Literature Cited

Adams D 1999. Methods for shape analysis of landmark data from articulated surfaces. Evolutionary Ecology Research 1:959-970.

Adebajo AO, Cooper C, and Grimley Evans J. 1990. Fractures of the hip and distal forearm in West Africa and the United Kingdom. Age and Ageing 20:435-438.

Albanese J, Cardoso HFV, and Saunders SR. 2005. Universal methodology for developing univariate sample-specific sex determination methods: an example using the epicondylar breadth of the humerus. J Archaeol Sci 32:143-152.

Aldridge S. 2005. Black women have lower fracture risk than whites with same bone density. J of Am Med Assoc 293:2102-2108.

Allen JC, Bruce MF, and MacLaughlin. 1987. Sex determination from the radius in humans. Hum Ev 2:373-378.

Aloia JF, Vaswani A, Ellis K, Yuen K, and Cohn SH. 1985. A model for involutional bone loss. J Lab Clin Med 106:630-636.

Amis AA, Miller JH, Dowson D, and Wright V. 1989. Axial forces in the forearm: their relationship to excision of the head of the radius. In: Stokes IAF, editor. Mechanical Factors and the Skeleton. London: John Libbey. p 29-37.

Anderson JY and Trinkaus E. 1998. Patterns of sexual, bilateral and interpopulational variation in human femoral neck-shaft angles. J Anat 192:279-285.

Angel JL, Kelley JO, Parrington M, and Pinter S. 1987. Life stresses of the free black community as represented by the First African Baptist Church, Philadelphia 1823-1841. Am J of Phys Anthro 74:213-229.

Asala SA, Mbajiorgu FE, and Papandro BA. 1998. A comparative study of femoral head diameters and sex differentiation in Nigerians. Acta Anatomica 162:232-237.

Asala SA. 2001. Sex determination from the head of the femur of South African whites and blacks. Forensic Sci Int 117:15-22.

Aspray TJ, Prentice A, Cole TJ, Sawo Y, Reeve J, and Francis RM. 1996. Low bone mineral content is common but osteoporotic fractures are rare in elderly rural Bambian women. J Bone Miner Res 11:1019-1025.

Aufderheide AC and Rodriguez-Martin C. 1998. The Cambridge Encyclopedia of Human Paleopathology. Cambridge UK: Cambridge University Press.

Bass W. 1995. Human Osteology: A Laboratory and Field Manual. Columbia, MO: Missouri Archaeological Society.

Beck TJ, Ruff CB, Warden KE, Scott WW Jr, and Rao GU. 1990. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6-18.

Beck TJ, Ruff CB, Scott WW Jr, Plato CC, Tobin JD, and Quan CA. 1992. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 50:24-29.

Beck TJ, Looker AC, Ruff CB, Sievanen H, and Wahner HW. 2000. Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy x-ray absorptiometry data. J of Bone and Mineral Research 15:2304.

Bidmos M. 2006. Adult stature reconstruction from the calcaneus of South Africans of European descent. J Clin Forensic Med 13:247-252.

Bilezikian JP. 1999. Osteoporosis in Men. J of Clin Endocrin and Met 84:3431-3434.

Bonjour JP, Theintz G, Buchs B, Slosman D, and Rizzoli R. 1991. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J of Clin Endocrin and Metab 73:555-563.

Bookstein FL. 1982. Foundations of morphometrics. Annu Rev Ecol Syst 13:451-470.

Bookstein FL. 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181-242.

Bookstein FL. 1990. Introduction to Methods for Landmark Data. In: Rohlf FJ and Bookstein FL, editors. Proceedings of the Michigan Morphometrics Workshop. Ann Arbor, Michigan: University of Michigan Museum of Zoology. p 215-225.

Bookstein FL. 1991. Morphometric tools for landmark data. New York: Cambridge University Press.

Bookstein FL. 1996. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1:225-243.

Borgognini Tarli SM and Repetto E. 1986. Methodological Considerations on the Study of Sexual Dimorphism in Past Human Populations. Human Evolution 1:51-66.

Bruzek J and Soustal K. 1984. Contribution to ontogenesis of the human bony pelvis. Acta Univ Carol Biol 12:37-45.

Buckberry JL and Chamberlain A. 2002. Age estimation from the auricular surface of the ilium: a revised method. Am J of Phys Anthrop 119:231-239.

Burr DB and Martin RB. 1983. The effects of composition, structure and age on the torsional properties of the human radius. J Biomechanics 16:603-608.

Bushang PH, Baume RM, and Nass GG. 1983. A craniofacial growth maturity gradient for males and females between 4 and 16 years of age. Am J of Phys Anthrop 61:373-381.

Bushang PH, Tanguay R, Demirjian A, La Palme L, and Goldstein H. 1986. Sexual dimorphism in mandibular growth of French-Canadian children 6 to 10 years of age. Am J of Phys Anthrop 71:33-37.

Butler V. 2000. Lab Methods in Archaeology. Portland: Portland State University.

Camacho FJF, Pellico LG, and Rodriguez RF. 1993. Osteometry of the Human Iliac Crest: Patterns of Normality and Its Utility in Sexing Human Remains. J of Forensic Sci 38:779-787.

Cameron N, Tobias PV, Fraser WJ, and Nagdee M. 1989. Search for secular trends in calvarial diameters, cranial base height, indices, and capacity in South African Negro crania. Am J of Hum Biol 2:53-61.

Case DT and Ross AH. 2007. Sex determination from hand and foot bone lengths. J of Forensic Sci 52:264-270.

Chavassieux P, Seeman E, and Delmas PD. 2007. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28:151-164.

Chesnut III CH. 1993. Bone mass and exercise. The American Journal of Medicine 95:34s-36s.

Coats B and Margulies SS. 2006. Material properties of human infant skull and suture at high rates. J Neurotrauma 23:1222-1232.

Coleman WH. 1969. Sex differences in the growth of the human bony pelvis. Am J of Phys Anthrop 31:125-152.

Compston JE, Vedi S, Kaptoge S, and Seeman E. 2007. Bone remodeling rate and remodeling balance are not co-regulated in adulthood: implications for the use of activation frequency as an index of remodeling rate. J Bone Miner Res 22:1031-1036.

Cronk B. 1999. How to Use SPSS: A step-by-step Guide to Analysis and Interpretation. Los Angeles, CA: Pyrczak Publishing.

Cummings SR, Kelsey JL, Nevitt MC, and O'Dowd KJ. 1985. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiologic Reviews 7:178-208.

Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Genant HK, Mascioli SR, Scott JC, Seeley DG, Steiger P, and Vogt TM. 1990. Appendicular bone density and age predict hip fracture in women. JAMA 263:665-668.

Cummings SR and Black D. 1995. Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J of Med 98:24s-28s.

Cummings SR, Palermo L, Browner W, Marcus R, Wallace R, Pearson J, Blackwell T, Eckert S, and Black D. 2000. Monitoring Osteoporosis Therapy With Bone Densitometry. JAMA 283:1318-1321.

Daniell HW. 1997. Osteoporosis after orchiectomy for prostate cancer. American Urological Association, Inc 157:439-444.

De Villiers H. 1968. The Skull of the South African Negro. Johannesburg: Witwaterstrand University Press.

Deakins M and Burt RL. 1944. The deposition of calcium, phosphorus, and carbon dioxide in calcifying dental enamel. Harvard School Laboratory of Dental Medicine77-83.

