
CHAPTER 4: Optimisation for Sloshing 
 

4.1 Introduction 

 

This chapter covers all work done on the optimisation of sloshing, including the 

definition of the optimisation problem within the context of sloshing and how the 

software is set up to achieve automation of the optimisation process. Analysis for 

sloshing is done by the commercial CFD code Fluent v6.x [19], in the manner 

described in Chapter 3. The chapter includes results for all the single discipline 

optimisation for sloshing. The optimisation for sloshing includes both the use of 3D 

and 2D analyses of sloshing, as well as a comparison of different optimisation 

methodologies using less expensive 2D CFD analyses. 

 

4.2 Definition of Objective Function 

 

One of the major challenges in design optimisation for sloshing is the quantitative 

evaluation of an objective function. Implications of sloshing include the undesirable 

acoustical effect experienced in a vehicle fuel tank and issues related to dynamic 

feedback from oscillating liquids in aeroplanes or liquid transport containers. Ideally, 

one would like to remove any oscillatory motion, but also reduce the level of free-

surface break up. Equation 4.1 below provides the formulation of a Total Deviation 

Value (TDV) that provides a single value for the level of sloshing that occurred over a 

period t. The value is essentially a numerical integration in time of the deviation of the 

free surface from its initial position of rest. As illustrated, the value is normalised by 

the number of computational or discretisation cells involved in the free surface, so 

that the number of cells encompassing the free surface do not affect the TDV. 
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Figure 4.1 below provides an example of the deviation of the free surface versus time, 

where the TDV represents the area under the curve. The example represents a case 

without baffles, filled to 70% of capacity and exposed to a constant deceleration that 

corresponds to the tank decelerating from 60 to 0 km/h in 2 seconds. Figure 4.1 also 

provides images of the position of the free surface at various moments, for 

comparison with the corresponding calculated free-surface deviation at that time. The 

comparison clearly illustrates that the break-up of the free surface around 0.75 

seconds causes an increase in the deviation value. Once the surface quietens, as it 

approaches its position of rest for the constant deceleration, the deviation levels off at 

the value corresponding to the resulting free-surface inclination. In a case with no 

baffles, the time to reach a state of equilibrium is quite long, due to the increase in 

free-surface area as the liquid oscillates. Figure 4.2 below illustrates 3 baffled cases 

and their corresponding deviations with time. Case 1 shows the worst case resulting 

from highly oscillatory motion, while case 2 shows an improvement, but free-surface 

break-up causes a peak near 0.7 seconds. Case 3 shows the best result with the lowest 

TDV. All three lines will converge eventually to the same value once the free surface 

has settled. 
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Figure 4.1: Example of free surface deviation versus time 
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Figure 4.2: Free-surface deviation for 3 baffled cases 
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In summary, a low TDV results from a case where the free surface approaches its 

position of equilibrium (for the instantaneous acceleration) slowly, without any break 

up of the free surface, and without any oscillatory motion. 

 

4.3 Optimisation Problem Setup 

 

The setup of the optimisation problem describes the steps that are taken to ensure the 

partial or full automation of the optimisation procedure. This section describes the 

setup for all the optimisation for sloshing problems that are examined. All the cases 

examined in this section are performed according to the flow chart shown in Figure 

2.12. 

 

4.3.1 LS-OPT 3-D Sloshing Case Optimisation 

 

The case examined here is a full 3-D representation of a partially-filled (50%) liquid 

container with zero-thickness baffles containing holes. Figure 4.3 below (Repeated 

from Figure 3.1) shows the form of the 3-D model of dimensions WxHxL = 

400x400x500mm. The model is subject to a constant deceleration from 60 to 0 km/h 

in 5 seconds followed by zero deceleration for a further 2 seconds, i.e., the total 

transient time simulated is 7 seconds.   
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Figure 4.3: Geometry of 3-D sloshing case 

 

This optimisation case involves the use of LS-OPT as the optimisation software, 

assuming linear successive response surfaces in one case and a Kriging meta-model in 

another (Appendix F provides the input command file used by LS-OPT). The user 

will initialise the design points to be analysed for each optimisation iteration. Pre-

processing is done using Gambit with a journal file for the automated construction of 

the mesh (Appendix G provides the Gambit journal file used). A further journal file 

(Appendix H) is used in the automated setup of the model in Fluent, which models 

half of the geometry base on the symmetry plane shown in Figure 4.3. Post processing 

of the data generated by Fluent to extract the TDV is done by an executable file 

compiled from the C source code shown in Appendix I. 

