of the Gaussian noise in 

measurement of 0y, there is noise in the estimate of 1'. Thus, the Gaussian variable on the y-axis 

is transformed to another Gaussian variable on the t-axis. The average value of this Gaussian 

is 1', while the standard deviation is 0t. It can easily be shown that 

(3.19) 

This is the standard deviation in the estimate of l' when one sample is taken at the time when 

the average value of the Gaussian is (AI+A2)/2. It follows for M samples that 
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2 

var(t) = at2 . 
0y 1 

-
(A2 - AI? M 

(3.20) 

at2 1 ---
SNR M 

If, as before, the Poisson process is discretized, SNR may be substituted by equation 3.14 to 

obtain 

Therefore, 

std dev('t') = 
at2 (A I + A2) 

2T(A2 - AI? 

1 

M 

(3.21) 

(3.22) 

The equivalence between equations 3.18 and 3.22 is clear. Note that while equation 3.18 gives 

the minimum standard deviation predicted by the CRLB, equation 3.22 is the actual standard 

deviation of an estimate formed as described above. For ex » 1, (for rapid transitions) the 

summation term in equation 3.18 saturates at a value of 4/3. It will be shown below that ex will 

always be large in these calculations. Equation 3.18 simplifies to 

(3.23) 

Comparison of equation 3.21 and equation 3.23 suggests that an equivalent ex may be found 

for a transition duration of Llt seconds. If the slope of a sigmoidal function at t='t in equation 

3.7 is equated to the slope of the transition in figure 3.2, ex can be solved for in terms of Llt. 

The slope is 
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= 
a (A2 - A1)e -a.(t - t) 

(1 + e -a. (t - t)? (3.24) 

JM~ •• N.fIN ) Gaussian with standard 
UII deviation cry 

~t t 

Figure 3.2 

The Poisson change-point problem is re-interpreted as a Gaussian change

point problem, which is shown in this figure. The transition from average 

value Al to average value A2 takes dt seconds. 

Replacing t with t and equating this with the slope of the transition in figure 3.2, 

= 

so that 

4 a =-. 
Ilt 

(3.25) 

(3.26) 

For example, if calculation resolution is 1 ms, the fastest transition takes place in 1 ms. Thus, 

dt= 1 ms and a=4000. This shows that large a is always used, which in turn shows that the 

approximations in equation 3.23 are correct. The choice of dt= 1 ms is also supported by the 

auditory nerve fibre decay time constant data discussed after equation 3.7. 
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Using equation 3.26 in equation 3.23, it is found that 

(3.27) 

If, in equation 3.21, the transition takes place in one sampling period, then T=Llt, so that the 

variance in the estimate of 't' predicted by equation 3.27 is 1.5 times the variance predicted by 

equation 3.11. However, it is merely the nature of the transition model (ramp in equation 3.19 

or sigmoidal in equation 3.7) which results in this difference. The sigmoidal function with slope 

as calculated in equation 3.26 does not quite complete a transition within one sampling period. 

When cx= 6/ Llt, the transition is completed within one sampling period. With this cx in equation 

3.23, it is seen that equation 3.21 equals equation 3.23. Thus the estimate is efficient and the 

variance in estimate is given by the simplified version of equation 3.21, 

(3.28) 

Equation 3.28 is a simple closed form expression for the variance in the estimate of the change 

point. This equation can be used to predict the standard deviation in the estimate of the time 

of transition from an average rate Al to a new average rate A2 in a Poisson process, as a 

function of LlA, the difference between the two rates. 

2.4 Bounds on the gap detection and discrimination thresholds as a function of LlF 

For the gap detection or gap discrimination problem, the variance in the estimate of the time 

of transition is required as a function of LlF, the difference in frequency between the two 

markers that mark the gap. As it is known from the derivations above how LlA influences the 

accuracy with which a change-point can be located, a relation between LlF and LlA is required. 

It is assumed that the auditory system places a filter halfway between the two marker 

frequencies FI and F2. This "filter" is just an "attention window" or observation window and 
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does not apply any weighting. The width of the window is assumed to be one critical band. 

When Fl and F2 are closely spaced (closer than one critical band), the largest part of the 

activation pattern of each of the marker frequencies falls within the attention window. A central 

integration centre that observes inputs from fibres within this observation window will see large 

differences in firing rate when the fibres are excited by the presence of a marker tone, as 

opposed to the low firing rate during the gap. Not all the fibres fire at the same rate, of course. 

