

Geotechnical Assessment of a Kimberlite Pipe in Greenstone Belt Granites

Jurgens Petrus Eden Hamman

A dissertation submitted in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE (Mining)

In the

FACULTY OF MINING ENGINEERING

UNIVERSITY OF PRETORIA

October 2008

SUMMARY OF STUDY

The potentially hazardous nature of open pit mining requires the application of sound geotechnical engineering practice to mine design, for the purpose of permitting safe and economic mining of any commodity within any rock mass.

The Lerala Diamond Project is situated in the south west of Botswana near the Martin's Drift Border Post. A 2m-soil cover made surface mapping of geological features impossible, so a number of geotechnical holes were drilled to evaluate the characteristics of the kimberlite pipes and the Granite/gneiss host rock.

The Lerala Diamond Project is a typical example of the geotechnical assessment of a kimberlite pipe in Greenstone belt granites. The explosive nature of the formation of these pipes was seen in the various types of joint and fracture pattern identified during this study that could have an influence on the stability of the open pit.

Estimating the stability of rock slopes is required by the mining engineering industry for a wide variety of projects. Of importance in this regard is the preliminary evaluation of slope stability at the feasibility stage, excavation stage, and operating stage. The Lerala Diamond Project is currently undertaking a preliminary evaluation as part of a feasibility study.

The aim of the geotechnical assessment was to divide the local rock into easily identifiable types that could be geotechnically evaluated. Two classification systems were used during the quantification of the rock mass types. These are the Rock Mass Rating (RMR) system of Bieniawski (1976) and the Mining Rock Mass Rating (MRMR) system of Laubscher (1990).

Observations and recordings of the drill core were carried out and these, in conjunction with laboratory results, enabled the determining of the characteristics of the rock mass that will be exposed in the slopes.

Computer modelling programmes such as ROCKPAK III were used to test the designs against potential failures. The various potential failures were identified for the different highwalls.

Recommendations including the continuous logging of geotechnical features were proposed for the purpose of developing a sound geotechnical model for identifying potential unstable areas within the pit.

Geotechnical assessment of a kimberlite pipe in Greenstone belt granites

Jurgens Petrus Eden Hamman

Supervisor: Professor MF Handley

Co-Supervisor:

Department: Mining Engineering

University: University of Pretoria

Degree: Master of Science (Mining)

ACKNOWLEDGEMENTS

I wish to express my appreciation to the following organisations and individuals who made this research possible:

- DiamonEx Limited*, in consultation with Minxcon, for permission to present in this report material collected during a geotechnical assessment I undertook of the Lerala Diamond Project (Botswana);
- Open House Management Solutions for its financial support;
- Emrich Hamman for technical assistance and guidance;
- Professor Matthew Handley for his guidance and willingness to offer his expertise on the subject of geotechnical assessment;
- Barbara English for her copy editing of the report; and
- My friends for their encouragement and support during the carrying out of the research and the compiling of this report.
- * The opinions expressed in this report are those of the author and are not necessarily those of the management of DiamonEX Limited.

TABLE OF CONTENTS

SUMMARY OF STUDY	ii
ACKNOWLEDGEMENTS	iv

CHAPTER ONE – INTRODUCTION TO THE STUDY AND

DISSERTATION	1
1.1 Geology of the Lerala Area	1
1.2 Slope Design	4
1.2.1 The collection of geological data	5
1.2.2 Laboratory testing	5
1.2.3 Rock mass classifications systems	5
1.2.4 The use of applicable computer programs	6
1.2.5 Slope types	7
1.2.6 Influence of slope curvature upon stability	8
1.3 Research Problem	8
1.4 Structure of this Dissertation	9

CHAPTER TWO – LERALA PROJECT: METHODOLOGY102.1 Geotechnical Mapping102.2 Drilling Layouts and Core Logging Method132.3 Determining Rock Mass Mechanical Properties142.3.1 Rock strength142.3.2 Discontinuity frictional properties15

2.3.3 Saprolite / soil strength	17
2.4 Analysis of Discontinuities	20

CHAPTER THREE: RESULTS	21
3.1 Rock Mass Mechanical Properties	21
3.1.1 Rock strength	21

3.1.2 Discontinuity frictional properties	21
3.1.3 Saprolite	23
3.2 Discontinuities	23
3.2.1 Analysis of discontinuities	23
3.3 Main Geological Features	27
3.4 Weathering and Water	30
3.5 Rock Mass Classification	31
3.5.1 RMR Classification	31
3.5.2 Adjusted MRMR Rating	31
CHAPTER FOUR – ANALYSIS OF RESULTS	33
4.1 Pit Classifications	33
4.2 Joint Data Sets and Residual Friction Angles	36
4.3 Potential Failures in Granitic Gneiss	37
4.3.1 Plane failure	37
4.3.2 Toppling failure	38
4.3.3 Wedge failure	40
4.4 Potential Failure in Dolerite Dyke (Pit K5)	41
4.5 Optimum Slope Design	42
4.5.1 Hard rock slopes	42
4.5.2 Weathered material	50
CHAPTER FIVE – CONCLUSIONS	52
5.1 Recommendations for Future Work	53

LIST OF REFERENCES

APPENDICES

LIST OF TABLES

Table 1: Basic mining rock types	10
Table 2: Drilling layouts	13
Table 3: UCS values	15
Table 4: JRC, JCS values, basic and instantaneous friction angles	23
Table 5: Data of Lerala laboratory results for saprolites	23
Table 6: Joint data set for granitic gneiss	25
Table 7: Joint data set for dolerite dyke in K5	26
Table 8: Foliation data set for granitic gneiss	26
Table 9: Directional properties of the dolerite dykes	27
Table 10: Legend for boreholes	27
Table 11: RMR Classification of the major rock types	31
Table 12: Adjusted MRMR Classification of the major rock types	32
Table 13: Comparisons between the RMR / MRMR Classification and	Industry
values for the major rock types	32
Table 14: ROCKPACK III - Joint/foliation set symbols for granitic gneis	ss 36
Table 15: ROCKPACK III - Joint set symbols for dolerite dyke	36
Table 16: Instantaneous friction angles	36
Table 17: Joint types that are prone to plane failure for the maj directions and dip	or slope 37
Table 18: Joint types that are prone to plane failure for the min- directions and dip	or slope 38
Table 19: Joint types that are prone to plane failure for the addition directions and dip	nal slope 38
Table 20: Joint types that are prone to toppling failure for the maj directions and dip	or slope 39

vii

Table 21: Joint types that are prone to toppling failure for the min directions and dip	or slope 39
Table 22: Joint types that are prone to toppling failure for the addition directions and dip	nal slope 39
Table 23: Joint types that are prone to wedge failure for the maj directions and dip	jor slope 40
Table 24: Joint types that are prone to wedge failure for the min directions and dip	or slope 40
Table 25: Joint types that are prone to wedge failure for the addition directions and dip	nal slope 41
Table 26: Joint types that are prone to plane failure for the maj directions and dip	or slope 41
Table 27: Joint types that are prone to toppling failure for the maj directions and dip	jor slope 41
Table 28: Joint types that are prone to wedge failure for the maj directions and dip	ior slope 41
Table 29: Correlation between adjusted MRMR values and OSA's	43
Table 30: Overall slope angles	43
Table 31: Spill berm widths	45
Table 32: Design criteria for granitic gneiss slopes	46
Table 33: Design criteria for different ramp widths in granitic gneiss	47
Table 34: Design criteria for kimberlite breccia slopes	48
Table 35: Design criteria for different ramp widths in kimberlite breccia	as 49
Table 36: Design criteria for dolerite dyke slopes	49
Table 37: Design criteria for different ramp widths in dolerite dyke	50

 Table 38: Design criteria for slopes within the saprolite gneiss slopes
 51

LIST OF FIGURES

Figure 1: Granitic gneiss	2
Figure 2: Pink granite	3
Figure 3: Lerala lease area	3
Figure 4: Kimberlite breccia	4
Figure 5: Dolerite dyke	4
Figure 6: Open pit terminology	7
Figure 7: Two major joint sets in pit K4	11
Figure 8: Major joint sets from surface mapping	11
Figure 9: Drill rig drilling at -60°	12
Figure 10: Schematic pit section indicating drill hole target areas	12
Figure 11: Typical example of saprolite	18
Figure 12: Weathered material design charts	19
Figure 13: Combined basic friction angle data for all the granitic gne samples	eiss 22
Figure 14: Stereo plot of joint patterns in the granitic gneiss	24
Figure 15: Stereo plot of joints in the K5 dolerite dyke	25
Figure 16: Stereo plot of foliation in the granitic gneiss	26
Figure 17: Large-scale structural features in K2	28
Figure 18: Large-scale structural features in K3	28
Figure 19: Large-scale structural features in K4	29

Figure 20: Large-scale structural features in K5	29
Figure 21: Large-scale structural features in K6	30
Figure 22: Main slope orientation categories	34
Figure 23: Preliminary pit design for K2	34
Figure 24: Preliminary pit design for K3	34
Figure 25: Preliminary pit design for K4	35
Figure 26: Preliminary pit design for K5	35
Figure 27: Preliminary pit design for K6	35
Figure 28: Plane failure for a slope with dip direction of 180° and a d	lip of 85º
	37
Figure 29: Toppling failure for a slope with dip direction of 180° and	a dip of
85°	38
Figure 30: Wedge failure for a slope with dip direction of 180° and a d	ip of 85º
	40
Figure 31: Slope design chart (Haines and Terbrugge, 1991)	43
Figure 31: Slope design chart (Haines and Terbrugge, 1991) Figure 32: Schematic presentation of slope design (Basson, 2004)	43 46

CHAPTER ONE – INTRODUCTION TO THE STUDY AND DISSERTATION

The design of large excavated slopes for both mining engineering and civil engineering projects presents the engineer with two opposing elements that have to be considered together (Hoek and Bray, 1981). On the one hand, steepening the slopes can save vast sums of money through a reduction of the amount of material to be excavated. On the other, loss of life and serious damage to property can result from failures induced by excessive steepening of a slope. The aim for the geotechnical engineer is to achieve an optimum design for a slope, one that considers both economic feasibility and safety for mineworkers and mine property.

This research was carried out for the specific purpose of achieving such an optimum design by means of an investigation of the geotechnical aspects of the proposed Lerala Diamond Project, situated near Lerala in Botswana. The specific objectives of the research were to:

- Produce recommendations on hard rock slope angles for all pit slopes within the pits, with cognisance being taken of the different rock types within the highwalls;
- Provide special recommendations with respect to weathered material; and
- Suggest ongoing geotechnical input to further define the findings from this research.

1.1 Geology of the Lerala Area

The Lerala Project is in the eastern part of Botswana, approximately 50 km from the Martin's Drift border post, on the Limpopo River. The site topography is generally flat, with drainage towards the Limpopo River in the east. Vegetation predominantly comprises Mopane Bushveld and the annual average rainfall is approximately 450 mm.

The Lerala area lies within the high-grade metamorphic terrain of the Limpopo Mobile Belt. The country rocks are grey gneisses, migmatites (banded

gneisses) and amphibolites, with lenses of metaquartzites, marbles and calcsilicates assigned to the Archaean (3.2 Ba) Beit Bridge Complex (Carney et al., 1994). The Limpopo Belt has a complex history, but appears to have been essentially cratonised from about 2,000 Ma. It is the tectonic setting for the diamondiferous kimberlites at Venetia and The Oaks in South Africa, and the River Ranch kimberlite in Zimbabwe (Carney et al., 1994).

The area is covered with about 2 m of residual soil, with alluvium along the river courses. Calcrete is largely limited to the vicinity of drainages. The Kalahari sands are absent. Small bedrock outcrops are quite common. The few inselbergs are mainly formed from very resistive quartzite lenses within the gneisses. The landforms are very mature, and are the products of epeirogenic uplift and downwearing since the end of the Cretaceous (Carney et al., 1994).

The project area consists mainly of light grey to pink granitic gneiss exhibiting various levels of foliation (Figures 1 and 2). Five kimberlite pipes (K002, K003, K004, K005 and K006) of various dimensions are present in the lease area (Figure 3).

Figure 1: Granitic Gneiss

Figure 2: Pink granite

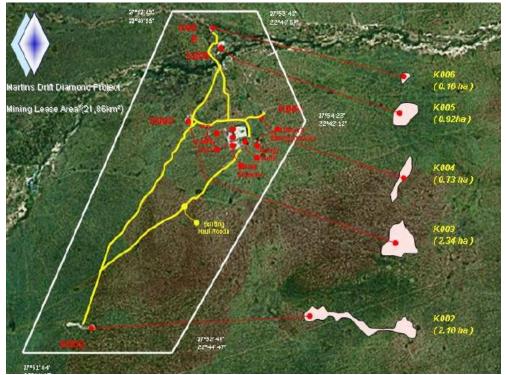


Figure 3: Lerala lease area

There are five main kimberlite facies recognised within the project. These are hypabyssal kimberlite, hypabyssal kimberlite breccia, tuffistic kimberlite breccia, marginal breccia, and kimberlite breccia (Figure 4).

Figure 4: Kimberlite breccia

Pipes are mostly near vertical with shear zones/kimberlite breccias at the contact with the host rock. Ten Karoo-age dolerite dykes (Figure 5) are present and generally strike east-west.

Figure 5: Dolerite dyke

1.2 Slope Design

The Lerala Project is no different from any other similar mining projects in terms of designing an optimal slope. As the rock mass behind any slope is unique, there are no standard solutions that are guaranteed to produce the correct result each time they are applied. Instead, in each case, a practical solution can only be based on basic geological data, rock strength, groundwater and a good measure of engineering common sense. These ingredients are mixed in different proportions for each slope to be designed

and the only assistance available is a collection of techniques for information gathering and, ultimately, analysis.

1.2.1 The collection of geological data

The cornerstone of any practical rock mechanics analysis is the geological data upon which the definition of rock types, structural discontinuities and material properties is based. Methods for the collection of geological data have not changed a great deal and there is still no acceptable substitute for field mapping and core logging (Hoek and Bray, 1981). Authors such as Dempers (1994) and Marjoribanks (2002) have developed methods and procedures to improve the quantity and quality of data collection. These methods were followed in the execution of the current research to ensure conformity to an industry-based guideline that is acceptable for the representation of logged geotechnical data.

Drilling techniques such as triple tube have improved the quality of core recovery greatly. Directional drilling at predetermined angles to intersect prominent geological features such as structures, surveying and core logging techniques have improved the collection of quality structural data.

1.2.2 Laboratory testing

Laboratory testing gives an insight into the behaviour of the rock mass on a small scale. In the slope-design investigation for the Lerala Project ROCKLAB's (Pretoria, South Africa) properly calibrated testing machines were used for conducting the laboratory tests. Industry-accepted procedures as specified by the International Society for Rock Mechanics (ISRM) (1978) were used in all the tests conducted by ROCKLAB.

1.2.3 Rock mass classifications systems

Rock mass classification systems as described by Haines and Terbrugge (1991) form the basis for the empirical designing of slopes. These authors explain that estimating the stability of rock slopes is required by the civil and mining engineering industry for a wide variety of projects. Of importance in this regard is the preliminary evaluation of slope stability at the feasibility

stage, the excavation stage, and the operating stage. It has become increasingly popular to make use of classification systems to estimate the stable angle of a required slope – during the feasibility stage, as in the case of the Lerala project – or of an existing slope.

In this study, the overall slope angles in the jointed rock mass were determined by using Laubscher's (1977) adjusted MRMR rock mass classification and Haines and Terbrugge's (1991) design charts. Rock mass classification systems such as Barton's Q (1974), Bieniawski's RMR (1976, 1989) and Laubscher's MRMR (1976, 1990, 1994) are all industry-accepted systems. The RMR and MRMR methods were used in this research to compare the empirical values for the different ratings.

These two classifications methods include information on the strength of the intact rock material and the spacing, number and surface properties of the structural discontinuities. The methods also make allowances for the influence of subsurface groundwater, in situ stresses, and the orientation and inclination of dominant discontinuities. These rock mass classification systems proved to be very useful for the Lerala investigation since no reliable surface exposures were available nor had any mining been done in the area investigated.

Exposure of geological discontinuities in a rock slope gives rise to the potential for sliding- and toppling-type failure, which will be referred to in the context of the Lerala Project in Chapter 4 of this report. The friction angle (Hoek, 1990) of the discontinuity surface that has been exposed is a critical factor controlling whether slip will occur or not. The frictional strength of a discontinuity surface is dictated by the basic friction angle, the degree of undulation or waviness of the surface, and the cohesion that may exist between the surfaces.

1.2.4 The use of applicable computer programs

Once the structural geological data has been collected, computer processing of this data can be of great assistance in plotting the information and in the interpretation of trends. The ROCSCIENCE Dips Version 5.1 is an example of

such a data-processing program. ROCKPACK III for Windows was also used because of its ability to assist in the kinematic analysis of jointed rock slopes and to determine the potential for structural instabilities.

1.2.5 Slope types

Two types of slopes are expected to be formed in the Lerala Mine. They are jointed hard rock slopes and soil (or highly weathered) slopes. The overall slope angles in the jointed rock mass at Lerala were determined using the Adjusted MRMR (Laubscher 1977, 1990) rock mass classification and appropriate design charts. The mechanical properties for the highly weathered material obtained from laboratory testing was used, together with the design charts, to determine the optimum slope angle and slope height in weathered material.

As jointed rock slopes can experience structural instability such as plane, topple and wedge failure, a kinematic analysis was conducted on the final highwalls.

Figure 6 (Gibson et al., 2006) shows the terminology that is used in this report for the features of the open pit that are referred to.

Figure 6: Open pit terminology SBW – Spill Berm Width ; OSA – Overall Slope Angle ; BSA – Bench Stack Angle ; IRA – Inter Ramp Angle

1.2.6 Influence of slope curvature upon stability

The planned curvature of the slope affects both the potential for failure and the consequences of failure. Concave slopes are preferred because:

- The confinement inherently provided by the concave geometry enhances stability; and
- If instability occurs, the volume of the failure is less.

The rock mass classification method of Barton et al. (1974) indicates that the *Q* value of a tightly confined rock mass can be up to ten times greater than the quality of the same mass in an unconfined condition. This figure corresponds to a decrease in quality in Laubscher's (1977, 1990) MRMR (Mining Rock Mass Rating) classification value of about 33%. Based on the Haines and Terbrugge (1991) chart shown in Figure 32, for a 100 m high mine slope, the slope angle could be decreased from 67° to 56°. This is a rough indication of the potential influence of a convex slope profile in plan, in which the slope is laterally unconfined.

Hoek and Bray (1981) suggest that when the radius of curvature of a concave slope is less than the height of the slope, the slope angle can be 10° steeper than determined by conventional slope stability analysis. Conversely, for a convex slope, with the radius of curvature less than the slope height, the slope angle could be 10° flatter than conventionally determined.

The designs put forward by the author referred to above must be used with some circumspection since other factors, in particular the presence of major geological planes of weakness, may be of overriding importance.

1.3 Research Problem

As was mentioned earlier, a geotechnical evaluation of the area required a thorough investigation of the surface geology of the Lerala Project. As the soil cover and lack of surface outcrops made such an investigation impossible, a few exploration pits/trenches were dug for bulk sampling purposes. These pits

exposed some geotechnical characteristics of the kimberlite ore body but none of the host rock (granitic gneiss), which would be exposed in the final pit highwalls.

It was therefore decided to make use of diamond drill rigs to drill strategically placed holes in order to recover host rock in which the final pit highwalls would be situated. The information from these holes would then be used to determine the rock mass characteristics, which would form the basis of the pit slope design process.

The structural data (joints, faults, intrusive and shear zones) from the boreholes needed to be analysed in detail since the majority of failures along the slopes would be related to these features. It was therefore important to determine the orientations of these features. A drilling method that includes the marking and orientation of the core, as developed by an Australian company 2ic (http://www.2icaustralia.com) was used.

1.4 Structure of this Dissertation

The methodology used to complete the geotechnical assessment of the rock mass is the topic of the next chapter – Chapter 2. Chapter 3 systematically sets out the findings derived from the assessment that are relevant for the design of the mining slope. Chapter 4 presents an analysis of these findings and the final chapter – Chapter 5 – contains the conclusions from the study and the recommendations on hard rock slope design that represent the specific objectives of this research.

CHAPTER TWO – LERALA PROJECT: METHODOLOGY

Following careful scrutiny of the available information from surface exposure, geotechnical boreholes and laboratory testing, the rock mass was divided and simplified to conform to a number of basic mining rock types. These are set out in Table 1.

Rock Type	Description					
Soil	Sandy soil and calcrete (Thickness < 2 m)					
Saprolite	Saprolite at various levels of weathering					
	(Thickness < 10 m for granitic gneiss)					
Granitic Gneiss	Pink granite, dark grey/pink granitic gneiss					
(GG)	Foliated light/dark grey granitic gneiss					
Kimberlite (K)	Main Orebody (K3 diameter < 200 m)					
Kimberlite	Associated with the kimberlite contact rock.					
Breccia (KB)	Prominent in the SE – SW area of K3					
	Martin a select of the Martin Line (10					
Dolerite Dyke	Various minor dykes. Major dyke (+40 m					
(DD)	wide) in the NE corner of K5					

2.1 Geotechnical Mapping

Geotechnical mapping was carried out to determine the major joint orientation before a drilling program could be finalised. Joint mapping of hard rock exposures (Figure 7) indicated a potential of three major joint sets (Figure 8).

Figure 7: Two major joint sets in pit K4

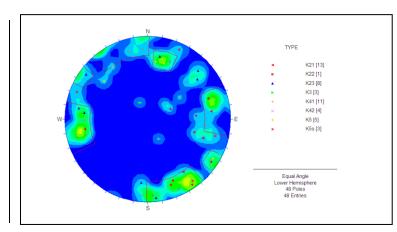


Figure 8: Major joint sets from surface mapping

The three major joint sets were measured as striking approximately Eastnortheast (ENE) to West-southwest (WSW), Northwest (NW) to Southeast (SE) and North (N) to South (S), dipping steeply at between 70° and 90°. From the measurements it was calculated that vertical drilling would not have been very effective because coring could have been parallel to these joints, without proper intersections. It was calculated that holes drilled at -50° to -60° from the horizontal in directions S45°E, N45°E, N45°W and S45°W would intersect the maximum joint set orientations.

Figure 9: Drill rig drilling at -60°

Four holes per pit were planned to be drilled 10 m to 15 m from the inside contact of the kimberlite pipe. The calculations indicated that the host rock should be intersected at vertical depths of between 17 m and 26 m. The planned pit slope (Figure 10) with an overall slope angle of 60° (Figure 9) would then be intersected at a vertical depth of 58 m. The last 42 m would then be drilled into the highwall host rock to determine any potential structural instability behind the planned highwall.

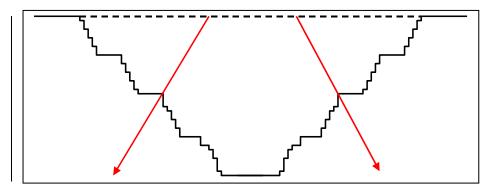


Figure 10: Schematic pit section indicating drill hole target areas

2.2. Drilling Layouts and Core Logging Method

A total of 23 holes were drilled as indicated in Table 2.

GT Hole							
No	X (m)	Y (m)	Z (m)	Azimuth(º)	Decl. (º)	Hole Dir. (º)	Hole Dip (º)
K2 GT01	588 418	7484 786	840	146	9	137	-60
K2 GT02	588 418	7484 785	840	232	9	223	-59
K2 GT03	588 530	7484 764	840	49	9	40	-60
K2 GT04	588 338	7484 813	833	325	9	316	-52
K2 GT05	588 803	7484 714	837	145	9	136	-50
K3GT01	590 787	7489 014	812	135	9	126	-60
K3GT02	590 758	7489 104	817	45	9	36	-50
K3GT03	590 728	7489 128	818	315	9	306	-50
K3GT04	590 691	7489 016	814	225	9	216	-50
K4GT01	592 159	7489 050	813	141	9	132	-51
K4GT02	592 219	7489 144	816	57	9	48	-48
K4GT03	592 210	7489 165	815	319	9	310	-50
K4GT04	592 209	7489 162	815	230	9	221	-62
K4GT05	592 209	7489 162	813	318	9	309	-52
K5GT01	591 379	7490 527	811	135	9	126	-50
K5GT02	591 428	7490 574	816	48	9	39	-50
K5GT03	591 376	7490 619	816	321	9	312	-60
K5GT04	591 325	7490 564	817	224	9	215	-50
K5GT05	591 419	7490 557	816	44	9	35	-51
K6GT01	591 168	7490 891	810	134	9	125	-50
K6GT02	591 169	7490 894	810	45	9	36	-50
K6GT03	591 164	7490 880	811	219	9	210	-50
K6GT04	591 163	7490 890	810	314	9	305	-50

Table 2: Drilling layouts

The holes were drilled HQ3 to ensure high-quality recovery and were surveyed every 30 m for direction and inclination. Downhole marking was carried out every 1.5 m to 6.0 m, depending on the quality of the core.

Logging the core for strike and dip angles of structural features such as the dolerite dykes, shear zones, foliation and, most importantly, the joints, was carried out with an Ezy-Mark Goniometer TM . The Goniometer measures the

Beta angle of a structure from 0 to 360°, simply by positioning the 0° mark on one of the end protractors, over the core orientation line marked on the core sample and then reading of the position off the nose of the elliptical structure being measured from the 360° end protractor.

Two alternately coloured protractors measure the Alpha angle of an elliptical structure 0° on the horizontal plane to 90° on the vertical plane in the downhole position. This is achieved by simply sliding the Goniometer up or down the core sample while holding it relative to the Beta angle (nose of the ellipse) and selecting the line of best fit on the side that matches the structure being measured. The two colours for the Alpha protractors (blue and orange) allow easy visual measurement over a variety of rock colors. The core was also logged to determine the different geological lithologies and geotechnical characteristics (Appendices 1 and 2).

2.3 Determining Rock Mass Mechanical Properties

Rock mass mechanical properties were obtained from samples collected from the 23 boreholes. The purpose of the laboratory testing was to establish, in broad terms, the expected behaviour of the rock mass on exposure in the slopes. Samples were selected to gain insight into the strength of the basic mining rock types as indicated in Table 1, as well as discontinuity frictional properties, the saprolite strength, and the extent of weathering.

2.3.1 Rock strength

The rock strength was determined from Uniaxial Compressive Strength (UCS) tests as summarised in Table 3. The table depicts the summary of the UCS (MPa) tests that were conducted. Average – 1 Standard Deviation (statistically evaluated data) values were used for the RMR and MRMR calculations.

The UCS laboratory work was done by ROCKLAB (Appendix 3) and the test procedure used conforms to the ISRM specifications. Samples that failed on preexisting interfaces were ignored when considering the UCS of the rock.

Table 3: UCS values

Rock Type	Number	Range UCS	Mean UCS	Standard	Mean – 1
	of	(MPa)	(MPa)	Deviation	Standard
	Samples			(MPa)	Deviation
					(MPa)
Granitic Gneiss	19	101 - 320	245	56	189
Foliated Granitic Gneiss					
Granite					
Kimberlite Breccia	5	75 - 149	107	29	78
Kimberlite	4	116 - 151	128	16	113
Dolerite Dyke	4	202 - 248	231	20	211

2.3.2 Discontinuity frictional properties

When geological discontinuities are exposed in a rock slope the potential for sliding-type failure arises. The friction angle of the discontinuity surface that has been exposed is a critical factor controlling whether slip will occur or not.

The trial mining pits and borehole core were observed in order that the discontinuity surfaces could be determined. Basic friction angles (Appendix 4) were determined from the samples collected from the three main rock types that would be exposed in the highwalls – granitic gneiss, kimberlite breccia, and dolerite dyke – for the purpose of calculating shear strength (instantaneous friction angles) of discontinuity surfaces.

Core samples, cut perpendicular to the axis of the core, were tested using the direct shear test to determine the basic friction angles. Three tests were conducted on each sample at three different normal stresses. The normal stress and shear stress were then used to create a Coulomb shear strength envelope, whose slope yielded the basic friction angle (Hoek 1990).

The basic friction angles (Appendix 4) were mathematically calculated and the arithmetic mean for each rock type was obtained.

The actual friction angle of the joints could be significantly higher than the basic friction angle since most of the joints that had reasonable exposures in

core demonstrated a high degree of undulation. Roughness and undulation or waviness will assist in resisting sliding on the surface and, therefore, increase the friction angle. Some joints in the Lerala project area indicated an infilling acting as a cementing material bonding the rock, where upon a tensile force would have to be applied to overcome the cohesive bond.

Hoek (1990) indicated that the relationship between the peak shear strength τ_p and the normal stress σ_n can be represented by the Mohr-Coulomb equation:

 $\tau_p = c + \sigma_n \tan \phi$

Where: *c* is the cohesive strength of the cemented surface and φ is the angle of friction.

Hoek (1990) stated that the basic friction angle is a quantity that is fundamental to the understanding of the shear strength of discontinuity surfaces. This is approximately equal to the residual friction angle, but it is generally measured by testing sawn or ground rock surfaces.

Hoek (1990) further commented that a natural discontinuity surface in hard rock is never as smooth as a sawn or ground surface of the type used for determining the basic friction angle. Generally, this surface roughness increases the shear strength of the surface, and this strength increase is extremely important in terms of the stability of excavations in rock.

Patton (1966) demonstrated the influence of surface roughness on shear strength by means of an experiment in which he carried out shear tests on 'saw-tooth' specimens. Shear displacement in these specimens occurred as a result of the surfaces moving up the inclined faces, causing dilation (an increase in volume) of the specimens. The shear strength of Patton's 'sawtooth specimens' can be represented by:

 $\tau = \sigma_n \tan(\phi_b + i)$

Where: φ_b is the basic friction angle of the surface and *i* is the angle of the saw-tooth face

The above equation is valid at low normal stresses where shear displacement is due to sliding along the inclined surfaces. At higher normal stresses, the strength of the intact material will be exceeded and the teeth will tend to break off, resulting in a shear strength behaviour that is more closely related to the intact material strength than to the frictional characteristics of the surfaces. While Patton's approach has the merit of being simple, it does not reflect the reality that changes in shear strength with increasing normal stress are gradual rather than abrupt. Barton and his co-workers (1973, 1976, 1977, 1990) studied the behaviour of natural rock joints and proposed that the equation be re-written as:

 $\tau = \sigma_n \tan(\phi_b + JRC \log 10 JCS/\sigma_n)$

Where: JRC is the joint roughness coefficient and JCS is the joint wall compressive strength

Field estimates for JRC and JCS were determined using design charts published by Barton (1977, 1982) and ISRM (1978). The residual friction angle yielded for the granitic gneiss could then be used until detailed data could be collected from the jointed rock mass exposed during the mining process (Appendix 5).