Devine A, Dhaliwal SS, Dick IM, Bollerslev J, and Prince RL. 2004. Physical activity and calcium consumption are important determinants of lower limb bone mass in older women. J Bone Miner Res 19:1634-1639.

Dibennardo R and Taylor JV. 1982. Classification and misclassification in sexing the black femur by discriminant function analysis. American J Phys Anthrop 58:145-151.

Dibennardo R and Taylor JV. 1983. Multiple Discriminant Function Analysis of sex and race in the postcranial skeleton. American Journal of Physical Anthropology 61:305-314.

Dickenson RP, **Hutton WC**, **and Stott JRR**. 1981. The mechanical properties of bone in osteoporosis. Journal of Bone and Joint Surgery 63-B:233-238.

Donlon DA. 2000. The value of infracranial nonmetric variation in studies of modern Homo sapiens: an Australian focus. Am J of Phys Anthrop 113:349-368.

Eastell R, Boyle IT, Ralston S, Compston J, Cooper C, Fogelman I, Francis RM, Hosking DJ, Purdie DW, Reeve J, Reid DM, Russell RGG, and Stevenson JC. 1998. Management of Male Osteoporosis: Report of the UK Consensus Group. Q J Med 91:71-92.

Ebeling PR, Erbas B, Hopper JL, Wark JD, and Rubinfeld AR. 1998. Bone mineral density and bone turnover in asthmatics treated with long-term inhaled or oral glucocorticoids. J of Bone and Mineral Research 13:1289.

Epker BN, Kelin M, and Frost HM. 1965. Magnitude and location of cortical bone loss in the human rib with aging. Clin Orthop Relat Res 41:198-203.

Ericksen MF. 1976. Cortical bone loss with age in three Native American Populations. American Journal of Physical Anthropology 45:443-452.

Evans F. 1976. Age changes in mechanical properties and histology of human compact bone. Yearbook of Physical Anthropology 20:57-72.

Evans F. 1976. Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1-11.

Evers SE, Orchard JW, and Haddad RG. 1985. Bone density in postmenopausal North American Indian and Caucasian females. Unknown journal 57:719-726.

Ferson S, Rohlf FJ, and Koehn RK. 1985. Measuring shape variation of two-dimensional outlines. Syst Zool 34:59-68.

Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, and Crowley Jr.WF. 1987. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Annals of Internal Medicine 106:354-361.

France DL. 1998. Osteometry and muscle origin and insertion in sex determination. Am J Phys Anthrop 76:515-526.

Franklin D, Freedman L, Milne N and Oxnard CE. 2006. A geometric morphometric study of sexual dimorphism in indigenous southern African crania. South African Journal of Science 102, 5-6: 229-238.

Frost HM. 1963. Osteoporoses: Their Nature and Pathogeneses. JMSMS278-282.

Fuss FK. 1991. The ulnar collateral ligament of the human elbow joint. J Anat 175:203-212.

Garn SM, Rohmann CG, and Blumenthal T. 1966. Ossification sequence polymorphism and sexual dimorphism in skeletal development. Am J Phys Anthrop 24:101-115.

Garn SM, Rohmann CG, Wagner B, Davila GH, and Ascoli W. 1969. Population similarities in the onset and rate of adult endosteal bone loss. Clinical Orthopaedics and Related Research 65:51-60.

Garn SM. 1970. The earlier gain and the later loss of cortical bone in nutritional perspective. Springfield, IL: Charles C. Thomas.

Garn SM. 1972. The course of bone gain and the phases of bone loss. Orthopedic Clinics of North America 3:503-521.

Garnero P and Delmas PD. 1998. Biochemical markers of bone turnover. Osteoporosis 27:303-323.

Genant HK, Delmas PD, Chen P, Jiang Y, Eriksen EF, Dalsky GP, Marcus R, ann San MJ. 2007. Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporosis International 18:69-76.

Georgia R, Albu E, Sicoe M, and Georoceanu M. 1982. Comparative aspects of the density and diameter of haversian canals in the diaphyseal compact bone of man and dog. Morphology, Embryology, Physiology 28:11-14.

Georgopoulos NA, Markou KB, Theodoropoulou A, Vagenakis GA, Benardot D, Leglise M, Dimopoulos JCA, and Vagenakis AG. 2001. Height velocity and skeletal maturation in elite female rhythmic gymnasts. J of Clin Endocrin and Metab 86:5159-5164.

Giles E and Klepinger LL. 1998. Confidence intervals for estimates based on linear regression in forensic anthropology. JFS 33:1218-1222.

Goldberg CS, Antonyshyn O, Midha R, and Fialkov JA. 2005. Measuring pulsatile forces on the human cranium. J Craniofac Surg 16:134-139.

Gotfredsen A, Hadberg A, Nilas L, and Christiansen C. 1987. Total body bone mineral in healthy adults. J Lab Clin Med 110:362-368.

Grabiner MD. 1989. The elbow and radioulnar joints. London: Lea and Febiger.

Grasswick LJ and Bradford JMW. 2003. Osteoporosis associated with the treatment of paraphilias: a clinical review of seven case reports. J of Forensic Sci 48:1-7.

Grynpas M. 1993. Age and disease-related changes in the mineral of bone. Calcif Tissue Int 53:S57-S64.

Haglund WD and Sorg MH. 1997. Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton, Florida: CRC Press LLC.

Han Z-H, Palnitkar S, Sudhaker D, Nelson D, and Parfitt AM. 1997. Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 12:498-508.

Harper AB, Laughlin WS, and Mazess RB. 1984. Bone mineral content in St. Lawrence Island Eskimos. Human Biology 56:63-77.

Heaney RP, Gallagher JC, Johnston CC, Near R, Parfitt AM, and Whedon GD. 1982. Calcium nutrition and bone health in the elderly. The Am J of Clinical Nutrition 36:986-1013.

Heaney RP, Avioli LV, Chesnut III CH, Lappe J, Recker RR, and Brandenburger GH. 1989. Osteoporotic bone fragility. JAMA 1989:20-2986.

Henneberg M and van den Berg ER. 1990. Test of socioeconomic causation of secular trend: stature changes among favored and oppressed South Africans are parallel. Am J of Phys Anthrop 83:459-465.

Henneberg M and George BJ. 1993. Possible secular trend in the incidence of an anatomical variant: Median artery of the forearm. Am J of Phys Anthrop 96:329-334.

Henneberg M and Louw GJ. 1997. Lack of secular trend in adult stature in white South African males born between 1954 and 1975. Homo 48:54-61.

Hennessy RJ and Stringer CB. 2002. Geometric morphometric study of the regional variation of modern human craniofacial form. Am J of Physical Anthropology 117:37-48.

Herd RJM, Ramalingham T, RP, Fogelman I, and Blake GM. 1992. Measurements of broadband ultrasonic attenuation in the calcaneus in premenopausal and post-menopausal women. Osteoporosis International 2:247-251.

Herrin Communications Group BP. 2001. American Association of clinical endocrinologists 2001 medical guidelines for clinical practice for the prevention and management of postmenopausal osteoporosis. Endocrine Practice 7:294-312.

Holliday TW and Falsetti AB. 1999. A new method for discriminating African-American from European-American skeletons using postcranial osteometrics reflective of body shape. JFS 44:926-930.

Holman DJ and Bennet KA. 1991. Determination of sex from arm bone measurements. American J Phys Anthrop 84:421-426.