The central integration centre will see a firing rate profile. The data of Zhang, Salvi, and 

Saunders (1990) show that discharge rate may be suppressed below SR during the gap. The 

rate during the gap is assumed to be SR or lower. The rate profiles for the pre-gap and post

gap markers will be similar, but not equal (figure 3.3). As the marker frequencies are separated 

(~F increases) the observation window will eventually contain just the tails of the 
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Figure 3.3 

Spatial excitation profiles of two marker frequencies are shown when 

observed in a window one critical band wide (midway between the two 

sites of maximum excitation). The solid line is for excitation by the first 

marker of 500 Hz, and the dashed line is for excitation by the second 

marker of 600 Hz. 

activation patterns. Little or no difference in firing rate between the gap and marker conditions 

exists for this situation, so that the transition between the gap and marker will be difficult to 
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detect. Using the model in paragraph 2.1 to obtain the firing profile, different values Al (i) for 

each fibre in the observation window during the marker is obtained, while it is assumed that a 

fixed A2 exists on all fibres during the gap. Al is the rate during a marker, while the superscript 

(i) indexes the fibre number. 

To combine information from the spike trains in the observation window, one option is to 

calculate the SNR on each fibre and then to add the SNRs (see equation 3.17; Green and 

Swets, 1966, equation 9.1) to obtain a combined SNR for N channels. This can be substituted 

into equation 3.20 to obtain a new equation 3.21. Or, to simplify calculations, the maximum 

Al could be used. This will give the best possible SNR and thus the best possible performance. 

The effect ofN fibres can then be added by multiplying the SNR by N. This method does not 

take the poorer signal-to-noise ratio on other fibres into account. The first option was used in 

calculations. This was used in equation 3.21 to calculate the variance in the estimate of t, the 

time of the transition between the marker and the gap. 

It was further assumed in calculations that the two markers had the same average value of AI' 

and that both transitions (from marker to gap and from gap to marker) were of equal difficulty 

to estimate. If the noise in measuring the exact time of transitions were the only source of noise 

in estimating gap length, then the variance in the estimate of the gap length is the sum of the 

variances of the estimates of the two transition times. Following Siebert (1970), the standard 

deviation in the estimate of gap duration can be equated to the gap duration discrimination 

threshold jndgap ' 

jndgap = v2var(t) . (3.29) 

Var(t) is calculated from equation 3.21. Equation 3.29 is for a single fibre and is valid under 

the assumption that the two random variables indicating the two transitions on either side of 

the gap are independent. 

Figure 3.4 shows data sets for gap detection (Formby et aI., 1996) and gap discrimination 
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(Divenyi and Danner, 1977) along with predictions obtained from equation 3.29 and other 

predictions to be described in the sequel. 

Figure 3.4 
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Gap detection and discrimination data and model predictions for gap 

discrimination are shown. Circles are gap detection data from Formby et 

ale (1996). The standard (first marker) was at 500 Hz in these data. Open 

circles are for a signal-to-noise ratio of 40 dB with noise presented at 10 

dB SL, while closed circles are for the same signal-to-noise ratio, but 

presented at a louder level (noise at 30 dB SL). Squares are gap 

discrimination data from Divenyi and Danner (1977). Model predictions 

have been obtained only for F 2 (post-gap marker frequency) higher than 

F 1 (pre-gap marker frequency). The thin solid line and dashed line are 

model predictions for gap discrimination, while the bold solid line is a 

prediction for gap detection. The dashed line for gap discrimination was 

obtained when the Poissonian timer was implemented, and the solid line 

was obtained without the Poissonian timer. Model parameters were: fibre 

threshold = 45 dB, k=20, 0 0=5, SR=35 spikes/s, maximum spike rate = 200 

spikes/so 
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2.5 Measurement of gap duration with a Poissonian timer 

It is possible that the internal time measurement is also noisy, i.e. when the only source of noise 

is not only the noisy measurement of gap edges, but also imperfect measurement of the time 

between the two estimates of gap edges. Creelman (1962) and Divenyi and Danner (1977) 

addressed the problem of measuring the gap duration with a timing mechanism that measured 

the gap duration by counting the number of spikes of a Poisson spike train when the gap edge 

positions are known. In this document, this mechanism of measuring gap duration is referred 

to as a "Poissonian timer". 