2.3.3 Saprolite / soil strength

In order to quantify optimum slope angles in highly weathered material the mechanical properties of the saprolite, an in-situ weathered soft rock type that has not been transported, (Figure 11) had to be determined. For the design

of slopes in weathered material the angle of internal friction, density, and cohesion are required.

Figure 11: Typical example of saprolite

Soil slope stability charts have been produced by numerous researchers (Bishop and Morgenstern, 1960; Spencer, 1969; O'Connor and Mitchell, 1977; Chandler and Peiris, 1989; Barnes, 1991). The stability charts developed by Hoek and Bray (1981) will be used in this dissertation. They produced a set of charts corresponding with five different groundwater conditions.

These conditions are included on the slope stability chart in Figure 12. The input data required for the use of the chart are as follows:

- *C* cohesion of the soil mass (kPa)
- γ density of the soil mass (kg/m3)
- ϕ angle of internal friction of the soil mass (°)
- *H* height of the slope (m)

Hoek and Bray (1981) explained the method of use of the chart to determine the factor of safety of a slope is as follows:

1. Calculate the value of $c/(\gamma H \tan \phi)$ and find the corresponding point on the circumference of the chart.

- 2. Translate radially inwards on the chart from this point to meet the required slope angle isoline.
- 3. For this intersection point, read off the corresponding ordinate value $tan\phi$ /*F* (or the abscissa value) and hence calculate the value of the factor of safety *F*.

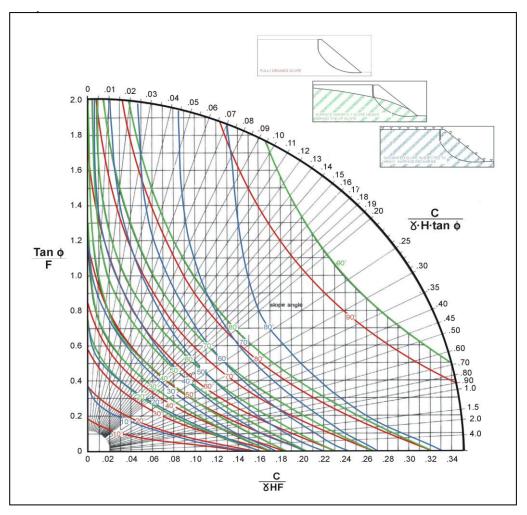


Figure 12: Weathered material design charts (Hoek and Bray, 1981)

Exploration and geotechnical holes were used to indicate the thickness of the soil and the saprolite. The saprolite samples were tested by ROCKLAB (Appendix 6) according to ISRM guidelines and the minimum laboratory results for the Lerala samples were used for the evaluation of the soil/saprolite slopes.

2.4 Analysis of Discontinuities

In an unweathered rock mass discontinuities play a significant role in the stability of a slope and, for this reason, will influence the slope geometry. Discontinuities may influence rock slopes in two ways: first, by weakening a rock mass and making it more susceptible to failure; and, second, by creating surfaces on which structural instability may occur depending on joint interaction with the slope. It is important, therefore, to identify all possible discontinuities. The most common way of identifying and quantifying discontinuities is by mapping exposures of the rock on surface.

Discontinuities were mapped in seven trial pits (Figures 7 and 8), logged in the 23 boreholes (Table 2), and categorised on the basis of their visibility and how well they were defined. The dip and strike information of all the identified geological features was then analysed with the use of lower hemispherical stereographic projection.

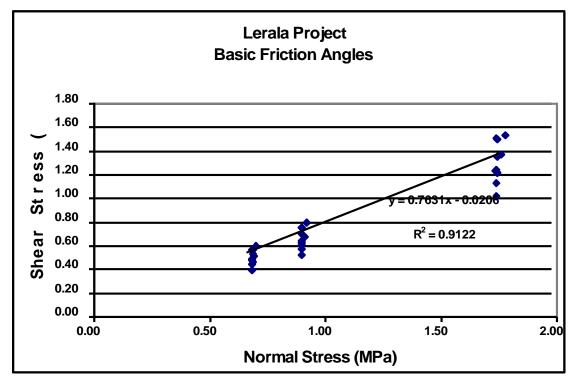
CHAPTER THREE: RESULTS

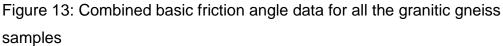
The results for the geotechnical assessment have been set out in this chapter in a sequence that corresponds to that used for describing the methods in Chapter Two, apart from the results of the initial geotechnical mapping that were given in Chapter Two. The results from core logging to determine the different geological lithologies and geotechnical data are shown in appendices 1 and 2.

3.1 Rock Mass Mechanical Properties

Samples from the 23 boreholes were selected to gain insight into the strength of the basic mining rock types as indicated in Table 1, as well as discontinuity frictional properties, the saprolite strength, and the extent of weathering.

3.1.1 Rock strength


Table 3 depicts the summary of the UCS (MPa) tests that were conducted. Mean – 1 Standard Deviation values were used for calculations.


3.1.2 Discontinuity frictional properties

To establish the discontinuity properties the basic friction angles were computed from laboratory test data and the arithmetic mean for each rock type was obtained. (See Appendix 4) It was found that the values of the different granitic gneiss types did not differ significantly, which finding prompted the investigation of the possibility that the basic friction angle of all the granitic gneiss rock types is the same.

It can be seen from Figure 13 that the data suggest a linear relationship which is to be expected from the Mohr-Coulomb failure criterion. The rock tests show a relatively large variance for each normal stress, especially the greatest normal stress of 1.8 MPa, i.e. an increase in the size of the standard error with increase in confinement. These patterns are to be expected from geotechnical data. The variability in the data almost certainly arises from the variability of the condition of the rock and its composition, rather than from the variability in the friction angle. Hence an estimate of 37° is therefore considered good, and representative for the granitic gneiss and granites.

Similar mathematical analysis was done for the other rock types and the analysis indicates the following basic friction angles :

- Granitic gneiss 37°
- Dolerite dyke 40°
- Kimberlite breccia 27°

Field estimates for joint roughness coefficient (JRC) and joint wall compressive strength (JCS) were determined using design charts (Appendix 5) published by Barton (1977, 1982, 1990) and ISRM (1978). A computer analysis (Appendix 5) for the updated shear strength formula was used to determine the instantaneous friction angle (ϕ i) from the basic friction angle (ϕ b) and the JRC and JCS values (Table 4).

Table 4: JRC, JCS values, basic and instantaneous friction angles for the main three rock types

Rock Type	Number of Samples	Basic Friction Angle (φb)	JRC	JCS	Instantaneous Friction Angle (φi)
Granitic Gneiss	10	37°	5	89	45°
Kimberlite Breccia	2	27°	5	48	34°
Dolerite Dyke	1	40°	5	111	49°

3.1.3 Saprolite

Table 5 shows the ranges of the laboratory results for the saprolite (Appendix6). The minimum values will be used for the evaluation of saprolite slopes.

Table 5: Data of Lerala laboratory results for saprolite
--

	Number of	Friction	Cohesion	Density
	Tests	(°)	(kPa)	(kN/m³)
Lerala Lab	2	39 ; 74	14 ; 28	21 ; 24

3.2 Discontinuties

Discontinuities that were identified were jointing, shear zones, contacts, foliation and intrusives. The most prominent small-scale discontinuities such as jointing and foliation in the granitic gneiss and jointing in the dolerite dyke were plotted separately (Figures 14, 15 and 16) for the five different target areas (K2, K3, K4, K5 and K6) to determine if any variations existed over the project area. No major variations were found to exist and data are presented for the total project area and not for individual target areas.

3.2.1 Analysis of discontinuities

The three main discontinuity types were analysed separately to determine their orientations.

Joints – granitic gneiss

Due to the poor quality of core recovery in the vicinity of structurally complex areas such as shear zones, the directional characteristics and properties

could not be measured. Considering the explosive nature and mechanics of intrusive kimberlite pipes, complex fracture patterns could be expected in the host rock. Apart from the regional joint patterns, additional localised radial and concentric fracture patterns were found. These additional fracture patterns could also have an influence on the pit slope stability, because of the orientation of the concentric fracture patterns parallel to the kimberlite pipe and the associated high walls.

The combined borehole data (Figure 14 and Table 6) from the five target areas confirmed the three prominent conjugate joint sets as identified in the trial pit mapping (Figure 7).

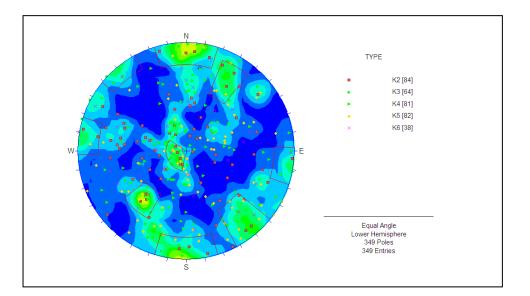


Figure 14: Stereo plot of joint patterns in the granitic gneiss

Joint	Average Dip Dir /	Comment
Set	Dip	
1	98° / 83°	Conjugate Set
	278° / 83°	
2	180° / 83°	Conjugate Set
	360° / 83°	
3	140° / 85°	Conjugate Set
	320° / 76°	
4	210° / 70°	Shallow Dipping Set
5	41° / 60°	Shallow Dipping Set
6		Flat Dipping Set

Table 6:Joint data set for granitic gneiss

Joints – dolerite dyke (K5)

A major dolerite dyke was intersected in the northern sector of the K5 target area. Jointing in the dolerite dyke (Figure 15 and Table 7) indicates two prominent steep- and one prominent shallower-dipping set. There are only minor comparisons between the joint patterns within the dolerite dyke and granitic gneiss. The northern sector of K5 was analysed and classified according to the dolerite dyke rock mass and structural characteristics.

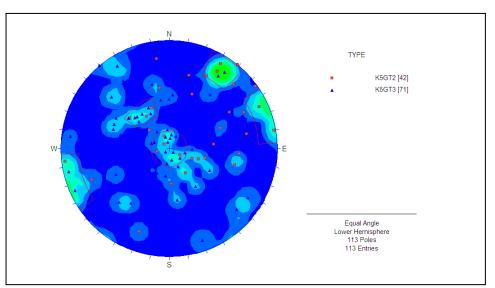


Figure 15: Stereo plot of joints in the K5 dolerite dyke

Table 7:	Joint data set for dolerite dyke in K5

Joint	Average Dip	Comment
Set	Dir / Dip	
1	251° / 85°	Conjugate Set
	71° / 85°	
2	212° / 80°	Steep Dipping Set
3	143° / 43°	Shallow Dipping Set
4		Flat Dipping Set

Foliation – granitic gneiss

The combined borehole data of all the target areas indicate two prominent sets of foliation (Figure 16 and Table 8).

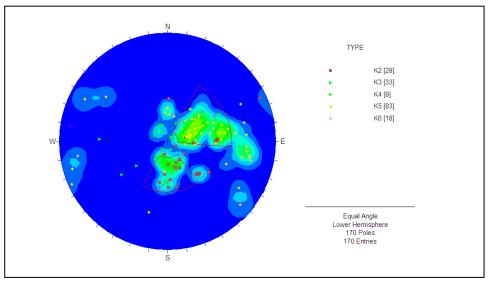


Figure 16: Stereo plot of foliation in the granitic gneiss

Table 8:Foliation data set for granitic gneiss

Foliation	Average Dip
Set	Dir / Dip
1	241° / 36°
2	356° / 32°

3.3 Main Geological Features

Various large-scale geological structural features such as intrusions and shear zones were intersected in the geotechnical boreholes (Figures 17, 18, 19, 20 and 21). The directional characteristics of the Karoo Age dolerite dykes could be measured and the data are presented in Table 9.

Pit	X (m)	Y (m)	Z (m)	Strike (º)	Dip (º)	Dip Dir (º)	Width (m)
K2	588 550	7484 820	On Surface	76	90	166	2
K2	588 900	7484 500	On Surface	75	70	335	10
K4	592 180	7489 200	On Surface	100	70	190	5
K5	591 440	7490 590	On Surface	110	90	200	+40
K6	591 160	7490 930	On Surface	105	75	195	5

Table 9:Directional properties of the dolerite dykes

Owing to the poor quality of core recovery in the vicinity of the structurally complex areas such as the shear zones, directional properties could not be measured. The 2 m to 20 m wide shear zones were intersected along the kimberlite/kimberlite breccia/granitic gneiss contacts and are not expected, therefore, to be present in any of the final highwalls. Table 10 gives the legend for the boreholes as shown in Figures 17 to 21.

Table 10: Legend for boreholes

Line Colour	Interpretation
Orange	Kimberlite
Pink	Kimberlite Breccia
Blue	Granitic Gneiss
Green	Dolerite Dyke
Red	Shear Zone

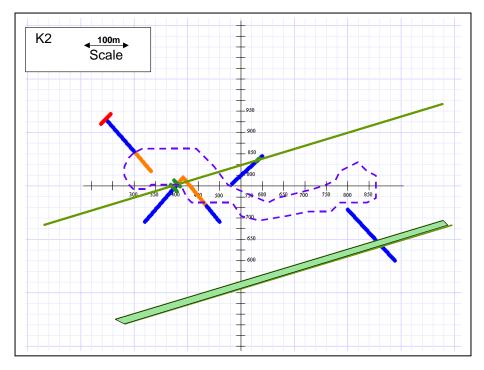


Figure 17: Large-scale structural features in K2

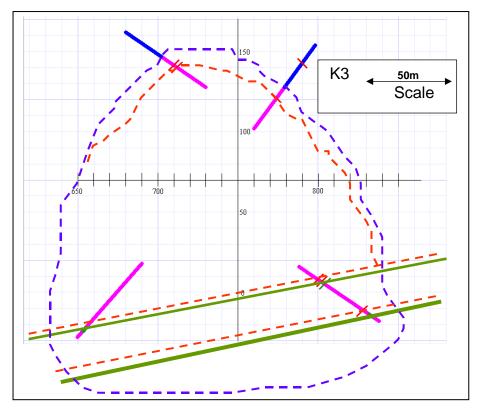


Figure 18: Large-scale structural features in K3

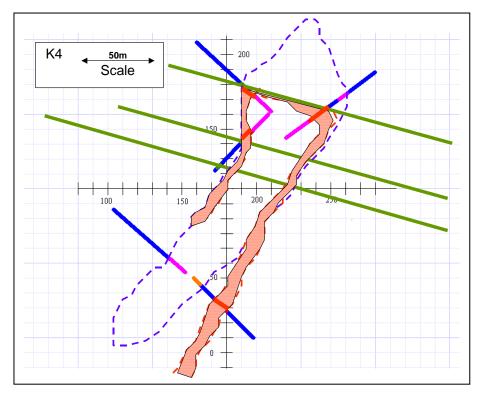


Figure 19: Large-scale structural features in K4

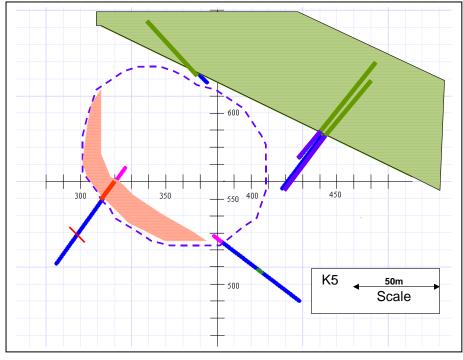


Figure 20: Large-scale structural features in K5

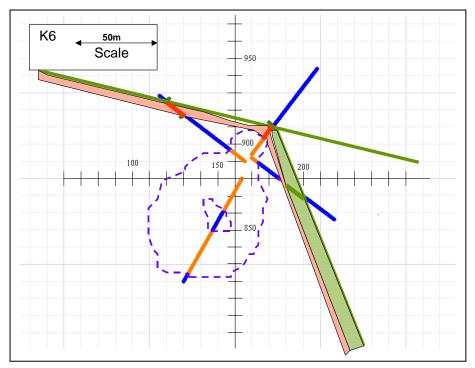


Figure 21: Large-scale structural features in K6

3.4 Weathering and Water

A cover of soil and weathered material overlies the area of interest. The extent of weathering was obtained from the core logs of the large diameter (LDD) and geotechnical (GT) series boreholes, as this would give a reasonable estimate of the height of pitwalls situated in weathered material.

Groundwater was intersected in the kimberlites and not within the granitic gneiss host rock. To quantify the water table elevation and flow rate of water, a detailed geohydrological investigation will have to be conducted. Such an investigation was not within the scope of this project.

3.5 Rock Mass Classification

Following careful scrutiny of the available information, the rock mass was divided and simplified to conform to a number of basic mining rock types.

3.5.1 RMR Classification

The Geomechanics Classification System (Bieniawski 1976, 1989) of jointed rock masses was applied to the main rock types that will be exposed in pit slopes (Table 11). Note that all the values are ratings (Stacey and Swart, 2001). A detailed analysis is presented in Appendix 7.

	UCS	RQD	Js	Jc	Jw	RMR
Granitic Gneiss	12	18	13	22	10	75
Kimberlite	11	16	10	12	10	59
Kimberlite Breccia	7	17	10	12	10	56
Dolerite Dyke	13	15	10	10	10	58

Table 11: RMR Classification of the major rock types

(UCS – Uniaxial Compressive Strength (MPa); RQD – Rock Quality Designation (%); Js – Joint Spacing; Jc – Joint Condition; Jw – Joint Water)

3.5.2 Adjusted MRMR Rating

The MRMR, developed by Laubscher and Taylor (1976) and refined by Laubscher (1977, 1990, 1994), of jointed rock masses was applied to the main rock types that will be exposed in the pit slopes. Table 12 indicates the MRMR and adjusted MRMR values for the unweathered rocks. The adjusted MRMR values were used to determine the overall slope and bench stack angles. A detail analysis is presented in Appendix 8.

Table 12: Adjusted MRMR Classification of the major rock types

										Adjusted
	RQD	UCS	Js	Jcw	MRMR	Weathering	Jo	Stress	Blasting	MRMR
Granitic Gneiss	14	19	18	23	74	1	0.9	1	0.94	63
Kimberlite	12	12	16	16	56	0.7	0.9	1	0.94	33
Kimberlite Breccia	13	8	16	16	53	0.7	0.9	1	0.94	31
Dolerite Dyke	11	20	13	14	58	1	0.9	1	0.94	49

(UCS – Uniaxial Compressive Strength (MPa); RQD – Rock Quality Designation (%); Js – Joint Spacing; Jcw – Joint Condition and Water; Jo – Joint Orientation)

Table 13 summarises the comparisons between the two rock mass rating systems as well as South African mining industry-related values for the various rock types (Stacey and Swart, 2001). A good corelation exists between the various methods of rock mass classification and industry values.

Table 13: Comparisons between the RMR / MRMR Classification and industry values for the major rock types

	RMR	MRMR	Industry
Granitic Gneiss	75	74	60 - 84
Kimberlite	59	56	35 - 55
Kimberlite Breccia	56	53	35 - 55
Dolerite Dyke	58	58	57 - 63

CHAPTER FOUR – ANALYSIS OF RESULTS

The presence of joints in a rock mass that has been exposed by a slope may result in failure along discontinuities. Three primary modes of failure could occur in hard rock. These are plane, toppling, and wedge failure (Hoek and Bray, 1981).

The first of these, plane failure, may occur when a single plane exposed in a pitwall has a dip direction of within 20° of the dip direction of the slope. For the potential for failure to occur, the plane must dip at an angle shallower than the slope angle but steeper than the residual friction angle. In the case of toppling, a joint set with reasonable persistence needs to have a steep dip and dip in a direction within 30° of the dip direction of the slope. Wedge failure requires the presence of two orthogonal joints or sets of joints, with a line of intersection that daylights in the slope and has a plunge steeper than the residual friction angle. The potential for kinematics can be investigated using lower hemispherical stereo net projections (Watts, 2003 - ROCKPACK III).

In the section on pit classifications that follows, kinematic stability is based on a limited number of data points and has been documented to indicate the potential type of instabilities that could occur along the final highwall position.

4.1 Pit Classifications

Owing to the shape of the kimberlite pipes in K3, K5 and K6 the pits were designed to be circular, to have concave slope orientations on plan, and to be cone shaped in section. The pits in K2 and K4 have been designed to be elongated and have semi-circular edges.

To simplify the kinematic analysis the pit designs were classified according to the slope orientations – e.g. dip direction and dip.

The preliminary slope designs (Van Heerden and Odendaal, 2006) were supplemented by the structural data gathered and set out in Chapter Three of this report to produce the highwall failure types that are discussed under 4.3. From the preliminary slope designs the pits were divided into the main slope

orientation categories (Figure 22). Additional slope orientations were calculated when required. The five pits were divided into the main slope orientation categories as indicated in Figures 23 to 27.

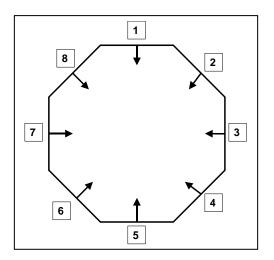


Figure 22: Main slope orientation categories

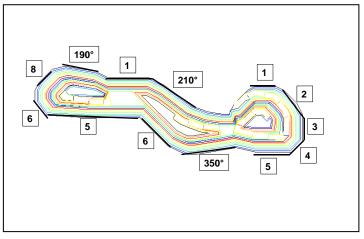


Figure 23: Preliminary pit design for K2

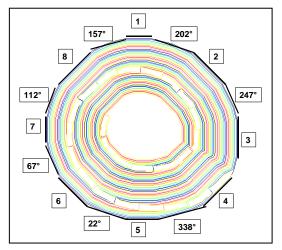


Figure 24: Preliminary pit design for K3

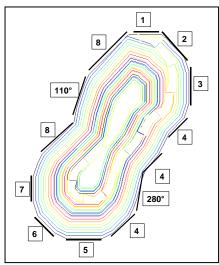


Figure 25: Preliminary pit design for K4

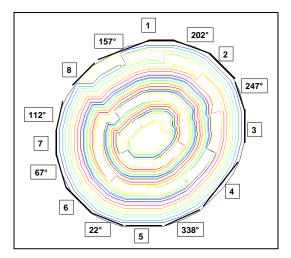


Figure 26: Preliminary pit design for K5

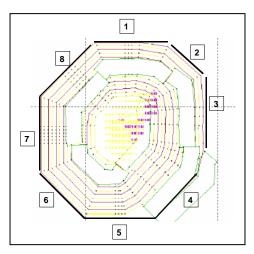


Figure 27: Preliminary pit design for K6

4.2 Joint Data Sets and Residual Friction Angles

From the joint identification and classification four limiting boundaries were established for each joint/foliation set. Five prominent joint sets and two foliation sets were used for the granitic gneiss (Table 14).

Table 14: ROCKPACK III - Joint/foliation set symbols for granitic gneiss

Joint Set	ROCKPACK III Symbols	Comment
1		Conjugate Set
2	Δ	Conjugate Set
3	•	Conjugate Set
4	+	Shallow Dipping Set
5	0	Shallow Dipping Set
6	•	Foliation
7	•	Foliation

Three prominent joint sets were used for the dolerite dyke (Table 15).

Table 15: ROCKPACK III - Joint set symbols for dolerite dyke

Joint Set	ROCKPACK III	Comment
	Symbols	
1		Conjugate Set
2	Δ	Steep Dipping Set
3	▼	Shallow Dipping Set

The instantaneous friction angle calculated in 2.3.2 and 3.1.2 was used (Table 16).

Table 16:Instantaneous friction angles

	Granitic	Dolerite	Kimberlite
	Gneiss	Dyke	Breccia
Instantaneous Friction Angle	45°	49°	34°

4.3 Potential Failures in Granitic Gneiss

Owing to the numerous examples of the failure types for the different pit slope orientations, only one example of each failure type is illustrated in a figure. The remainder of the examples are presented in tables 17 to 19 for plane failure, tables 20 to 22 for toppling failure, and tables 23 to 25 for wedge failure.

4.3.1 Plane failure

Figure 28 represents plane failure for a slope dipping 85° in a southerly (180°) direction. No plane failure is expected for this slope orientation, although joint set 2 is on the border of the failure envelope.

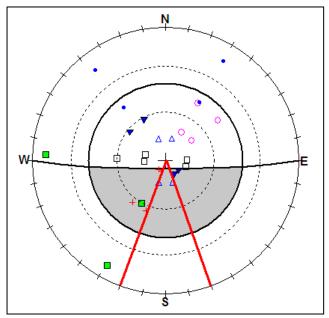


Figure 28: Plane failure for a slope with dip direction of 180° and a dip of 85°

Table 17:Joint types that are prone to plane failure for the major slopedirections and dip

Dip	1	2	3	4	5	6	7	8
	180º	225°	270°	315º	360°	45°	90°	135°
65°	-	4/6	6	3/7	-	5/7	-	-
75°	-	4/6	6	3/7	-	5/7	-	-
85°	2	4/6	1/6	2/3/7	-	5/7	1	3

Table 18: Joint types that are prone to plane failure for the minor slope directions and dip

Dip	9	10	11	12	13	14	15	16
	202º	247º	292°	338º	22°	67°	112º	157º
65°	4/6	-	-	3/7	5/7	5	-	-
75°	4/6	-	-	3/7	5/7	5	-	-
85°	4/6	-	1	2/3/7	2/5/7	5	1	2/3

Table 19: Joint types that are prone to plane failure for the additional slope directions and dip

Dip	K2	K2	K2	K4	K4
	190°	210º	350°	110º	280°
65°	4	4/6	-	-	1
75°	4	4/6	-	-	1
85°	2/4	2/4/6	-	1	1

4.3.2 Toppling failure

Figure 29 represents toppling failure for a slope dipping 85° in a southerly (180°) direction. Toppling failure for joint sets 2 and 3 is predicted. Joint set 5 and a foliation set are on the border of the failure envelope.

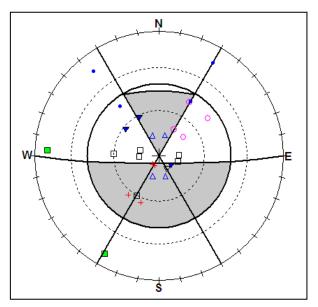


Figure 29: Toppling failure for a slope with dip direction of 180° and a dip of 85°

Table 20: Joint types that are prone to toppling failure for the major slope directions and dip

Dip	1	2	3	4	5	6	7	8
	180º	225°	270º	315°	360°	45°	90°	135°
65°	2	2/5	1	3	2	4	1	-
75°	2/3	2/5	1	3	2/4	4/6	1/6	3
85°	2/3/5	2/5	1	3	2/4	4/6	1/6	3/7

Table 21: Joint types that are prone to toppling failure for the minor slope directions and dip

Dip	9	10	11	12	13	14	15	16
	202º	247º	292°	338º	22°	67°	112º	157º
65°	2/5	1/5	1/3	2/3	2/4	1/4	1	2
75°	2/5	1/5	1/3	2/3	2/4/6	1/4	1/3	2/3
85°	2/5/7	1/5	1/3	2/3	2/4/6	1/4	1/3	2/3/7

Table 22: Joint types that are prone to toppling failure for the additional slope directions and dip

Dip	K2 K2		K2	K4	K4
	190°	210º	350°	110º	280°
65°	2/5	2/5	2/3	1	1
75°	2/5	2/5	2/3	1/3/6	1
85°	2/5/7	2/5/7	2/3	1/3/6	1

4.3.3 Wedge failure

Figure 30 represents wedge failure for a slope dipping 85° in a southerly (180°) direction. Wedge failure for combinations of joint sets 1, 2, 3, 4 and 6 is predicted.

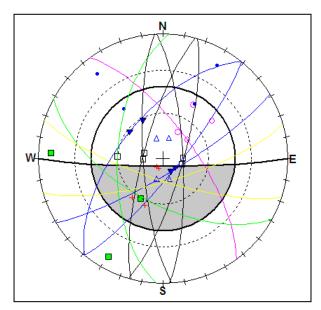


Figure 30: Wedge failure for a slope with dip direction of 180° and a dip of 85°

Table 23: Joint types that are prone to wedge failure for the major slope directions and dip

Dip	1	2	3	4	5	6	7	8
	180º	225°	270°	315°	360°	45°	90°	135°
65°	1/3/4/6	1/2/3/4/6	2/3/4/6/7	1/2/3/4/5/6/7	1/3/5/6/7	1/2/3/5/7	2/3/5/4/7	1/2/4/5/6
75°	1/2/3/4/6	1/2/3/4/6	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/5/7	1/2/3/4/5/7	1/2/4/5/6
85°	1/2/3/4/6	1/2/3/4/6/7	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/5/6/7	1/2/3/4/5/6/7	1/2/3/4/5/6

Table 24:Joint types that are prone to wedge failure for the minor slopedirections and dip

Dip	9	10	11	12	13	14	15	16
	202°	247º	292°	338°	22°	67º	112º	157°
65°	1/2/3/4/6	1/2/3/4/6	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/5/7	1/2/3/5/7	1/2/3/4/5/6/7	1/3/4/5/6
75°	1/2/3/4/6	1/2/3/4/6	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/5/6/7	1/2/3/4/5/7	1/2/3/4/5/6/7	1/2/3/4/5/6
85°	1/2/3/4/6	1/2/3/4/5/ 6/7	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/5/6/7	1/2/3/4/5/7	1/2/3/4/5/6/7	1/2/3/4/5/6

Table 25: Joint types that are prone to wedge failure for the additional slope directions and dip

Dip	K2 K2		K2	K4	K4	
	190°	210º	350°	110º	280°	
65°	1/2/3/4/6	1/2/3/4/6	1/2/3/4/5/6/7	1/2/3/4/5/6/7	2/3/4/6/7	
75°	1/2/3/4/6	1/2/3/4/6	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/4/5/6/7	
85°	1/2/3/4/6	1/2/3/4/6	1/2/3/4/5/6/7	1/2/3/4/5/6/7	1/2/3/4/5/6/7	

4.4 Potential Failure in Dolerite Dyke (Pit K5)

An indication of the joint sets that are prone to plane, toppling and wedge failure is given in tables 26, 27, and 28 respectively.