 

To complete a single Fluent analysis of a 3-D sloshing event takes approximately 48 

hours on the available workstations (2GHz P4 Linux Workstations). Due to this long 

simulation time, only two design variables are considered in the optimisation. The 

optimisation problem is defined according to Equation 4.2 below: 

 

CHAPTER 4: Optimisation for Sloshing  68 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  KKiinnggsslleeyy,,  TT  CC    ((22000055))  



Variables x = [x1, x2]T     (4.2) 
 

x1 = Hb = Baffle height 

x2 = ØD = Hole diameter  

 

Objective: 

 

Minimize {f(x) = TDV} 

 

Subject to: 

 

Inequality constraints- 

 

g1(x) = 10mm  - 
5
4 21 xx −

  < 0 

g2(x) = 
23

2 221 xxx
−

−
 - 8mm < 0 

g3(x) = - 95000mm2
21 .8400 xx π− 2 < 0 

 

Side constraints- 

 

g4(x): x1 (Hb) (80;380)mm  

g5(x): x2 (ØD) (15;80)mm 

 

Inequality constraints g1 and g2 are necessary to ensure that the model is geometrically 

feasible, e.g., that the holes do not get too large for the baffles, etc. The side 

constraints g4 and g5 represent the limits on the variables. Inequality constraint g3 is 

put in place in anticipation of the design going toward large baffles with small holes. 

In this case one would like to make the problem more interesting by restricting the 

amount of material used (related to mass of baffles or cost of production). In this case 

arbitrarily chosen as 95 000mm2. This case formed part of a study done in 

collaboration with R Dieterich in 2002 [53]. 
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4.3.2  2-D Sloshing Cases Setup 

 

Due to the expense of full 3-D CFD analyses, further analysis involved a 2-D 

simplification of the liquid container. A number of cases are examined, all involving 

one of two topological layouts that will be referred to as design 1 and design 2. Figure 

4.4 and Figure 4.5 below show the geometries used in designs 1 and 2 respectively. 

All cases are subject to the same load derived from a constant deceleration from 60 to 

0 km/h in 2 seconds (Appendix J provides a sample of the User-Defined Function 

(UDF) c-code used for a predefined acceleration). As in the 3-D case, pre-processing 

is done by Gambit with the use of a journal file (See sample 2-D Gambit journal in 

Appendix A) and the Fluent setup is done with its respective journal file (See sample 

2-D Fluent journal in Appendix C). Appendix K provides the 2-D-adapted c source 

code for compiling the TDV extractor program. 
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Figure 4.4: Geometry of 2-D container: Design-1 
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Figure 4.5: Geometry of 2-D container: Design-2 

 

Table 4.1 below provides the general formulation of the 2-D optimisation cases 

considered. The abbreviations for the design variables are consistent with those used 

in Figure 4.4 and Figure 4.5 above. The sections that follow provide more in depth 

descriptions of the individual cases. 
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Table 4.1: Definition of optimisation cases (2D sloshing) 

Case Design type 

(HxL) 

Fill Optimisation 

method 

Design 

variables 

Constraints Evaluations 

per iteration 

1 1 

(200x400mm)

0.7H Linear 

SRSM 

x(1-3)= 

(Hc,Hb,S) 

-Geometrical   7 

2 1 

(200x400mm)

0.7H Quadratic 

SRSM 

x(1-3)= 

(Hc,Hb,S) 