With the gap edge positions known, but measurement of gap duration is done with a Poissonian 

timer, d' is (Divenyi and Danner, 1977) 

(3.30) 

~t is the average number of spikes during a gap with duration t. For a Poisson process, ~t=A.t, 

with A the rate during the gap, ~t+L1t=A.(t+Llt), and the spike count variances are 0t2=A.t and 

Ot2 +L1t=A.(t+Llt). The jnd for gap duration is Llt. 

The average number of spikes during a gap of duration t is still the same when the gap edges 

cannot be determined accurately, but the variance in the number of spikes increases. If O-c 2 is 

the variance in the estimate of the gap edge time, the additional number of spikes for one 

uncertain edge is OrA. Thus, the total variance in the spike count when estimating gap duration 

IS 

var(spike count) = 2 . (Ot"-? + 0; . (3.31) 

Then, substituting equation 3.31 in equation 3.30, d' for gap duration is 
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d,= ___ V2_2_(~_t_+_at_-__ ~_J __ 
.J 2 2 '12 2 Vat + at + 4 a't' A + at 

which is an equation also given in Divenyi and Danner (1977). 

(3.32) 

The gap durationjnd can be solved for from equation 3.32 by setting d'=l (this is by definition 

the discrimination threshold; at d'= 1 the percentage of correct decisions is 76%). llt and Ot
2 

are substituted by A.t, and ~t+~t and Ot2+~t by A.(t+dt) and then equation 3.32 is solved for dt, 

where dt is the jnd in gap duration, 

ilt = _1_ + _I_JI + I6At + 32a2A2. 
4A 4A 't' 

(3.33) 

The variable t is the base duration for gap discrimination in this equation, and A is the average 

spike rate that the Poissonian timer uses to measure the gap duration. By assumption, this rate 

is different from the spike rate during the gap, but is the spike rate used by a Poissonian timer 

somewhere in the central auditory system. To use this equation, 0.2 is required. This is the 

variance in the estimate of the transition from gap to marker as given in equation 3.29. Figure 

3.4 shows the effect on gap thresholds of using a Poissonian timer. 

2.6 Gap detection 

The derivation so far is valid for a gap discrimination task. For gap detection, the task is quite 

different, and in this section equations are derived for gap detection thresholds. 

In the gap detection task, the listener has to detect the presence of a gap, but does not have to 

estimate the gap duration. If both markers have the same frequency (the within-channel 

condition), the task is to detect a transition. If the gap markers differ in frequency (the across

channel condition), there will be a transition whether a gap is present or not. To detect the gap 

in a 2IFe paradigm, the listener will have to decide which interval has two transitions. 

Accordingly, two transitions must be detected. The detection of a transition depends on both 
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the rate difference between two Poisson processes (during the gap and markers), and the time 

that the detector has to observe the Poisson process before and after the transition. If the gap 

is too brief, the change in spike rate after the first gap edge will not be detected, and neither 

will the change in spike rate at the end of the gap. Only one transition will be detected if the 

markers differ in frequency. 

In other words, if the gap is too brief, the listener does not discriminate between the Poisson 

spike rate during the marker and during the gap. If the difference in spike rate is not 

discriminated, the gap cannot be detected. Therefore, the central detection mechanism has to 

obtain an estimate of the spike rate. 

Spike rate estimates can be obtained by an optimal nonlinear estimator as described in chapter 

5, or sub-optimal estimates may be obtained from spike counts. The nonlinear estimator 

described in chapter 5 uses the spike train as input and estimates the spike rate of that specific 

spike train. It bases estimates on a prior model of the expected signal. To obtain statistical 

information (e.g. variance in estimate), Monte Carlo analysis is required. 

On the other hand, statistical methods can be used to evaluate the performance of a classical 

estimator. In this chapter, the central gap detection mechanism is hypothesized to discriminate 

spike trains based on the sub-optimal statistic of spike counts. If two Poisson processes that 

differ in rate have to be discriminated based on the number of spikes in an interval T, the signal

to-noise ratio for the discrimination task is (Rieke et aI., 1997; see also equation 3.14). 