Table 26: Joint types that are prone to plane failure for the major slope directions and dip

Dip	1 2		3	9	10	
	180º	225°	270°	202°	247º	
65°	-	-	-	-	-	
75°	-	2	-	2	-	
85°	-	2	1	2	1	

Table 27: Joint types that are prone to toppling failure for the major slope directions and dip

Dip	1 2		3	9	10	
	180º	225°	270°	202°	247º	
65°	-	1	1	-	1	
75°	-	1	1	-	1	
85°	-	1	1	-	1	

Table 28:Joint types that are prone to wedge failure for the major slopedirections and dip

Dip	1 2		3	9	10	
	180º	225°	270°	202°	247º	
65°	1/2/3	1/3	2	1/2/3	-	
75°	1/2/3	1/2/3	1/2	1/2/3	1/2/3	
85°	1/2/3	1/2/3	1/2/3	1/2/3	1/2/3	

Owing to the nature of the joints (radial and concentric), it is expected that most of the pit slopes at Lerala will have a potential for planar, toppling and wedge failures.

4.5 Slope Design

As was stated in the first chapter of this report, jointed hard rock slopes and highly weathered (soil) slopes are the two types of slopes expected to be formed in the Lerala Mine. For this reason, the first two objectives of the research were to provide recommendations on hard rock slope angles for all pits and to provide recommendations with respect to weathered material.

It should be kept in mind that the data collected for this study came primarily from boreholes. The values contained in the report are thus justifiably conservative. Only once rock surfaces have been exposed could more detailed analyses be made of the rock mass properties and the optimisation of slope angles conducted.

Overall slope angles should conform to the 1.5 factor of safety. Where combinations of rock types are present in a pit perimeter slope, the bench stack angle (BSA) for the various rock types should be used. The various combinations will entail a variation in heights, widths, and angles.

Bench heights of 10m and ramp widths / geotechnical berms between 10m and 26m were selected due to the restrictions of the selected equipment.

4.5.1 Hard rock slopes

The correlation between recommended overall slope angles (OSA) and adjusted MRMR values (Haines and Terbrugge 1991) is given in Table 29 for a factor of safety (FoS) of 1.5.

Adjusted MRMR	100	90	80	70	60	50	40	30	20	10	0
OSA	>75°	75°	70 [°]	65°	60°	55°	50°	45°	40 [°]	35°	<35°

Table 29: Correlation between adjusted MRMR values and OSA's

The recommended (preliminary) overall slope angles (OSA's) for the four major rock types found at Lerala, for a FoS of 1.5 are indicated in Table 30 below.

Table 30: Overall slope angles

	Granitic	Kimberlite	Kimberlite	Dolerite
	Gneiss		Breccia	Dyke
Adjusted	63	33	31	49
MRMR				
OSA	61°	46°	45°	55°
FOS 1.5				

The design chart shown in Figure 31 was developed by Haines and Terbrugge (1991) is applicable in selecting the bench stack angles (BSA).



Figure 31: Slope design chart (Haines and Terbrugge, 1991) for BSA's

Bench heights of 10m and bench stack heights of 50m were used due to equipment restrictions. The adjusted MRMR values obtained for granitic gneiss (GG), kimberlite (K), kimberlite breccia (KB) and dolerite dyke (DD) were plotted on the chart in Figure 31. Bench stack angles were then selected at a factor of safety (FoS) of 1.35.

The design chart indicates the following bench stack angles :

- Granitic gneiss <66°
- Kimberlite breccia <50°
- Dolerite dyke <60°

Gibson et al (2006) identified methods to calculate the volume of failed rock from benches for varying bench heights and bench angles onto spill berms. These methods were used to calculate the volume of failed rock for wedge type failures forming either conical or pyramid shaped failed material.

To determine the volume of failed rock for the three main rock types at Lerala, a plane failure geometry was used to determine the maximum volume of failure. The following formula was proposed by Gibson et al (2006) to determine the maximum extent of the failed mass to be contained by the berms.

$$R = \sqrt[3]{\frac{6KV}{\pi} + \frac{\tan \alpha - \tan \emptyset}{\tan \alpha . \tan \emptyset}}$$

Where K = 1.5 swelling factor

R = radius of failed material

- V = volume of failed material (m³)
- α = bench face angle (°)
- ø = angle of repose of failed material (38°)

The spill berm widths (SBW) for the three main rock types at Lerala are shown in Table 31.

 Table 31:
 Spill berm widths for the three main rock types at Lerala

	Granitic	Kimberlite	Dolerite		
	Gneiss	Breccia	Dyke		
SBW	5.4 m	5.3 m	5.2 m		

The slope designs shown for granitic gneiss, kimberlite breccia and dolerite dyke are based on various slope heights and associated OSA's, ramp widths for fixed bench heights, bench face angles, BSA's, and SBW's.

Each rock type (granitic gneiss, kimberlite breccia, dolerite dyke) has different design parameters and these should be implemented on the basis of the geological model.

It should be noted that, based on the preliminary pit designs (MINXCON, September 2007), granitic gneiss is present in all the pits, kimberlite breccia only in K3, and dolerite dyke only in pit K5 – in the northeast corner.

The following slope design process was followed:

- Benches were fixed at 10m high
- Bench angles for the three rock types were based on their rock mass classification (Granitic gneiss 90°; Kimberlite breccia 70°; Dolerite dyke 85°)
- Spill berms were calculated as indicated in Table 31
- Bench stack heights were fixed at 50m
- BSA's were selected at a FoS of 1.35 from the design chart in Figure 31 (Granitic gneiss <66°; Kimberlite breccia <50°; Dolerite dyke <60°)
- Maximum OSA's were selected at a FoS of 1.5 as indicated in Tables
 29 and 30
- Varying OSA's and ramp widths / geotechnical berms were determined using the Basson (2004) slope design computer program

Granitic gneiss

Table 32: Design criteria for granitic gneiss slopes

Overall	Overall	Bench	Bench	Spill	Benches /	Ramp	Bench
Slope	Slope	Height	Face	Berm	Bench	Width	Stack
Height*	Angle**		Angle	Width	Stacks		Angle
50 m	65°	10 m	90°	5.8 m	1 stack	-	-
					5 benches		
100 m	56°	10 m	90°	5.8 m	2 stacks	20.8 m	65°
					5 / 5 benches		
150 m	54°	10 m	90°	5.8 m	3 stacks	19.5 m	65°
					5/5/5		
					benches		
200 m	52°	10 m	90°	5.8 m	4 stacks	21.0 m	65°
					5/5/5/5		
					benches		

*Hard rock slope height; **crest to toe

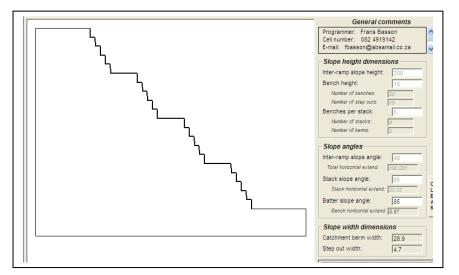


Figure 32: Schematic presentation of slope design (Basson, 2004)

Ramp widths in granitic gneiss

Varying ramp widths / geotechnical berms and OSA's were calculated for depths of 100 m, 150 m and 200 m at the recommended OSA's, BSA's, face angles, and bench heights. The ramp widths that comply with the design criteria for OSA's, BSA's and SBW's are presented in Table 33 (for granitic gneiss), Table 35 (for kimberlite breccia) and Table 37 (for dolerite dykes).

The following parameters/values for the granitic gneiss slopes were used:

- OSA of <61°
- BSA of 65°
- Bench heights of 10 m
- Bench face angles of 90°
- Bench stack heights of 50 m
- SBW of 5.8 m

Table 33: Design criteria for different ramp widths in granitic gneiss

Slope height	of 100 m	Slope height	of 150 m	Slope height	of 200 m
Ramp	Overall	Ramp	Overall	Ramp	Overall
Width	Slope	Width	Slope	Width	Slope
	Angles		Angles		Angles
10 m	60.5°	10 m	59.0°	10 m	58.3°
12 m	59.5°	12 m	58.0°	12 m	57.0°
14 m	58.7°	14 m	56.7°	14 m	56.0°
16 m	58.0°	16 m	55.7°	16 m	54.7°
18 m	57.0°	18 m	54.7°	18 m	53.7°
20 m	56.5°	20 m	53.7°	20 m	52.5°
22 m	55.5°	22 m	52.7°	22 m	51.5°
24 m	54.7°	24 m	51.8°	24 m	50.5°
26 m	54.0°	26 m	50.8°	26 m	49.5°

Kimberlite breccia

As stated under 4.5.1 kimberlite breccia is found only in the K3 pit area.

Overall	Overall	Bench	Bench	Spill	Benches /	Ramp	Bench
Slope	Slope	Height	Face	Berm	Bench	Width	Stack
Height*	Angle		Angle	Width	Stacks		Angle
50 m	50°	10 m	70°	5.9 m	1 Stack	-	
					5 Benches		
100 m	44°	10 m	70°	5.9 m	2 Stacks	19.6 m	50°
					5 / 5 Benches		
150 m	42°	10 m	70°	5.9 m	3 Stacks	20.4m	50°
					5/5/5		
					Benches		
200 m	41°	10 m	70°	5.9 m	4 Stacks	20.8 m	50°
					5/5/5/5		
					Benches		

Table 34: Design criteria for kimberlite breccia slopes

*Hard rock slope height; **crest to toe

Ramp widths in kimberlite breccia

The following parameters/values for the kimberlite breccia slopes were used:

Overall Slope Angle of <45°

Bench Stack Angles of 50°

Bench heights of 10 m

Bench face angles of 70°

Bench stack heights of 50 m

SBW of 5.9 m

Slope height	of 100 m	Slope height	of 150 m	Slope height	of 200 m
Ramp	Overall	Ramp	Overall	Ramp	Overall
Width	Slope	Width	Slope	Width	Slope
	Angles		Angles		Angles
10 m	46.8°	10 m	45.8°	10 m	45.3°
12 m	46.2°	12 m	45.0°	12 m	44.4°
14m	45.6°	14m	44.2°	14m	43.6°
16 m	45.0°	16 m	43.5°	16 m	42.8°
18 m	44.5°	18 m	42.8°	18 m	42.0°
20 m	43.9°	20 m	42.1°	20 m	41.3°
22 m	43.3°	22 m	41.4°	22 m	40.5°
24m	42.8°	24m	40.8°	24m	39.8°
26 m	42.3°	26 m	40.1°	26 m	39.1°

Table 35: Design criteria for different ramp widths in kimberlite breccia

Dolerite dyke

As stated under 4.5.1 a dolerite dyke is found only in the northeast corner of the K5 pit area.

Overall	Overall	Bench	Bench	Spill	Benches /	Ramp	Bench
Slope	Slope	Height	Face	Berm	Bench	Width	Stack
Height*	Angle		Angle	Width	Stacks		Angle
50 m	60°	10 m	85°	6.1 m	1 Stack	-	60°
					5 Benches		
100 m	52°	10 m	85°	6.1 m	2 Stacks	20.4m	60°
					5 / 5 Benches		
150 m	50°	10 m	85°	6.1 m	3 Stacks	19.6 m	60°
					5/5/5		
					Benches		
200 m	49°	10 m	85°	6.1 m	4 Stacks	19.5 m	60°
					5/5/5/5		
					Benches		

Table 36: Design criteria for dolerite dyke slopes

*Hard rock slope height; **crest to toe

Ramp widths in dolerite dyke

The following parameters/values for the dolerite dyke slopes were used:

Overall Slope Angle of <55°

Bench Stack Angles of 60°

Bench heights of 10 m

Bench face angles of 85°

Bench stack height of 50 m

SBW of 6.1m

Slope height	of 100 m	Slope height	of 150 m	Slope height	of 200 m
Ramp	Overall	Ramp	Overall	Ramp	Overall
Width	Slope	Width	Slope	Width	Slope
	Angles		Angles		Angles
10 m	55.9°	10 m	54.6°	10 m	54.0°
12 m	55.1°	12 m	53.6°	12 m	52.8°
14m	54.3°	14m	52.6°	14m	51.8°
16 m	53.6°	16 m	51.6°	16 m	50.8°
18 m	52.9°	18 m	50.7°	18 m	49.7°
20 m	52.1°	20 m	49.8°	20 m	48.7°
22 m	51.4°	22 m	48.9°	22 m	47.8°
24 m	50.7°	24 m	48.1°	24 m	46.8°
26 m	50.0°	26 m	47.3°	26 m	45.9°

Table 37: Design criteria for different ramp widths in dolerite dyke

4.5.2 Weathered material

The thickness of the saprolite profile on Lerala varies between 5 m and 35 m and is related to the rock type. The kimberlite-type rocks are more susceptible to weathering than the granitic-type rocks. The depth of weathering will, therefore, is deeper in kimberlite / pit areas than in the surrounding granitic / highwall areas.

The weathered material slopes were quantified using a design chart (Figure 33) proposed by Hoek and Bray (1981). The method utilises the cohesion, angle of internal friction, and the density of the material with the proposed height and the assumed factor of safety of the slope.

Values were obtained for various factors of safety at overall slope heights ranging from 5 m to 20 m. The factors of safety and slope angles were determined for a dry to semi-saturated slope (surface water 8 slope heights behind toe of slope) since groundwater levels were intersected at depths 25 m to 80 m and only within the kimberlites.

A factor of safety of 1.5 was used for the final saprolite slope design.

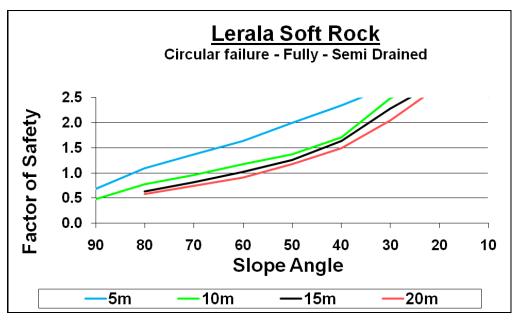


Figure 33: Slope angles and factors of safety for bench heights

A detailed breakdown is tabulated below (Table 38), indicating designs for 5m and 10 m benches.

Overall	Overall	Bench	Bench	Spill	Benches
Slope	Slope	Height	Face	Berm	
Height	Angle		Angle	Width	
5 m	65°	5 m	65°		1 Bench
10 m	45°	5 m	65°	3.6 m	2 Benches
15 m	45°	5 m	65°	3.6 m	3 Benches
20 m	40°	5 m	65°	3.6 m	4 Benches
or					
10 m	45°	10 m	45°		1 Bench
20 m	40°	10 m	45°	3.8 m	2 Benches

Table 38: Design criteria for slopes within the saprolite gneiss slopes

The following design parameters are proposed for the soil/saprolite slopes:

- Saprolite bench heights = 5 m or 10 m
- Saprolite berm widths = 3.6 m 3.8 m
- Saprolite bench/batter angle 65° or 45° depending on bench heights
- Overall saprolite slope angle of 40° 65° depending on the slope height

CHAPTER FIVE – CONCLUSIONS

It is concluded that :

- Lerala is a green fields diamond mining project in a flat area where rock outcrops are rare ;
- All the rock types known to exist in the area are covered by 2m of soil, thereby making mapping of exposures impossible ;
- All the structural information for the analysis was derived from borehole cores obtained from 23 geotechnical boreholes, and some surface pitting;
- The information used for the analysis is sufficient to design preliminary open pits and slope angles for a feasibility study ;
- More detailed designs will only be possible once larger exposures from preliminary pitting have been created.

The material properties were quantified from samples taken from exploration core. It is believed that the information gained is useful and sufficient for feasibility purposes; however the data need to be augmented by further tests to evaluate possible spatial and normal variance in properties. Discontinuity shear strength can be significantly increased by undulation or waviness. Although strong indications of waviness of joints could be seen in the borehole core it could not be effectively quantified. This will only be possible once the rock mass has been exposed.

Rock mass classification from boreholes is not as accurate as when it is conducted from exposed rockwalls. In this case no rockwall exposures are available and therefore the information from boreholes had to suffice.

Currently very little is known about the sources and distribution of water in the rock mass, which is an issue that will have to be investigated in the next stage of the evaluation.

5.1 Recommendations for Future Work

The following work is recommended based on the knowledge and experienced gained from this study:

- Discontinuity properties such as undulation and waviness need to be quantified in order to improve on the shear strength parameters of joint sets;
- More detailed data are required regarding joint sets and rock mass strength in the exposed rock walls;
- This same data should be used to improve and refine the rock mass classification;
- The kinematic analyses of pit walls need to be conducted in more detail, once more information becomes available from joint mapping;
- Additional soil / saprolite samples should be taken for expanding the database and updating the soil / saprolite slope design angles; and
- Hard rock data should be re-analysed as soon as the rock is exposed during the trial mining phase.

Reference list

- 1. Barnes, G.E (1991) A simplified version of the Bishop and Morgenstern slope stability charts, Can. Geotech. J., Vol. 28, pp 630-637.
- Barton, N.R., Bandis, S.C. 1990. Review of predictive capabilities of JRC-JCS model in engineering practice. In *Rock joints, proc. int. symp. on rock joints,* Loen, Norway, (eds N. Barton and O. Stephansson), 603-610. Rotterdam: Balkema.
- Barton, N.R. and Bandis, S.C. 1982. Effects of block size on the the shear behaviour of jointed rock. 23rd U.S. symp. on rock mechanics, Berkeley, 739-760.
- 4. Barton, N.R., Choubey, V. 1977. The shear strength of rock joints in theory and practice. *Rock Mech.* 10(1-2), 1-54.
- 5. Barton, N.R. 1976. The shear strength of rock and rock joints. *Int. J. Mech. Min. Sci. & Geomech. Abstr.* **13**(10), 1-24.
- Barton, N., Lien, R. And Lunde, J. (1974) Engineering classification of rock masses for the design of tunnel support, Rock Mech., Vol. 6, No. 4, pp 189-236.
- Barton, N.R. 1973. Review of a new shear strength criterion for rock joints. Engng Geol. 7,287-332.
- 8. Basson, F. 2004. Slope Optimizer. Windows 95 XP Version 1.
- Bieniawski, Z.T. 1976. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema.
- 10. Bieniawski, Z.T. (1989) Engineering Rock Mass Classification, John Wiley and Sons, New York.

- 11. Bishop, A.W. and Morgenstern, N.P. (1960) Stability coefficients for earth slopes, Geotechnique, Vol. 10, pp 129-150.
- 12. Carney, J.N., Aldiss, D.T., Lock, N.P. 1994. The Geology of Botswana. *Bulletin 37,* Dept of Geological Survey, Botswana.
- Chandler, R.J. and Peiris, T.A. (1989) Further extensions to the Bishop and Morgenstern slope stability charts, Ground Engineering, Vol. 22, No. 4, pp 33-38.
- Dempers, G.D. 1994. Optimal usage of exploration core for geotechnical purposes, Proc. Symp. Integral Approach to Applied Rock Mechanics, Int. Soc. Rock Mech. Santiago, Chile, 219-230.
- 15. Gibson, W.H., De Bruyn, I.A., Walker, D.J.H. 2006. Considerations in the optimization of bench face angle and berm width geometries for open pit mines. SAIMM International Symposium on Stability of rock slopes in open pit and civil engineering status. Symposium Series S44. April 2006, 557–578.
- Haines, A., Terbrugge, P.J. 1991. Preliminary estimation of rock slope stability using rock mass classifications systems, Proc. 7th Int. Cong. Int. Soc. Rock Mech. 2, 887-892.
- 17. Hoek, E., Bray, J.W. 1981. Rock Slope Engineering (3rd Edition). The Institution of Mining and Metallurgy, London.
- 18. Hoek, E. 1990. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. *Intnl. J. Rock Mech. & Mining Sci.* &Geomechanics Abstracts. 12(3), 227-229.

19. http://www.2icaustralia.com

- 20. International Society for Rock Mechanics Commission on Standardisation of Laboratory and Field Tests. 1978. Suggested methods for the quantitative description of discontinuities in rock masses. *Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.* 15, 319-368.
- 21. Laubscher, D.H. and Taylor, H.W. (1976) The importance of geomechanics classification of jointed rock masses in mining operations, Proc. Symp. Exploration for Rock Engineering, Johannesburg, Vol. 1, A.A. Balkema, pp 119-128.
- 22. Laubscher, D.H. 1977. Geomechanics classification of jointed rock masses mining applications. *Trans. Instn. Min. Metall.* 86, A1-8.
- 23. Laubscher, D.H. 1990. A geomechanics classification system for the rating of rock mass in mine design, *JI S. Afr. Inst. Min. Metall.* 90(10), 257-273.
- 24. Laubscher, D H (1994) Cave mining state of the art, JI S. Afr. Inst. Min. Metall., Vol. 94, pp 279-293.
- 25. Marjoribanks, R. 2002. Structural logging of drill core. Australian Institute on Geoscientis. AIG Handbook 5.
- 26.McGeorge, I.B. 2003. Prospectus. DiamonEx Limited. Independent consulting geologist's report on the Martin's Drift and Molopo diamond projects, Gaborone.
- 27.O'Connor, M.J. and Mitchell, R.J. (1977) An extension of the Bishop and Morgenstern slope stability charts, Can. Geotech, J., Vol. 14, pp 144-151.
- 28. Patton, F.D. 1966. Multiple modes of shear failure in rock. *Proc. 1st congr. Int. Soc. Rock Mech.* Lisbon 1, 509-513.
- 29. Rocscience Dips Version 5.1 Computer Program.

- 30. Spencer, E. (1969) Circular and logarithmic spiral slip surfaces, J. Soil Mech. Fdn Div., ASCE, Vol. 95, No. SM1, pp 227-234.
- 31. Stacey, T.R., Swart, A.H. 2001. Practical Rock Engineering for Shallow and Opencast Mines. SIMRAC. OTH 602.
- 32. Van Heerden, D. and Odendaal, N.J. 2006. Promet Engineers Africa. Feasibility report for Martin's Drift Diamond Project. DiamonEx Botswana Ltd.
- 33.Watts, C.F. 2003. ROCKPACK III for Windows Computer Program A Rock Slope Stability Computerized Analysis Package.

Appendix 1 K2GT01 GEOTECHNICAL BOREHOLE LOG

PROJEC ZONE:		CAL BOREHOLE Lerala K2	LOG				HOLE NO: LINATION:						101.6 JPE H		_ DATE:
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle		Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 21m	Tricone				4	3							
21		21m - 34.2	Sapprolite Kimberlite				4	3							WEATHERING
34.2	90	34.2m - 44m	Kimberlite				4	3							
44	85	44m - 50.6m	Kimberlite Breccia				4	3							
			Weathered Kimberlite												
50.6		50.6m - 62.8					4	3							1. Linux other of
62.8	97	62.8m - 85.05	Granitic Gneiss	00.0			1	4		000	0/0	1/0		<u> </u>	1. Unweathered
68.2			Granitic Gneiss	68.2			1	4	65	300	2/3	1/2		1	2. Slightly
68.3			Granitic Gneiss	68.3			1	4	60	160	2/3	1/2		1	3. Moderately
68.5			Granitic Gneiss	68.5			1	4	25	140	2/3	1/2			4. Highly
68.6			Granitic Gneiss	68.6			1	4	70	330	2/3	1/2		1	5. Completely
69.6			Granitic Gneiss	69.6			1	4	45	120	2/3	1/2		1	
74.5			Granitic Gneiss	74.5			1	4	50	350	2/3	1/2		1	
74.55			Granitic Gneiss	74.55 74.7				4	50 45	350 30	2/3 2/3	1/2		1	1. Polished
74.7			Granitic Gneiss				1	4				1/2		1	2. Smooth planar
77.5			Granitic Gneiss	77.5			1	4	35	130	2/3 2/3	1/2		1	3. Rough planar
83.7			Granitic Gneiss	83.7			1	4	45	230		1/2		1	4. Slickensided undulated
83.8			Granitic Gneiss	83.8			1	4	70	330	2/3	1/2		1	5. Smooth undulating
84.2			Granitic Gneiss	84.2			1	4	65	190	2/3	1/2			6. Rough undulating
84.3			Granitic Gneiss	84.3			1	4	15		2/3	1/2			7. Slickensided stepped
84.4			Granitic Gneiss	84.4			1	4	45	210		1/2		1	8. Smooth stepped
84.5			Granitic Gneiss	84.5		-	1	4	30	20	2/3	1/2		1	9. Rough stepped / irregular
84.9	400	05.05	Granitic Gneiss	84.9			1	4	55	210		1/2			
90	100	85.05m - 101.6	Foliated Gneiss	90			1	4	05	100	2/3	1/2		1	1. Planar
89			Foliated Gneiss	89			1	4	35	180	2/3	1/2		1	2. Undulating
90			Foliated Gneiss	90			1	4	40	150	2/3	1/2		1	3. Curved
91.3			Foliated Gneiss	91.3			1	4	65	150		1/2		1	4. Irregular
90.5			Foliated Gneiss	90.5		-	1	4	30	100	2/3	1/2		1	5. Multi irregular
92.7			Foliated Gneiss	92.7			1	4	30	100	2/3	1/2		1	INFILLING TYPE
93			Foliated Gneiss	93			1	4	25	100	2/3	1/2		1	 Gauge thickness > Amplitude
93.3			Foliated Gneiss	93.3			1	4	30	105	2/3	1/2		1	of irregularities
94.3 95.7			Foliated Gneiss	94.3 95.7			1	4	25	100	2/3 2/3	1/2		1	2. Gauge thickness < Amplitude
			Foliated Gneiss				1	4	55	350		1/2		1	of irregularities
96.3			Foliated Gneiss	96.3			1	4	20	160	2/3	1/2		1	3. Soft Sheared Material- Fine
96.4			Foliated Gneiss	96.4			1	4	25 20	160 200	2/3 2/3	1/2 1/2			4. Soft Sheared Material-Med
97.3			Foliated Gneiss Foliated Gneiss	97.3				4	-			-			5. Soft Sheared Material- Crse
97.7 99				97.7 99			1	4	20	340	2/3	1/2 1/2			6. Non Softening Material-Fine
99			Foliated Gneiss	99			1	4		340	2/3	1/2		1	7. Non Softening Material-Med 8. Non Softening Material-Crse
															5
															9. Clean
															JOINT WALL ALTERATION 1. Wall = Rock Hard
															2. Wall > Rock Hard
							I								 Wall < Rock Hard

Appendix 1 K2GT02 GEOTECHNICAL BOREHOLE LOG

PROJEC	T:	Lerala K2	200				HOLE NO: LINATION:	K2 GT02 60					1 00.4m JPE Ha		DATE: <u>21/11/2006</u>
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	e Cond	IITION	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle		Macro 1-5			M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 20.5m	Sapprolite Kimberlite				4	3							
20.5	10	20.5m - 23.0	Dolerite Dyke				3	4							WEATHERING
23	30	23m - 30.0m	Pink Granitic Gneiss				1	4							1. Unweathered
30	5	30m - 32m	Dolerite Dyke				1	4							2. Slightly
32	95	32m - 43m	Pink Granitic Gneiss				1	4							
49.8	99		Foliated Gneiss		49.8	f	1	4	70		2/3	1/2		1	3. Moderately
50.3			Foliated Gneiss	50.3			1	4	20	330	2/3	1/2			4. Highly
52.6			Foliated Gneiss		52.6	f	1	4	60		2/3	1/2		1	5. Completely
52.7			Foliated Gneiss	52.7			1	4	45	170	2/3	1/2			JOINT SURFACE
52.9			Foliated Gneiss	52.9			1	4	50		2/3	1/2		1	MICRO ROUGHNESS
54			Foliated Gneiss	54			1	4	35	10	2/3	1/2		1	1. Polished
55			Foliated Gneiss		55	f	1	4	55	270	2/3	1/2		1	2. Smooth planar
55.1			Foliated Gneiss	55.1			1	4	10		2/3	1/2		1	3. Rough planar
60			Foliated Gneiss	60			1	4	50	90	2/3	1/2		1	4. Slickensided undulated
61			Foliated Gneiss	61			1	4	50	340	2/3	1/2		1	5. Smooth undulating
61.3			Foliated Gneiss	61.3			1	4	20	340	2/3	1/2			6. Rough undulating
62			Foliated Gneiss	62			1	4	35	70	2/3	1/2		1	7. Slickensided stepped
62.4			Foliated Gneiss		62.4	f	1	4	70	200	2/3	1/2			8. Smooth stepped
65			Foliated Gneiss	65			1	4	20	300	2/3	1/2			9. Rough stepped / irregular
72.8			Foliated Gneiss	72.8			1	4	20	10	2/3	1/2			MACRO ROUGHNESS
73.4			Foliated Gneiss	73.4			1	4		50	2/3	1/2			1. Planar
															2. Undulating
															3. Curved
															4. Irregular
															5. Multi irregular
															INFILLING TYPE
															1. Gauge thickness > Amplitude
						1	1								of irregularities
						1	1								2. Gauge thickness < Amplitude
						1	1								of irregularities
						1	1								3. Soft Sheared Material- Fine
						1	1								4. Soft Sheared Material-Med
						1	1								5. Soft Sheared Material- Crse
						1	İ.								6. Non Softening Material-Fine
						1	1								7. Non Softening Material-Med
						1	1								8. Non Softening Material-Crse
						1	İ.								9. Clean
						1	1								JOINT WALL ALTERATION
							1								1. Wall = Rock Hard
						1	1								2. Wall > Rock Hard
							1								
															3. Wall < Rock Hard