-Geometrical   16 

3 1 

(200x400mm)

0.7H Neural 

Network 

x(1-3)= 

(Hc,Hb,S) 

-Geometrical   129 

4 1 

(200x400mm)

0.7H Dynamic-Q x(1-3)= 

(Hc,Hb,S) 

-Geometrical   4 

5 2 

(200x400mm)

0.7H Quadratic 

SRSM 

x(1-4)= 

(MBC,SBC, 

MBH,SBW) 

-Geometrical   23 

6 2b 

(400x500mm)

0.7H Linear 

SRSM 

x(1-4)= 

(MBC,SBC, 

MBH,SBW) 

-Geometrical   8 

7 2 

(200x400mm)

x5*H 

(variable) 

Quadratic 

SRSM 

x(1-5)= 

(F,MBC,SBC, 

MBH,SBW) 

-Geometrical 

-Fill level   

32 

 

4.3.2.1 Linear LS-OPT Design 1 (Case 1) 

 

This case makes use of the Linear SRSM within the LS-OPT framework. Appendix L 

provides the LS-OPT command file for this case. The optimisation problem is defined 

as in Equation 4.3 below. 

 

Variables x = [x1, x2, x3]T    (4.3) 

 

x1 = Hc = Baffle centroid height 

x2 = Hb = Baffle height  

x3 = S = Slot size 
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Objective: 

 

Minimize  {f(x) = TDV} 

 

Subject to: 

 

Inequality constraints- 

 

g1(x) = - (190 - 0.5*x2) + x1 < 0 

g2(x) = (10 + 0.5* x2) – x1 < 0 

g3(x) = x3 - 0.8* x2 < 0 

 

Side constraints- 

 

g4(x): x1 (Hc) (10;190)mm 

g5(x): x2 (Hb) (20;180)mm 

g6(x): x3 (S) (10;140)mm 

 

Inequality constraints g1 and g2 ensure that the baffle does not come too close to either 

the roof or the floor of the container respectively. Inequality constraint g3 ensures that 

the slot in the baffle does not become greater than 80% of the baffle height. The side 

constraints represent the limits of the variables. A linear SRSM is the simplest 

response surface method that makes use of 50% over-sampling provided by LS-OPT, 

in that it requires the least analyses per optimisation iteration. 

4.3.2.2 Quadratic LS-OPT Design 1 (Case 2) 

 

This case makes use of the quadratic successive response surface method within the 

LS-OPT framework. Appendix M provides the LS-OPT command file. The problem 

is defined exactly as in equation 4.3 above. Although the Quadratic SRSM requires 

more analyses per optimisation iteration, its performance should be evaluated against 

that of the Linear SRSM due to a possible bias or modelling error reduction.  
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4.3.2.3 Neural Network LS-OPT Design 1 (Case 3) 

 

This case makes use of a single neural network meta-model within the LS-OPT 

framework. Appendix N provides the LS-OPT command file. In an attempt to 

construct a response surface representing a larger (more global) region of the 3-D 

design space, the user will provide all the points to be used for the single optimisation 

iteration, as well as their results. 129 analysis results are provided as obtained during 

the case 1, 4.3.2.2 quadratic LS-OPT design 1 optimisation analysis. The problem is 

defined exactly as in equation 4.3 above. The neural network result will provide an 

alternative answer to the Linear and Quadratic SRSMs from the perspective of a more 

global optimisation technique.  

 

4.3.2.4 Dynamic-Q TDO Design 1 (Case 4) 

 

This case makes use of the Dynamic-Q method within the TDO framework. Each 

analysis is initialised by the user. The use of TDO and Dynamic-Q is motivated by the 

desire to compare LS-OPT’s meta-modelling methods with a gradient-based method 

as provided by TDO. The problem is defined exactly as in equation 4.3 of case 1, 

4.3.2.1 Linear LS-OPT design 1 above. 

 

4.3.2.5 Quadratic LS-OPT Design 2 (Case 5) 

 

This case makes use of the quadratic successive response surface method within the 

LS-OPT framework. Appendix O provides the LS-OPT command file. The design 2 

topology is motivated by the suggestion made during Rodriguez’s studies of 1952 [1] 

that proposes locating flow dampers in the regions of highest velocity. The results for 

TDV should be compared with those obtained in the previous four optimisation 

analyses. The problem is defined as in Equation 4.4 below. 