Hoppa RD. 1992. Evaluating human skeletal growth: an Anglo-Saxon example. Int J Osteoarch 2:275-288.

Hui SL, Johnston CC, and MR. 1985. Bone mass in normal children and young adults. Growth 49:34-43.

Humphrey LT. 1998. Growth patterns in the modern human skeleton. Am J of Phys Anthrop 105:57-72.

Hurxthal LM, Vose GP, and Dotter WE. 1969. Densitometric and visual observations of spinal radiographs. Geriatrics93-106.

Imrie JA and Wyburn GM. 1958. Assessment of age, sex, and height from immature human bones. British Medical Journal January 18:128-131.

Inman VT, Saunders JB, DeC M, and Abbott LC. 1944. Observations on the function of the shoulder joint. The Journal of Bone and Joint Surgery 26:1-30.

Introna Jr F, Di Vella G, and Campobasso CP. 1998. Sex determination by discriminant analysis of patella measurements. Forensic Sci Int 95:39-45.

Iscan MY, Loth SR, and Wright R. 1985. Age estimation from the rib by phase analysis: white females. J of Forensic Sci 30:853-863.

Jantz RL, Hunt DR, and Meadows L. 1994. Maximum length of the tibia: how did Trotter measure it? American J Phys Anthrop 93:525-528.

Jantz RL. 2001. Cranial change in Americans: 1850-1975. J Forensic Sci 46:784-787.

Jee WSS, Park HZ, Roberts WE, and Kenner GH. 1970. Corticosteroid and bone. Am J Anat 129:477-480.

Jeffery N and Spoor F. 2001. Brain size and the human cranial base: A prenatal perspective. Am J Phys Anthrop 118:324-340.

Jowsey J. 1960. Age changes in human bone. Clin Orthop 17:217.

Kanis JA and McCloskey EV. 1993. Epidemiology of vertebral osteoporosis. Bone 13:S1-S10.

Katzmarzyk PT and Leonard WR. 1998. Climatic influences on human body size and proportions: ecological adaptations and secular trends. Am J of Phys Anthrop 106:483-503.

Kelly PJ, Eisman JA, and Sambrook PH. 1990. Interaction of genetic and environmental influences on peak bone density. Osteoporosis International 1:56-60.

Kendall DG. 1981. The statistics of shape. In: Barnet V, editor. Interpreting Multivariate Data. New York: Wiey-Liss. p 75-80.

Kendall M and Stuart A. 1979. The Advance Theory of Statistics. London: Griffin Publishers.

Kennedy KAR. 1995. But professor, why teach race identification if races don't exist? JFS 40:797-800.

Kieser JA, Cameron N, and Groeneveld HT. 1987. Evidence for a secular trend in the Negro dentition. Annals of Human Biology 14:517-532.

King CA, Iscan MY, and Loth SR. 1998. Metric and comparative analysis of sexual dimorphism in the Thai femur. J Forensic Sci 43:954-958.

Klepinger LL. 2001. Stature, maturation variation and secular trends in forensic anthropology. J Forensic Sci 46:788-790.

Kolbe-Alexander TL, Charlton KE, and Lambert E. 2004. Lifetime physical activity and determinants of estimated bone mineral density using calcaneal ultrasound in older South African adults. J Nutr Health Aging 8:521-530.

Kriewall TJ. 1982. Structural, mechanical, and material properties of fetal cranial bone. Am J Obstet Gynecol 143:707-714.

Krogman WM. 1962. The Human Skeleton in Forensic Medicine. Springfield, Illinois: Thomas Press.

L'Abbé EN, Loots M, and Mering JH. 2005. The Pretoria bone collection: A modern South African skeletal sample. Homo 56:197-205.

Lee S, Kim Y, Jo Y, Seo J, and Chi J. 1996. Prenatal development of cranial base in normal Korean fetuses. The Anatomical Record 246:524-534.

Leiel Y, Edwards J, Shary J, Spicer KM, Gordon L, and Bell NH. 1988. The effects of race and body habitus on bone mineral density of the radius, hip and spine in premenopausal women. J of Clin Endocrin and Met1247-1250.

Levine E. 1972. Carpal fusions in children of four South African populations. Am J of Phys Anthrop 37:75-83.

Linday R, MacLean A, Kraszewski A, Hart DM, Clark AC, and Garwood J. 1978. Bone response to termination of estrogen treatment. The Lancet June:1325-1327.

Looker AC, Bauer DC, Chesnut II CH, Gundberg CM, Hochberg MC, Klee G, Kleerekoper M, Watts NB, and Bell NH. 2000. Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporosis International 11:480.

Loth SR and Henneberg M. 1996. Mandibular ramus flexure: a new morphologic indicator of sexual dimorphism in the human skeleton. Am J Phys Anthrop 99:473-485.

Loth SR and Henneberg M. 2001. Sexually dimorphic mandibular morphology in the first few years of life. Am J of Phys Anthrop 115:179-186.

Loy A, Boglion C, and Cataudella S. 1999. Geometric morphometrics and morphoanatomy: a combined tool in the study of sea bream (*Sparus aurata*, sparidae) shape. J Appl Icthyol 15:110.

Maalouf G, Gannage-Yared MH, Alrawi Z, Ezzedine J, Larijani B, Badawi S, Rached A, Zakroui L, Masri B, Azar E, Saba E, Nammari R, Adib G, Abou Samra H, Salman S, El Muntasser K, Tarseen R, El Kharousi W, Al-Lamki M, Alothman AN, Almarzook N, El Dessouki M, Sulaimani R, Saleh J, Suhaili AR, Khan A, Delmas P, and Seeman E. 2007. Middle East and North Africa consensus on osteoporosis. J Musculoskelet Neuronal Interact 7:131-143.

Macho GA. 1990. Is sexual dimorphism in the femur a "population specific phenomenon"? Z Morph Anthrop 78:229-242.

Malina RM. 1979. Secular changes in size and maturity: causes and effects. Mon Soc Res Child Devl 179:59-120.

Malina RM and Zavalet AN. 1980. Secular trend in the stature and weight of Mexican-American children in Texas between 1930 and 1970. Am J of Phys Anthrop 52:453-461.

Mall G, Hubig M, Buttner A, Kuznik J, Penning R, and Graw M. 2001. Sex determination and estimation of stature from the long bones of the arm. Forensic Sci Int 117:23-30.

Manning PJ, Evans MC, and Reid IR. 1992. Normal bone mineral density following cure of Cushing's Syndrome. Clinical Endocrinology 36:229-234.

Marcus LF, Hingst-Zaher, and Zaher H. 2000. Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix 11:27-47.

Margulies SS and Thibault KL. 2000. Infant skull and suture properties: Measurements and implications of mechanisms of pediatric brain injury. J Biomech Eng 122:364-371.

Martin RB and Atkinson PJ. 1977. Age and sex-related changes in the structure and strength of the human femoral shaft. J Biometrics 10:223-231.

Martin RB, Burr DB, and Schaffler MB. 1985. Effects of age and sex on the amount and distribution of mineral in Eskimo tibiae. American J Phys Anthrop 67:371-380.

Matkovic V, Fontana D, Tominac C, Goel P, and Chesnut III CH. 1990. Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 52:878-888.

McCormick WF and Stewart JH. 1983. Ossification patterns of costal cartilages as an indicator of sex. Arch Pathol Lab Med 107:206-210.