SNR = T· (aA? 
Aavg 

(3.34) 

= 

In this equation, Aavg is the average A and T is the total observation interval of the Poisson 

process with rate of either Ai (during a marker) or A2 (during a gap). As the critical interval for 

discrimination between the two spike rates is the gap (because it is brief), T can be equated to 
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the gap duration. In other words, the assumption is that if an observation period of T seconds 

is too brief to discriminate between two rates Al and A2, the gap will not be detected. If T is 

long enough for discrimination of the spike rate during the first marker from the gap spike rate, 

and also for discrimination of the gap spike rate from the second marker spike rate, the gap will 

be detected. If it is assumed that both marker stimuli elicit the same spike rate, and that the 

(lower) spike rate during the gap is stationary, detection of both transitions are equally likely. 

The threshold value for the detection of the gap is where Pd=P(gap detected)=0.76 (i.e., when 

d'= 1 in a 2IFC paradigm). For the detection of a gap, 

P (gap detect) = P (detect first transition) . P (detect second transition) . (3.35) 

For achieving a detection probability of Pd=0.76, the probability of detection for either 

transition has to be 0.87 (0.872 = 0.76), if it is assumed that the detection of both markers is 

equally likely. 

The detectability d' required for P=0.87 is then calculated from 

P(detection o/transition) = 1 - Eifc( /2
2 
d') = 0.87 , (3.36) 

which is valid for a 2IFC experimental paradigm. 

For P=0.87, it is found that d'~ 1.6. This value for d' is substituted into equation 3.34, keeping 

in mind that d' = .f SNR. Solving for T, 

1.62 (A 1 + A2) 
T=-----

2(A2 - AI)2 
(3.37) 

This is the final equation for the gap detection threshold, where T is the gap duration, and Al 

and A2 are the spike rates during the marker and gap respectively. For comparison with the gap 

discrimination threshold, equation 3.22 is repeated here, 
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at2 (A I + A2) 

2T(A2 - Al)2 

1 
M 

(3.22) 

Note that in equation 3.37 the quantity (AI + A2)/2(A2 - AI)2 appears, while the square root of 

this same quantity appears in equation 3.22. This characterizes the difference between gap 

detection and discrimination. This is equivalent to the situation of intensity discrimination, 

where it is well known that for detection, data can be fit by a normal integral of A 2 (where A 

is the stimulus intensity), while for discrimination the data is fit by a normal integral of i1A 

(e.g., Laming (1986)). 

As before, values of i1A correspond to a particular i1F, so that curves for the gap detection 

threshold as a function of i1F can be plotted. Examples of gap detection threshold predictions 

are shown in figures 3.4-3.7 (discussed below). 

3 RESULTS 

Figures 3.4-3.7 show gap detection data (Formby, Sherlock, and Forrest, 1996) and gap 

discrimination data (Divenyi and Danner, 1977) for acoustic stimulation and listeners with 

normal hearing, along with model predictions. The Formby data were measured for F 1 =500 Hz 

and a variable F2. Two data sets are shown, both measured at a SNR of 40 dB, but the data set 

with the lower gap threshold was measured at higher intensity (the noise level was 30 dB SPL 

instead of 10 dB SPL). The data show that discrimination of gap duration is an easier task than 

gap detection under the conditions of these experiments (where noise complicated the gap 

detection task). Possibly, the presence of the base duration makes this task simpler than gap 

detection. 

Model predictions for various parameter choices are shown in figures 3.4 to 3.7. Model 

parameters are described in the figure captions. Three model curves are shown in each figure, 

one for gap detection thresholds (equation 3.37), one for gap duration discrimination when the 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 69 

 
 
 



Chapter 3 Models o[gap detection in acoustic hearing 

only source of noise is the uncertainty in gap edge positions (equation 3.22), and one for gap 

duration discrimination when the gap duration is measured with a Poissonian timer (equation 

3.33 together with equation 3.21). 

Overall, the trends shown by the gap detection model and the gap duration discrimination 

model parallel those observed in the data. The gap detection curves have steeper slopes than 

the gap duration discrimination curves. The latter curves are wide, bowl-shaped curves. 

However, the predicted gap detection thresholds are lower than the gap discrimination 

threshold for within-channel gap detection (LlF=O) when the Poissonian timer is used. 