 

Variables x = [x1, x2, x3, x4]T    (4.4) 
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x1 = MBC = mid baffle centroid 

x2 = SBC = side baffle centroid  

x3 = MBH = mid baffle height 

x4 = SBW = side baffle width 

 

Objective: 

 

min  {f(x) = TDV} 

 

Subject to: 

 

Inequality constraints- 

 

g1(x) = - x2 + 0.5*x4 +10mm < 0 

g2(x) = x2 + 0.5*x4 – 190mm < 0 

g3(x) = x1 + 0.5*x3 – 190mm < 0 

g4(x) = - x1 + 0.5*x3 + 10mm < 0 

 

Side constraints- 

 

g5(x): x1 (MBC) (15;185)mm 

g6(x): x2 (SBC) (15;185)mm 

g7(x): x3 (MBH) (10;180)mm 

g8(x): x4 (SBW) (10;180)mm 

 

As before, all constraints are required for geometric feasibility. 

4.3.2.6 Linear LS-OPT Design 2b (Case 6) 

 

This case makes use of the linear successive response surface method within the LS-

OPT framework. Appendix P provides the LS-OPT command file. The motivation for 

this analysis will only become clearer during the MDO analysis of chapter 6, where 

larger containers (corresponding to those used during validation phase 2) are 

analysed. The problem is defined much as in case 5, section 4.3.2.5 Quadratic LS-
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OPT design 2 above except for the following constraints (Equation 4.5) that change 

due to the change in the dimensions of the container: 

 

Inequality constraints-     (4.5) 

 

g1(x) = - x2 + 0.5*x4 + 10mm < 0 

g2(x) = x2 + 0.5*x4 - 190mm < 0 

g3(x) = x1 + 0.5*x3 – 340mm < 0 

g4(x) = - x1 + 0.5*x3 + 40mm < 0 

 

Side constraints- 

 

g5(x): x1 (MBC) (60;320)mm 

g6(x): x2 (SBC) (15;185)mm 

g7(x): x3 (MBH) (40;320)mm 

g8(x): x4 (SBW) (10;180)mm 

 

4.3.2.7 Quadratic LS-OPT Saddle Design 2 (Case 7) 

 

This case makes use of the quadratic successive response surface method within the 

LS-OPT framework. Appendix Q provides the LS-OPT command file. The 

motivation for this study is to analyse the effect of the fill level (H), previously 

assumed as 70% full, on the performance of the baffles. The setup will attempt to 

maximise TDV w.r.t. the fill level while minimising TDV w.r.t. the remaining 

variables, to try and establish the worst case. The problem is defined as follows in 

equation 4.6 below, with the definition making use of a saddle point analysis. 

 

Variables x = [x1, x2, x3, x4]T    (4.6) 

 

x1 = F = fill level 

x2 = MBC = mid baffle centroid 

x3 = SBC = side baffle centroid  

x4 = MBH = mid baffle height 
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x5 = SBW = side baffle width 

 

Objective: 

 

⎭
⎬
⎫

⎩
⎨
⎧

=
−=

))((maxmin

541,

TDVf
xx ii

x  

 

Subject to: 

 

Inequality constraints- 

 

g1(x) = - x2 + 0.5*x4 +10mm < 0 

g2(x) = x2 + 0.5*x4 - 190mm < 0 

g3(x) = x1 + 0.5*x3 - 190mm< 0 

g4(x) = - x1 + 0.5*x3 + 10mm < 0 

 

Side constraints- 

 

g5(x): x1 (MBC) (15;185)mm 

g6(x): x2 (SBC) (15;185)mm 

g7(x): x3 (MBH) (10;180)mm 

g8(x): x4 (SBW) (10;180)mm 

g9(x): x5 (F) (10;190)mm 

 

As before, all constraints are required for geometric feasibility. 