Appendix 1 K2GT03 GEOTECHNICAL BOREHOLE LOG PROJECT: Lerala

	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Cond		
f terval From	%	Geotech interval	Rock Type	Solid m	-	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M1 Fault M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 15m	Kimberlite				4	3							
15		15m - 22.4m	Pink Granite				1	4				1			WEATHERING
22.4		22.4m - 45.80m	Granitic Gneiss				1	4				1			1. Unweathered
15.8		45.8m - 56.0m	Grey Granitic Gneiss				1	4				'			2. Slightly
54.6			Grey Granitic Gneiss		54.6	f	1	4	55	80	2/3	1/2			3. Moderately
54.6			Grey Granitic Gneiss		54.6	f	1	4	55	81	2/3	1/2			4. Highly
54.6			Grey Granitic Gneiss		54.6	f	1	4	55	82	2/3	1/2			5. Completely
54.6			Grey Granitic Gneiss		54.6	f	1	4	55	83	2/3	1/2	\mid	1	
54.6		56m - 76.0m	Grey Granitic Gneiss Granitic Gneiss		54.6 58.4	T f	1	4	55 35	79 110	2/3 2/3	1/2 1/2	┝──┤		MICRO ROUGHNESS
58.4 58.7		00m - 70.0m	Granitic Gneiss		58.4 58.7	l f	1	4	35	120	2/3	1/2	┝──┤		1. Polished 2. Smooth planar
58.7 58.7			Granitic Gneiss		58.7	f I	1	4	35 35	120	2/3	1/2	├		2. Smooth planar 3. Rough planar
58.7 58.7			Granitic Gneiss		58.7	f	1	4	35	121	2/3	1/2			4. Slickensided undulated
58.7			Granitic Gneiss		58.7	f	1	4	35	123	2/3	1/2			5. Smooth undulating
58.7			Granitic Gneiss		58.7	f	1	4	35	124	2/3	1/2			6. Rough undulating
60			Granitic Gneiss	60			1	4	45	0	2/3	1/2			7. Slickensided stepped
60			Granitic Gneiss		60	f	1	4	40	160	2/3	1/2			8. Smooth stepped
60.5			Granitic Gneiss	60.5			1	4	35	140	2/3	1/2			9. Rough stepped / irregular
66			Granitic Gneiss		66	f	1	4	30	30	2/3	1/2			MACRO ROUGHNESS
66.3			Granitic Gneiss	66.3			1	4	30	320	2/3	1/2		1	1. Planar
70.5			Granitic Gneiss		70.5	f	1	4	60	160	2/3	1/2		1	2. Undulating
75.5			Granitic Gneiss	75.5			1	4	20	300	2/3	1/2		1	3. Curved
76			Granitic Gneiss		76	d	1	4	35	240	2/3	1/2			4. Irregular
77.5		76m - 77.03	Dolerite Dyke		77.5	d	1	4	25	340	2/3	1/2			5. Multi irregular
82		77.03m - 91m	Pink Granitic Gneiss	82			1	4	60	300	2/3	1/2			INFILLING TYPE
83.7			Pink Granitic Gneiss	83.7			1	4	65	290	2/3	1/2			1. Gauge thickness > Amplitude
83.9			Pink Granitic Gneiss	83.9			1	4	65	300	2/3	1/2		1	of irregularities
84.2			Pink Granitic Gneiss	84.2			1	4	20	120	2/3	1/2			2. Gauge thickness < Amplitude
85.2			Pink Granitic Gneiss	85.2			1	4	60	240	2/3	1/2	\mid		of irregularities
85.5			Pink Granitic Gneiss	85.5			1	4	45	50	2/3	1/2	┢───┦		3. Soft Sheared Material-Fine
86 87.2			Pink Granitic Gneiss Pink Granitic Gneiss	86 87.2			1	4	20 45	80 280	2/3 2/3	1/2 1/2	┝──┤		 Soft Sheared Material-Med Soft Sheared Material- Crse
87.5			Pink Granitic Gneiss	87.5			1	4	45	350	2/3	1/2	┝───┦		6. Non Softening Material-Fine
88			Pink Granitic Gneiss	88		<u> </u>	1	4	30	240	2/3	1/2	┝──┤		7. Non Softening Material-Pine
88.2			Pink Granitic Gneiss	88.2			1	4	55	120	2/3	1/2			8. Non Softening Material-Crse
88.3			Pink Granitic Gneiss	88.3			1	4	35	210	2/3	1/2			9. Clean
90.5			Pink Granitic Gneiss	90.5		ł	1	4	55	200	2/3	1/2		1	JOINT WALL ALTERATION
90.6			Pink Granitic Gneiss	90.6	1		1	4	60	30	2/3	1/2		1	1. Wall = Rock Hard
-							Ī		-	-					2. Wall > Rock Hard
						I	1								3. Wall < Rock Hard
						T									
]
												í]
]
	1										1 7	1	1 7		

Appendix 1 K2GT04 GEOTECHNICAL BOREHOLE LOG PROJECT: Lerala

PROJEC ZONE:		CAL BOREHOL Lerala K2					HOLE NO:					EPTH: ED BY:			DATE: <u>12/09/2006</u>
Interval	RQD			Ro	ck compet	ence	Weath'ng	Hardness			Joint	t Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle		Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 24m	Kimberlite				4	3				Ì			
24		24m - 38.5m	Kimberlite				4	3							WEATHERING
38.5	10	38.5m - 44m	Granitic Gneiss				1	4							1. Unweathered
44.6		44.6m - 101.5	Granitic Gneiss		44.6	f	1	4	30	160	2/3	1/2		1	2. Slightly
44.7			Granitic Gneiss		44.7	f	1	4	60	100	2/3	1/2		1	3. Moderately
45.8			Granitic Gneiss	45.8			1	4	40	290	2/3	1/2			4. Highly
45.9			Granitic Gneiss	45.9			1	4	40	310		1/2		1	5. Completely
46.3			Granitic Gneiss	46.3			1	4	60	310		1/2		1	JOINT SURFACE
46.4			Granitic Gneiss	46.4			1	4	55	330	2/3	1/2		1	MICRO ROUGHNESS
46.5			Granitic Gneiss	46.5			1	4	50	120	2/3	1/2		1	1. Polished
47			Granitic Gneiss		47	f	1	4	30	185		1/2		1	2. Smooth planar
47.1			Granitic Gneiss	47.1			1	4	50	290	2/3	1/2			3. Rough planar
47.3			Granitic Gneiss	47.3			1	4	50	295		1/2		1	4. Slickensided undulated
50			Granitic Gneiss		50	f	1	4	30	190	2/3	1/2			5. Smooth undulating
50.1			Granitic Gneiss	50.1			1	4	55	290	2/3	1/2		1	6. Rough undulating
50.2			Granitic Gneiss	50.2			1	4	55	300	2/3	1/2		1	Slickensided stepped
59			Granitic Gneiss		59	f	1	4	40	160	2/3	1/2		1	8. Smooth stepped
71.5			Granitic Gneiss	71.5			1	4	60	320	2/3	1/2		1	9. Rough stepped / irregular
71.7			Granitic Gneiss	71.7			1	4	35	260	2/3	1/2		1	MACRO ROUGHNESS
71.8			Granitic Gneiss	71.8			1	4	25	160	2/3	1/2		1	1. Planar
80.5			Granitic Gneiss	80.5			1	4	45	220	2/3	1/2		1	2. Undulating
80.7			Granitic Gneiss	80.7			1	4	45	200	2/3	1/2		1	3. Curved
															4. Irregular
															5. Multi irregular
															INFILLING TYPE
												1			1. Gauge thickness > Amplitude
											Ī	1			of irregularities
												I			2. Gauge thickness < Amplitude
											Ī	1			of irregularities
												I			3. Soft Sheared Material- Fine
												1			4. Soft Sheared Material-Med
												1			5. Soft Sheared Material- Crse
							1								6. Non Softening Material-Fine
												I			7. Non Softening Material-Med
												I			8. Non Softening Material-Crse
							1				1	1			9. Clean
							1					1			JOINT WALL ALTERATION
							İ				l	1			1. Wall = Rock Hard
							1				l	1			2. Wall > Rock Hard
							1					<u> </u>			3. Wall < Rock Hard

Appendix 1 K2GT04 GEOTECHNICAL BOREHOLE LOG PROJECT: Lerala

PROJEC ZONE:		CAL BOREHOL Lerala K2					HOLE NO:					EPTH: ED BY:			DATE: <u>12/09/2006</u>
Interval	RQD			Ro	ck compet	ence	Weath'ng	Hardness			Joint	t Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle		Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 24m	Kimberlite				4	3				Ì			
24		24m - 38.5m	Kimberlite				4	3							WEATHERING
38.5	10	38.5m - 44m	Granitic Gneiss				1	4							1. Unweathered
44.6		44.6m - 101.5	Granitic Gneiss		44.6	f	1	4	30	160	2/3	1/2		1	2. Slightly
44.7			Granitic Gneiss		44.7	f	1	4	60	100	2/3	1/2		1	3. Moderately
45.8			Granitic Gneiss	45.8			1	4	40	290	2/3	1/2			4. Highly
45.9			Granitic Gneiss	45.9			1	4	40	310		1/2		1	5. Completely
46.3			Granitic Gneiss	46.3			1	4	60	310		1/2		1	JOINT SURFACE
46.4			Granitic Gneiss	46.4			1	4	55	330	2/3	1/2		1	MICRO ROUGHNESS
46.5			Granitic Gneiss	46.5			1	4	50	120	2/3	1/2		1	1. Polished
47			Granitic Gneiss		47	f	1	4	30	185		1/2		1	2. Smooth planar
47.1			Granitic Gneiss	47.1			1	4	50	290	2/3	1/2			3. Rough planar
47.3			Granitic Gneiss	47.3			1	4	50	295		1/2		1	4. Slickensided undulated
50			Granitic Gneiss		50	f	1	4	30	190	2/3	1/2			5. Smooth undulating
50.1			Granitic Gneiss	50.1			1	4	55	290	2/3	1/2		1	6. Rough undulating
50.2			Granitic Gneiss	50.2			1	4	55	300	2/3	1/2		1	Slickensided stepped
59			Granitic Gneiss		59	f	1	4	40	160	2/3	1/2		1	8. Smooth stepped
71.5			Granitic Gneiss	71.5			1	4	60	320	2/3	1/2		1	9. Rough stepped / irregular
71.7			Granitic Gneiss	71.7			1	4	35	260	2/3	1/2		1	MACRO ROUGHNESS
71.8			Granitic Gneiss	71.8			1	4	25	160	2/3	1/2		1	1. Planar
80.5			Granitic Gneiss	80.5			1	4	45	220	2/3	1/2		1	2. Undulating
80.7			Granitic Gneiss	80.7			1	4	45	200	2/3	1/2		1	3. Curved
															4. Irregular
															5. Multi irregular
															INFILLING TYPE
												1			1. Gauge thickness > Amplitude
											Ī	1			of irregularities
												I			2. Gauge thickness < Amplitude
											Ī	1			of irregularities
												I			3. Soft Sheared Material- Fine
												1			4. Soft Sheared Material-Med
												1			5. Soft Sheared Material- Crse
							1								6. Non Softening Material-Fine
												I			7. Non Softening Material-Med
												I			8. Non Softening Material-Crse
							1				1	1			9. Clean
							1					1			JOINT WALL ALTERATION
							İ				l	1			1. Wall = Rock Hard
							1				l	1			2. Wall > Rock Hard
							1					<u> </u>			3. Wall < Rock Hard

Appendix 1 K3GT01 GEOTECHNICAL BOREHOLE LOG

GEOTEC PROJEC ZONE:		CAL BOREHOLE LO Lerala K3	G				HOLE NO: LINATION:					EPTH: ED BY:		ammar	DATE: <u>16/10/2006</u>
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0	1	0m - 5.8m	Tricone				4	3							
5.8		5.8m - 24.4m	Kimberlite Breccia				1	3							WEATHERING
24.4		24.4m - 39.2	Kimberlite Breccia				1	3							1. Unweathered
39.2		39.2m - 48.12	Kimberlite Breccia				1	3							2. Slightly
48.12		48.12m - 49.62	Granite Inclusion				1	4							3. Moderately
49.62		49.62m - 56.9	Kimberlite Breccia				1	3			- 1-				4. Highly
53.7			Kimberlite Breccia		53.7	M4	1	3	20	20	2/3	1/2		1	5. Completely
57		56.9m - 57.53m	Granite Inclusion	57			1	4	60	180	2/3	1/2		1	JOINT SURFACE
57.9		57.53m - 105.04m	Kimberlite Breccia		57.9 61.2		1	3	45	30	2/3 2/3	1/2 1/2			
61.2 64			Kimberlite Breccia Kimberlite Breccia	64	01.2	1014	1	3	25 35	45 45	2/3	1/2			1. Polished 2. Smooth planar
64.5				64	64.5	MA	1	3	35 20		2/3	1/2			
64.5			Kimberlite Breccia Kimberlite Breccia	67.1	04.5	1014	1	3	20 70		2/3	1/2			 Rough planar Slickensided undulated
71.4			Kimberlite Breccia	71.4			1	3	40	240	2/3	1/2			5. Smooth undulating
71.4			Kimberlite Breccia	71.4	75	M4	1	3	30	80	2/3	1/2			6. Rough undulating
76.4			Kimberlite Breccia		76.4		1	3	25	40	2/3	1/2			7. Slickensided stepped
78.7			Kimberlite Breccia	78.7	70.4	IVI-F	1	3	30	290	2/3	1/2			8. Smooth stepped
80.2			Kimberlite Breccia	80.2			1	3	20	160	2/3	1/2			9. Rough stepped / irregular
82.6			Kimberlite Breccia	82.6			1	3	25		2/3	1/2		1	MACRO ROUGHNESS
83.6			Kimberlite Breccia	83.6			1	3	40	30	2/3	1/2		1	1. Planar
88.2			Kimberlite Breccia	88.2			1	3	60		2/3	1/2		1	2. Undulating
88.6			Kimberlite Breccia	88.6			1	3	50		2/3	1/2		1	3. Curved
109.9		105.04m - 110.80m	Granite	109.9			1	4	45	130	2/3	1/2		1	4. Irregular
110		110.8m - 116.40	Kimberlite Breccia	110			1	3	45	130	2/3	1/2		1	5. Multi irregular
113.8			Kimberlite Breccia	113.8			1	3	55	90	2/3	1/2			INFILLING TYPE
114.5			Kimberlite Breccia	114.5			1	3	35	350	2/3	1/2		1	1. Gauge thickness > Amplitude
114.6			Kimberlite Breccia	114.6			1	3	60	170	2/3	1/2		1	of irregularities
114.9			Kimberlite Breccia	114.9			1	3	60	125	2/3	1/2		1	2. Gauge thickness < Amplitude
															of irregularities
															3. Soft Sheared Material- Fine
															4. Soft Sheared Material-Med
L	<u> </u>						l								5. Soft Sheared Material- Crse
	ļ														6. Non Softening Material-Fine
<u> </u>		L													7. Non Softening Material-Med
├ ──	<u> </u>														8. Non Softening Material-Crse 9. Clean
															9. Clean JOINT WALL ALTERATION
															1. Wall = Rock Hard
					-		ł								2. Wall = Rock Hard
							1								3. Wall < Rock Hard
					-		ł								
															1
					1		1								1
	1				1		1					1			1
	1						1								1
	İ			-	İ	1	1					1			1
8	-					•	-				-	•		•	1
								•	•						

Appendi GEOTE PROJEC ZONE:	CHNIC	CAL BOREHOLE	LOG				HOLE NO: LINATION:	GT02 50				EPTH: D BY:	102 JPE H	ammai	_ DATE : <u>20/10/2006</u> n
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	e Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 3.2m	Tricone				4	3]
			Weathered Kimberlite												
3.2 19		3.2m - 19m 19m - 23.7	Breccia Dolerite				4	3			2/3 2/3	1/2 1/2			WEATHERING 1. Unweathered
19		1911-23.7	Weathered					3			2/3	1/2			1. Onweathered
			Kimberlite												
23.7		23.7m - 30m	Breccia				4	3			2/3	1/2			2. Slightly
37.3		30m - 40.3	Breccia	37.3			1	4	85	30	2/3	1/2		1	3. Moderately
37.8				37.8			1	4	85	260	2/3	1/2 1/2		1	4. Highly
38.1 39.4		-		38.1 39.4			1	4	80 45	270 60	2/3 2/3	1/2		1	5. Completely JOINT SURFACE
41		40.3m - 101.7m	Granitic Gneiss	41			1	4	65	330	2/3	1/2		1	MICRO ROUGHNESS
41.2			Granitic Gneiss	41.2		1	1	4	50	200	2/3	1/2		1	1. Polished
42.2			Granitic Gneiss		42.2	f	1	4	80	230	2/3	1/2		1	2. Smooth planar
43			Granitic Gneiss		43	f	1	4	70	10	2/3	1/2		1	3. Rough planar
51.1 51.3			Granitic Gneiss	51.1	51.3	F	1	4	50 60	210	2/3 2/3	1/2 1/2		1	 Slickensided undulated Smooth undulating
51.5			Granitic Gneiss Granitic Gneiss	51.6	51.5		1	4	40	80 205	2/3	1/2		1	6. Rough undulating
52.3			Granitic Gneiss	51.0	52.3	F	1	4	65	160	2/3	1/2		1	7. Slickensided stepped
52.5			Granitic Gneiss	52.5			1	4	35	190	2/3	1/2		1	8. Smooth stepped
52.8			Granitic Gneiss	52.8			1	4	40	190	2/3	1/2		1	9. Rough stepped / irregular
52.9			Granitic Gneiss		52.9	F	1	4	65	60	2/3	1/2		1	MACRO ROUGHNESS
53.1 53.6			Granitic Gneiss	53.1 53.6			1	4	50 25	180	2/3 2/3	1/2 1/2		1	1. Planar
53.0		-	Granitic Gneiss Granitic Gneiss	53.0	53.9	F	1	4	30	185 180	2/3	1/2		1	2. Undulating 3. Curved
54.4		-	Granitic Gneiss	54.4	55.5		1	4	<u>60</u>	270	2/3	1/2		1	4. Irregular
54.8			Granitic Gneiss	54.8		1	1	4	25	340	2/3	1/2		1	5. Multi irregular
55.5			Granitic Gneiss		55.5	F	1	4	60	160	2/3	1/2		1	INFILLING TYPE
56.7			Granitic Gneiss		56.7	F	1	4	60	160	2/3	1/2		1	1. Gauge thickness > Amplitude
56.8 57.3			Granitic Gneiss Granitic Gneiss	57.3	56.8	F	1 1	4	60 50	160 340	2/3 2/3	1/2 1/2		1	of irregularities 2. Gauge thickness < Amplitude
57.3			Granitic Gneiss	57.5	57.4	F	1	4	75	155	2/3	1/2		1	of irregularities
58.4		-	Granitic Gneiss	58.4	01.4		1	4	45	345	2/3	1/2		1	3. Soft Sheared Material- Fine
58.7			Granitic Gneiss	58.7			1	4	35	180	2/3	1/2		1	4. Soft Sheared Material-Med
60.4			Granitic Gneiss	60.4			1	4	45	200	2/3	1/2		1	5. Soft Sheared Material- Crse
60.6			Granitic Gneiss	60.6	01.0		1	4	45	200	2/3	1/2		1	6. Non Softening Material-Fine
61.3 63		-	Granitic Gneiss Granitic Gneiss		61.3 63	F	1 1	4 4	55 75	180 170	2/3 2/3	1/2 1/2		1	7. Non Softening Material-Med 8. Non Softening Material-Crse
63.8			Granitic Gneiss		63.8	F	1	4	55	175	2/3	1/2		1	9. Clean
64.3			Granitic Gneiss		64.3	F	1	4	60	150	2/3	1/2		1	JOINT WALL ALTERATION
67.2			Granitic Gneiss	67.2			1	4	15	240	2/3	1/2		1	1. Wall = Rock Hard
70			Granitic Gneiss	70			1	4	30	320	2/3	1/2		1	2. Wall > Rock Hard
77.4			Granitic Gneiss	77.4	70.0	F	1	4	50	220	2/3	1/2		1	3. Wall < Rock Hard
78.9 83			Granitic Gneiss Granitic Gneiss	83	78.9		1 1	4	45 55	200 60	2/3 2/3	1/2 1/2		1	1
83.3			Granitic Gneiss		83.3	F	1	4	40	180	2/3	1/2		1	1
84			Granitic Gneiss		84	F	1	4	45	170	2/3	1/2		1]
84.2			Granitic Gneiss		84.2	F	1	4	60	175	2/3	1/2		1	1
85.5			Granitic Gneiss	85.5			1	4	50	320	2/3	1/2		1	4
85.8			Granitic Gneiss		85.8	F	Į		45	200	2/3	1/2		1	4
86.5 91			Granitic Gneiss Granitic Gneiss	91	86.5		ł		70 65	190 300	2/3 2/3	1/2 1/2		1	1
91.5			Granitic Gneiss	91.5		1	1		60	290	2/3	1/2		1	1
92.4			Granitic Gneiss		92.4	F	1	1	70	160	2/3	1/2		1	1
93.5			Granitic Gneiss	93.5					20	160	2/3	1/2		1]
95			Granitic Gneiss	95		<u> </u>			25	325	2/3	1/2		1	4
95.5			Granitic Gneiss	05.7	95.5	F	ļ		30	170	2/3	1/2		1	4
95.7			Granitic Gneiss	95.7		1	1		60	350	2/3	1/2		1	J

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIBESITHI VA PRETORIA

ZONE:		К3				INC	LINATION:	50		L	.UGGE	:D B I :	JPE H	amma	
nterval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M1 Fault M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 3.2m	Tricone				4	3							
			Kimberlite												
3.2 32.7		3.2m - 32.70m 32.7m - 34.78	Breccia Dolerite Dyke				1	4			2/3 2/3	1/2 1/2		1	1. Unweathered
34.78		34.78m - 48m	Granite								2/0	1/2			1. Onweathered
40.2			Granite		40.2	В	1	4	70	150	2/3	1/2		1	
41.5 42.6			Granite	42.6	41.5	В	1	4	40 65	115 40	2/3 2/3	1/2 1/2		1	
42.0			Granite Granite	42.6 43			1	4	55	60	2/3	1/2		1	
44.2			Granite		44.2	В	1	4	50	40	2/3	1/2		1	JOINT SURFACE
44.3 44.5			Granite	44.3	44.5	в	1	4	35 50	135 30	2/3 2/3	1/2 1/2		1	
44.5			Granite Granite	45.6	44.5	D	1	4	65	145	2/3	1/2		1	
46.5			Granite	46.5			1	4	45	145	2/3	1/2		1	3. Rough planar
46.6			Granite Delecite Delec	10	46.6	M4	1	4	45	145	2/3	1/2		1	
48 48.4			Dolerite Dyke Dolerite Dyke	48 48.4			1	4	60 35	210 165	2/3 2/3	1/2 1/2		1	
48.6			Dolerite Dyke	48.6			1	4	55	200	2/3	1/2		1	
51			Dolerite Dyke	51		-	1	4	45	160	2/3	1/2		1	8. Smooth stepped
51.1			Dolerite Dyke		51.1		1	4	35 55	290 70	2/3 2/3	1/2 1/2		1	
51.3 57.6		51.8m - 55.72	Dolerite Dyke Granite Breccia	57.6	51.3	U	1	4	55 45	180	2/3	1/2		1	
54.6			Granite Breccia	00	54.6	F	1	4	55	300	2/3	1/2		1	2. Undulating
56		55.72m - 101.7	Granitic Gneiss		56	F	1	4	65	160	2/3	1/2		1	
56.2 57.6			Granitic Gneiss Granitic Gneiss	56.2 57.6			1	4	30 30	335 0	2/3 2/3	1/2 1/2	4	1	
57.8			Granitic Gneiss	57.8			1	4	70		2/3	1/2			INFILLING TYPE
58.5			Granitic Gneiss		58.5	F	1	4	45	210	2/3	1/2		1	1. Gauge thickness > Amplitude
58.9			Granitic Gneiss	50	58.9	F	1	4	40	170	2/3	1/2		1	
59 59.2			Granitic Gneiss Granitic Gneiss	59 59.2			1	4	30 25	59 10	2/3 2/3	1/2 1/2		1	
62.3			Granitic Gneiss	62.3			1	4	50	210	2/3	1/2		1	
62.6			Granitic Gneiss	62.6			1	4	35	350	2/3	1/2		1	
62.7 65			Granitic Gneiss Granitic Gneiss	62.7	65	5	1	4 4	35 45	330 200	2/3 2/3	1/2 1/2		1	
65.3			Granitic Gneiss	65.3	05	1	1	4	45	10	2/3	1/2		1	
66.2			Granitic Gneiss	66.2			1	4	45	20	2/3	1/2			8. Non Softening Material-Crse
66.3			Granitic Gneiss	66.3		-	1	4	60	305	2/3	1/2		1	
66.8 67			Granitic Gneiss Granitic Gneiss	67	66.8	F	1	4	35 25	210 90	2/3 2/3	1/2 1/2		1	
67.7			Granitic Gneiss	0.	67.7	F	1	4	40	210	2/3	1/2		1	
67.9			Granitic Gneiss		67.9	F	1	4	35	205	2/3	1/2		1	3. Wall < Rock Hard
68.2 69.5			Granitic Gneiss Granitic Gneiss	68.2	69.5	c	1	4	35 40	20 205	2/3 2/3	1/2 1/2		1	
70.5			Granitic Gneiss		70.5	F	1	4	35	200	2/3	1/2		1	
72.4			Granitic Gneiss	72.4			1	4	55	260	2/3	1/2		1	
72.6			Granitic Gneiss	72.6			1	4	15	240	2/3	1/2		1	-
72.9			Granitic Gneiss Granitic Gneiss	72.9			1	4	15 40	235 350	2/3 2/3	1/2 1/2		1	1
74.8			Granitic Gneiss		74.8	F			40	200	2/3	1/2		1	1
75.4			Granitic Gneiss	75.4		-			50	210	2/3	1/2		1	
77.1			Granitic Gneiss Granitic Gneiss	77.4	77.1	F			25 20	190 15	2/3 2/3	1/2 1/2		1	-
75.6			Granitic Gneiss	75.6					20 55	210	2/3	1/2		1	1
76.2			Granitic Gneiss	76.2					75	270	2/3	1/2		1	1
76.5			Granitic Gneiss	76.5					55	30	2/3	1/2		1	
80.8 81			Granitic Gneiss Granitic Gneiss	80.8					20 25	345 250	2/3 2/3	1/2 1/2		1	1
81.2			Granitic Gneiss	81.2					25	20	2/3	1/2		1	
81.4			Granitic Gneiss	81.4					15	250	2/3	1/2		1	
86		L	Granitic Gneiss	86					30	15 90	2/3	1/2		1	-
84 84.2			Granitic Gneiss Granitic Gneiss	84 84.2					30 15	100	2/3 2/3	1/2 1/2		1	
88			Granitic Gneiss	88					15	90	2/3	1/2		1]
88.2			Granitic Gneiss		88.2	F			45	240				1	
90 92.5			Granitic Gneiss Granitic Gneiss	90 92.5					45 20	90 330	2/3 2/3	1/2 1/2		1	1
92.9			Granitic Grielss	92.9					35	80	2/3	1/2		1	
93.7			Granitic Gneiss	93.7					40	20	2/3	1/2		1	1
94.6			Granitic Gneiss	94.6					30	270	2/3	1/2		1	
94.8 95.6			Granitic Gneiss Granitic Gneiss	94.8 95.6					30 35	60 250	2/3 2/3	1/2 1/2		1	1
95.8			Granitic Grielss	95.8					25	260	2/3	1/2		1	
95.9			Granitic Gneiss	95.9					40	10	2/3	1/2		1	
96.2			Granitic Gneiss	96.2					40	20	2/3	1/2		1	1

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA <u>UNIVERSITHI VA PRETORIA</u>

ZONE:		КЗ				INC	LINATION:	50		L	.OGGE	D BY:	JPE H	ammar	
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation
0		0 - 15m	Tricone				4	3							M5 Deformable material
15		15m - 22.5m	Granitic Gneiss				1	4							WEATHERING
22.5	90	22.5m - 32.7	Kimberlite Breccia Kimberlit				1	4							1. Unweathered
32.7	88	32.7m - 44.7m	Breccia/Granitic Gneiss				1	4							2. Slightly
40.8	00	02.711 44.711	ondios	40.8			1	4			2/3	1/2		1	3. Moderately
41.4 42.1				41.4 42.1			1	4			2/3 2/3	1/2 1/2		1	4. Highly 5. Completely
42.3 42.4				42.3 42.4			1	4			2/3 2/3	1/2 1/2		1	JOINT SURFACE MICRO ROUGHNESS
42.7				42.7			1	4			2/3	1/2		1	1. Polished 2. Smooth planar
43 43.6				43 43.6			1	4			2/3 2/3	1/2 1/2		1	Rough planar
44 44.4				44 44.4			1	4			2/3 2/3	1/2 1/2		1	 Slickensided undulated Smooth undulating
53.5 53.8	90		Kimberlite Breccia Kimberlite Breccia	53.5 53.8			1	4			2/3 2/3	1/2		1	Rough undulating
54.8			Kimberlite Breccia	54.8			1	4			2/3	1/2		1	Smooth stepped
55 55.7			Kimberlite Breccia Kimberlite Breccia	55 55.7			1	4			2/3 2/3	1/2 1/2		1	 Rough stepped / irregular MACRO ROUGHNESS
56 56.6			Kimberlite Breccia Kimberlite Breccia	56 56.6			1	4			2/3 2/3	1/2 1/2		1	1. Planar 2. Undulating
56.9			Kimberlite Breccia	56.9			1	4			2/3	1/2		1	3. Curved
57 64.3	92	60.0m - 71.6m	Kimberlite Breccia Kimberlite Breccia	57 64.3			1	4			2/3 2/3	1/2 1/2	4	1	 Irregular Multi irregular
64.6 67.9	_		Kimberlite Breccia Kimberlite Breccia	67.9	64.6	M4	1	4			2/3 2/3	1/2		1	INFILLING TYPE 1. Gauge thickness > Amplitude
69			Kimberlite Breccia	69			1	4			2/3	1/2		1	of irregularities
69.1 69.2			Kimberlite Breccia Kimberlite Breccia	69.1 69.2			1	4			2/3 2/3	1/2 1/2		1	Gauge thickness < Amplitude of irregularities
69.4 69.6			Kimberlite Breccia Kimberlite Breccia	69.4 69.6			1	4			2/3 2/3	1/2		1	 Soft Sheared Material- Fine Soft Sheared Material-Med
70.6			Kimberlite Breccia	70.6			1	4			2/3	1/2		1	5. Soft Sheared Material- Crse
70.9			Kimberlite Breccia Kimberlite Breccia	70.9			1	4			2/3 2/3	1/2		1	 Non Softening Material-Fine Non Softening Material-Med
71.2			Kimberlite Breccia Kimberlite Breccia	71.2 71.5			1	4			2/3 2/3	1/2 1/2		1	 Non Softening Material-Crse Clean
71.6			Kimberlite Breccia	71.6			1	4			2/3	1/2		1	JOINT WALL ALTERATION
72.1 73.2	94	71.6m - 81.0m	Granitic Gneiss Granitic Gneiss	72.1 73.2			1	4			2/3 2/3	1/2 1/2		1	1. Wall = Rock Hard 2. Wall > Rock Hard
72.5 72.6			Granitic Gneiss Granitic Gneiss	72.5 72.6			1	4			2/3 2/3	1/2 1/2		1	3. Wall < Rock Hard
73			Granitic Gneiss	73			1	4			2/3	1/2		1	
73.1			Granitic Gneiss Granitic Gneiss	73.1 73.2			1	4			2/3 2/3	1/2 1/2		1	
73.4 73.9			Granitic Gneiss Granitic Gneiss	73.4 73.9			1	4			2/3 2/3	1/2 1/2		1	-
74			Granitic Gneiss	74			1	4			2/3	1/2		1	
74.8 75.6			Granitic Gneiss Granitic Gneiss	74.8 75.6			1	4			2/3 2/3	1/2 1/2		1	
75.7 75.9			Granitic Gneiss Granitic Gneiss	75.7 75.9			1	4			2/3 2/3	1/2		1	
76.3			Granitic Gneiss	76.3			1	4			2/3	1/2		1	4
77.2			Granitic Gneiss Granitic Gneiss	77.2			1	4			2/3 2/3	1/2 1/2		1	
77.9			Granitic Gneiss Granitic Gneiss	77.9			1	4			2/3 2/3	1/2		1	
79.1			Granitic Gneiss Hyper Basal	79.1			1	4			2/3	1/2		1	
81.2	94	81.0m - 92.70	Kimberlite	81.2			1	4			2/3	1/2		1	
81.4			Hyper Basal Kimberlite	81.4			1	4			2/3	1/2		1	
			Hyper Basal Kimberlite	81.6			4	4						4	1
81.6		1	Hyper Basal								2/3	1/2			1
86.8			Kimberlite Hyper Basal	86.8			1	4			2/3	1/2		1	-
87.2			Kimberlite Hyper Basal	87.2			1	4			2/3	1/2		1	4
87.3			Kimberlite	87.3			1	4			2/3	1/2		1	4
87.4			Hyper Basal Kimberlite	87.4			1	4			2/3	1/2		1	
87.6			Hyper Basal Kimberlite	87.6			1	4			2/3	1/2		1	
87.8			Hyper Basal Kimberlite	87.8			1	4				1/2			1
	-		Hyper Basal								2/3			1	1
87.9			Kimberlite Hyper Basal	87.9			1	4	I		2/3	1/2		1	1
88.1			Kimberlite Hyper Basal	88.1			1	4			2/3	1/2		1	
88.6			Kimberlite	88.6			1	4			2/3	1/2		1	
88.7			Hyper Basal Kimberlite	88.7			1	4			2/3	1/2		1	
			Hyper Basal												1
88.65	-		Kimberlite Hyper Basal	88.65			1	4			2/3	1/2		1	1
88.75			Kimberlite Hyper Basal	88.75			1	4			2/3	1/2		1	-
88.8			Kimberlite	88.8			1	4			2/3	1/2		1	4
00.0		I	Hyper Basal		1		1	4			2/3	1/2		1	
89.1			Kimberlite	89.1				7			20				
			Kimberlite Hyper Basal Kimberlite Hyper Basal	89.1 89.5			1	4			2/3	1/2		1	