Figure 3.5 
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Same as figure 3.4, but with different model parameters: fibre 

threshold = 55 dB, k=20, 0 0=5, SR=25 spikes/s, maximum spike rate = 200 

spikes/so The thin solid line and dashed line are model predictions for gap 

discrimination, while the bold solid line is a prediction for gap detection. 

For the parameter choices in figure 3.5, the tip region of the gap detection data is predicted by 

the gap detection model, while the tails of the gap detection data are predicted by the gap 

discrimination model. However, neither model predicts the gap discrimination data. Note that 

for both the gap detection and gap discrimination models, the same fibre parameters were used. 

It is, however, conceivable that gap detection and gap discrimination are performed by fibres 
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with different parameters. 

The model predictions in figure 3.6 are interesting. For these parameter values, the gap 

detection model predicts the gap detection data, while the gap discrimination model with the 

same parameters predicts gap duration discrimination thresholds in the correct range, although 

the wide-bowl shaped curve is not predicted. Considering the gap discrimination model where 

the Poissonian timer is used, it is observed that the sharp peak in the electrical stimulation data 

(see figures 2.2, 2.3 and 2.12) is predicted by the gap detection model, while the wide bowl

shaped part of the electrical stimulation data is predicted by the gap discrimination model. 

There is a change-over point at a gap duration of 13 ms, so it seems possible that at this 

duration the task changes from detection to discrimination. This is at a value of .dF of 100 to 

150 Hz, which is approximately one critical band at a marker frequency of 500 Hz. 

Interestingly, this is supported by pitch discrimination data for electrical stimulation (Hanekom 

and Shannon, 1996), where electrode sounds generally become distinct when electrode pairs 

are 1.5 mm apart (approximately one critical band). 

Figure 3.6 
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Same as figure 3.4, but with different model parameters: fibre threshold 

= 55 dB, k=20, 0 0=2, SR=35 spikes/s, maximum spike rate = 200 spikes/so 

If the resolution is 1 ms, and if cx is chosen as 4/ .dt, then cx=4000. With this choice and with 

fibre threshold set at 45 dB in the gap discrimination model, it is seen in figure 3.4 that a 
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reasonable fit is obtained to the gap discrimination data. This suggests the possibility that the 

gap detection thresholds and gap discrimination thresholds are not determined by the same 

population of nerve fibres. For these parameter choices, it is also observed that only one fibre 

is required to achieve the gap discrimination data if gap duration measurement is perfect, but 

if the measurement is done with a Poissonian timer, more fibres are required. Other parameter 

choices also need to be changed to predict the data in this case. Specifically, the base duration 

for discrimination has to be 0 to achieve low enough gap discrimination values with the 

Poissonian timer. Equation 3.33 shows that gap thresholds may be decreased by decreasing the 

base duration, or by increasing A, the rate of the Poissonian timer. 

In some of these simulations, the neural threshold was set at 55 dB. This is an unrealistic 

choice. This value is required to achieve a sharper cutoff in A2 (i.e. a narrower region of 

activation). This means that after the auditory nerve, an additional system must exist which 

sharpens neural tuning, or, equivalently, inhibits neural firing when the frequency difference 

between CF and the stimulus frequency is large enough. 

Figure 3.7 
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Same as figure 3.4, but with different model parameters: lXo=12, fibre 

threshold = 35 dB, k=20, 0 0=7, SR=40 spikes/s, maximum spike rate = 200 

spikes/so 

Apart from the unrealistically high value of threshold, another parameter controls the roll-off 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 72 

 
 
 



Chapter 3 Models of gap detection in acoustic hearing 

rate of A2• This is the tuning parameter CX in equation 3.5, which controls the sharpness of 

tuning. With cxo=4 in equation 3.6, the model tuning curves provide good approximations to 

the data of Kiang et al. (1965). This is at the auditory nerve level. With cxo= 12, tuning is much 

sharper, but compares with the tuning found at higher levels of the central auditory nervous 

system. 

Cells in the DCN (dorsal cochlear nucleus) are known to exhibit sharp cutoff and inhibitory 

areas. Cells have also been found in the DCN that have extremely sharp roll-off (Rhode and 

Greenberg, 1992). Also, frequency tuning in the central auditory system improves deeper into 

the auditory system. Tuning is sharper at the auditory cortex than at the CN level, which in turn 

has sharper tuning than the auditory nerve (Sutter, 2000). Sutter gives examples of cells in Al 

that have much sharper tuning than what is required to fit the gap detection data. It is quite 

possible that gap detection takes place at the CN level but the goal here is not to prove or 

disprove this. 