McVeigh JA, Norris SA, Cameron N, and Pettifor JM. 2004. Associations between physical activity and bone mass in black and white South African children at age 9 yr. J Appl Physiol 97:1006-1012.

Meindl RS, Lovejoy CO, Mensforth RP, and Don Carlos L. 1985. Accuracy and direction of error in the sexing of the skeleton: implications for paleodemography. American J Phys Anthrop 68:79-85.

Merchan VL and Ubelaker DH. 1977. Skeletal growth of the protohistoric Arikara. Am J of Phys Anthrop 46:61-72.

Meuller KH, Trias A, and Ray RD. 1966. Bone density and composition: age-related and pathological changes in water and mineral content. Journal of Bone and Joint Surgery 48:140-148.

Micklesfield L, Rosenberg L, Cooper D, Hoffman M, Kalla A, Stander I, and Lambert E. 2003. Bone mineral density and lifetime physical activity in South African women. Calcif Tissue Int 73:463-469.

Miles AE and Bulman JS. 1995. Growth curves of immature bones from a Scottish island population of sixteenth to mid-nineteenth century: shoulder, girdle, ilium, pubis and ischium. Int J Osteoarch 5:15-27.

Miller KWP, Walker PL, and O'Halloran RL. 1998. Age and sex-related variation in hyoid bone morphology. J of Forensic Sci 43:1138-1143.

Moerman ML. A longitudinal study of growth in relation to body size and sexual dimorphism in the pelvis. 1981. University of Michigan. Ref Type: Thesis/Dissertation

Moerman ML. 1982. Sex differences in adolescent growth of the human pelvis. Am J of Phys Anthrop 57:211-217.

Moerman ML. 1982. Growth of the birth canal in adolescent girls. Am J Obstet Gynecol 143:58-532.

Moerman ML. 1992. Adolescent growth and maturation of the human acetabulum. Am J of Phys Anthropol Suppl 14:106-107.

Molleson T, Cruse K, and Mays S. 1998. Some sexually dimorphic features of the human juvenile skull and their value in sex determination in immature juvenile remains. J of Archaeological Science 25:719-728.

Moore-Jansen PM, Ousley SD, and Jantz RL. 1994. Data Collection Procedures for Forensic Skeletal Material. Knoxville: Department of Anthropology, Knoxville: University of Tennessee.

Navani S, Shah JR, and Levy PS. 1970. Determination of sex by costal cartilage calcification. Harvard J of Preventive Medicine 108:771-774.

Nelson DA, Pettifor JM, Barondess DA, Cody DD, Uusi-Rasi K, and Beck TJ. 2004. Comparison of cross-sectional geometry of the proximal femur in white and black women from Detroit and Johannesburg. J Bone Miner Res 19:560-565.

Newman KJ and Meredith HV. 1956. Individual growth in skeletal bigonial diameter during the childhood period from 5 to 11 years of age. Am J Anat 99:157-187.

Nilas L, Gotfredsen A, Hadberg A, and Christiansen C. 1988. Age-related bone loss in women evaluated by the single and dual photon technique. Bone and Mineral 4:95-103.

Nordin BEC. 1966. International patterns of Osteoporosis. Clinical Orthopaedics and Related Research 45:17-30.

Onat T and Iseri H. 1995. Rate of skeletal maturation in relation to secondary sexual development during female adolescence. Am J of Hum Biol 7:751-755.

Ortner DJ. 1975. Aging effects on osteons remodeling. Calif Tiss Res 18:27-36.

Orwoll ES, Bauer DC, Vogt TM, and Fox KM. 1996. Axial bone mass in older women. Annals of Internal Medicine 124:187-196.

Ozer I, Katayama K, Sahgir M, and Güleç E. 2006. Sex determination using the scapula in medieval skeletons from East Anatolia. Coll Anthropol 30:415-419.

Parfitt AM. 1997. Genetic effects on bone mass and turnover-relevance to black/ white differences. J Am Coll Nutr 16:333.

Patriquin M, Steyn M, and Loth SR. 2002. Metric assessment of race from the pelvis in South Africans. Forensic Sci Int 127:104-113.

Patriquin M, Loth SR, and Steyn M. 2003. Sexually dimorphic pelvic morphology in South African whites and blacks. Homo 53:255-262.

Patriquin M, Steyn M, and Loth SR. 2005. Metric analysis of sex differences in South African black and white pelves. Forensic Sci Int 147:119-127.

Peterson J and Dechow PC. 2002. Material properties of the inner and outer cortical tables of the human parietal bone. Anat Rec 268:7-15.

Peterson J and Dechow PC. 2003. Material properties of the human cranial vault and zygoma. Anat Rec A Discov Mol Cell Evol Biol 274:785-797.

Pfeiffer S and Zehr M. 1996. A morphological and histological study of the human humerus from Border Cave. J Hum Evol 31:49-59.

Phenice TW. 1969. A newly developed visual method of sexing the os pubis. Am J of Phys Anthro 30:297-302.

Pollitzer WS and Anderson JB. 1989. Ethnic and genetic differences in bone mass: a review with a hereditary vs. environmental perspective. Am J Clin Nutr 50:1244-1259.

Pons J. 1955. The sexual diagnosis of isolated bones of the skeleton. Human Biology 27:12-21.

Pretorius E and Scholtz CH. 2001. Geometric morphometrics and the analysis of higher taxa: a case study based on the metendosternite of the Scarabaeoidea (Coleoptera). Biol J Linn Soc 74:35-50.

Pretorius E and Steyn M. 2005. Geometric morphometric analysis of mandibular ramus flexure. Am J Phys Anthrop 128:623-629.

Pretorius E, Steyn M, and Scholtz Y. 2006. An investigation into the usability of geometric morphometric analysis in assessment of sexual dimorphism. American J Phys Anthrop.

Purkait R and Chandra H. 2004. A study of sexual variation in Indian femur. Forensic Sci Int 146:25-33.

Recker RR, Davies KM, Heaney RP, Hinders SM, Stegman MR, and Kinnel DB. 1992. Bone gain in young adult women. JAMA 268:2403-2408.

Reynolds EL. 1945. the bony pelvic girdle in early infancy. A roentgenometric study. Am J of Phys Anthrop 3:321-354.

Reynolds EL. 1947. The bony pelvis in prepuberal childhood. Am J of Phys Anthrop 5:165-200.

Richman EA, Michel ME, Schulter-Ellis FP, and Corrunccini RS. 1979. Determination of sex by discriminant function analysis of postcranial skeletal measurements. J Forensic Sci 24:159-163.

Richtsmeier JT, DeLeon VB, and Lele SR. 2002. The promise of geometric morphometrics. Yearbook of Physical Anthropology 45:63-91.

Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, and Melton III LJ. 1982. Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest 70:716-723.

Rissech C and Malgosa A. 1997. Sex prediction by discriminant functions with central portion measures of innominate bones. Homo 48:22-32.

Robling AG and Stout SD. 2000. Histomorphometry of human cortical bone: applications to age estimation. In: Katzenberg A and Saunders S, editors. Biological Anthropology of the Human Skeleton. New York: Wiley-Liss, Inc. p 187-213.

Roche AF and Davila GH. 1972. Late adolescent growth in stature. Pediatrics 50:874-880.