BOREHOLE NO: GT01 INCLINATION:

FINAL DEPTH: 91.0m LOGGED BY: JPE Hamman

DATE: 18/10/2006

Appendix 1 K3GT04 GEOTECHNICAL BOREHOLE LOG PROJECT: Lerala ZONE: K3

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA <u>UNIVERSITHI VA PRETORIA</u>

ZONE:		КЗ				INC	LINATION:	50		L	.OGGE	D BY:	JPE H	ammar	
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation
0		0 - 15m	Tricone				4	3							M5 Deformable material
15		15m - 22.5m	Granitic Gneiss				1	4							WEATHERING
22.5	90	22.5m - 32.7	Kimberlite Breccia Kimberlit				1	4							1. Unweathered
32.7	88	32.7m - 44.7m	Breccia/Granitic Gneiss				1	4							2. Slightly
40.8	00	02.711 44.711	ondido	40.8			1	4			2/3	1/2		1	3. Moderately
41.4 42.1				41.4 42.1			1	4			2/3 2/3	1/2 1/2		1	4. Highly 5. Completely
42.3 42.4				42.3 42.4			1	4			2/3 2/3	1/2 1/2		1	JOINT SURFACE MICRO ROUGHNESS
42.7				42.7			1	4			2/3	1/2		1	1. Polished 2. Smooth planar
43 43.6				43 43.6			1	4			2/3 2/3	1/2 1/2		1	Rough planar
44 44.4				44 44.4			1	4			2/3 2/3	1/2 1/2		1	 Slickensided undulated Smooth undulating
53.5 53.8	90		Kimberlite Breccia Kimberlite Breccia	53.5 53.8			1	4			2/3 2/3	1/2		1	Rough undulating
54.8			Kimberlite Breccia	54.8			1	4			2/3	1/2		1	Smooth stepped
55 55.7			Kimberlite Breccia Kimberlite Breccia	55 55.7			1	4			2/3 2/3	1/2 1/2		1	 Rough stepped / irregular MACRO ROUGHNESS
56 56.6			Kimberlite Breccia Kimberlite Breccia	56 56.6			1	4			2/3 2/3	1/2 1/2		1	1. Planar 2. Undulating
56.9			Kimberlite Breccia	56.9			1	4			2/3	1/2		1	3. Curved
57 64.3	92	60.0m - 71.6m	Kimberlite Breccia Kimberlite Breccia	57 64.3			1	4			2/3 2/3	1/2 1/2	4	1	 Irregular Multi irregular
64.6 67.9	_		Kimberlite Breccia Kimberlite Breccia	67.9	64.6	M4	1	4			2/3 2/3	1/2 1/2		1	INFILLING TYPE 1. Gauge thickness > Amplitude
69			Kimberlite Breccia	69			1	4			2/3	1/2		1	of irregularities
69.1 69.2			Kimberlite Breccia Kimberlite Breccia	69.1 69.2			1	4			2/3 2/3	1/2 1/2		1	Gauge thickness < Amplitude of irregularities
69.4 69.6			Kimberlite Breccia Kimberlite Breccia	69.4 69.6			1	4			2/3 2/3	1/2		1	 Soft Sheared Material- Fine Soft Sheared Material-Med
70.6			Kimberlite Breccia	70.6			1	4			2/3	1/2		1	5. Soft Sheared Material- Crse
70.9			Kimberlite Breccia Kimberlite Breccia	70.9			1	4			2/3 2/3	1/2		1	 Non Softening Material-Fine Non Softening Material-Med
71.2			Kimberlite Breccia Kimberlite Breccia	71.2 71.5			1	4			2/3 2/3	1/2 1/2		1	 Non Softening Material-Crse Clean
71.6			Kimberlite Breccia	71.6			1	4			2/3	1/2		1	JOINT WALL ALTERATION
72.1 73.2	94	71.6m - 81.0m	Granitic Gneiss Granitic Gneiss	72.1 73.2			1	4			2/3 2/3	1/2 1/2		1	1. Wall = Rock Hard 2. Wall > Rock Hard
72.5 72.6			Granitic Gneiss Granitic Gneiss	72.5 72.6			1	4			2/3 2/3	1/2 1/2		1	3. Wall < Rock Hard
73			Granitic Gneiss	73			1	4			2/3	1/2		1	
73.1			Granitic Gneiss Granitic Gneiss	73.1 73.2			1	4			2/3 2/3	1/2 1/2		1	
73.4 73.9			Granitic Gneiss Granitic Gneiss	73.4 73.9			1	4			2/3 2/3	1/2 1/2		1	-
74			Granitic Gneiss	74			1	4			2/3	1/2		1	
74.8 75.6			Granitic Gneiss Granitic Gneiss	74.8 75.6			1	4			2/3 2/3	1/2 1/2		1	
75.7 75.9			Granitic Gneiss Granitic Gneiss	75.7 75.9			1	4			2/3 2/3	1/2		1	
76.3			Granitic Gneiss	76.3			1	4			2/3	1/2		1	4
77.2			Granitic Gneiss Granitic Gneiss	77.2			1	4			2/3 2/3	1/2 1/2		1	
77.9			Granitic Gneiss Granitic Gneiss	77.9			1	4			2/3 2/3	1/2		1	
79.1			Granitic Gneiss Hyper Basal	79.1			1	4			2/3	1/2		1	
81.2	94	81.0m - 92.70	Kimberlite	81.2			1	4			2/3	1/2		1	
81.4			Hyper Basal Kimberlite	81.4			1	4			2/3	1/2		1	
			Hyper Basal Kimberlite	81.6			4	4						4	1
81.6		1	Hyper Basal								2/3	1/2			1
86.8			Kimberlite Hyper Basal	86.8			1	4			2/3	1/2		1	-
87.2			Kimberlite Hyper Basal	87.2			1	4			2/3	1/2		1	4
87.3			Kimberlite	87.3			1	4			2/3	1/2		1	4
87.4			Hyper Basal Kimberlite	87.4			1	4			2/3	1/2		1	
87.6			Hyper Basal Kimberlite	87.6			1	4			2/3	1/2		1	
87.8			Hyper Basal Kimberlite	87.8			1	4				1/2			1
	-		Hyper Basal								2/3			1	1
87.9			Kimberlite Hyper Basal	87.9			1	4	I		2/3	1/2		1	1
88.1			Kimberlite Hyper Basal	88.1			1	4			2/3	1/2		1	
88.6			Kimberlite	88.6			1	4			2/3	1/2		1	
88.7			Hyper Basal Kimberlite	88.7			1	4			2/3	1/2		1	
			Hyper Basal												1
88.65	-		Kimberlite Hyper Basal	88.65			1	4			2/3	1/2		1	1
88.75			Kimberlite Hyper Basal	88.75			1	4			2/3	1/2		1	-
88.8			Kimberlite	88.8			1	4			2/3	1/2		1	4
00.0		I	Hyper Basal		1		1	4			2/3	1/2		1	
89.1			Kimberlite	89.1				7			20				
			Kimberlite Hyper Basal Kimberlite Hyper Basal	89.1 89.5			1	4			2/3	1/2		1	

BOREHOLE NO: GT01 INCLINATION:

FINAL DEPTH: 91.0m LOGGED BY: JPE Hamman

DATE: 18/10/2006

Appendix 1 K3GT04 GEOTECHNICAL BOREHOLE LOG PROJECT: Lerala ZONE: K3

Appendix 1 K4GT01 GEOTECHNICAL BOREHOLE LOG PROJECT: Lerala

nterval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	e Cond	ition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 3.2m	Tricone				4	3							
3.2	63	3.2m - 8.7m	Kimberlite				2	3							WEATHERING
8.7			Intense altered rock				2	4							1. Unweathered
20.8			Granitic Gneiss				1	4							
28.2	89	28.2m - 91.70	Granitic Gneiss				1	4			- /-				
33.8			Granitic Gneiss	33.8			1	4	60	160	2/3	1/2			2. Slightly
34			Granitic Gneiss	34			1	4	45	130	2/3	1/2			3. Moderately
34.3 35.3			Granitic Gneiss Granitic Gneiss	34.3 35.3			1	4	60 50		2/3 2/3	1/2 1/2			4. Highly 5. Completely
43				43			1	4	50 60	260	2/3	1/2		1	JOINT SURFACE
43			Granitic Gneiss Granitic Gneiss	43			1	4	60 35	260	2/3	1/2	┝──┼	1	MICRO ROUGHNESS
44.0			Granitic Gneiss	44.8			1	4	50	130	2/3	1/2	\vdash		1. Polished
45.1			Granitic Gneiss	45.1			1	4	35		2/3	1/2			2. Smooth planar
51			Granitic Gneiss	51			1	4	30	310	2/3	1/2			3. Rough planar
53.8			Granitic Gneiss	53.8			1	4	25	300	2/3	1/2			4. Slickensided undulated
54			Granitic Gneiss	54			1	4	45	230	2/3	1/2		1	5. Smooth undulating
54.1			Granitic Gneiss	54.1			1	4	60	120	2/3	1/2			6. Rough undulating
55.3			Granitic Gneiss	55.3			1	4	20	80	2/3	1/2		1	Slickensided stepped
55.8			Granitic Gneiss	55.8			1	4	20	60	2/3	1/2			Smooth stepped
55.9			Granitic Gneiss	55.9			1	4	60	250	2/3	1/2			Rough stepped / irregular
59.1			Granitic Gneiss	59.1			1	4	20		2/3	1/2			MACRO ROUGHNESS
67.7			Granitic Gneiss	67.7			1	4	10		2/3	1/2			1. Planar
68.2			Granitic Gneiss		68.2		1	4	50	300	2/3	1/2			2. Undulating
68.3			Granitic Gneiss		68.3		1	4	50	300	2/3	1/2			3. Curved
68.4			Granitic Gneiss Granitic Gneiss	75	68.4	T	1	4	55 65	305 50	2/3 2/3	1/2 1/2			4. Irregular 5. Multi irregular
75 75.1			Granitic Gneiss	75.1			1	4	45	300	2/3	1/2			INFILLING TYPE
75.4			Granitic Gneiss	75.4			1	4	50	300	2/3	1/2			1. Gauge thickness > Amplitude
75.5			Granitic Gneiss	75.5			1	4	55	35	2/3	1/2			of irregularities
79.5			Granitic Gneiss	79.5			1	4	25	50	2/3	1/2			2. Gauge thickness < Amplitude
80.6			Granitic Gneiss	80.6			1	4	50	80	2/3	1/2			of irregularities
84			Granitic Gneiss	84			1	4	20	60	2/3	1/2			3. Soft Sheared Material- Fine
84.5			Granitic Gneiss	84.5			1	4	25	80	2/3	1/2		1	4. Soft Sheared Material-Med
84.6			Granitic Gneiss	84.6			1	4	20	70	2/3	1/2		1	5. Soft Sheared Material- Crse
87.9			Granitic Gneiss	87.9			1	4	50	190	2/3	1/2		1	6. Non Softening Material-Fine
88			Granitic Gneiss	88			1	4	30	320	2/3	1/2			7. Non Softening Material-Med
91.2			Granitic Gneiss		91.2		1	4	35	190	2/3	1/2			8. Non Softening Material-Crse
91.3			Granitic Gneiss		91.3		1	4	40	185	2/3	1/2	$ \downarrow \downarrow$		9. Clean
91.4		ļ	Granitic Gneiss		91.4		1	4	40	185	2/3	1/2			
91.45			Granitic Gneiss		91.45	T	1	4	35	180	2/3	1/2	├	1	1. Wall = Rock Hard
										<u> </u>			┝──┤		2. Wall > Rock Hard 3. Wall < Rock Hard
							<u> </u>						\vdash		J. WAIIS NUCK HAIU
							1		-				┝──┼		
							l						\vdash		
							1						<u>├</u>		
							1								
	-						1								

Appendix 1 K4GT03 GEOTECHNICAL BOREHOLE LOG

Interval % Geotech interval Rock Type Rock Type Natrix m Matrix type 1-5 Alpha Beta Micro Macro Infilling	M1 Fault M2 Shears Wall Alter M4 Intense mineralisation
From % Geotech interval Rock Type Solid m Matrix m Matrix type 1-5 1-5 Alpha Beta Micro Macro Infilling Type	M2 Shears M3 Intense fracturing Alter M4 Intense mineralisation
0 0m - 5.7m Tricone 4 3	
5.7 5.7m - 21.08m Kimberlite Breccia 4 3	WEATHERING
21.08 21.08m - 37.66m Dolerite Dyke 1 4 1	1. Unweathered
37.5 37.66m - 101.2 Granitic Gneiss 37.5 1 4 45 40 2/3 1/2	1 2. Slightly
37.6 Granitic Gneiss 37.6 1 4 35 30 2/3 1/2	1 3. Moderately
37.7 Granitic Gneiss 37.7 1 4 35 30 2/3 1/2	1 4. Highly
38.8 Granitic Gneiss 38.8 1 4 45 350 2/3 1/2	1 5. Completely
39.4 Granitic Gneiss 39.4 1 4 35 220 2/3 1/2	1 JOINT SURFACE
39.5 Granitic Gneiss 39.5 1 4 20 130 2/3 1/2	1 MICRO ROUGHNESS
39.8 Granitic Gneiss 39.8 1 4 70 60 2/3 1/2	1 1. Polished
40.2 Granitic Gneiss 40.2 1 4 70 200 2/3 1/2	1 2. Smooth planar
40.3 Granitic Gneiss 40.3 1 4 40 200 2/3 1/2 40.9 Granitic Gneiss 40.9 1 4 40 200 2/3 1/2	1 3. Rough planar
40.8 Granitic Gneiss 40.8 1 4 35 160 2/3 1/2	1 4. Slickensided undulated
41 Granitic Gneiss 41 1 4 30 130 2/3 1/2	1 5. Smooth undulating
41.2 Granitic Gneiss 41.2 1 4 25 210 2/3 1/2	1 6. Rough undulating
41.4 Granitic Gneiss 41.4 1 4 35 130 2/3 1/2 40.7 Consider Oneise Consider Oneise 40.7 Consider Oneise 40.7	17. Slickensided stepped
42.7 Granitic Gneiss 42.7 1 4 10 0 2/3 1/2 42.8 Granitic Gneiss 42.8 1 4 55 55 2/3 1/2	1 8. Smooth stepped
	1 9. Rough stepped / irregular 1 MACRO ROUGHNESS
45.2 Granitic Gneiss 45.2 1 4 35 270 2/3 1/2 56.9 Granitic Gneiss 56.9 1 4 60 150 2/3 1/2	1 1. Planar
50.9 1 4 60 130 2/3 1/2 57 Granitic Gneiss 57 1 4 75 130 2/3 1/2	1 2. Undulating
57 Granitic Griess 57 1 4 75 130 2/3 1/2 57.1 Granitic Gneiss 57.1 1 4 35 290 2/3 1/2	1 3. Curved
68.8 Granitic Gneiss 68.8 1 4 45 80 2/3 1/2	1 4. Irregular
60.0 1 4 40 80 2/3 1/2 69.2 Granitic Gneiss 69.2 1 4 40 80 2/3 1/2	1 5. Multi irregular
69.4 Granitic Gneiss 69.4 1 4 25 60 2/3 1/2	1 INFILLING TYPE
69.6 Granitic Gneiss 69.6 1 4 20 110 2/3 1/2	1 1. Gauge thickness > Amplitude
77.7 Granitic Gneiss 77.7 1 4 40 80 2/3 1/2	1 of irregularities
77.8 Granitic Gneiss 77.8 1 4 55 50 2/3 1/2	1 2. Gauge thickness < Amplitude
78.8 Granitic Gneiss 78.8 1 4 45 40 2/3 1/2	1 of irregularities
80.8 Granitic Gneiss 80.8 1 4 25 250 2/3 1/2	1 3. Soft Sheared Material- Fine
81.5 Granitic Gneiss 81.5 1 4 40 110 2/3 1/2	1 4. Soft Sheared Material-Med
99.8 Granitic Gneiss 99.8 1 4 30 140 2/3 1/2	1 5. Soft Sheared Material- Crse
100.1 Granitic Gneiss 100.1 f 1 4 35 255 2/3 1/2	1 6. Non Softening Material-Fine
	7. Non Softening Material-Med
	8. Non Softening Material-Crse
	9. Clean
	JOINT WALL ALTERATION
	1. Wall = Rock Hard
	2. Wall > Rock Hard
	3. Wall < Rock Hard
]

Appendix 1 K4GT04 GEOTECHNICAL BOREHOLE LOG

PROJEC ZONE:		Lerala K4	0			-	HOLE NO:	GT04 60				EPTH: ED BY:		ammar	DATE: <u>31/10/2006</u>
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 6.2m	Tricone				4	3							1
6.2	92	6.2m - 11.6m	Kimberlite Breccia				4	3							WEATHERING
11.6	30	11.6m - 29.50m	Kimberlite Breccia				2	3							1. Unweathered
26.7			Kimberlite Breccia	26.7			2	3	50	150	2/3	1/2		1	4. Highly
29.5			Kimberlite Breccia	29.5			2	3	65	350	2/3	1/2		1	5. Completely
29.6	90	29.5m - 41.95m	Granite/Kimberlite	29.6			1	4	60	200	2/3	1/2		1	JOINT SURFACE
40			Granite/Kimberlite	40			1	4	60	250	2/3	1/2		1	MICRO ROUGHNESS
40.1			Granite/Kimberlite	40.1			1	4	60	250	2/3	1/2		1	1. Polished
40.2			Granite/Kimberlite	40.2			1	4	50	130	2/3	1/2		1	2. Smooth planar
40.25			Granite/Kimberlite	40.25			1	4	60	220	2/3	1/2		1	3. Rough planar
40.6			Granite/Kimberlite	40.6			1	4	20	320	2/3	1/2		1	4. Slickensided undulated
60.3	86	68.90m - 80.60m	Granite	60.3			1	4	60	220	2/3	1/2		1	5. Smooth undulating
60.8			Granite	60.8			1	4	50	150	2/3	1/2			6. Rough undulating
60.9			Granite	60.9			1	4	40	150	2/3	1/2		1	7. Slickensided stepped
61.1			Granite	61.1			1	4	65	170	2/3	1/2			8. Smooth stepped
66.2			Granite	66.2			1	4	55	240	2/3	1/2			9. Rough stepped / irregular
66.3			Granite	66.3			1	4	50	50	2/3	1/2			MACRO ROUGHNESS
69.7			Granite	69.7			1	4	45	310	2/3	1/2			1. Planar
70.1			Granite	70.1			1	4	55	190	2/3	1/2		1	2. Undulating
70.5			Granite	70.5			1	4	40	300	2/3	1/2		1	3. Curved
72			Granite	72			1	4	30	190	2/3	1/2		1	4. Irregular
72.1			Granite	72.1			1	4	55	30	2/3	1/2			5. Multi irregular
72.3			Granite	72.3			1	4	60	120	2/3	1/2			
74.7			Granite	74.7			1	4	40	140	2/3	1/2			1. Gauge thickness > Amplitude
74.9			Granite	74.9			1	4	42	145	2/3	1/2			of irregularities
75.1			Granite	75.1			1	4	70	310	2/3	1/2			2. Gauge thickness < Amplitude
75.3			Granite	75.3			1	4	65	70	2/3	1/2			of irregularities
75.4			Granite	75.4			1	4	65	310	2/3	1/2		1	3. Soft Sheared Material- Fine
77			Granite	77			1	4	60	140	2/3	1/2		1	4. Soft Sheared Material-Med
77.1			Granite	77.1			1	4	50	150	2/3	1/2		1	5. Soft Sheared Material- Crse
77.5			Granite	77.5			1	4	55	190	2/3	1/2			6. Non Softening Material-Fine
78			Granite	78			1	4	35	20	2/3	1/2		1	7. Non Softening Material-Med
78.3			Granite	78.3			1	4	25	350	2/3	1/2			8. Non Softening Material-Crse
78.6			Granite	78.6			1	4	60	110	2/3	1/2			9. Clean
78.7			Granite	78.7			1	4	35	340	2/3	1/2		1	JOINT WALL ALTERATION
86.4	86	80.6m - 95.25	Granitic Gneiss	86.4			1	4	40	310	2/3	1/2		1	1. Wall = Rock Hard
91.7	00	00.011 00.20	Granitic Gneiss	91.7			1	4	55	110	2/3	1/2		1	2. Wall > Rock Hard
92			Granitic Gneiss	92			1	4	35	30	2/3	1/2		1	3. Wall < Rock Hard
				52					00		2/0	1/2			
]
															-

4	
29	UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA
	YUNIBESITHI YA PRETORIA

Appendi GEOTEO PROJEO	CHNIC	CAL BOREHOLI Lerala	E LOG			BORE	HOLE NO:	GT 01				EPTH:			DATE: 13/11/2006
	К5						LINATION:	50					JPE H	amma	n
	RQD				lock		Weath'ng	Hardness		nting bution	Joint	Surfac	ce Con	dition	MATRIX TYPE
Interval		Geotech	Rock Type	com	petence				Distri	bution		1	1	1	M1 Fault M2 Shears
From	%	interval	noon type	Solid	Matrix	Matrix	1-5	1-5	Alpha	Beta	Micr	Macr	Infilling Type	Wall Alter	M3 Intense fracturing
				m	m	type			Angle	Angle	o 1-9	o 1-5	Type 1-7	1-3	M4 Intense mineralisation M5 Deformable material
0	90	0m - 7m	Kimberlite Breccia				4	3							
7	90	7m -10m	Granitic Gneiss	14.8			1	3	40	170	0/0	1/2		1	WEATHERING
15.2	95	10m - 48.8m	Granitic Gneiss Granitic Gneiss	15.2			1	4	40	270	2/3 2/3	1/2		1	1. Unweathered
15.5 17.7			Granitic Gneiss Granitic Gneiss	15.5 17.7			1	4	30 20	165 50	2/3 2/3	1/2 1/2		1 1	2. Slightly 3. Moderately
17.9 19.3			Granitic Gneiss Granitic Gneiss	17.9 19.3			1	4	60 65	30 100	2/3 2/3	1/2	4	1	 Highly Completely
19.6 24.6			Granitic Gneiss Granitic Gneiss		19.6 24.6	F	1	4	55 50	240 320	2/3 2/3	1/2 1/2		1 1	JOINT SURFACE MICRO ROUGHNESS
24.65			Granitic Gneiss		24.65	F	1	4	50	325	2/3	1/2		1	1. Polished
24.7 24.85			Granitic Gneiss Granitic Gneiss		24.7 24.85	F	1	4	50 50	315 322	2/3 2/3	1/2 1/2		1 1	 Smooth planar Rough planar
25.4 25.6			Granitic Gneiss Granitic Gneiss	25.4	25.6	F	1	4	65 30	60 280	2/3 2/3	1/2 1/2		1	 Slickensided undulated Smooth undulating
25.65 25.7			Granitic Gneiss Granitic Gneiss		25.65 25.7	F	1	4	40 45	290 300	2/3 2/3	1/2 1/2		1 1	 Rough undulating Slickensided stepped
25.75			Granitic Gneiss		25.75	F	1	4	50	310	2/3	1/2		1	Smooth stepped
25.8 28.4			Granitic Gneiss Granitic Gneiss	28.4	25.8	F	1	4	55 50	320 210	2/3 2/3	1/2 1/2		1 1	 Rough stepped / irregular MACRO ROUGHNESS
31.3 34.8	\vdash		Granitic Gneiss Granitic Gneiss	31.3 34.8			1	4	60 50	120 110	2/3 2/3	1/2 1/2		1 1	1. Planar 2. Undulating
35 35.8			Granitic Gneiss	35	35.8	F	1	4	20 60	200 230	2/3 2/3	1/2		1	3. Curved 4. Irregular
25.8			Granitic Gneiss Granitic Gneiss		25.8	F	1	4	55	240	2/3	1/2		1	5. Multi irregular
35.8 36.3	L		Granitic Gneiss Granitic Gneiss	36.3	35.8	F	1	4	55 65	230 30	2/3 2/3	1/2 1/2		1 1	INFILLING TYPE 1. Gauge thickness > Amplitude
36.5 36.6			Granitic Gneiss Granitic Gneiss	36.5	36.6	F	1	4	60 50	140 210	2/3 2/3	1/2 1/2		1 1	of irregularities 2. Gauge thickness < Amplitude
36.6			Granitic Gneiss Granitic Gneiss		36.6 36.6	F	1	4 4	50	230	2/3	1/2		1	of irregularities 3. Soft Sheared Material- Fine
38.8			Granitic Gneiss	38.8	30.0	F	1	4	60	340	2/3	1/2		1	4. Soft Sheared Material-Med
39.1 39.1			Granitic Gneiss Granitic Gneiss	39.1 39.1			1	4	60 25	10 90	2/3 2/3	1/2 1/2		1 1	5. Soft Sheared Material- Crse 6. Non Softening Material-Fine
39.1 39.3			Granitic Gneiss Granitic Gneiss	39.1	39.3	F	1	4	40 45	0 230	2/3 2/3	1/2 1/2		1	7. Non Softening Material-Med 8. Non Softening Material-Crse
39.3			Granitic Gneiss		39.3 39.3	F	1	4	45	220 240	2/3	1/2		1	9. Clean
39.3 41.4			Granitic Gneiss Granitic Gneiss	41.4		F	1	4	45 65	220	2/3 2/3	1/2		1	1. Wall = Rock Hard
41.7 41.7			Granitic Gneiss Granitic Gneiss		41.7 41.7	F	1	4	60 60	210 210	2/3 2/3	1/2		1	 Wall > Rock Hard Wall < Rock Hard
41.7 41.7			Granitic Gneiss Granitic Gneiss		41.7 41.7	F	1	4	60 60	240 220	2/3 2/3	1/2 1/2		1	
42.4			Granitic Gneiss	42.4		F	1	4	55	340	2/3	1/2		1	
43 43.2			Granitic Gneiss Granitic Gneiss		43 43.2	F	1	4	30 55	90 130	2/3 2/3	1/2 1/2		1	
43.2 43.2			Granitic Gneiss Granitic Gneiss		43.2 43.2	F	1	4	55 55	240 230	2/3 2/3	1/2		1	
43.2 47.2			Granitic Gneiss Granitic Gneiss	47.2	43.2	F	1	4	55 40	260 350	2/3 2/3	1/2 1/2		1 1	
47.3			Granitic Gneiss		47.3 47.2	F	1	4	55	280	2/3	1/2		1	
47.2 47.2			Granitic Gneiss Granitic Gneiss		47.2	F	1	4	55 55	220 280	2/3 2/3	1/2		1 1	
47.2 48.7	95	48.8m - 49.8m	Granitic Gneiss Dyke intrusion	48.7	47.2	F	1	4	55 30	280 240	2/3 2/3	1/2		1	
51.2 51.3	95	49.8m - 92.5m	Granitic Gneiss Granitic Gneiss	51.3	51.2	F	1	4 4	65 55	200 170	2/3 2/3	1/2 1/2		1	
51.4 51.4			Granitic Gneiss Granitic Gneiss		51.4 51.4	F	1	4	70 70	230 220	2/3 2/3	1/2		1	
51.4			Granitic Gneiss		51.4	F	1	4	70	220	2/3	1/2		1	
51.9 52.1			Granitic Gneiss Granitic Gneiss	51.9 52.1			1	4	35 35	60 300	2/3 2/3	1/2 1/2	4	1	
54.2 54.4			Granitic Gneiss Granitic Gneiss	54.2 54.4			1	4	55 60	250 130	2/3 2/3	1/2		1	
62.3 64			Granitic Gneiss Granitic Gneiss	62.3 64			1	4 4	20 60	330 250	2/3 2/3	1/2 1/2		1	
65.4			Granitic Gneiss	65.4			1	4	35	260	2/3	1/2		1	1
65.7 65.8			Granitic Gneiss Granitic Gneiss	65.7 65.8			1	4	55 58	250 250	2/3 2/3	1/2 1/2		1 1	
68.6 70			Granitic Gneiss Granitic Gneiss	68.6 70	<u> </u>		1	4	55 40	150 40	2/3 2/3	1/2 1/2	-	1 1	
70.3			Granitic Gneiss Granitic Gneiss	70.3			1	4	55 45	230 30	2/3 2/3	1/2		1	1
70.8			Granitic Gneiss	70.5	70.8	F	1	4	50	290	2/3	1/2		1	1
70.8 70.8			Granitic Gneiss Granitic Gneiss		70.8 70.8	F	1	4	50 50	310 290	2/3 2/3	1/2 1/2		1 1	
70.8 70.8			Granitic Gneiss Granitic Gneiss		70.8 70.8	F	1	4	50 50	280 280	2/3 2/3	1/2 1/2		1 1	
71.2			Granitic Gneiss Granitic Gneiss	71.2		· ·	1	4	50 40	160 30	2/3 2/3	1/2		1	1
71.8			Granitic Gneiss	71.7	71.8	F	1	4	50	260	2/3	1/2		1	1
71.8 71.8			Granitic Gneiss Granitic Gneiss		71.8 71.8	F	1	4	50 50	270 280	2/3 2/3	1/2 1/2		1 1]
71.8 71.8			Granitic Gneiss Granitic Gneiss		71.8 71.8	F	1	4	50 50	260 270	2/3 2/3	1/2		1 1	1
72.2			Granitic Gneiss Granitic Gneiss	72.2		<u> </u>	1	4 4	50 50	260	2/3	1/2		1	1
74.5			Granitic Gneiss	74.5			1	4	55	220	2/3	1/2		1	
77.7 83.5	L		Granitic Gneiss Granitic Gneiss	77.7 83.5	L-		1	4	40 45	70 10	2/3 2/3	1/2 1/2		1 1	
84 84			Granitic Gneiss Granitic Gneiss		84 84	F	1	4	30 30	350 350	2/3 2/3	1/2 1/2		1	-
84			Granitic Gneiss	86	84	F	1	4	30	350	2/3 2/3	1/2 1/2		1	1
86 88			Granitic Gneiss Granitic Gneiss	86 88			1	4	50 30	0 200	2/3	1/2		1	
90 90	E		Granitic Gneiss Granitic Gneiss	L	90 90	F	1	4	20 20	0	2/3 2/3	1/2 1/2		1	
90			Granitic Gneiss		90	F	1	4	20	0	2/3	1/2		1	ł