 

4.4 Optimisation Results 

 

The following section provides the results of the optimisation analyses described in 

section 4.3 above. Results will include the improvement of the design w.r.t. its 

starting value as well as the progression of all the variables and objective during the 

optimisation process. The various optimisation methods will be compared with each 

other on the basis of their results and how economically they are attained.  
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4.4.1 LS-OPT 3-D Sloshing Case Optimisation 

 

As stated in section 4.3.1 this case formed part of a study conducted in collaboration 

with R Dieterich in 2002 [52]. As stated before, this study involved a Linear SRSM 

approach and a Kriging meta-model approach. Table 4.2 below gives the final results 

for both approaches. Figure 4.6 below illustrates the progress of the Linear RSM 

optimisation run. The figure does show that the solution converged after one iteration, 

however the result of the Kriging optimisation method suggests that the local 

optimum lies elsewhere. This confirms that further linear SRSM optimisation 

iterations are necessary to locate the true local optimum. 

Table 4.2: 3-D sloshing LS-OPT optimisation results 

 
Starting 

value 

Converged 

linear SRSM 

result 

CFD 

computed 

Converged 

Kriging 

model result 

CFD 

computed 

Hb (x1) 

[mm] 
300 80 80 120.9 120.9 

ØD (x2) 

[mm] 
40 15 15 27.7 27.7 

f*104 

[mm2.s] 
27.10 20.03 21.31 19.02 19.87 
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Figure 4.6: Linear SRSM optimisation history (3D sloshing) 

 

The Kriging model is constructed from the points listed in Table 4.3 below, some of 

which come from the Linear RSM optimisation run. The resulting Kriging surface can 

be seen in Figure 4.7 below. Since this is an optimisation case with only 2 variables, it 

is quite simple to visualise a response surface like the one created by the Kriging 

interpolation method. The advantage of this method is that one can get a more global 

perspective on the response in question. As one can see an improved optimum existed 

slightly further along the active second inequality constraint (gap between hole and 

baffle edge). (Linear optimum shown for comparison on Figure 4.7) 
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Table 4.3: Points used for Kriging meta-model 

Hb 

[mm] 
80 139.15 147.5 170 170 187.7 200 200 

ØD 

[mm] 
15 15 35.29 15 35 15 15 20 

f*104 

[mm2.s] 21.31 23.15 19.68 23.99 20.88 24.53 24.80 23.63

 

Hb 

[mm] 
230 236.6 300 339.3 339.4 380 380  

ØD 

[mm] 
59.7 15 40 15 64 15 80  

f*104 

[mm2.s] 
24.66 25.54 27.13 25.26 31.07 20.47 34.17  

 

 Hb (x1) [mm] 

ØD (x2) [mm] 

f [
m

m
2 .s]

 
 

 g2 (active) 

Kriging optimum 
(120.9;27.7) 

Linear SRSM 
optimum (80;15)

 

Figure 4.7: Kriging surface of 3-D sloshing case (with permission J Haarhoff) 

 

The behaviour of the objective is clearly non-linear in the region of the optimum, 

which would explain the inability of the Linear RSM to locate it early in the 

optimisation process. However, it should be said that the Linear RSM would most 

likely have eventually found the global optimum once the design sub-region had been 

sufficiently reduced. This case makes a strong argument for the use of perhaps a 
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Quadratic RSM or a global meta-model like Kriging which is able to handle 

nonlinearities and thus reduce bias error. 