Rogers SL. 1982. The Aging Skeleton: Aspects of Human Bone Involution. Charles C. Thomas Publishers Ltd.

Rogers TL. 1999. A visual method of determining the sex of skeletal remains using the distal humerus. J Forensic Sci 44:57-60.

Rohlf FJ and Marcus LF. 1993. A revolution in morphometrics. Trends in Ecological Evolution 8:129-132.

Rohlf FJ. 2000. On the use of shape spaces to compare morphometric methods. Hystrix Ital J Mammol 11:9-25.

Rohlf FJ. 2000. Statistical power comparisons among alternative morphometric methods. Am J Phys Anthrop 111:463-478.

Rohlf FJ. 2003. Bias and error in estimates of mean shape in geometric morphometrics. J Hum Evol 44:665-683.

Rohlf FJ, Ferson S, and Koehn RK. 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology 34:59-68.

Ross AH, McKewon AH, and Konigsberg LW. 1999. Allocation of crania to groups via the "new morphometry". JFS 44:584-587.

Ross RW and Small EJ. 2002. Osteoporosis in Men Treated with Androgen Deprivation Therapy for Prostate Cancer. The Journal of Urology 167:1952-1956.

Rother VP, Hunger H, Leopold D, Kropf G, and Kruger G. 1977. The determination of age and sex from measures of the humerus. Anat Anz 142:243-254.

Ruff CB and Hayes WC. 1982. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945-948.

Ruff CB. 1987. Sexual dimorphism in human lower limb bone structure: relationship to subsistence strategy and sexual division of labor. J Hum Evol 16:391-416.

Ruff CB, Holt B, and Trinkaus E. 2006. Who's afraid of the big bad Wolff?: "Wolff's law" and bone functional adaptation. Am J of Phys Anthrop 129:484-498.

Sakaue K. 2004. Sexual determination of long bones in recent Japanese. Anthrop Sci 112:75-81.

Scheuer L and Black S. 2004. The Juvenile Skeleton. New York: Elsevier Academic Press.

Schnitzler CM, Pettifor JM, Mesquita JM, Bird MDT, Schnaid E, and Smith AE. 1990. Histomorphometry of iliac breast bone in 346 normal black and white South African adults. Bone Miner 10:199.

Schnitzler CM. 1993. Bone quality: A determinant for certain risk factors for bone fragility. Calcif Tissue Int 53:S27-S31.

Schnitzler CM and Mequita JM. 1998. Bone marrow composition and bone microarchitecture and turnover in blacks and whites. J Bone Miner Res 13:1300-1307.

Scholtz Y. A geometric morphometric study into the ontogeny and sexual dimorphism of the human scapula. 22-24. 2006. University of Pretoria, Department of Anatomy.

Ref Type: Thesis/Dissertation

Schutkowski H. 1987. Sex determination of fetal and neonatal skeletons by means of discriminant analysis. International Journal of Anthropology 2:347-352.

Schutkowski H. 1993. Sex determination of infant and juvenile skeletons: 1. Morphognostic features. Am J of Phys Anthrop 90:205.

Scientific Advisory Board NOF. 1988. Clinical Indications for Bone Mass Measurements. National Osteoporosis Foundation Scientific Advisory Report, submitted to the Health Care Financing Administration November 4:1-28.

Scientific Advisory Board OSoC. 1996. Clinical practice guidelines for the diagnosis and management of osteoporosis. J of Canadian Medical Association 155:1113-1133.

Seeman E. 2003. Periosteal bone formation- a neglected determinant of bone strength. The New England J of Med 349:320-323.

Seeman E. 2003. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrin and Met Clin of North Am 32:25-38.

Sheets HD 2001. IMP software series. Buffalo, NY, Canisius College.

Siegel AF and Benson RH. 1982. A robust comparison of biological shapes. Biometrics 38:341-350.

Simmons DJ. 1985. Options for Bone Aging With the Microscope. Yearbook of Physical Anthropology 28:249-263.

Singer R and Kimura K. 1981. Body height, weight, and skeletal maturation in Hottentot (Khoikhoi) children. Am J of Phys Anthrop 54:401-413.

Skedros JG, Hunt KJ, and Bloebaum RD. 2004. Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus. J Morphol 259:281-307.

Slice DE, Bookstein FL, Marcus LF, and Rohlf FJ. A glossary for Geometric Morphometrics. http://life.bio.sunysb.edu/morph/ . 2005. Ref Type: Electronic Citation

Slitor J. 1987. Statistics by Steps. Ginn Press.

Smith RW and Walker RR. 1964. Femoral expansion in aging women: implications for osteoporosis and fractures. Science 145:157.

Steele DG and Bramblett CA. 1988. The Anatomy and Biology of the Human Skeleton. Texas: Texas A & M University Press.

Steiger P, Cummings SR, Black DM, Spencer NE, and Genant HK. 1992. Agerelated decrement in bone mineral density in women over 65. J of Bone and Mineral Research 7:625-632.

Stewart TD. 1954. Sex determination of the skeleton by guess and by measurement. American J Phys Anthrop 12:385-392.

Stewart TD. 1963. New developments in evaluating evidence from the skeleton. J Dent Res 42:264-273.

Steyn M and Iscan MY. 1997. Sex determination from the femur and tibia in South African whites. Forensic Sci Int 90:111-119.

Steyn M and Iscan MY. 1997. Sex determination from the femur and tibia in South African whites. Forensic Sci Int 90:111-119.

Steyn M and Iscan MY. 1998. Sexual dimorphism in the crania and mandibles of South African Whites. Forensic Sci Int 98:9-16.

Steyn M and Iscan MY. 1999. Osteometric variation in the humerus: sexual dimorphism in South Africans. Forensic Sci Int 106:77-85.

Steyn M, Pretorius E, and Hutten L. 2004. Geometric morphometric analysis of the greater sciatic notch in South Africans. Homo.

Steyn M and Smith J. 2007. Interpretation of ante-mortem stature estimates in South Africans. Forensic Sci Int 171:97-102.

Stini WA. 1969. Nutritional stress and growth: sex difference in adaptive response. Am J of Phys Anthro 31:417-426.

Sun Z, Lee E, and Herring SW. 2004. Cranial sutures and bones: growth and fusion in relation to masticatory strain. Anat Rec A Discov Mol Cell Evol Biol 276:150-161.

Susann C. 1985. Living conditions and secular trend. J Hum Evol 14:357-370.

Szulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, and Delmas PD. 2006. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporosis International 17:231-236.

Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, and Delmas PD. 2006. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856-1863.

Tagaya A. 1989. Development of a generalized discriminant function for cross-population determination of sex from long bones of the arm and leg. Can Soc Forens Sci J 22:159-175.

Taitz C. 1998. Osteophytosis of the cervical spine in South African blacks and whites. Clin Anat 12:103-109.

Takahasi H and Frost HM. 1965. Correlation between body habitus and cross-sectional area of ribs. Canadian J of Physiology and Pharmacology 43:773-781.

Tanner JM. 1962. Growth at Adolescence. Oxford: Blackwell Scientific Publications.

Tanner JM, Whitehouse RH, Marubini E, and Resele LF. 1976. The adolescent growth spurt of boys and girls of the Harpenden Growth Study. Ann Hum Biol 3:109-126.

Tanner JM. 1994. Introduction: growth in height as a mirror of the standard of living. In: Komlos J, editor. Stature, Living Standards and Economic Development. Chicago: University of Chicago Press. p 1-8.