Appendix 1 K5GT02 GEOTECHNICAL BOREHOLE LOG

PROJEC ZONE:		CAL BOREHOL Lerala K5	ELUG				HOLE NO: LINATION:	K5 GT02 50				EPTH: D BY:	91.0m JPE Ha	ammai	_ DATE:
Interval	RQD			Ro	ck compe	tence	Weath'ng	Hardness			Joint	Surfac	ce Cond	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0	0	0m - 8.2m	Sapprolite				4	3							1
11.6		8.2m - 15m	Dolerite Dyke	11.6			1	4	30	50	2/3	1/2		1	WEATHERING
11.65			Dolerite Dyke	11.65			1	4	45	220	2/3	1/2		1	1. Unweathered
11.9			Dolerite Dyke	11.9			1	4	50	40	2/3	1/2		1	2. Slightly
24	83	15m 29.9m	Granite Gneis	24			1	4	70	10	2/3	1/2		1	3. Moderately
24.3			Granite Gneis	24.3			1	4	55	50	2/3	1/2			4. Highly
34.6	85	29.9m - 91.0m	,	34.6			1	4	40	35	2/3	1/2		1	5. Completely
34.65			Dolerite Dyke	34.65			1	4	40	35	2/3	1/2		1	JOINT SURFACE
34.7			Dolerite Dyke	34.7			1	4	40	35	2/3	1/2			MICRO ROUGHNESS
34.72			Dolerite Dyke	34.72			1	4			2/3	1/2			1. Polished
35.3		-	Dolerite Dyke	35.3		-	1	4	30	240	2/3	1/2			2. Smooth planar
35.5			Dolerite Dyke	35.5			1	4	35	90	2/3	1/2			3. Rough planar
36.9			Dolerite Dyke	36.9 45			1	4	25 45	340	2/3 2/3	1/2 1/2			4. Slickensided undulated
45 45.7			Dolerite Dyke Dolerite Dyke	45			1	4	45 70	60 320	2/3	1/2			5. Smooth undulating 6. Rough undulating
45.7			Dolerite Dyke	45.7			1	4	20	320	2/3	1/2			7. Slickensided stepped
50.7			Dolerite Dyke	50.7		-	1	4	65	70	2/3	1/2			8. Smooth stepped
51			Dolerite Dyke	51			1	4	50	10	2/3	1/2			9. Rough stepped / irregular
52.3			Dolerite Dyke	52.3			1	4	55	340	2/3	1/2			MACRO ROUGHNESS
52.5			Dolerite Dyke	52.5			1	4	55	320	2/3	1/2			1. Planar
58			Dolerite Dyke	58			1	4	40	020	2/3	1/2			2. Undulating
58.2			Dolerite Dyke	58.2			1	4	50	280	2/3	1/2			3. Curved
61.9			Dolerite Dyke	61.9			1	4	60	100	2/3	1/2			4. Irregular
62			Dolerite Dyke	62			1	4	50	350	2/3	1/2			5. Multi irregular
62.5			Dolerite Dyke	62.5			1	4	40	190	2/3	1/2		1	INFILLING TYPE
63.5			Dolerite Dyke	63.5			1	4	50	120	2/3	1/2		1	1. Gauge thickness > Amplitude
63.8			Dolerite Dyke	63.8			1	4	50	160	2/3	1/2		1	of irregularities
65.7			Dolerite Dyke	65.7			1	4	60	40	2/3	1/2		1	2. Gauge thickness < Amplitude
67.1			Dolerite Dyke	67.1			1	4	45	240	2/3	1/2			of irregularities
67.5			Dolerite Dyke	67.5			1	4	25	50	2/3	1/2			3. Soft Sheared Material- Fine
68.8			Dolerite Dyke	68.8			1	4	35	90	2/3	1/2			4. Soft Sheared Material-Med
69			Dolerite Dyke	69			1	4	50	190	2/3	1/2			5. Soft Sheared Material- Crse
69.4			Dolerite Dyke	69.4			1	4	45	350	2/3	1/2			6. Non Softening Material-Fine
72.8			Dolerite Dyke	72.8			1	4	55	200	2/3	1/2			7. Non Softening Material-Med
73			Dolerite Dyke	73			1	4	65	70	2/3	1/2			8. Non Softening Material-Crse
73.8 74.3			Dolerite Dyke Dolerite Dyke	73.8 74.3			1	4	40 50	20 130	2/3 2/3	1/2 1/2		1	9. Clean JOINT WALL ALTERATION
74.3			Dolerite Dyke	74.3			1	4	35	300	2/3	1/2		1	1. Wall = Rock Hard
74.7			Dolerite Dyke	74.7		-	1	4	50	130	2/3	1/2		1	2. Wall > Rock Hard
74.9			Dolerite Dyke	74.9			1	4	50	250	2/3	1/2		1	3. Wall < Rock Hard
75.8			Dolerite Dyke	75.8		1	1	4	50	140	2/3	1/2		1	
75.8			Dolerite Dyke	73.8		1	1	4	35	140	2/3	1/2		1	1
78.1			Dolerite Dyke	78.1			1	4	35	145	2/3	1/2		1	1
78.2			Dolerite Dyke	78.2			1	4	35	145	2/3	1/2		1	1
78.9			Dolerite Dyke	78.9			1	4	40	80	2/3	1/2		1	1
79.2			Dolerite Dyke	70.3		1	1	4	20	155	2/3	1/2		1	1
					1							.,_			1

ONE: Drilled	RQD	K5		-			LINATION:	60	Joir	L nting	1		JPE H		
iterval		A		Ro	ck compete	ence	Weath'ng	Hardness		bution	Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix Type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 3.9m	Kimberlite				4	3							
7.5		3.9m -7.5m	Breccia Dyke Sapprolite				4	3							
19.9		7.5m - 19.1	Weathered Dolerit	19.90			4	3	50	50	2/3	1/2		1	WEATHERING
19.95 20	90	19.1m - 92.4m	Dolerite dyke Dolerite dyke	19.95 20.00			1	4	50 50	50 0	2/3 2/3	1/2 1/2		1	1. Unweathered 2. Slightly
20.4			Dolerite dyke	20.00			1	4	30	10	2/3	1/2		1	3. Moderately
21.8			Dolerite dyke	21.80			1	4	45	20	2/3	1/2		1	4. Highly
22			Dolerite dyke Dolerite dyke	22.00 22.20			1	4	70 55	140 80	2/3 2/3	1/2 1/2		1	5. Completely JOINT SURFACE
22.5			Dolerite dyke	22.50			1	4	60	190	2/3	1/2		1	MICRO ROUGHNESS
22.6			Dolerite dyke	22.60			1	4	70	50	2/3	1/2		1	1. Polished
22.7			Dolerite dyke Dolerite dyke	22.70 23.70			1	4	55 20	230 260	2/3 2/3	1/2 1/2		1 1	 Smooth planar Rough planar
23.9			Dolerite dyke	23.90			1	4	80	0	2/3	1/2		1	 Slickensided undulated
24.9			Dolerite dyke	24.90			1	4	20	350	2/3	1/2		1	5. Smooth undulating
25.1 25.6			Dolerite dyke Dolerite dyke	25.10 25.60			1	4	55 20	180 0	2/3 2/3	1/2 1/2		1	 Rough undulating Slickensided stepped
25.8			Dolerite dyke	25.80			1	4	45	170	2/3	1/2		1	Smooth stepped
26.2			Dolerite dyke	26.20			1	4	75	10	2/3	1/2		1	9. Rough stepped / irregular
26.25			Dolerite dyke Dolerite dyke	26.25 27.00			1	4 4	40 60	190 10	2/3 2/3	1/2 1/2		1	MACRO ROUGHNESS 1. Planar
27			Dolerite dyke	27.00			1	4	15	170	2/3	1/2		1	2. Undulating
27.3			Dolerite dyke	27.30	-		1	4	80	150	2/3	1/2		1	3. Curved
27.9 28			Dolerite dyke Dolerite dyke	27.90 28.00			1	4 4	65 75	310 200	2/3 2/3	1/2 1/2		1	4. Irregular 5. Multi irregular
28.3			Dolerite dyke	28.30			1	4	50	190	2/3	1/2		1	INFILLING TYPE
29.6			Dolerite dyke	29.60			1	4	60	150	2/3	1/2		1	1. Gauge thickness > Amplitude
30.1 30.3			Dolerite dyke Dolerite dyke	30.10 30.30			1	4 4	40 20	300 300	2/3 2/3	1/2 1/2		1	of irregularities 2. Gauge thickness < Amplitude
31			Dolerite dyke	31.00			1	4	60	330	2/3	1/2		1	of irregularities
33.5			Dolerite dyke	33.50			1	4	35	20	2/3	1/2		1	3. Soft Sheared Material- Fine
35 35.3			Dolerite dyke Dolerite dyke	35.00 35.30			1	4 4	60 65	190 150	2/3 2/3	1/2 1/2		1	4. Soft Sheared Material-Med 5. Soft Sheared Material- Crse
35.9			Dolerite dyke	35.90			1	4	40	270	2/3	1/2		1	6. Non Softening Material-Fine
36			Dolerite dyke	36.00			1	4	60	70	2/3	1/2		1	7. Non Softening Material-Med
36.9 37.1			Dolerite dyke Dolerite dyke	36.90 37.10			1	4 4	40 20	270 250	2/3 2/3	1/2 1/2		1	8. Non Softening Material-Crse 9. Clean
37.2			Dolerite dyke	37.20			1	4	25	100	2/3	1/2		1	JOINT WALL ALTERATION
38.8			Dolerite dyke	38.80			1	4 4	15	190	2/3	1/2		1	1. Wall = Rock Hard 2. Wall > Rock Hard
43.9			Dolerite dyke Dolerite dyke	43.90 44.30			1	4	15 75	290 0	2/3 2/3	1/2 1/2		1 1	3. Wall < Rock Hard
44.7			Dolerite dyke	44.70			1	4	40	110	2/3	1/2		1	
45.4			Dolerite dyke	45.40			1	4	45	220	2/3	1/2		1	
46.7			Dolerite dyke Dolerite dyke	46.70 46.10			1	4 4	75 40	250 160	2/3 2/3	1/2 1/2		1	
47.7			Dolerite dyke	47.70			1	4	70	160	2/3	1/2		1	
48 48.2			Dolerite dyke	48.00 48.20		I	1	4 4	65 10	170 90	2/3 2/3	1/2 1/2		1	{
48.2 52.8			Dolerite dyke Dolerite dyke	48.20		1	1	4	75	210	2/3	1/2		1	
53			Dolerite dyke	53.00			1	4	15	210	2/3	1/2		1	
55.6 57.9			Dolerite dyke Dolerite dyke	55.60 57.90			1	4 4	40 30	240 320	2/3 2/3	1/2 1/2		1	
58			Dolerite dyke	58.00			1	4	75	30	2/3	1/2		1	
58.4			Dolerite dyke	58.40			1	4	20	30	2/3	1/2		1	
59.1 60.7			Dolerite dyke Dolerite dyke	59.10 60.70		ł	1	4 4	75 65	110 160	2/3 2/3	1/2 1/2		1	
60.75			Dolerite dyke	60.75			1	4	40	340	2/3	1/2		1	1
62.2			Dolerite dyke	62.20			1	4	70	350	2/3	1/2		1	
62.4 62.6			Dolerite dyke Dolerite dyke	62.40 62.60			1	4 4	50 60	320 330	2/3 2/3	1/2 1/2		1	
66.6			Dolerite dyke	66.60			1	4	50	80	2/3	1/2		1	1
68.4			Dolerite dyke	68.40			1	4	65	260	2/3	1/2		1	
70			Dolerite dyke Dolerite dyke	70.00		-	1	4 4	40 75	210 60	2/3 2/3	1/2 1/2		1	1
74			Dolerite dyke	74.00			1	4	50	0	2/3	1/2		1	
75			Dolerite dyke	75.00			1	4	15	90	2/3	1/2		1	
75.6			Dolerite dyke Dolerite dyke	75.60 75.70			1	4 4	60 50	320 200	2/3 2/3	1/2 1/2		1	
76.2			Dolerite dyke	76.20			1	4	60	340	2/3	1/2		1	1
77.5 78.3			Dolerite dyke	77.50 78.30			1	4	35	20	2/3	1/2 1/2		1	
78.3			Dolerite dyke Dolerite dyke	78.30			1	4 4	50 50	360 190	2/3 2/3	1/2		1	1
78.2			Dolerite dyke	78.20			1	4	45	180	2/3	1/2		1	1

PROJEC	CHNIC	AL BOREHOL Lerala				HOLE NO:					EPTH:			DATE: 16/11/2006	
ZONE:		K5				INC	LINATION:	50	1	L	OGGE	D BY:	JPE H	ammar	1
Drilled Interval	RQD			Ro	ck compete	nce	Weath'ng	Hardness		nting bution	Joint	Surfac	ce Cone	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix Type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0.0m - 0.70m	Kimberlite Breccia				4	3							
0.7		0.7m - 25.85m	Kimberlite Breccia				4	3							
20.7			Kimberlite Breccia	20.7			4	3	50	170	2/3	1/2		1	
25.8		25.85m - 91.2	Granitic Gneiss	25.8			4	3	45	0	2/3	1/2		1	WEATHERING
33.5	90		Granitic Gneiss	33.5			1	4	25	320	2/3	1/2		1	1. Unweathered
33.7 38.1			Granitic Gneiss Granitic Gneiss	33.7 38.1			1	4	65 35	210 330	2/3 2/3	1/2 1/2		1	2. Slightly 3. Moderately
38.2			Granitic Gneiss	38.2			1	4	33	330	2/3	1/2			4. Highly
38.3			Granitic Gneiss	38.3			1	4	50	350	2/3	1/2		1	5. Completely
39.2			Granitic Gneiss		39.2	F	1	4	25	200	2/3	1/2		1	JOINT SURFACE
39.7			Granitic Gneiss	39.7	20.7	F	1	4	70	330	2/3	1/2		1	MICRO ROUGHNESS
39.7 39.7			Granitic Gneiss Granitic Gneiss		39.7 39.7		1	4	25 25	160 170	2/3 2/3	1/2 1/2		1	 Polished Smooth planar
39.7			Granitic Gneiss		39.7		1	4	25	165	2/3	1/2			3. Rough planar
39.7			Granitic Gneiss		39.7		1	4	25	160	2/3	1/2			4. Slickensided undulated
39.8			Granitic Gneiss		39.8		1	4	10	220	2/3	1/2			5. Smooth undulating
39.8			Granitic Gneiss		39.8		1	4	10	200	2/3	1/2			Rough undulating
39.8			Granitic Gneiss		39.8		1	4	10	190	2/3	1/2			7. Slickensided stepped
39.8			Granitic Gneiss		39.8		1	4	10	180	2/3	1/2			8. Smooth stepped
40.2 40.2			Granitic Gneiss Granitic Gneiss		40.2		1	4 4	15 15	240 240	2/3 2/3	1/2 1/2		1	9. Rough stepped / irregular MACRO ROUGHNESS
40.2			Granitic Gneiss		40.2		1	4	15	240	2/3	1/2		1	1. Planar
40.2			Granitic Gneiss		40.2		1	4	15	210	2/3	1/2		1	2. Undulating
40.2			Granitic Gneiss		40.2		1	4	15	200	2/3	1/2		1	3. Curved
40.2			Granitic Gneiss		40.2	F	1	4	15	190	2/3	1/2		1	4. Irregular
40.2			Granitic Gneiss	40.2		_	1	4	25	20	2/3	1/2			5. Multi irregular
40.4			Granitic Gneiss		40.4		1	4	10	190	2/3	1/2			
40.4			Granitic Gneiss Granitic Gneiss	40.9	40.4	F	1	4	10 55	200 160	2/3 2/3	1/2 1/2		1	 Gauge thickness > Amplitude of irregularities
40.9			Granitic Gneiss	40.9			1	4	35	60	2/3	1/2			2. Gauge thickness < Amplitude
43.5			Granitic Gneiss		43.5	F	1	4	10	270	2/3	1/2			of irregularities
43.5			Granitic Gneiss		43.5	F	1	4	10	270	2/3	1/2		1	3. Soft Sheared Material- Fine
43.5			Granitic Gneiss		43.5		1	4	10	270	2/3	1/2		1	4. Soft Sheared Material-Med
43.5			Granitic Gneiss		43.5		1	4	10	260	2/3	1/2			5. Soft Sheared Material- Crse
43.5			Granitic Gneiss	44.0	43.5	F	1	4	10	260	2/3	1/2			6. Non Softening Material-Fine
44.9 45.2			Granitic Gneiss Granitic Gneiss	44.9 45.2			1	4	70 60	60 90	2/3 2/3	1/2 1/2		1	7. Non Softening Material-Med 8. Non Softening Material-Crse
45.4			Granitic Gneiss	45.4			1	4	55	340	2/3	1/2		1	9. Clean
47.8			Granitic Gneiss	47.8			1	4	50	260	2/3	1/2		1	JOINT WALL ALTERATION
49.7			Granitic Gneiss	49.7			1	4	25	70	2/3	1/2		1	1. Wall = Rock Hard
49.9			Granitic Gneiss	49.9			1	4	65	20	2/3	1/2		1	2. Wall > Rock Hard
50.9			Granitic Gneiss	50.9			1	4	55	40	2/3	1/2		1	Wall < Rock Hard
52.7			Granitic Gneiss	52.7			1	4	45	320	2/3	1/2		1	
53.1 55.7			Granitic Gneiss Granitic Gneiss	53.1 55.7			1	4	40	300 30	2/3 2/3	1/2 1/2		1	
55.7			Granitic Gneiss	55.7	59	F	1	4	35	60	2/3	1/2		1	
59			Granitic Gneiss		59		1	4	35	50	2/3	1/2		1	1
59			Granitic Gneiss		59		1	4	35	60	2/3	1/2		1]
59			Granitic Gneiss		59	_	1	4	35	50	2/3	1/2		1	
59			Granitic Gneiss		59	F	1	4	35	40		1/2		1	
59.2			Granitic Gneiss	59.2	L		1	4	65	180	2/3	1/2		1	
67.1 67.5			Granitic Gneiss	67.1	67.5	F	1	4	30 20	280 160	2/3 2/3	1/2 1/2		1	1
67.5			Granitic Gneiss Granitic Gneiss		67.5		1	4	20	160	2/3	1/2		1	
67.5			Granitic Gneiss		67.5		1	4	20	160	2/3	1/2		1	1
67.5			Granitic Gneiss	67.5			1	4	50	330	2/3	1/2		1	1
67.9			Granitic Gneiss	67.9			1	4	55	0	2/3	1/2		1	
68.4			Granitic Gneiss	68.4			1	4	25	180	2/3	1/2		1	
72.2			Granitic Gneiss	72.2			1	4	60	40	2/3	1/2		1	
72.8			Granitic Gneiss	72.8			1	4	15	0	2/3	1/2		1	J

GEOTE	CHNIC	AL BOREHOLE L	.OG												
PROJEC	CT:	Lerala					HOLE NO:						83.4		DATE: 29/11/2006
ZONE:		K5				INC	LINATION:	60		L	OGGE	D BY:	JPE H	ammai	1
Drilled Interval	RQD			Ro	ck compete	ence	Weath'ng	Hardness		nting ibution	Joint	Surfa	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix Type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 6.2m	Tricone				4	3							
6.2		6.2m - 9.05mm	Granitic Gneiss				1	4							
9.05		9.05m - 16.50m	Granite				1	4							
16.5		16.5m - 56.86m	Granitic Gneiss				1	4							
51.4			Granitic Gneiss	51.4			1	4	50	290	2/3	1/2		1	WEATHERING
51.5			Granitic Gneiss	51.5			1	4	65	345	2/3	1/2		1	1. Unweathered
51.7			Granitic Gneiss	51.7			1	4	50	270	2/3	1/2		1	2. Slightly
52			Granitic Gneiss	52		l	1	4	45	25	2/3	1/2		1	3. Moderately
52.1			Granitic Gneiss	52.1		ļ	1	4	65	340	2/3	1/2		1	4. Highly
52.2			Granitic Gneiss	52.2			1	4	60	130	2/3	1/2		1	5. Completely
53.4			Granitic Gneiss	53.4			1	4	45	350	2/3	1/2		1	JOINT SURFACE
53.7			Granitic Gneiss	53.7			1	4	45	180	2/3	1/2		1	MICRO ROUGHNESS
55.4			Granitic Gneiss	55.4			1	4	20	270	2/3	1/2		1	1. Polished
56.6			Granitic Gneiss	56.6			1	4	30	40	2/3	1/2		1	Smooth planar
56.6			Granitic Gneiss	56.6			1	4	60	130	2/3	1/2		1	Rough planar
56.8			Granitic Gneiss	56.8			1	4	55	290	2/3	1/2		1	Slickensided undulated
		56.86m - 83.40m	Dolerite dyke				1	4			2/3	1/2		1	5. Smooth undulating
															Rough undulating
															Slickensided stepped
															8. Smooth stepped
															 Rough stepped / irregular MACRO ROUGHNESS
															1. Planar
															2. Undulating
															3. Curved
															4. Irregular
															5. Multi irregular
L						ļ									
						<u> </u>			—						 Gauge thickness > Amplitude of irregularities
						ł									2. Gauge thickness < Amplitude
															of irregularities
															3. Soft Sheared Material- Fine
															4. Soft Sheared Material-Med
															5. Soft Sheared Material- Crse
															6. Non Softening Material-Fine
L						l									7. Non Softening Material-Med
															8. Non Softening Material-Crse 9. Clean
						ł									JOINT WALL ALTERATION
															1. Wall = Rock Hard
						l –									2. Wall > Rock Hard
															3. Wall < Rock Hard

Appendix1 K6GT01

GEOTEC		CAL BOREHOLE Lerala	LOG			BOPE	HOLE NO:	GT01		-		EPTH:	90		DATE: 11/07/2006
ZONE:		K6					LINATION:	50				D BY:			
-	RQD			Ro	ock compete			Hardness		nting ibution	1				MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix Type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macr o 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 12m	Kimberlite				4	3							
12		12m - 40.70m	Granitic Gneiss				1	4							
23.4			Granitic Gneiss	23.4			1	4	60	140	2/3	1/2		1	1. Unweathered
23.5			Granitic Gneiss	23.5			1	4	30	330	2/3	1/2		1	2. Slightly
23.7			Granitic Gneiss	23.7			1	4	35	350	2/3	1/2		1	3. Moderately
23.8	-		Granitic Gneiss	23.8			1	4	35	145	2/3	1/2			4. Highly
23.9			Granitic Gneiss	23.9			1	4	55	25	2/3	1/2		1	5. Completely
		40.7m - 64.60m					1	4	55	250	2/3	1/2			
64.5			Dolerite	64.5			-							1	JOINT SURFACE
65		64.6m - 90.0m	Granitic Gneiss	65			1	4	60	100	2/3	1/2		1	MICRO ROUGHNESS
76			Granitic Gneiss	76			1	4	75	270	2/3	1/2		1	1. Polished
76.2			Granitic Gneiss	76.2			1	4	55	25	2/3	1/2		1	2. Smooth planar
76.3			Granitic Gneiss	76.3			1	4	40	50	2/3	1/2		1	3. Rough planar
77.3			Granitic Gneiss	77.3			1	4	55	280	2/3	1/2		1	 Slickensided undulated
78.2			Granitic Gneiss	78.2			1	4	20	190	2/3	1/2		1	5. Smooth undulating
78.3			Granitic Gneiss	78.3			1	4	45	280	2/3	1/2		1	6. Rough undulating
78.4			Granitic Gneiss	78.4			1	4	40	70	2/3	1/2 1/2		1	7. Slickensided stepped
84.7 84.9			Granitic Gneiss Granitic Gneiss	84.7 84.9			1	4	40 50	230 230	2/3 2/3	1/2		1	 Smooth stepped Rough stepped / irregular
84.9			Granitic Gneiss	84.9			1	4	35	330	2/3	1/2		1	MACRO ROUGHNESS
89	-		Granitic Grielss	89			1	4	45	260	2/3	1/2		1	1. Planar
03			Granitic Grieiss	03				4	43	200	2/3	1/2			2. Undulating
															3. Curved
							1								4. Irregular
															5. Multi irregular
															INFILLING TYPE
															1. Gauge thickness > Amplitude
															of irregularities
															Gauge thickness < Amplitude
															of irregularities
															3. Soft Sheared Material- Fine
															 Soft Sheared Material-Med
															5. Soft Sheared Material- Crse
						ļ					I				Non Softening Material-Fine
							ļ				<u> </u>				Non Softening Material-Med
							L								8. Non Softening Material-Crse
							L								9. Clean
							L				I				JOINT WALL ALTERATION
															1. Wall = Rock Hard
							l								2. Wall > Rock Hard
							1								Wall < Rock Hard

Appendix1 K6GT02 GEOTECHNICAL BOREHOLE LOG

PROJEC ZONE:	т:	Lerala K6	200				HOLE NO: LINATION:		1			EPTH: D BY:		ammai	DATE: 11/04/2006
Drilled Interval	RQD	Geotech		Ro	ck compete	ence	Weath'ng	Hardness		nting bution	Joint	Surfac	e Con	dition	MATRIX TYPE M1 Fault
From	%	interval	Rock Type	Solid m	Matrix m	Matrix Type	1-5	1-5	Alpha Angle	Beta Angle	Micro 1-9	Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
6.2	70	0m - 6.0m	Kimberlite				4	3							
14.8	70	6.0m - 14.8m	Kimberlite Breccia				4	3							
00	4.0		Kimberlite Breccia+Granitic												
32 33.2			Gneiss Dolerite Dyke			-	4	3							WEATHERING 1. Unweathered
101.7		33.2m - 101.7m					1	4							2. Slightly
															3. Moderately
															4. Highly
															5. Completely
															MICRO ROUGHNESS 1. Polished
															2. Smooth planar
															3. Rough planar
															4. Slickensided undulated
															5. Smooth undulating
															Rough undulating
															7. Slickensided stepped
															8. Smooth stepped
															9. Rough stepped / irregular
															MACRO ROUGHNESS
															1. Planar 2. Undulating
						-									3. Curved
															4. Irregular
															5. Multi irregular
								1							INFILLING TYPE
															1. Gauge thickness > Amplitude
															of irregularities
															2. Gauge thickness < Amplitude
															of irregularities
						 			<u> </u>						3. Soft Sheared Material- Fine
										1					4. Soft Sheared Material-Med 5. Soft Sheared Material- Crse
															6. Non Softening Material-Fine
															7. Non Softening Material-Med
						1									8. Non Softening Material-Crse
								1							9. Clean
															JOINT WALL ALTERATION
															1. Wall = Rock Hard
															2. Wall > Rock Hard
															3. Wall < Rock Hard

Appendix1 K6GT03

GEOTECHNICAL BOREHOLE LOG PROJECT: Lerala

PROJEC ZONE:	:Т:	AL BOREHOLE Lerala	LOG				HOLE NO: LINATION:						102 JPE H		DATE: 13/11/2006
Interval	RQD				ock betence		Weath'ng	Hardness		nting bution	Joint	Surfac	ce Con	dition	MATRIX TYPE M1 Fault
From	%	Geotech interval	Rock Type	Solid m	Matrix m	Matrix type	1-5	1-5	Alpha Angle	Beta Angle		Macro 1-5	Infilling Type 1-7	Wall Alter 1-3	M2 Shears M3 Intense fracturing M4 Intense mineralisation M5 Deformable material
0		0m - 3.7m	WeatheredKimberlite				4	3							
3.7		3.7m - 4.9m	Foliated Gneiss				4	3							
4.9		4.9m - 11.7m	WeatheredKimberlite				4	3							WEATHERING
11.7		11.7m - 34.38m	Kimberlite				1	4							1. Unweathered
34.38		34.38m - 48.4m	Foliated Gneiss				1	4							2. Slightly
48.5	95	48.5 - 95.1	Kimberlite				1	4							3. Moderately
95.1	90	95.1m - 101.7	Granitic Gneiss				1	4							4. Highly
															5. Completely
															JOINT SURFACE
															MICRO ROUGHNESS
															1. Polished
															2. Smooth planar
															3. Rough planar
															4. Slickensided undulated
															5. Smooth undulating
															6. Rough undulating
															7. Slickensided stepped
															8. Smooth stepped
															9. Rough stepped / irregular
															MACRO ROUGHNESS
															1. Planar
															2. Undulating 3. Curved
-							-					-			4. Irregular
														<u> </u>	5. Multi irregular
															1. Gauge thickness > Amplitude
															of irregularities
															2. Gauge thickness < Amplitude
															of irregularities
															3. Soft Sheared Material- Fine 4. Soft Sheared Material-Med
														<u> </u>	5. Soft Sheared Material- Crse
												<u> </u>			6. Non Softening Material-Fine
											1				7. Non Softening Material-Med
										1					8. Non Softening Material-Crse
															9. Clean
															JOINT WALL ALTERATION
															1. Wall = Rock Hard
								ļ							2. Wall > Rock Hard
															3. Wall < Rock Hard