 

Upon inspecting the objective response in Figure 4.7 one can make some conclusions 

about the effectiveness of baffles. Large baffles with small holes perform relatively 

poorly due to an effect best described as compartmentalisation. In effect the liquid 

container is merely subdivided into a number of smaller containers that have very 

little flow damping ability. The idea is to reduce the energy in the liquid, and since the 

highest velocities are seen near the free surface, this is where the flow damping should 

be done. This idea is confirmed with the result of the optimisation being small baffles 

with medium size holes. The small baffles allow flow past them so as not to 

compartmentalise the container, but still induces flow losses as the liquid passes over 

or under the baffle. The medium size holes continue this principle since the smallest 

holes will most likely not allow much flow through them and as a result not induce 

much damping. The larger holes will in turn allow too much liquid through an also 

not provide as much damping.  

 

As a final comment on this optimisation case, the Linear RSM method required 15 

function evaluations to attain a 21.3% improvement in the objective (from an arbitrary 

starting design), while the Kriging method attained a 26.7% improvement with the 

same number of function evaluations. It would also appear that the Kriging optimum 

is near the local minimum for this case, but would require more function evaluation 

(specifically near the area of the local optimum) to provide an accurate representation 

of the response. 

 

4.4.2  2-D Sloshing Optimisation Results 

4.4.2.1 Linear LS-OPT Design 1 (Case 1) 

 

Table 4.4 below shows the final results for the Linear RSM optimisation of a design 1 

2-D container. The result for TDV represents an improvement of 37.8% and required 

50 function evaluations in 7 optimisation iterations. Figure 4.8 below shows the 

progress of the optimisation versus optimisation iteration number. Although this plot 
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represents the results obtained from 70 function evaluations (10 iterations), the 

optimum was found after the 7th iteration. Only one inequality constraint is active at 

the optimum and that is g2(x), which prevents the baffle from moving too low. It is 

interesting to note that the side constraint for the hole size is also active (Minimum 

slot size S (x3) = 10mm). This indicates that the 2-D assumption applied to the model, 

resulting in a slot instead of a hole, provides very little flow damping. Furthermore, 

the design trend suggests a medium size baffle, the upper half of which tries to 

intercept the high velocities of the free surface. In effect, the lower half of the baffle is 

probably somewhat inactive. For the purposes of later comparison it should also be 

stated that the total length of baffle used (for all the baffles) is 373.8mm. 

 

Table 4.4: Final results for Linear RSM design 1 

 
Starting value 

Converged linear 

RSM result 

Hc (x1) 
[mm] 100 77.28 

Hb (x2) 
[mm] 100 134.6 

S (x3) 
[mm] 50 10 

TDV 
(f*104) 
[m.s] 

36.46 22.66 
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Figure 4.8: Optimisation history for Linear RSM design 1 

 

When examining the 1st four optimisation iterations in Figure 4.8 above, it is clear that 

the non-linear behaviour of the problem only becomes evident to the optimisation 

algorithm once the design subspace has been sufficiently reduced in size. Figure 4.9 

below gives a good illustration of the domain reduction for the variable x1 (Baffle 

centroid). The result does however suggest a significant bias error due to the linear 

response assumption when applied to the initial large domain. 
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Figure 4.9: Design domain/subspace reduction for Baffle centroid (x1) 

4.4.2.2 Quadratic LS-OPT Design 1 (Case 2) 
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Table 4.5 below shows the final results for the Quadratic RSM optimisation of a 

design 1 2-D container. The result for TDV represents an improvement of 36.2% and 

required 128 function evaluations in 8 optimisation iterations for convergence. Figure 

4.10 below shows the progress of the optimisation versus optimisation iteration 

number. The results are very similar to those obtained in the Linear RSM 

optimisation, although the Quadratic RSM run required 45.3% more function 

evaluations. What is clear from Figure 4.10 is that the Quadratic response assumption 

exhibited far less bias error side effects. The variables start converging toward the 

optimum almost immediately but approached it more slowly than the Linear RSM 

optimisation run.  
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Table 4.5: Final results for Quadratic RSM design 1 

 
Starting value 

Converged linear 

RSM result 

Hc (x1) 

[mm] 
100 76.68 

Hb (x2) 