Using this sharper tuning (cxo=12 in equation 3.6), and other more realistic parameter choices, 

it is shown in figure 3.7 that the gap detection data are approximated quite well by the model. 

The parameters are shown in the figure caption. Note that the sharp curve is still obtained for 

high threshold fibres only, but now the model fibre threshold is more realistic. For low 

threshold fibres, the model predicts better performance. Thus, it seems the auditory system 

does not perform optimally in this task. 

4 DISCUSSION 

4.1 Strengths and shortcomings of the model 

The expressions that were derived for gap detection and discrimination thresholds as a function 

of the spike rates during the gap and markers, seem intuitively correct. Building on these, the 

model provides closed form expressions for gap detection and discrimination thresholds. It is 
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seen that the model can predict both the magnitude and the trends in the gap detection and gap 

discrimination data for certain choices of model parameters. The sharper curves for gap 

detection and the shallower curves for gap discrimination are predicted. 

The model assumes that the gap detection mechanism uses sub-optimal statistics (spike counts) 

in a classical detector to detect the presence of a gap. No prior knowledge of the signal 

dynamics is used (as opposed to the model of chapter 5). However, as argued in chapter 5, it 

is likely that the auditory system uses an internal model of the spike generation mechanism. 

The models for gap detection and discrimination do not provide an explicit mechanism that can 

detect a gap from a spike train input. Therefore, it is perhaps not immediately evident that the 

model for gap discrimination implicitly assumes that AI' A2 and A3 are known, i.e. the 

calculated CRLB for position of the gap edge assumes that the spike rate during the gap and 

markers are known. This is not an unreasonable restriction, as it is possible that the auditory 

system estimates spike rates. Regardless, the CRLB gives a lower bound on the accuracy of 

the estimation of gap edge times, and possibly the auditory system does not achieve this lower 

bound. This is supported by gap detection and discrimination data. 

To use classical signal detection theory to predict gap thresholds, meant that a simple signal 

model (spike train model) was required. Closed form expressions could be obtained because 

spike trains were assumed to be Poissonian. The Poissonian assumption is usually only valid 

at higher frequencies or deeper in the central auditory nervous system where no phase-locking 

occurs. However, as argued in the introduction, it is reasonable to use Poissonian spike trains 

in a model for gap detection, as it seems that temporal information does not playa significant 

role in determining across-channel gap detection thresholds. Chapter 4 discusses the gap 

detection problem when phase-locking occurs. 

4.2 Parameter sensitivity and the origin of the shape of the gap detection tuning curves 

The predicted magnitude of gap detection thresholds by equation 3.37 is consistent with data 

when realistic values for Al and A2 are used. The shapes of the gap detection tuning curves are 
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determined by several model parameters. 

The sharp tips of the gap tuning curves are controlled primarily by the roll-off of the A versus 

~F function. The sharper the slope of this function, the sharper the tip of the gap detection 

tuning curve. The slope of this function is, in turn, controlled by ao in equation 3.6, which 

determines the sharpness of tuning. 

The slopes of the tuning curve flanks are controlled by 0 0, which determines the slope of the 

rate-intensity curve. Larger 0 0 result in shallower rate-intensity curves and shallower tuning 

curve slopes. 

The flattening of the gap detection tuning curve beyond the shoulder of the curve is obtained 

when the spike rate during a gap is less than the SR. The spike rate during the gap may be less 

than SR when suppression of spike rate occurs after the offset of the first marker (Zhang et aI., 

1990). The flattening of the tuning curve occurs because, for widely spaced marker electrodes 

(large ~F) the spike rate in the observation window during a marker reaches a steady state 

value (the spontaneous rate SR). As the spike rate during the gap is also fixed in the model, it 

is seen from equation 3.37 that gap threshold T will reach a steady state value. 