Tarli SMB and Repetto E. 1986. Methodological considerations on the study of sexual dimorphism in past human populations. Human Evolution 1:51-66.

Thiebaud D, Krieg MA, Gillard-Berguer D, Facquet AF, Goy JJ, and Goy JJ. 1996. Cyclosporine induces high bone turnover and may contribute to bone loss after heart transplantation. European Journal of Clinical Investigation 26:549-555.

Thompson D. 1992. On Growth and Form: the complete revised edition. New York: Dover.

Thompson D. 1979. The core technique in the determination of age at death in skeletons. J of Forensic Sci902-914.

Thompson D. 1980. Age changes in bone mineralization, cortical thickness, and haversian canal area. Calcified Tissue International 31:5-11.

Tobias PV. 1975. Secular trend among southern African Negroes and San (Bushman). S Afr J Med Sci 40:145-164.

Tobias PV and Netscher D. 1977. Reversal of the secular trend, as evidenced by South African Negro crania and femora. Hum Biol 59:467-475.

Tobias PV. 1985. The negative secular trend. J Hum Evol 14:347-356.

Trotter M, Broman GE, and Peterson RR. 1960. Densities of bones of white and negro skeletons. The Journal of Bone and Joint Surgery 42-A:50-58.

Ubelaker DH and Volk CG. 2002. A test of the phenice method for the extimation of sex. J Forensic Sci 47:19-24.

Ulijaszek SJ. 1996. Seclar trends in growth: the narrowing of ethnic differences in stature. In: Making Health Work: Human Growth in Modern Japan. Berkeley, CA: University of California Press. p 16-56.

Van Dongen R. 1963. The shoulder girdle and humerus of the Australian Aborigine. Am J of Phys Anthro 21:469-487.

Vasireddy S and Swinson DR. 2001. Male osteoporosis associated with long term cyproterone treatment. The Journal of Rheumatology 28:1702-1703.

Vidulich L, Norris SA, Cameron N, and Pettifor JM. 2006. Differences in bone size and bone mass between black and white 10-year-old South African children. Osteoporosis International 17:433-440.

von Cramon-Taubadel N, Frazier BC, and Lahr MM. 2007. The problem of assessing landmark error in geometric morphometrics. Am J of Phys Anthrop 134:24-35.

Walker GF and Kowalski CJ. 1972. On the growth of the mandible. Am J of Phys Anthrop 36:111-118.

Walker JA. 2000. Ability of geometric morphometric methods to estimate a known covariance matrix. Syst Biol 49:686-696.

Walker PL. 1995. Problems of preservation and sexism in sexing: some lessons from historical collections for palaeodemographers. In: A Herring and SR Saunders, editors. Grave Reflections: Portraying the Past Through Cemetery Studies. Toronto, Canada: Canadian Scholars Press. p 31-47.

Walker PL. 2005. Greater sciatic notch morphology: sex, age, and population differences. American Journal of Physical Anthropology 127:385-391.

Wallin JA, Tkocz I, and Kristensen G. 1994. Microscopic age determination of human skeletons including an unknown but calculable variable. International Journal of Osteoarchacology 4:353-362.

Walrath DE, Turner P, and Bruzek J. 2003. Reliability test of the visual assessment of cranial traits for sex determination. Am J of Phys Anthrop 125:132-137.

Wanek VL. A qualitative analysis for sex determination in humans utilizing posterior and medial aspects of the distal humerus. 2002. Portland State University. Ref Type: Thesis/Dissertation

Washburn SL. 1948. Sex differences in the pubic bone. Am J of Phys Anthro 6:199-208

Weaver JK and Chalmers J. 1966. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content: I. Age changes in cancellous bone. J of Bone and Joint Surgery 48a:289-299.

Weaver JK and Chalmers J. 1966. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content: II. An evaluation of some methods for measuring osteoporosis. J of Bone and Joint Surgery 48a:299-308.

Weiss KM. 1972. On the systematic bias in skeletal sexing. American J Phys Anthrop 37:239-250.

Wescott DJ and Moore-Jansen PH. 2001. Metric variation in the human occipital bone: forensic anthropological applications. J o f Forensic Sciences 46:1159-1163.

White TD and Folkens PA. 2000. Human Osteology. San Diego: Academic Press.

Wiredu EK, Kumoji R, Seshadri R, and Biritwum RB. 1999. Osteometric analysis of sexual dimorphism in the sternal end of the rib in a West African population. J of Forensic Sci 44:921-925.

Woodard HQ. 1962. The elementary composition of human cortical bone. Health Physics 8:513-517.

Young B and Heath JW. 2000. Skeletal Tissues. In: Functional Histology. London: Churchill Livingstone. p 172-192.

APPENDIX A: Research Data Sheet used in data collection procedures.

RESEARCH DATA SHEET Reference Number: Age: Sex: Population: Date/ Recorder: **METRICS:** Humerus Ulna Max. Vert. Diam of Head = Max. Diam of Head = Max. Diam at Midshaft = Max. Diam At Midshaft = Epicondylar breadth = Max. Distal Diameter = Radius Femur Max. Vert. Diam of Head = Max. Diam of Head = Max. Diam at Midshaft = Max. Diam at Midshaft = Epicondylar breadth = Max. Distal Diameter = Tibia Fibula Max. Prox Epi Breadth = Max. Diam of Head = Max. Diam at Midshaft = Max. Diam at Midshaft = Max Distal Diameter = Max. Distal Epi Breadth = NONMETRICS: (1=M, 2=Int. M, 3=Ambiguous, 4=Int. F, 5=F) Os Coxae Humerus Medial epicondylar symmetry: Subpub concavity: Trochlear extension: Subpub angle width: Ischiopub ramus W: Olecranon fossa shape: Angle of medial epicondyle: Greater sciatic notch:

APPENDIX B: Specimens used for geometric morphometric analysis – young white females

Number	Specimen Number	View Present/ Absent	Reason
1	5079	Absent SUB, SCI view	No os coxae available
2	2819	Present	
3	3069	Absent SUB, SCI view	No os coxae available
4	3275	Present	
5	3617	Present	
6	6782	Present	
7	4247	Present	
8	4678	Present	
9	3486	Present	
10	15683	Present	
11	6068	Present	
12	6338	Present	
13	6512	Present	

APPENDIX C: Specimens used for geometric morphometric analysis – young black females.

Number	Specimen Number	View Present/ Absent	Reason		
1	1543	Absent SUB, SCI view	No os coxae available		
2	2866	Present			
3	3041	Present			
4	3120	Present			
, 5	3266	Present			
6	3385	Present			
7	3609	Present			
, B	3843	Present			
9	3854	Absent SUB, SCI view	No os coxae available		
9 10	4198	Absent SUB, SCI view	No os coxae available		
		Present	140 OS COXAC AVAIIADIO		
11	4256	Present			
12	4436		Dograded pubic area		
13	4448	Absent SUB view	Degraded pubic area No so coxae available		
14	4598	Absent SUB, SCI view	IND SO COXAG AVAIIADIG		
15	4604	Present			
16	4786	Present			
17	4956	Present			
18	5086	Present			
19	5150	Present			
20	5201	Present			
21	5259	Present			
22	5286	Absent SUB view	Degraded pubic area		
23	5306	Present			
24	5335	Absent SUB view	Degraded pubic area		
25	5384	Present			
26	5628	Present			
27	5692	Present			
28	5797	Present			
29	5878	Present			
30	5932	Present			
31	5957	Present			
32	6000	Present			
33	6094	Present			
34	6139	Present			
35	6157	Present			
36	6177	Present			
37	6192	Present			
38	5256	Present			
39	6290	Present			
40	6358	Present			
41	6372	Present			
42	6390	Present			
43	5767	Present			
44	5714	Present			
45	4060	Absent SUB, SCI view	No os coxae available		
46	3154	Present	, to the serious of the series		
47	5783	Present			
48	5765	Present			
46 49	5079	Absent SUB, SCI view	Bilaterally fused sacro-iliac joint		
		musem Jud. Jul View	Dialorant racea cacro-mac point		

APPENDIX D: Specimens used for geometric morphometric analysis – old black females.