		Appendix 2 K2	2GT01						
Borehole Nur	nber	K2/GT/01	Diameter (in	/cm)		Туре	DD		
Xcoordinate		Ycoordinate	、	7484786	Collar Elev				
Inclination	-60 degrees	Date Start		21/11/2006	Date Finis		27/11/2006		
	th (m)			21/11/2000	Dure I III.3		2//11/2000	, T	
From	To	-	1:46			E		Via	1
			Litha	biogy		Susc	eptibility	Vis.	Log
0.00 21.40	21.40 34.40	Tricone	nahuazal kimba	alita huanaia				_	
34.40	47.00		pabyssal kimber aberlite breccio	with more pink g	ranitic venal	ithe at the	abottom	-	
47.00	50.52			politic gneiss and l			2 DOTTOM	-	
50.52	62.90	Hypabyssal kin				eccia		-	
62.90	85.05			c granite patches					
85.05	101.60	Grey gneissic g		<u> </u>					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,						
		EOH = 101.60m	ı						
								_	
		 						_	
								_	
								_	
								_	
								_	
		1						-	
								-	
								_	
		ļ							
								_	
		 						4	
		 							
		}							
		1						-	
		1						-	
	L	1						+	
		1							
		1							
		1							
		1							
		1							

		Appendix 2 K2	GT02					
Borehole Nun	nber	K2/GT/02	Diameter (in/	(cm)		Туре	DD	
Xcoordinate		Ycoordinate		7484785	Collar Elev			
	-60 degrees	Date Start		16/11/2006	Date Finis		21/11/2006	<u> </u>
	-00 degrees th (m)	Date Start		10/11/2000	Dute minis	n	21/11/2000	,
		4	1.14	I		c		
From	To	T : (1)	Litho			Susc	eptibility	Vis. Log
0.00 15.00	15.00	Tricone (hypab Hypabyssal kim		2)				-
20.00	20.00 20.50	Dolerite dyke	Ideriite					
20.50	22.50	Pink granite						-
22.50	23.00	Dolerite dyke						
23.00	29.73	Pink granite						
29.73	34.30	Grey gneissic g	ranite					
34.30	43.40			granite patches				
43.40	100.40	Pinkish-grey gn		5 1				
		5 / 5	5					
		EOH = 100.40n	n					
								_
								-
		ļ						
								4
		l						
						ļ		
								+
		1						1
								1
		1						1
		1						1
		1						1
								1
		1						1
		1						1
		1						1

		Appendix 2 K2	2GT03						
Borehole Nun	nber	K2/GT/03	Diameter (in/	/cm)		Type	DD		
Xcoordinate	588530	Ycoordinate		7484764	Collar Elev				
Inclination	-60 degrees	Date Start		28/11/2006	Date Finis		2006/01/1	2	
	th (m)			20/11/2000	Dure I mis		2000/01/1	-	
From	To	4	Litho			Succ	eptibility	Vis.	
0.00	15.00	Tricono (kimbo		and backfilled)		Jusc	ерпошту	V15.	LUY
15.00	22.40	Pink granite	anne mineu our	and back med)				-	
22.40	45.80		eissic aranite	highly broken core	e 70ne				
45.80	56.00			broken core zone				_	
56.00	76.00	Grey gneissic g			,				
76.00	77.03	Dolerite dyke	ji unito						
77.03	91.00	Pink-grey grani	ite, gneissic in p	olaces					
		EOH = 91.00m							
									-
		ļ							
		_						_	

		Appendix 2 K2	GT04						
Borehole Nur	nber	K2/GT/04	Diameter (in	/cm)		Туре	DD		
Xcoordinate	588338	Ycoordinate		7484813	Collar Eleve		msl)	1	
Inclination	-50 degrees	Date Start	T	2006/07/12	Date Finish		2006/09/12	2	
	th (m)					-		1	
From	To	4	Lith	ology		Susc	eptibility	Vis. L	00
0.00	24.00	Tricone, (hypat				0030	ерпонту	V13. L	.09
24.00	38.50	Hypabyssal kim							
38.50	44.00	Grey gneissic g		oroken					
44.00	53.60	Grey gneissic g							
53.60	75.00	Pink granite wi							
75.00	95.40			k granite patches	(highly broke	n in place	S		
95.40	101.00	Pink granite wi							
101.00	101.50			nite (shear zone).					
			·						
		EOH = 101.50m							
		I							
								_	
		-						_	
		-						_	
								-	
								-	
								-	
		+							
		 						-	
		 						-	
		}						1	
		+						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		1						1	
		+						1	

		Appendix 2 K2	GT05					
Borehole Nun	nber	K2/GT/05	Diameter (in	/cm)		Type	DD	
Xcoordinate		Ycoordinate		7484714	Collar Elev			
Inclination	-50 degrees	Date Start		2006/02/12	Date Finish		2006/06/12	<u> </u>
		Date Start		2008/02/12	Date Finish	1	2008/08/17	-
	th (m) 	-				-		
From	To			ology		Susc	eptibility	Vis. Log
0.00	15.00	Tricone (kimbe						_
15.00	17.20	Kimberlite bre						
17.20	33.00	Pink granite (hi			-			
33.00	45.60	Grey gneissic g	ranite with pin	1				
45.60 57.95	57.95 101.50	Dolerite dyke Whitish-grey g	noissia anonita				_	
57.95	101.50	whitish-grey g	neissic granite					
		EOH = 101.50m					-	
		2011 - 101.501						
		1						
	L	1						1
		1						
		1						
		1						
		1						İ.
		 						
		 						
		ł						
		1						1
		1						
		1						+
		1						-
	l	1						
	L	1						1
		1						1
		1						1
		1						
		1						1
		-						

		Appendix 2 K3	BGT01					
Borehole Nur	nber	K3/GT/01	Diameter (in	/cm)		Туре	DD	
Xcoordinate		Ycoordinate		7489014	Collar Elev			
Inclination	-60 degrees	Date Start		2006/12/10	Date Finis		16/10/2006	
	th (m)							
From	To	4	Litha			Susc	eptibility	Vis. Log
0.00	5.80	Tricone	Link	Jogy		Jusc	ерполту	VIS. LOG
5.80	24.45		ffisitic kimberl	ite breccia				
24.45	39.20		c kimberlite br					
39.20	40.48	Mafic xenolith						
40.48	48.12	Tuffisitic kimb						
48.12	49.62	Granitic xenoli	th/inclusion					
49.62	56.90	Tuffisitic kimb	perlite breccia					
56.90	57.53	Granitic xenoli	th/inclusion					
57.53	105.04	Tuffisitic kimb						
105.04	110.80			nse shearing towa	irds bottom)			
110.80	113.43	Tuffisitic kimb						
113.43	115.15	Altered granit						1
115.15	116.40	Tuffisitic kimb	perlite breccia					_
		E O I I - 11/ 40						
		E.O.H = 116.40	m					
		1						
		1						
		-						_
		 						
		1						+
		1						1
		1						1
		1						
		1						1
		1						
		ļ						
		_						1
		 						1
		I						
		<u> </u>						+
								1

		Appendix 2 K3	GT02						
Borehole Nun	nber	K3/GT/02	Diameter (in	/cm)		Туре	DD		
Xcoordinate	590758	Ycoordinate	C	7489104	Collar Elev				
Inclination	-50 degrees	Date Start		19/10/2006	Date Finis		20/10/2006		
	-50 degi ees th (m)	Date Start		19/10/2000	Dure I mis		20/10/2000	1	
		4	1.44			6			
From	To		Litha	ology		Susa	ceptibility	Vis.	Log
0.00	3.20	Tricone	· · · · · · · · · · · · · · · · · · ·	· · · ·					
3.20	19.00	Weathered tuf		ite breccia					
19.00 23.70	23.70	Dolerite (dyke?		:			:		
	30.00			ite breccia with a		nitic a mat	Tic Xenoliths		
30.00 40.30	40.30 70.38			ock (Contact brec of pink feldspars					
70.38	93.15			nantly amphiboliti		minon nink	foldenen zono	1	
93.15	101.70	Pink gneissic graning			ic zones and	тпог рілк	Telaspar zones	5 	
93.15	101.70	FINK gheissic gr	anne, whitish	grey in places					
		E.O.H = 101.70r	m						
		L.O.FI - 101.70	11						
		1							
		1							
		1							
		1							
		1							
		1						1	
		1						t –	
		1						i –	
		1						i –	
		1						1	
		1						i –	
		1						1	
		1						i –	
		1						1	
		1						l	
		1						1	
		1						1	
		1						1	
		1							
		1						1	
		1						1	
		1							
		1							

		Appendix 2 K3	GT03						
Borehole Nun	nber	K3/GT/03	Diameter (in	/cm)		Туре	DD		
Xcoordinate	590728	Ycoordinate		7489128	Collar Elev		msl)	Ĩ.	
Inclination	-50 degrees	Date Start	1	21/10/2006	Date Finis		23/10/2006		
	th (m)								
From	To		Litho			Succ	eptibility	Vis.	
0.00	3.20	Tricone	LIINC	лоду		Jusc	ерпонту	VIS.	Log
3.20	25.30		fictic kimberli	te breccia with ab	undant oran	itic & mafi	c venolithe	-	
25.30	32.70			ock (contact brec			c Xenoninis		
32.70	34.78	Dolerite (dyke?							
34.78	48.00			ches, brecciated	zones in plac	ces			
48.00	51.80	Dolerite (dyke)							
51.80	55.72	Brecciated gra		ock					
55.72	66.22	Gneissic granit	e with pink felo	dspar patches					
66.22	71.62	Grey gneissic g							
71.62	101.70	Gneissic granit	e with pink felo	dspar patches					
		E.O.H = 101.70	m						
								L	
								<u> </u>	
								 	
								<u> </u>	
								┣──	
		1						1	
								t	
								t –	
		1						Ĭ	
								Ī	
								L	
								L	

		Appendix 2 K3	GT04					
Borehole Nun	nber	K3/GT/04	Diameter (in	/cm)		Type	DD	
Xcoordinate	590691	Ycoordinate		7489016	Collar Elev			
Inclination	-50 degrees	Date Start	1	16/10/2006	Date Finis	-	18/10/2006	
	-50 degrees th (m)	Date Start		10/10/2000	Dute Mis	in .	18/10/2000	,
		4						
From	To		Litho	ology		Susc	eptibility	Vis. Log
0.00	15.00	Tricone (kimbe		h				_
15.00	23.20			rlite breccia (tkb)	in places			
23.20	30.32	Tuffisitic kimb Granite	eriite breccia					_
30.32 31.10	31.10 32.70	Granite Tuffisitic kimb	anlita braccia					
32.70	34.83	Granite	entre preccia					-
34.83	35.20	Tuffisitic kimb	erlite breccia					-
35.20	39.30	Granite						
39.30	40.75	Kimberlitic bre	ccia					
40.75	44.40	Granite						
44.40	45.13	Tuffisitic kimb	erlite breccia					
45.13	47.93			lite breecia in pla	ces			1
47.93	50.35	Tuffisitic kimb		•				1
50.5	61.30	Granite with le	nses of kimber	lite breecia in pla	ces			
61.30	68.16	Tuffisitic kimb						
68.16	84.12	Mafic intrusion						
84.12	89.15			er consequent dyk				
89.15	92.70	Mafic intrusion	with breccia n	naterial (older the	an hypabyssa	ıl kimberlit	e dyke)	
								_
		E.O.H = 92.70m	۱					
								-
								-
								+
	L							1
		1						
								1

		Appendix 2 K4	GT01					
Borehole Nur	nber	K4/GT/01	Diameter (in	/cm)		Туре	DD	
Xcoordinate		Ycoordinate		7489050	Collar Elev			1
Inclination	-50 degrees	Date Start		24/10/2006	Date Finis		25/10/2006	
		Date Start		24/10/2008	Date Finis	n	25/10/2000	,
	th (m)	-				-		
From	To		Litha	ology		Suse	ceptibility	Vis. Log
0.00	3.20	Tricone						
3.20	8.70	Hypabyssal kin						
8.70	20.80	Zone of intens						
20.80	28.20	Gneissic granit						
28.20	88.35 91.70	Gneissic granit			natahaa			_
88.35	91.70	Grey gneissic g	ranite with mir	nor pink feldspar	patches			
		E.O.H = 91.70m	•					
		E.O.FI - 91.70h	1					
		1						-
		1						1
		1						1
		1						1
		1						1
		1						1
		1						1
		 						
		 						
		ł						1
		+						
		1						+
								1
		1						1
		1						1
		1						1
		1						1
		1						1
		1						1
								1
		1						1
		1						1
		1						1
		1						1

		Appendix 2 K4	GT02						
Borehole Nur	nber	K4/GT/02	Diameter (in	n/cm)		Type	DD		
Xcoordinate		Ycoordinate		7489144	Collar Elev				
Inclination	-50 degrees	Date Start	Т	2006/02/11	Date Finis		2006/04/1	1	
	th (m)	Date Start		2000/02/11	Dure I mis	i i	2000/04/1		
From	To	-	1:46	alaav		Gues	anath it is a	V:-	1
	6.20	T :		ology		Susc	eptibility	Vis.	Log
0.00	7.45	Tuffisitic kimb		kimberlite breccie	а госк.			_	
7.45	13.55			, Tresh rock lite breccia sectio	n				
13.55	31.65	-		, fresh rock with z		e inclusions	5		
31.65	32.30	Hypabyssal kim					,		
32.30	34.00	Shear zone, (co							
34.00	46.70	Gnessic granite		laces					
46.70	48.40	Hypabyssal kim							
48.40	50.10	Gnessic granite							
50.10	70.10	Gnessic granite	e, foliated and	sheared especially	y towards th	e base			
70.10	78.76	Tuffisitic kimb							
78.76	101.70	Gneissic granit	e, foliated and	l sheared in places					
		EOH = 101.70m							
		1							
								_	
								_	
		-						_	
								-	
								_	
								-	
		<u> </u>							
		 				ļ			
		 				ļ			
								_	
		+							
		1				 			
		1						-	
		1						-	
		1						1	
		1							
		1							
		1							
		1				İ			
		1						1	

		Appendix 2 K4	GT03					
Borehole Nur	nber	K4/GT/03	Diameter (in	/cm)		Туре	DD	
Xcoordinate		Ycoordinate		7489165	Collar Elev			
Inclination	-50 degrees	Date Start	1	26/10/2006	Date Finis		28/10/2006	
	-50 degrees th (m)	Date Start		20/10/2000	Date Finis	n	28/10/2000	
		4	1 :46			C		V:- 1
From	To	T .:	Litha	biogy		Susa	ceptibility	Vis. Log
0.00 5.70	5.70 21.08	Tricone Tuffisitic kimb	aulita huanaia					
21.08	37.66	Dolerite (dyke)						
37.66	101.20	Grev oneissic o	ronite with nin	k feldspar zones				
57.00	101.20	or ey grieissie g	i anne with pin	K Teluspul zones				
		E.O.H = 101.20	m					
		I						
								-
		1				ļ		
		-						
		1						1
		1						1
						ļ		
		1				ļ		
		1						1
		1				ļ		1
		1						1
		1						
		1						1
		1						1

	Appendix 2 K4							
ber	K4/GT/04	Diameter (in	/cm)		Туре	DD		
			-	Collar Elev		msl)		
						-	5	
-	Date Start		20/10/2000	Dule I misi	•	51/10/2000	, T	
	4	1 :+6			Guas	antihilitu	Vie	1.00
	Taisana	LIIN	biogy		Susc	ерполту	VIS.	Log
		ficitic kimban	ita braccia					
							-	
			ecciu					
)						
		,						
		berlite						
41.95								
43.47								
44.60								
46.90	Hypabyssal kim	berlite						
47.80			ith mylonitised zo	ones.				
52.45								
			nk feldspar zones					
							_	
101.60	Gneissic granit	e with predom	inantly pink teldsp	oar zones			_	
	F.O.U. 101 (0)							
	E.O.H = 101.60	m					_	
							_	
							_	
							_	
							-	
	 						_	
	 							
	 							
							_	
							_	
	+							
							_	
	 						_	
	-							
	592209 -60 degrees h (m) To 6.20 11.60 29.50 34.10 34.70 39.00 39.70 41.95 43.47 44.60 46.90 47.80	592209Ycoordinate-60 degreesDate Starth (m)To6.20Tricone11.60Weathered tuf29.50Fresh tuffisiti34.10Pink granite34.70Dolerite (dyke:39.00Pink granite39.70Hypabyssal kim41.95Granite, sheare43.47Hypabyssal kim44.60Mafic intrusior46.90Hypabyssal kim47.80Brecciated she52.45Dolerite (dyke:68.90Mafic rock with80.60Granite with da95.25Gneissic granit97.42Dolerite (dyke:101.60Gneissic granit	592209Ycoordinate-60 degreesDate Start-60 degreesDate Starth (m)Image: Construct of the start11.60Weathered tuffisitic kimberlite29.50Fresh tuffisitic kimberlite br34.10Pink granite34.70Dolerite (dyke?)39.00Pink granite39.70Hypabyssal kimberlite41.95Granite, sheared43.47Hypabyssal kimberlite46.90Hypabyssal kimberlite47.80Brecciated shear zone rock w52.45Dolerite (dyke?)68.90Mafic rock with pink feldspar80.60Granite with dominant pink fe95.25Gneissic granite, grey with pink97.42Dolerite (dyke?)	592209 Ycoordinate 7489162 -60 degrees Date Start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 h (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start 28/10/2006 f (m) Image: Construct of the start	592209Ycoordinate7489162Collar Elev-60 degreesDate Start28/10/2006Date Finishh (m)ToLithology6.20Tricone11.60Weathered tuffisitic kimberlite breccia29.50Fresh tuffisitic kimberlite breccia29.50Fresh tuffisitic kimberlite breccia34.10Pink granite34.70Dolerite (dyke?)39.00Pink granite39.70Hypabyssal kimberlite41.95Granite, sheared43.47Hypabyssal kimberlite44.60Mafic intrusion46.90Hypabyssal kimberlite47.80Brecciated shear zone rock with mylonitised zones.52.45Dolerite (dyke?)68.90Mafic rock with pink feldspar inclusions80.60Granite with dominant pink feldspar zones97.4295.25Gneissic granite, grey with pink feldspar zones97.42Dolerite (dyke?)101.60	592209 Ycoordinate 7489162 Collar Elevation (mailed start) 60 degrees Date Start 28/10/2006 Date Finish h (m) Lithology Susc 6.20 Tricone 11.60 Weathered tuffisitic kimberlite breccia 29.50 Fresh tuffisitic kimberlite breccia 29.50 34.10 Pink granite 34.70 39.00 Pink granite 39.70 39.70 Hypabyssal kimberlite 41.95 Granite, sheared 43.47 44.60 Mafic intrusion 46.90 47.80 Brecciated shear zone rock with mylonitised zones. 52.45 52.45 Dolerite (dyke?) 68.90 68.90 Mafic rock with pink feldspar inclusions 80.60 60 Granite, grey with pink feldspar zones 95.25 97.42 Dolerite (dyke?) 101.60 60 Granite with predominantly pink feldspar zones 97.42	592209 Ycoordinate 7489162 Collar Elevation (mamsl) -60 degrees Date Start 28/10/2006 Date Finish 31/10/2006 h (m)	592209 Ycoordinate 7489162 Collar Elevation (mamsl) -60 degrees Date Start 28/10/2006 Date Finish 31/10/2006 h (m) Image: Collar Elevation (mamsl) Susceptibility Vis. 6.20 Tricone Image: Collar Elevation (mamsl) Vis. 6.20 Tricone Susceptibility Vis. 11.60 Weathered tuffisitic kimberlite breccia Image: Collar Elevation (mamsl) Image: Collar Elevation (mamsl) 34.70 Dolerite (dyke?) Image: Collar Elevation (mamsl) Image: Collar Elevation (mamsl) 39.00 Pink granite Image: Collar Elevation (mamsl) Image: Collar Elevation (mamsl) 39.70 Hypabysal kimberlite Image: Collar Elevation (mamsl) Image: Collar Elevation (mamsl) 39.70 Hypabyssal kimberlite Image: Collar Elevation (mamsl) Image: Collar Elevation (mamsl) 39.70 Hypabyssal kimberlite Image: Collar Elevation (mamsl) Image: Collar Elevation (mamsl) 39.70 Hypabyssal kimberlite Image: Collar Elevation (mamsl) Image: Collar Elevation (mamsl) 41.95 Granite, sheared Image: Collar Elevation (mamsl) Image: Colaret (mamsl) Image: Collar Ele

		Appendix 2 K4	GT05					
Borehole Nur	nber	K4/GT/05	Diameter (in	/cm)		Type	DD	
Xcoordinate		Ycoordinate		7489064	Collar Elev			
Inclination	-50 degrees	Date Start		29/11/2006	Date Finis		2006/02/1	2
	-50 degrees th (m)	Date Start		29/11/2000	Dute Minis	n	2000/02/1	-
		4	1.44	1		c		V:- 1
From	To	T : (1)	Litho			Susc	eptibility	Vis. Log
0.00	12.50	Tricone (hypab						
12.50 24.40	24.40 37.58	Hypabyssal kim	berlite breccio	l haulita vaina				
37.58	45.50	Pink granite wi Gneissic granit						
45.50	50.20	Pink granite	e with pink gru	nite zones				
50.20	101.40	Pinkish-grey gr	eissic oranite					
30.20	101.40	r mkisn-grey gr	leissie grunne					
		EOH = 101.40m	1					
		1						1
		1						1
		-						
		1						1
		1						1
		Ī						1
		ļ						
		_						1
		 						
		 						
								1

		Appendix 2 K5	5GT01					
Borehole Nur	nber	K5/GT/01	Diameter (in	/cm)		Type	DD	
Xcoordinate		Ycoordinate		7490527	Collar Elev			
Inclination	-50 degrees	Date Start		2006/07/11	Date Finis		13/11/2006	
	-50 degrees th (m)	Date Start		2000/0//11	Dure I mis	- T .	13/11/2000	,
From	To	-	1 :+ -			Suga	antihilit.	Vialaa
	5.00	Taisana (humah	Lithe			Susc	eptibility	Vis. Log
0.00 5.00	9.80	Tricone (hypab Hypabyssal kin						_
9.80	24.95	Pink gneissic gi		7				
24.95	33.90			granitic patches				
33.90	48.74			rowards the botto	m			
48.74	49.78	Dolerite dyke						
49.78	59.26	Coarse pink gro	anite					
59.26	73.80	Pinkish-grey gr						
73.80	76.25	Coarse pink gro						
76.25	84.83	Pinkish-grey gr	neissic granite					
84.83	86.90	Pinkish-whitish		ranite				
86.90	92.50	Pinkish-grey gr	neissic granite					
		EOH = 92.50m						
						_		
		-						_
								_
		 						1
		_						1
		 						1
		ł						
		ł						1
		+						+
		1						+
								1
		1						1
		1						
		1						1
		1						
		1						1

		Appendix 2 K5						
Borehole Nur	nber	K5/GT/02	Diameter (in	n/cm)		Type	DD	
Xcoordinate		Ycoordinate		7490574	Collar Elev			
Inclination	-50 degrees	Date Start		13/11/2006	Date Finis		15/11/2006	
	th (m)			10/11/2000	5416 1 11.13			
	То	-				C	antihilit.	Vie Lee
From		T : (a)		ology			eptibility	Vis. Log
0.00	1.50	Tricone (Calcre	etised Kimberli	ite breccia with g	ranite inclusi	ons)	·	
1.50	5.40			ia with granite inc	lusions (cont	act brecc	ia), especially	towards the
5.40	8.10	Calcretised gn	eissic pink grai	nite				
8.10	15.20	Dolerite dyke						
15.20	30.00	Pinkish-grey gr	neissic granite					-
30.00	32.78	Dolerite dyke						
32.78	33.83	Pink granite	(:!!=>					
33.83	91.00	Dolerite (dyke	/sill?)					
		EOH = 91.00m						
		1						
	-	1						
		1						
		1						

		Appendix 2 K5	GT03					
Borehole Nun	nber	K5/GT/03	Diameter (in	/cm)		Type	DD	
Xcoordinate		Ycoordinate		7490619	Collar Elev			
Inclination	-60 degrees	Date Start		16/11/2006	Date Finis		17/11/2006	
	-00 degrees th (m)	Date Start		10/11/2000	Dure I mis		1771172000	1
		4	1.44	L		c		
From	To		Litho		11.1	Susc	eptibility	Vis. Log
0.00	3.90			a with doleritic xe				
3.90 7.32	7.32 19.10	Weathered do		a with large doleri	TIC XENOIITNS	5		
19.10	92.40	Dolerite (dyke)		?)				
19.10	92.40	Dolerne (dyke)	(SIII <i>?</i>), (TeSh					
		EOH = 92.40m						
		I						
								<u> </u>
		-						
								┨────
		1						
								<u> </u>
		1						1
		1						1
		1						
		<u> </u>						
								I
		 						<u> </u>
		 						
								┨────
		+						
		1						ł

		Appendix 2 K5	GT04					
Borehole Nur	nber	K5/GT/04	Diameter (in	/cm)		Type	DD	
Xcoordinate	591325	Ycoordinate		7490564	Collar Elev		msl)	
Inclination	-50 degrees	Date Start		13/11/2006	Date Finis		16/11/2006	
	th (m)							
From	То	-	Litha	loav		Susc	eptibility	Vis. Log
0.00	0.70	Calcretised kin				0430	.epiibiiiiy	113. 20
0.70	25.85			lant granitic, ampl	hibolitic/dol	eritic inclu	sions	
25.85	35.70	Pink gneissic gr						
35.70	66.00	Grey gneiss wit		patches				
66.00	67.40	Pink granite		•				
67.40	85.57	Greyish-pink gr	neissic granite					
85.57	91.20	Amphibolitic gr	neiss with whiti	ish granite patche	25			
		EOH = 91.20m						
								-
		1						
		1						1

		Appendix 2 K5	GT05					
Borehole Nun	nber	K5/GT/05	Diameter (in/	/cm)		Туре	DD	
Xcoordinate		Ycoordinate		7490557	Collar Elev			
Inclination	-60 degrees	Date Start		28/11/2006	Date Finis		29/11/2006	
	-	Date Start		20/11/2000	Date Finis	n	29/11/2008	
	th (m)	4				_		
From	To		Litho	ology		Susc	eptibility	Vis. Log
0.00	6.20	Tricone						
6.20	9.05			k granite and kiml	perlite (cont	act zone)		
9.05	16.50	Pink granite wi						
16.50	56.86		ranite, massive	and granular in pl	aces, especió	ally at the	bottom	
56.86	83.40	Dolerite dyke						
		FOLL - 93.40m						
		EOH = 83.40m						
		+						
		+						
		1						
		1						
		ļ						
		I						
		_						
		 						
		 						
		ł						
		 						
		}						
		 						
		 						
		 						

		Appendix 2 K						
Borehole Nun	nber	K6/GT/0	Diameter (in	/cm)		Type	DD	
Xcoordinate		Ycoordinate		7490891	Collar Elev			
Inclination	-50 degrees	Date Start	1	2006/04/11	Date Finis		2006/07/1	1
	-50 degrees th (m)	Date Start		2000/04/11	Dute minis	n	2000/07/1	1
		4				-		
From	To		Lithe			Susc	ceptibility	Vis. Log
0.00	12.00	Tricone (hypabyssal kimberlite, mined out and backfilled)						
12.00 32.10	32.10 40.70	Banded grey gneissic granite Sheared gneissic granite with pink feldspar patches						
40.70	40.70	Sheared gheissic granite with pink feldspar patches Dark green sheared mafic rock (intrusive?)						
45.20	60.80	Unsheared mafic rock (dolerite intrusive?)						
60.80	64.60	Dark green sheared mafic rock (intrusive?)						
64.60	90.00	Whitish grey gneissic granite with pink feldspar						
0 1.00	20.00	Whitish grey g	ficiable granne	with place relape				
		E.O.H = 90.00	n					
		1						1
		1						
		Ī						
								_
		-						_
								-
		1						
		1						
		I						
		I						
		 						4
		 						
		 						
		<u> </u>						
		 						
		1						+
		1						
		}						
		ł						+
		1						
		}						
								1

		Appendix 2 K6	GT02						
Borehole Nun	nber	K6/GT/02	Diameter (in/	/cm)		Type	DD		
Xcoordinate	591169	Ycoordinate		7490894	Collar Elev			1	
Inclination	-50 degrees	Date Start		2006/08/11	Date Finis		2006/04/11	I	
	-50 degi ees th (m)	Date Start		2000/00/11	Dure I mis		2000/04/11	I	
		4				-		<i></i>	
From	To		Litho			Susc	eptibility	Vis.	Log
0.00	6.20	Tricone (hypab							
6.20 14.30	14.30 31.80	Weathered hyp		riite granitic inclusions	in alassa				
31.80	33.35	Mafic intrusion		granific inclusions	in places				
33.35	89.70	Gneissic granit		lenan natchae					
89.70	95.70	Pink gneissic gr		ispur purches					
95.70	101.70			ic pink feldspar p	atches and a	rev amphil	politic natches		
20.70	101.70	oneissie grann	e with arcinat		arches ana g		sonne parenes		
		EOH = 101.70m	1						
			·						
		1						1	
								1	
						_			
		1						I	
		l						I	
		1							
		1							
		1							
		1							

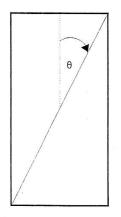
		Appendix 2 K6	GT03					
Borehole Nun	nber	K6/GT/03	Diameter (in/	/cm)		Туре	DD	
Xcoordinate	591164	Ycoordinate		7490880	Collar Elev			
Inclination	-50 degrees	Date Start		2006/11/11	Date Finis		13/11/2006	
	-	Date Start		2000/11/11	Date Finis	n	13/11/2000	,
	th (m) 	-						
From	To		Litho			Susc	eptibility	Vis. Log
0.00	3.70	Tricone (weath						
3.70	4.90 11.74	Gneissic granit						
4.90 11.74	34.38	Weathered hyp		vith granite xenoli	ith towards t	ha hattau		
34.38	48.50	Gneissic granit			In Iowaras	ne bollon	1	
48.50	58.84	Hypabyssal kim						
58.84	59.70	Dark grey gran		•				
59.70	95.00	Hypabyssal kim						
95.00	101.70			h pink feldspar p	atches			
		3 7 3						
		EOH = 101.70m	I					
								+
								1
								┨────
						ļ		
								+
						L		1
		1						1
								1
								1
		1						1

		Appendix 2 K6	GT04					
Borehole Nun	nber	K6/GT/04	Diameter (in	/cm)		Туре	DD	
Xcoordinate	591163	Ycoordinate		7490890	Collar Elev			
Inclination	-50 degrees	Date Start		17/11/2006	Date Finis		27/11/2006	<u> </u>
	th (m)			1771172000	Dure I IIII3		2//11/2000	,
From	To	4	l :+h-			<u>Curr</u>	eptibility	Vis. Log
0.00	0.90	Tricens (hunch	Lithe			Susc	сертібінту	VIS. LOG
0.00	14.70	Tricone (hypab Weathered hyp						
14.70	17.05	Fresh hypabyss		line				
17.05	18.30	Grey gneiss						
18.30	19.47	Pink granite						
19.47	68.80		ranite with pin	k granitic patches	5			
68.80	73.70	Younger grey f						
73.70	75.00	Pink coarse gra		J				
75.00	86.60			pink granitic inclu	usions, intens	sely shear	ed at the bott	tom
86.60	89.34	Dolerite dyke		·				
89.34	91.45			pink granitic inclu				
91.45	101.40	Pinkish grey gr	anite with a sto	ockwork of fractu	res and sher	raed in plac	ces	
		EOH = 101.40m						
								_
		1						
	L	1						1
		1						
		1						
		1						

Appendix 3 Failure Codes for UCS Tests

CLASSIFICATION OF ROCK SPECIMEN FAILURE MODE INFLUENCED / NOT INFLUENCED BY DISCONTINUITIES DURING COMPRESSION TESTING

FAILURE NOT INFLUENCED BY DISCONTINUITIES (INTACT)


TYPE CODE	DESCRIPTION	OF SUBCODES
	A	В
x	PARTIAL CONE DEVELOPMENT	COMPLETE CONE DEVELOPMENT

FAILURE INFLUENCED BY DISCONTINUITIES

TYPE CODE	DESCRIPTION O	F SUBCODES
	A	В
	FAILURE PARTIALLY ON DISCONTINUITY	FAILURE COMPLETELY ON DISCONTINUITY
1	AT 0-10° TO AXIS	AT 0-10° TO AXIS
2	AT 11-20° TO AXIS	AT 11-20° TO AXIS
3	AT 21-30° TO AXIS	AT 21-30° TO AXIS
4	AT 31-40° TO AXIS	AT 31-40° TO AXIS
5	AT 41-50° TO AXIS	AT 41-50° TO AXIS
6	AT 51-70° TO AXIS	AT 51-70° TO AXIS
7	AT 71-90° TO AXIS	AT 71-90° TO AXIS

Example:

ble: Failure Type 3B: Failure completely on a discontinuity with an orientation of between 21° and 30° to the specimen axis.