4.3 Temporal and spatial models for gap detection 

The model hinges on the idea that the auditory system uses an attention filter or observation 

window that is placed midway between the regions excited by the two markers. As explained 

in more detail in chapter 4, evidence does exist which challenges this idea. Nonetheless, the 

model has made concrete the notion that "the task becomes more difficult" as marker 

frequencies are separated. Increased difficulty of the task is reflected in spike rates during the 

markers and gap that become more similar as marker frequencies are separated. This is a spatial 

model for gap detection, as opposed to a temporal model for gap detection. As discussed in 

the introduction, evidence exists that supports the notion that at least across-channel gap 

thresholds are based on spatial mechanisms. 
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Zhang, Salvi, and Saunders (1990) have shown that spike rate decays exponentially after the 

offset of the first marker, so that the gap is filled with continuing spike activity and therefore 

brief gaps are difficult to detect. Filling of the gap provides a feasible explanation for within

channel gap detection thresholds, but cannot explain increases in gap thresholds in the across

channel condition. 

Whether temporal mechanisms or spatial mechanisms are used to explain gap thresholds, it is 

clear that separating the marker frequencies results in deteriorated signal-to-noise ratios in the 

spike train or set of spike trains that the detection mechanism observes. The "signal" that has 

to be detected in either case is the transition from marker to gap (or gap to marker) that is 

masked by some source of noise. 

4.4 Interpretation of modelling results 

To predict gap detection data accurately, especially the sharp tip region, the model requires 

unrealistically high fibre thresholds when neural tuning curves are modelled after auditory nerve 

tuning. When sharper tuning is assumed, similar to that found in some DeN fibres or deeper 

in the central auditory nervous system, the sharp tip region is predicted more easily, but still 

using high threshold fibres. There is no apparent reason why only high threshold fibres would 

take part in gap detection. 

Assuming more realistic fibre parameters, predicted gap thresholds are smaller than measured 

gap thresholds in the across-channel condition. The auditory system seems to operate sub

optimally in this task, an observation that has also been made regarding frequency 

discrimination ability (Siebert, 1970; Hanekom and Kruger, 2001). Spike count statistics are 

already suboptimal for rate discrimination or transition detection, but even so deterioration of 

gap detection thresholds in the across-channel condition is faster than the model predicts. 

The fact that sharp tuning is required to predict gap detection data with this model suggests 

that theoretically the auditory system should be able to perform much better on the gap 

detection task, but is somehow limited by internal noise or other confounding factors. It may 
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be that subjects find it difficult to attend to the gap because of the different-sounding markers 

(van Wieringen and Wouters, 1999), but this is probably more important in cochlear implantees 

than in normal-hearing listeners. The task of detecting a gap between spectrally different 

sounds occurs frequently in normal hearing, e.g. voice onset time is one feature that 

distinguishes different consonants. 

It is outside the scope of this work to determine where in the auditory system the gap detection 

mechanism is situated, but it can be speculated on. With many free parameters controlling the 

shape of the model-predicted gap detection tuning curves, it is important that parameter 

choices should be biologically plausable. It is therefore adequate to show that the parameter 

values required to fit the data are in line with neural parameters published in literature. The fact 

that sharp tuning is required to predict gap detection data points to the possibility that the gap 

detection mechanism is implemented at the CN level or deeper in the central auditory nervous 

system. 

Finally, comparing model predictions with the data, it seems possible that the task changes from 

gap detection to gap discrimination at a certain frequency separation (possibly at one critical 

band, as shown before). 

5 CONCLUSIONS 

The CRLB for the Poisson change-point problem, which appears not to be documented in 

literature, has been derived here. The result is intuitively satisfying. 

It is shown that the quantity (AI + A2)/2(A2 - A1)2 appears in the model for the gap detection 

task, while the square root of this same quantity appears in the gap discrimination model. A 

similar observation regarding intensity discrimination has been made before. 

A model that can predict the U-shaped curves found in across-channel gap detection has been 

created. The model is simply based on signal detection theory considerations. 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 77 

 
 
 



Chapter 3 Models of gap detection in acoustic hearing 

The model shows that a spatial mechanism, as opposed to temporal mechanisms, may 

contribute to gap detection thresholds in the across-channel condition. This is important in 

cochlear electrical stimulation, where spike trains are strongly phase-locked to the stimulus and 

where temporal mechanisms do not seem to determine gap detection thresholds. Accordingly, 

techniques similar to those used in this chapter are applied in chapter 3 to create a model that 

can predict gap detection thresholds in auditory electrical stimulation. 
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