Number	Specimen Number	View Present/ Absent	Reason
1	4763	Present	
2	1855	Present	
3	5018	Present	
4	5073	Present	
5	5148	Present	
6	5197	Present	
7	5511	Present	
8	5602	Present	
9	5682	Present	
10	5705	Present	
11	5717	Present	
12	5319	Present	
13	5342	Absent SUB, SCI view	No os coxae available
14	3015	Absent SUB view	Degraded pubic area
15	4584	Absent EPI, OL view	No humerus available
16	5013	Present	
17	2632	Present	
18	2900	Absent SUB, SCI view	No os coxae available
19	4564	Present	
20	4240	Present	
21	3538	Present	
22	1803	Absent SUB, SCI view	No os coxae available
23	6315	Present	
24	6328	Present	
25	6369	Present	
26	5005	Present	
27	4417	Absent SUB, SCI view	No os coxae available
28	5785	Present	
29	5635	Present	
30	5654	Present	
31	1696	Present	
32	2885	Present	
33	4990	Present	
34	5292	Present	
35	5316	Present	
36	5390	Present	
37	5698	Present	
38	6024	Present	
39	6388	Present	
40	4492	Present	
41	4998	Present	
42	5708	Present	
43	2905	Present	
44	2939	Present	
45	5323	Present	
46	5203	Present	
47	5033	Present	
48	5629	Present	
49	5039	Present	
50	5734	Absent SUB view	Degraded pubic area
51	4543	Present	203.0000 papid 0.00
U 1	→∪→∪	1 1636111	

APPENDIX E: Specimens used for geometric morphometric analysis – old white females.

Number	Specimen Number	View Present/ Absent	Reason
1	5098	Present	
2	5270	Present	
3	5406	Present	
4	5452	Present	
5	5489	Present	
6	5610	Absent SUB view	Degraded pubic area
7	5634	Present	-
8	5660	Present	
9	5716	Present	
10	5790	Absent SUB view	Degraded pubic area
11	5818	Present	3 1
12	5373	Present	
13	7402	Present	
14	7329	Present	
15	7743	Present	
16	7798	Present	
17	7622	Present	
18	7419	Present	
19	7549	Present	
20	7865	Present	
21	7683	Present	
22	7677	Absent SUB view	Degraded pubic area
23	7685	Present	Bogiadou pable di od
24	7781	Present	
25	7864	Present	
26	7857	Present	
27	7818	Present	
28	7356	Present	
29	7094	Present	
30	7009	Present	
31	6837	Present	
32	7083	Present	
33	6997	Present	
34	6686	Present	
35	6420	Present	
36	6170	Present	
37	6168	Present	
38	4837	Present	
39	6407	Present	
40	6166	Present	
41	4047	Present	
42	4787	Present	
43	6003	Present	
44	5962	Present	
45	5858	Absent SCI view	Degraded sciatic notch area
46	5677	Present	
47	5499	Present	
48	5898	Present	
49	5437	Present	
50	5827	Present	

APPENDIX F: Specimens used for geometric morphometric analysis – old black males.

Number	Specimen Number	View Present/ Absent	Reason
1	2865	Present	
2	2978	Present	
3	3441	Present	
4	3700	Present	
5	4244	Present	
6	4258	Present	
7	4265	Present	
8	4396	Absent SUB view	Os coxae/ sacral fusion
9	4405	Present	03 00/A0/ 040/A/ 140/01/
10	4542	Present	
11	4608	Present	
12	4617	Present	
13	4731	Present Present	
14 15	4947	Present	
	4961	Present	
16	5000		
17	5020	Present Present	
18	5024	Present	
19	5053		
20 21	5063	Present	
22	5144 5140	Present Present	
23	5149 5170	Present	
		Present	
24	5175 5177	Present	
25 26	5177 5209	Absent SUB view	Degraded pubic area
27	5209	Present	Degraded public dred
28	5260	Present	
20 29	5265	Absent SUB view	Degraded pubic area
30	5273	Present	Degraded public direc
31	5287	Absent SUB, SCI view	No os coxae available
32	5365	Present	140 00 00/20 21212213
33	5372	Present	
34	5392	Present	
35	5447	Present	
36	5461	Present	
37	5466	Present	
38	5513	Present	
39	5532	Present	
40	5535	Present	
41	5566	Present	
42	5646	Present	
43	5665	Absent SUB, SCI view	No os coxae available
44	5753	Present	
45	5772	Present	
46	5805	Present	
47	5837	Present	
48	5309	Present	
49	5142	Present	
50	4979	Present	
51	5050	Present	
52	5078	Present	
	JU1 U		

APPENDIX G: Specimens used for geometric morphometric analysis – old white males.

Number	Specimen Number	View Present/ Absent	Reason
1	4372	Present	
2	4837	Present	
3	5127	Present	
4	5434	Present	
5	5476 5521	Present Present	
6 7	5531 5673		
	5673	Present Present	
8 9	5684 5777	Present	
10	5805	Present	
11	5864	Present	
12	5877	Present	
13	5908 5348	Present	
14	5348	Present	
15	4601	Present	
16	5907	Present	
17	3299	Present	
18	3012	Present	
19	3292	Present	
20	3295	Present	
21	3201	Present	
22	3311	Present	
23	3567	Present	
24	3446	Present	
25	3243	Present	
26	3193	Present	-
27	3188	Absent SUB view	Degraded pubic area
28	3432	Present	
29	3474	Present	
30	3453	Present	
31	3242	Present	
32	4006	Present	
33	5715	Present	
34	5225	Present	
35	4953	Present	
36	5949	Absent SUB view	Degraded pubic area
37	5929	Present	
38	5587	Present	
39	5731	Present	
40	5784	Present	
41	5407	Present	
42	5642	Present	
43	5325	Present	
44	5724	Present	
45	5873	Present	
46	4589	Present	
47	5759	Present	
48	5711	Present	
49	5872	Present	
50	5304	Absent SUB view	Degraded pubic area
51	5570	Present	
52	6223	Present	

APPENDIX H: Specimens used for geometric morphometric analysis – young black males.