Appendix 3 RESULTS OF UNIAXIAL COMPRESSION TESTS

ROCKLAB

Tel: 012 481 3894 Fax: 012 481 3812 E-mail: Chenj@rocklab.co.za

Client: OHMS (Pty) Ltd.

Sampling Site: Diamond Ex - Lerala - Botswana

Client: OH	MS (Pty)	Ltd.	Sampling	Site: Dia	amond Ex -	- Lerala - I	Botswana		6-Dec-06		
SPECIME	EN PART	TICULARS	SPECII	MEN DIN	IENSIONS			SPECIME	EN TEST RE	ESULTS	
Rocklab Specimen	Sample	Rock	Diameter	Height	Ratio of Height	Mass	Density	Failure Load	Strength (UCS)	Failure Code	Note
No	No.	Туре			to Diameter						
2868-			mm	mm		g	g/cm³	kN	MPa		
	1	Kimborlito Prossia	61.1	172.0	20	1270 0	2 72	210.7	74.0	VA	
UCS-01 UCS-02	1 2	Kimberlite Breccia Kimberlite Breccia	61.1 60.9	172.0 171.8	2.8 2.8	1378.0 1392.1	2.73 2.79	219.7 193.2	74.9 66.4	XA 4A	
UCS-02	3	Kimberlite Breccia	60.8	175.0	2.0	1423.1	2.79	433.6	149.5	XA	
UCS-03	11	Granitic Gneiss	47.4	110.9	2.3	527.5	2.69	454.1	257.0	XA	
UCS-12a	12	Granitic Gneiss	47.4	114.7	2.3	549.4	2.03	421.7	239.5	XA	
UCS-12b	12	Oranitic Oriel33	47.3	119.4	2.5	573.8	2.72	463.0	263.4	XB	
UCS-13a	13	Granitic Gneiss	47.4	118.7	2.5	555.0	2.65	280.3	158.6	2A	
UCS-13a	10	Granitio Offeios	47.4	118.5	2.5	554.9	2.64	362.1	204.3	XB	
UCS-22	22	Foliated Gneiss	60.9	159.6	2.6	1239.2	2.66	516.1	177.1	XB	
UCS-23	23	Foliated Gneiss	47.4	124.8	2.6	584.6	2.65	532.1	301.4	XB	
UCS-24a	24	Foliated Gneiss	47.5	125.7	2.6	593.7	2.66	471.2	265.5	XA	
UCS-24b			47.6	114.7	2.4	543.3	2.66	489.7	274.9	XB	
UCS-25a	25	Foliated Gneiss	47.7	128.1	2.7	605.8	2.64	511.5	286.1	XB	
UCS-25b	_0		47.6	127.2	2.7	603.6	2.67	492.8	277.1	XB	
UCS-27	27	Granitic Gneiss	47.3	128.6	2.7	594.7	2.63	561.5	319.0	XB	
UCS-28a	28	Granitic Gneiss	47.6	128.0	2.7	610.2	2.68	427.6	240.6	XB	
UCS-28b			47.6	126.2	2.6	595.3	2.65	355.5	199.6	XB	
UCS-29	29	Granitic Gneiss	47.6	132.1	2.8	644.8	2.75	479.6	270.0	XB	
UCS-33	33	Kimberlite Breccia	60.8	163.5	2.7	1295.7	2.73	285.6	98.5	ХВ	
UCS-34	34	Kimberlite Breccia	60.7	147.1	2.4	1159.8	2.73	263.1	91.0	XB	
UCS-35	35	Kimberlite Breccia	61.3	162.0	2.6	1355.4	2.84	152.9	51.8	2B	
UCS-36	36	Pink Granitic Gneiss	47.1	107.7	2.3	489.3	2.61	328.9	188.8	XB	
UCS-37a	37	Pink Granitic Gneiss	47.3	118.3	2.5	541.3	2.61	252.8	144.1	2A	
UCS-37b			47.3	121.1	2.6	553.5	2.61	176.7	100.8	XB	
UCS-40	40	Granitic Gneiss	44.8	132.5	3.0	546.3	2.62	195.6	124.4	2A	
UCS-41	41	Granitic Gneiss	44.8	130.6	2.9	538.6	2.62	292.9	186.2	XB	
UCS-42	42	Granitic Gneiss	44.8	128.6	2.9	527.3	2.61	185.3	117.8	1B	
UCS-45	45	Kimberlite	61.0	166.3	2.7	1415.5	2.91	230.2	78.8	1A	
UCS-46a	46	Kimberlite	44.9	121.9	2.7	546.1	2.83	194.0	122.4	XB	
UCS-46b			45.0	121.3	2.7	546.8	2.84	240.5	151.3	XA	
UCS-47a	47	Kimberlite	44.9	113.6	2.5	505.6	2.81	183.0	115.6	XB	
UCS-47b			44.9	113.2	2.5	504.7	2.81	196.4	123.9	XA	
UCS-48	48	Dolerite Dyke	44.5	120.1	2.7	531.8	2.85	314.8	202.2	XA	
UCS-50a	50	Dolerite Dyke	44.0	115.4	2.6	518.8	2.95	359.0	235.7	XB	
UCS-50b			44.6	69.9	1.6	435.7	3.99	369.3	236.6	XB	
UCS-51a	51	Dolerite Dyke	44.5	126.5	2.8	562.5	2.86	112.0	72.0	3B	
UCS-51b			44.4	122.6	2.8	546.2	2.88	153.3	99.1	3B	
UCS-52	52	Kimberlite Breccia	61.0	169.8	2.8	1319.5	2.66	355.3	121.5	XA	
UCS-53a	53	Foliated Gneiss	47.4	120.4	2.5	580.2	2.73	565.7	320.3	XB	
UCS-53b			47.4	118.8	2.5	565.4	2.70	515.0	291.7	XB	
UCS-54	54	Dolerite Dyke	44.1	97.7	2.2	435.3	2.92	378.2	248.1	XA	
UCS-55a	55	Dolerite Dyke	44.4	91.5	2.1	436.9	3.08	244.8	158.0	1B	
UCS-55b			44.4	124.7	2.8	596.6	3.09	153.1	98.9	1B	

Note: All tests were conducted according to ISRM Specifications.

	BASE	FRICTION ANG				CUT RO	OCK SU	RFACE		Fax:	012 481 3894 012 481 3892 012 481 on 012 012 481 012 012 481 012 010 012 010 010 010	o.za
Client: OHM			Samplin	g Locatio	on: Diam	ond Ex -	Lerala -	Botswan	a		15-Jun-07	
ROCKLAB	Sample	Rock	Shear	Shear	Hor.	Vert.	Dil.	Normal	Shear	Angle or	Base	
Specimen No	ID	Туре	Area	Cycle	Force	Force	Angle	Stress	Stress	App. Angle	Friction Angle	Note
2974-			(mm²)	No	(kN)	(kN)	(°)	(MPa)	(MPa)	(°)	(°)	
BFA-04	4	Kimberlite Breccia	2919	1	0.68	1.2	0.0	0.42	0.23	29.1		
			2919 2919	2 3	0.89 1.74	1.6 3.1	0.0 0.0	0.55 1.06	0.30 0.60	29.1 29.3	29.2	
BFA-05	5	Dyke	2930	1	1.04	1.2	0.0	0.42	0.35	40.4		
			2930 2930	2 3	1.35 2.67	1.6 3.1	0.0 0.0	0.55 1.06	0.46 0.91	40.2 40.7	40.4	
BFA-09	9	F Gneiss	1783	1	0.71	1.2	0.0	0.68	0.40	30.2		
			1783 1783	2 3	0.93 1.82	1.6 3.1	0.0 0.0	0.90 1.74	0.52 1.02	30.2 30.4	30.3	
BFA-10	10	F Gneiss	1743	1	1.05	1.2	0.0	0.70	0.60	40.7		
			1743 1743	2 3	1.39 2.67	1.6 3.1	0.0 0.0	0.92 1.78	0.80 1.53	41.0 40.7	40.8	
BFA-11	11	F Gneiss	1762 1762	1 2	0.91 1.19	1.2 1.6	0.0 0.0	0.69 0.91	0.52 0.68	36.7 36.6	37.1	
			1762	3	2.41	3.1	0.0	1.76	1.37	37.9	57.1	
BFA-12	12	Kimberlite Breccia	2948 2948	1 2	0.56 0.73	1.2 1.6	0.0 0.0	0.41 0.54	0.19 0.25	24.7 24.5	24.7	
			2948	3	1.45	3.1	0.0	1.05	0.49	25.1		
BFA-13	13	Dark Gneiss	1780 1780	1 2	1.00 1.35	1.2 1.6	0.0 0.0	0.69 0.90	0.56 0.76	39.3 40.2	40.1	
			1780	3	2.67	3.1	0.0	1.74	1.50	40.7		
BFA-14	14	Dark Gneiss	1780 1780	1 2	0.95 1.25	1.2 1.6	0.0 0.0	0.69 0.90	0.53 0.70	37.9 38.0	37.9	
DE4 15			1780	3	2.41	3.1	0.0	1.74	1.35	37.9		
BFA-15	15	Dark Gneiss	1784 1784	1 2 2	0.87 1.12 2.21	1.2 1.6	0.0	0.68 0.90	0.49 0.63	35.5 35.0	35.3	
BFA-16	16	Pink Gneiss	1784 1783	3	2.21	3.1	0.0	0.68	0.57	35.5 39.6		
DIA-10	10	F IIIN OTIEISS	1783 1783 1783	1 2 3	1.01 1.35 2.69	1.2 1.6 3.1	0.0 0.0 0.0	0.08 0.90 1.74	0.37 0.76 1.51	40.2 40.9	40.2	
BFA-17	17	Pink Gneiss	1783	1	0.79	1.2	0.0	0.68	0.44	32.9		
			1783 1783	2 3	1.02 2.01	1.6 3.1	0.0 0.0	0.90 1.74	0.57 1.13	32.5 33.0	32.8	
BFA-18	18	Pink Gneiss	1787	1	0.86	1.2	0.0	0.68	0.48	35.2		
			1787 1787	2 3	1.15 2.21	1.6 3.1	0.0 0.0	0.90 1.73	0.64 1.24	35.7 35.5	35.5	
BFA-19	19	Pink Gneiss	1780 1780	1 2	0.82 1.08	1.2 1.6	0.0 0.0	0.69 0.90	0.46 0.61	33.9 34.0	34.3	
			1780	2 3	2.16	3.1	0.0	0.90	1.21	34.0 34.9	34.3	
BFA-20	20	Pink Granite	1780 1780	1 2	0.69 0.91	1.2 1.6	$0.0 \\ 0.0$	0.69 0.90	0.39 0.51	29.5 29.6	29.5	
			1780	3	0.91 1.75	1.0 3.1	0.0	0.90 1.74	0.51	29.6 29.4	27.3	

Note:

Appendix 5 Joint roughness coefficient (JRC) and Joint wall compressive strength (JCS)

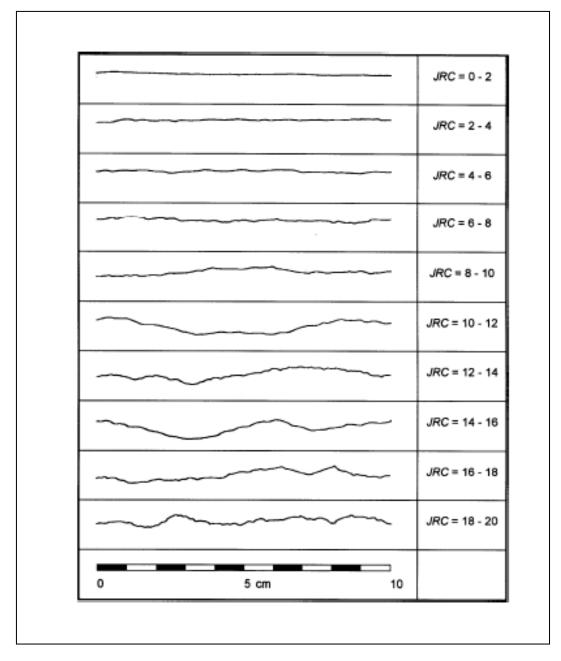


Figure 1: Roughness profiles and corresponding JRC values (After Barton and Choubey 1977).

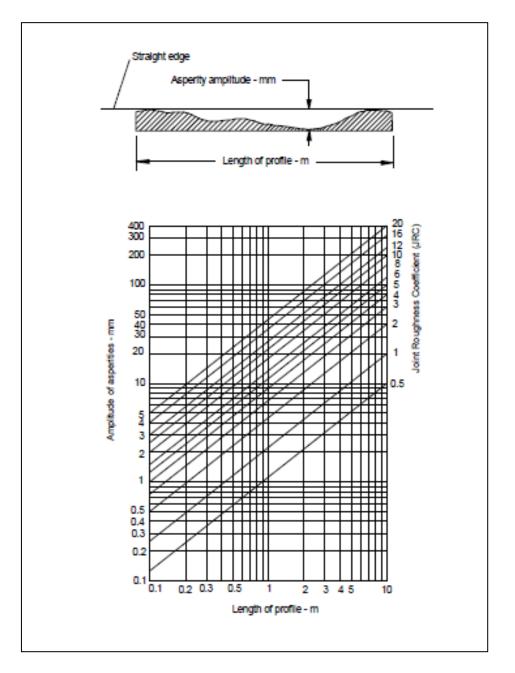


Figure 2: Alternative method for estimating *JRC* from measurements of surface roughness amplitude from a straight edge (Barton 1982).

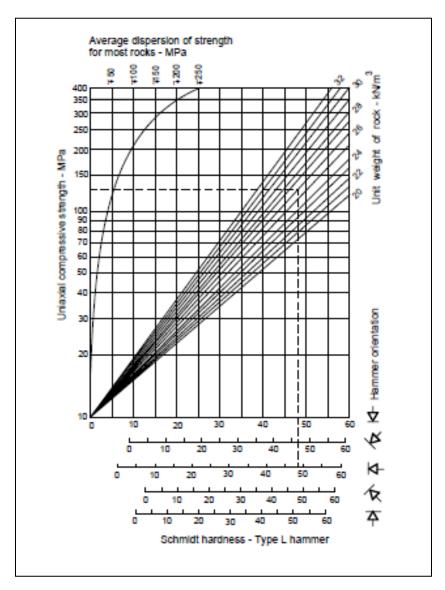


Figure 3: Estimate of joint wall compressive strength from Schmidt hardness. (Deere and Miller 1966)

Barton shear failure criterion

-	hness coeffi			16.9	
	pressive stre		96		
Ainimum I	normal stres	s (SIGNMIN	4)	0.360	
Normal	Shear	<u>dTAU</u>	Friction	Cohesive	
stress	strength	dSIGN	angle	strength	
(SIGN)	(TAU)	(DTDS)	(PHI)	(COH)	
MPa	MPa		degrees	MPa	
0.360	0.989	1.652	58.82	0.394	
0.720	1.538	1.423	54.91	0.513	
1.440	2.476	1.213	50.49	0.730	
2.880	4.073	1.030	45.85	1.107	
5.759	6.779	0.872	41.07	1.760	
11.518	11.344	0.733	36.22	2.907	
23.036	18.973	0.609	31.33	4.953	
46.073	31.533	0.496	26.40	8.666	
Cell formu	lae:				
SIGNMIN =	10^(LOG(JO	S)-((70-PHI	B)/JRC))		
				GN))*PI()/180)	
DTDS =	TAN((JRC*L	.OG(JCS/SIC	3N)+PHIB)*F	()/180)-(JRC/LN(10))	
	*(TAN((JRC	LOG(JCS/S	IGN)+PHIB)	PI()/180)^2+1)*PI()/18	0
PHI =	ATAN(DTDS	3)*180/PI()			
COH =	TAU-SIGN*I	DTDS			

Figure 4: Printout of spreadsheet cells and formulae used to calculate shear strength, instantaneous friction angle and instantaneous cohesion for a range of normal stresses. (Barton 1973)

RESULTS OF TRIAXIAL COMPRESSIVE STRENGTH TESTS

-----DIVISION OF SOILLAB (PTY) LTD Tel: 012 481 3894 Fax: 012 481 3812 E-mail: Chenj@rocklab.co.za

Client: OHMS

Samping Site: DiamondEx - Lerala - Botswana

i															27-10101-07		
SPECI	MEN PAR	TICULARS	8			SPECIMEN DIMENSIONS				SPECIMEN TEST RESULTS							
Rocklab Specimen		Borehole	Depth	Depth	Rock	Diameter	Height	Ratio of Height	Mass	Density	Confining Pressure	Failure Load	Strength (TCS)	Peak Cohesion	Friction Angle	Failure Mode	Note
No	No.	No.	from	to	Туре			to			δ3	Р	δ1		-		
								Diameter									
2868-			(m)	(m)		mm	mm		a	a/om3	MPa	kN	MPa	Мра	(°)		
2000-			(11)	(11)		111111	111111		g	g/cm³	IVIFa	KIN	IVIFa	мра	()		
TCS-4a						61.9	129.9	2.1	908.6	2.32	10.0	147.1	48.9	14.0	74.0	ХА	
TCS-4b						62.0	120.6	1.9	753.2	2.07	20.0	252.6	83.8			XA	
													•				
TCS-07a						61.5	131.7	2.1	947.2	2.42	10.0	183.7	61.8			XA	
						-					_						
TCS-09a						62.5	81.6	1.3	516.5	2.06	5.0	103.2	33.6			1B	
TCS-09b						62.0	117.6	1.9	765.2	2.16	10.0	117.1	38.8	28.4	39.4	1B	
TCS-09c						62.2	116.0	1.9	739.9	2.10	15.0	127.1	41.8]		1B	
TCS-09d						61.8	124.9	2.0	803.8	2.15	20.0	103.5	34.5			1B	

Note: All tests were conducted accoridng to the ISRM Specification. 1 - Specimen was failed on laminated plane.

Appendix 7 Geomechanics Classification

	Para	meter			Ranges of Valu	ues			
	Strength of Intact rock material	Point load strength index	>10 MPa	4-10 MPa	2-4 MPa	1-2 MPa	For this low ra uniaxial comp test is preferre	ressive	
1		Uniaxial compressive strength	>250 MPa	100-250 MPa	50-100 MPa	25-50MPa	5-25 MPa	1-5 MPa	<1 MPa
	Rating		15	12	7	4	2	1	0
	Drill core quality R	QD	90%-100%	75%-90%	50%-75%	25%-50%	<25%		
2	Rating		20	17	13	8	3		
	Spacing of joints (ls)	>2m	0.6-2m	200-600mm	60-200mm	<60mm		
3	Rating		20	15	10	8	5		
4	Condition of joints	(Jc)	Very rough surface Not continuous No separation Weathered wall Rock	Slightly rough Surfaces Separation <1mm Slightly weathered Walls	Slightly rough Surfaces Separation <1mm Highly weathered Walls	Slickensided surfaces, or Gouge<5mm thick, or Separation 1-5mm continuous	Soft gouge >5 Separation >5		
	Rating		30	25	20	10	0		
		Inflow per 10m Tunnel length (l/min)	None	10	10-25	25-125	>125		
5	Groundwater (Jw)	Joint water press- ure/major principal stress	0	0.0 – 0.1	0.1-0.2	0.2-0.5	>0.5		
		General Conditions	Completely dry	Damp	Wet	Dripping	Flowing		
	Rating	1	15	10	7	4	0		
6	Strike and dip orier	ntations of joints*	Very favourable	Favourable	Fair	Unfavourable	Very unfavour	able	
	Rating		0	-2	-5	-10	-12		

Rock Type	Parameter	Measurement	Rating
		Description	
Granitic Gneiss	UCS	189MPa	12
	RQD	90%	18
	Js	0,6m – 1,5m	13
	Jc	Slightly rough surfaces	22
		Separation <1mm	
		Slightly weathered walls	
	Jw	Damp	10
Granitic Gneiss	RMR		75
Kimberlite	UCS	113MPa	11
	RQD	78%	16
	Js	200mm – 600mm	10
	Jc	Slickenside - Slightly rough surfaces	12
		Separation 1 - 5mm	
		Highly weathered walls	
	Jw	Damp	10
Kimberlite	RMR		59

Rock Type	Parameter	Measurement	Rating
		Description	
Kimberlite Breccia	UCS	78MPa	7
-	RQD	82%	17
-	Js	200mm – 600mm	10
	Jc	Slickenside - Slightly rough surfaces	12
		Separation 1 - 5mm	
		Highly weathered walls	
	Jw	Damp	10
Kimberlite Breccia	RMR		56
Dolerite Dyke	UCS	211MPa	13
	RQD	72%	15
	Js	200mm – 600mm	10
	Jc	Slickenside urfaces	10
		Separation 1 - 5mm	
		Highly weathered walls	
	Jw	Damp	10
Dolerite Dyke	RMR		58

Appendix 8 Mining Rock Mass Classification

	Parameter	Range of Values										
	RQD	100)-97	96-84	83-71	70-56	55-44	43-31	30-17	16-4	3-	0
1	Rating (= <i>RQD</i> x 15/100)	1	5	14	12	10	8	6	4	2	С)
2	UCS (MPa)	185	184- 165	164- 145	144- 125	124- 105	104-85	84-65	64- 45	44-25	24-5	4-0
	Rating	20	18	16	14	12	10	8	6	4	2	0
	Joint Spacing	ng Refer Figure 1						L				
3	Rating			25						0		
4	Joint Condition Including Groundwater		Refer Table 1									
	Rating			40						0		

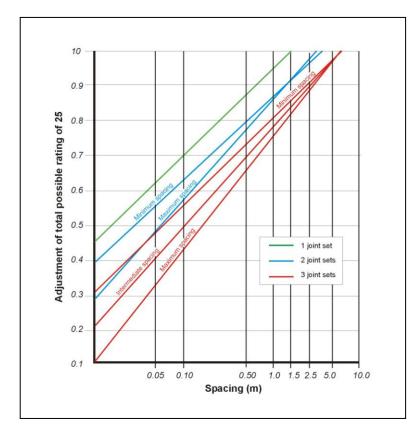


Figure 1 Graph for determination of joint spacing rating

Table 1 Adjustments for Joint Condition and Groundwater

	Description			D	Wet Conditions			
Parameter				Dry Condition	Moist	Moderate pressure 25-125 1/mm	Severe Pressure >125 1/min	
	Wavy	Multi-[Directional	100	100	100	95	
A Joint Expression (large scale		Uni-Di	rectional	95 90	95 90	90 85	80 75	
irregularities)	Curved			89 80	85 75	80 70	70 60	
	Straight			79 70	74 65	60	40	
B Joint	Very rou	ıgh		100	100	95	90	
Expression (small scale	Striated	Striated or rough			99 85	80	70	
irregularities or roughness	Smooth			84 60 59	80 55 50	60	50	
	Polishec	Polished			40	30	20	
	Stronger than wall rock			100	100	100	100	
C Joint Wall Alteration	No altera	ation		100	100	100	100	
Zone	Weaker than wall rock			75	70	65	60	
	No fill – surface staining only			100	100	100	100	
L	Non softening		Coarse Sheared	95	90	70	50	
	and she material (clay or		Medium Sheared	90	85	65	45	
D	free		Fine Sheared	85	80	60	40	
Joint	Soft		Coarse Sheared	70	65	40	20	
Filling	sheared material	material	Medium Sheared	65	60	35	15	
	(eg talc)		Fine Sheared	60	55	30	10	
		Gouge thickness <amplitude irregularity<="" of="" td=""><td>40</td><td>30</td><td>10</td><td></td></amplitude>		40	30	10		
		ge thickness plitude of irregularity		20	10	Flowing	g material 5	

Rate of weathering and adjustments (%)								
Description of weathering extent	6 months	1 year	2 years	3 years	4 + years			
Fresh	100	100	100	100	100			
Slightly	88	90	92	94	96			
Moderately	82	84	86	88	90			
Highly	70	72	74	76	78			
Completely	54	56	58	60	62			
Residual soil	30	32	34	36	38			

Table 2 Weathering Adjustment (Laubscher 1993)

Table 3 Adjustments to MRMR due to joint orientation (Laubscher 1993)

Number of joints	Adjustment (%) Number of faces inclined away from the vertical						
defining the block							
	70	75	80	85	90		
3	3	-	2	-	-		
4	4	3	-	2	-		
5	5	4	3	2	1		
6	6	5	4	3	2 or 1		

Table 4 Adjustments for Blasting Effects (Laubscher 1993)

Excavation Technique	Adjustment (%)
Boring	100
Smooth wall blasting	97
Good conventional blasting	94
Poor blasting	80

Rock Type	Parameter	Measurement	Rating
		Description	
Granitic Gneiss	RQD	90%	14
	UCS	189MPa	19
	Js	Joints spaced maximum 0.6m apart ; 3	18
		joint sets	
	Jcw	Curved ; Striated – rough ; Moist ; No	23
		alteration ; Non softening sheared	
		material – medium sheared	
		(40 * 0.8 *0 .85 * 1.0 * 0.85)	
	MRMR		74
	Weathering	Fresh	1
	Jo	5 joints defining the block ; 1 face	0.9
		inclined away from the vertical	
	Stress	Surface mining – Concave pit	1
	Blasting	Good conventional blasting	0.94
Granitic Gneiss	Adjusted		63
	MRMR		
Kimberlite	RQD	78%	12
	UCS	113MPa	12
	Js	Joints spaced maximum 0.4m apart ; 3	16
		joint sets	
	Jcw	Curved ; Smooth ; Moist ; No alteration	16
		; Soft sheared material – coarse	
		sheared (40 * 0.75 * 0.80 * 1.0 * 0.65)	
	MRMR		56
	Weathering	Highly weathered in 6 months	0.7
	Jo	5 joints defining the block ; 1 face	0.9
		inclined away from the vertical	
	Stress	Surface mining – Concave pit	1
	Blasting	Good conventional blasting	0.94
Kimberlite	Adjusted		33
	MRMR		

Rock Type	Parameter	Measurement	Rating
		Description	
Kimberlite Breccia	RQD	82%	13
	UCS	78MPa	8
	Js	Joints spaced maximum 0.4m apart ; 3	16
		joint sets	
	Jcw	Curved ; Smooth ; Moist ; No alteration	16
		; Soft sheared material – coarse	
		sheared (40 * 0.75 * 0.80 * 1.0 * 0.65)	
	MRMR		53
	Weathering	Highly weathered in 6 months	0.7
	Jo	5 joints defining the block ; 1 face	0.9
		inclined away from the vertical	
	Stress	Surface mining – Concave pit	1
	Blasting	Good conventional blasting	0.94
Kimberlite Breccia	Adjusted		31
	MRMR		
Dolerite Dyke	RQD	72%	11
	UCS	211MPa	20
	Js	Joints spaced maximum 0.3m apart ; 3	13
		joint sets	
	Jcw	Curved ; Smooth ; Moist ; No alteration	14
		; Soft sheared material – medium	
		sheared (40 * 0.75 * 0.80 * 1.0 * 0.60)	
	MRMR		58
	Weathering	Fresh	1
	Jo	5 joints defining the block ; 1 face	0.9
		inclined away from the vertical	
	Stress	Surface mining – Concave pit	1
	Blasting	Good conventional blasting	0.94
Dolerite Dyke	Adjusted		49
	MRMR		