Number	Specimen Number	View Present/ Absent	Reason		
1	1694	Present			
2	2019	Present			
3	2858	Present			
3 4	2889	Present			
5					
	2991	Present			
6	3096	Present	No modial anisandula		
7	3153	Absent EPI view	No medial epicondyle		
8	3298	Present	Nt		
9	3561	Absent SUB, SCI view	No os coxae available		
10	4236	Present			
11	4522	Present			
12	4535	Present			
13	4599	Present			
14	4794	Present			
15	4948	Absent SCI view	Degraded sciatic notch area		
16	5010	Present			
17	5022	Present			
18	5025	Absent SUB view	Degraded pubic area		
19	5031	Present			
20	5037	Present			
21	5080	Present			
22	5082	Present			
23	5124	Present			
24	5130	Present			
25	5152	Present			
26	5192	Present			
27	5262	Present			
28	5293	Present			
29	5351	Present			
30	5354	Present			
31	5361	Present			
32	5369	Present			
33	5394	Present			
34	5415	Present			
35	5428	Present			
36	5429	Present			
37	5431	Present			
38	5493	Present			
39	5569	Present			
40	5572	Present			
41	5591	Present			
42	5627	Present			
43	5638	Present			
44	5656	Absent SCI view	Degraded sciatic notch area		
45	5663	Present	-		
46	5670	Present			
47	5691	Present			
48	5751	Present			
49	5761	Present			
50	5816	Present			
51	5856	Present			
52	5870	Present			
53	5885	Present			
54	5904	Present			
55	6353	Present			
56	6391	Present			
57	5868	Present			

APPENDIX I: Specimens used for geometric morphometric analysis – young white males.

Number Specimen Number		View Present/ Absent	Reason
1	4220	Present	
2	6109	Present	
3	115	Present	
4	4485	Present	
4 5	3632	Present	
6	3441	Present	
7	3142	Present	
8	2546	Present	
9	4296	Present	
10	2656	Present	
11	3106	Present	
12	6680	Present	
13	3291	Present	
14	2615	Present	
15	2467	Present	
16	1835	Present	
17	814	Present	
18	7327	Present	
19	7507	Absent OL view	Pathology
20	6675	Present	
21	7147	Present	
22	8317	Present	
23	6046	Absent SUB, SCI view	No os coxae available
24	6008	Present	

APPENDIX J: Means, standard deviations, and univariate F-ratios for postcranial measurements of males and females, intra-observer results.

	Males				_	Females				Univariate	
Variables (mm)		Mean	Range	s.d.	S.E.		Mean	Range	s.d.	S.E.	F-ratio
	N					Ν					
Humerus:											
Vertical head diameter	11	46.1		3.87	0.2	20	40.4		3.26	0.2	19.26*
Maximum midshaft diameter	11	23.7		1.78	0.1	20	20.7		2.12	0.1	15.32*
Epicondylar breadth	11	64.4		3.90	0.2	20	56.5		3.36	0.2	34.38*
Midshaft circumference	11	70.4		5.23	0.3	20	61.6		4.84	0.3	22.12*
Pelvis:											
Pelvis length	11	210.9		15.23	0.1	19	193.9		13.97	0.1	9.57*
Pelvis breadth	11	153.2		9.65	0.1	19	148.8		11.51	0.1	1.15
Pubis length	11	67.0		7.03	0.2	20	71.3		8.55	0.2	1.98
Ischium length	11	80.7		6.16	0.1	20	78.6		6.71	0.1	0.76

* p-values significant at <0.05

APPENDIX K: statistical analyses of non-metric humerus characteristics, intra-observer results.

Distribution of classification, all males and females, trochlear extension.

		1=M, 2=	1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F							
		1	2	3	4	5				
SEX	Male	5 (46%)	3 (27%)	2 (18%)	1 (9%)	0 (0%)	11			
	Female	8 (40%)	4 (20%)	3 (15%)	5 (25%)	0 (0%)	20			
Total		13	7	5	6	0	N = 31			

Pearson's chi square value=1.189, df=3, p=0.76>0.05

Distribution of classification, all males and females, olecranon fossa shape.

		1=M, 2=	1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F							
		1	2	3	4	5				
SEX	Male	2 (18%)	6 (55%)	2 (18%)	1 (9%)	0(0%)	11			
	Female	4 (20%)	7 (35%)	2 (10%)	7 (35%)	0 (0%)	20			
Total		6	13	4	8	0	N = 31			

Pearson's chi square value=2.873, df=3, p=0.412>0.05

Distribution of classification, all males and females, medial epicondylar angle.

		1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F						
		1	2	3	4	5		
SEX	Male	4 (36%)	3 (28%)	1 (9%)	2 (18%)	1 (9%)	11	
0	Female	0 (0%)	2 (10%)	1 (5%)	15 (75%)	2 (10%)	20	
Total		4	5	2	17	3	N = 31	

Pearson's chi square value=12.95, df=4, p=0.01<0.05

Distribution of classification, all males and females, estimated sex from the distal humerus.

			1=M, 3=Ambiguous, 5=F		Total
		1	3	5	
SEX	Male	10 (91%)	0 (0%)	1 (9%)	11
	Female	5 (25%)	0 (0%)	15 (75%)	20
-	Total	15	0	16	N= 31

Pearson's chi square value=12.344, df=1, p=0.00<0.05

APPENDIX L: statistical analyses of non-metric pelvic characteristics, intra-observer results.

Distribution of classification for all males and females, subpubic concavity.

		1=M, 2=	1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F					
		1	2	3	4	5		
SEX	Male	6 (55%)	5 (45%)	0 (0%)	0 (%)	0 (0%)	11	
	Female	0 (0%)	0 (0%)	2 (10%)	14 (70%)	4 (20%)	20	
Total		6	5	2	14	4	N= 31	

Pearson's chi square value = 31.000, df = 4, p= 0.00<0.05

Distribution of classification for all males and females, subpubic angle.

		1=M, 2=	1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F					
		1	2	3	4	5		
SEX	Male	4 (36%)	3 (27%)	3 (27%)	1 (9%)	0 (0%)	11	
	Female	0 (0%)	0 (0%)	0 (0%)	2 (10%)	18 (90%)	20	
	Total	4	3	3	3	18	N= 31	

Pearson's chi square value = 28.088, df = 4, p= 0.00<0.05

Distribution of classification for all males and females, ischio-pubic ramus width.

		1=M, 2=	1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F					
		1	2	3	4	5		
SEX	Male	7 (64%)	1 (9%)	1 (9%)	1 (9%)	1 (9%)	11	
	Female	2 (10%)	2 (10%)	1 (5%)	5 (25%)	10 (50%)	20	
Total		9	3	2	6	11	N= 31	

Pearson's Chi Square value = 11.498, df = 4, p = 0.02<0.05

APPENDIX L (continued): statistical analyses of non-metric humerus characteristics, intraobserver results.

Distribution of classification for all males and females, greater sciatic notch width.

	•	1=M, 2=	1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F					
		1	2	3	4	5		
SEX	Male	5 (46%)	4 (36%)	0 (0%)	1 (9%)	1 (9%)	11	
	Female	0 (0%)	0 (0%)	1 (5%)	4 (20%)	15 (75%)	20	
	Total	5	4	1	5	16	N= 31	

Pearson's Chi Square Value = 23.410, df = 4, p= 0.00<0.05

Distribution of classification for all males and females, estimated sex for the pelvis.

		1=M, 2=Inter	1=M, 2=Intermediate M. 3=Ambiguous, 4=Intermediate F, 5=F					
		1	3	5				
SEX	Male	11 (100%)	0 (0%)	0 (0%)	11			
	Female	0 (0%)	0 (0%)	20 (100%)	20			
Total		11	0	20	N= 31			

Pearson's Chi Square Value = 31.000, df = 1, p = 0.00<0.05