[mm] 
100 133.6 

S (x3) 

[mm] 
50 10 

TDV 

(f*104) 

[m.s] 

36.46 23.26 
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Figure 4.10: Optimisation history for Quadratic RSM design 1 

An interesting analysis of the results is provided when examining a trade off between 

responses or variables. In particular, a trade-off study was performed between the 

objective TDV and the length of baffle used. The latter could be equated to the cost of 

the materials used. Figure 4.11 below illustrates the trade-off curves generated for 

each optimisation iteration. The trade-off curve (approximated Pareto-optimal front) 
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is generated by linking a specified number of points that are the predicted optimum 

results for the objective (TDV) for the response value in question (baffle length in this 

case) from the data received during a particular iteration. Some interesting 

observation can be made about trade-off curves. The curve provides the observer with 

the opportunity to decide what level of performance is required and how much 

material he/she is willing to use. From this perspective, the 1st three curves provide 

the most meaningful data. Due to the domain subspace reduction, the curves that 

follow don’t provide much of a global perspective and are only valid in the immediate 

region of the subdomain optimum. Considering the trade-off curve illustrated for 

iteration 2, to achieve a TDV = 36 m.s, then 125 mm of baffle is required. If however 

the TDV needs to be reduced to TDV = 24 m.s, then 500 mm of baffle is required. 
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Iteration 1 Iteration 2 

Iteration 3 Iteration 4 

Iteration 5 Iteration 6 

Iteration 7 Iteration 8 

Figure 4.11: Trade-off progress for Quadratic RSM design 1 
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The final trade-off curve (iteration 8) gives more accurate data in terms of the 

absolute optimum, but when considering the potential use of trade-off curves is 

perhaps unnecessary to consider. In fact, if your objective is to do a trade-off study, it 

is only necessary to complete two or three optimisation iterations.  

 

However since this is an optimisation study, the points of interest include that the 

maximum length of baffle available does not provide the absolute optimum.  

 

4.4.2.3 Neural Network LS-OPT Design 1 (Case 3) 

 

Table 4.6 below shows the final results for the Neural Network optimisation of a 

design 1 2-D container. The result for TDV represents an improvement of 27.6% and 

utilised 128 function evaluations in a single optimisation iteration. The total length of 

baffle used is 349.5mm. 

 

Table 4.6: Final results for Neural Network Design 1 

 
Starting value 

Converged linear 

RSM result 

Hc (x1) 

[mm] 
100 73.24 

Hb (x2) 

[mm] 
100 126.5 

S (x3) 

[mm] 
50 10 

TDV 

(f*104) 

[m.s] 

36.46 26.41 
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4.4.2.4 Dynamic-Q TDO Design 1 (Case 4) 

 

Table 4.7 below shows the final results for the TDO Dynamic-Q optimisation of a 

design 1 2-D container. The result for TDV represents an improvement of 36.4% and 

utilised 40 function evaluations in 10 optimisation iterations. Figure 4.12 below 

shows the progress of the optimisation versus optimisation iteration number. Due to 

the differing nature of the Dynamic-Q method (i.e., spherically quadratic subproblem 

with move limits), the progress of the algorithm is clearly different in nature. The 

results are consistent with those seen previously with the methods available in LS-

OPT. The total length of baffle used is 378mm. 

 

Table 4.7: Final results for Dynamic-Q Design 1 

 
Starting value 

Converged linear 

RSM result 

Hc (x1) 

[mm] 
100 78 

Hb (x2) 

[mm] 
100 136.0 

S (x3) 

[mm] 
50 10 

TDV 

(f*104) 

[m.s] 

36.46 23.18*

 

                                                 
* The results for TDV during the optimisation process where calculated using Fluent v5, but were 
confirmed with Fluent v6, with the results from the former being consistently lower (22.88 optimum 
versus 23.18). 
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Figure 4.12: Optimisation history for Dynamic-Q design 1 

 

Although the method requires significantly less function evaluations, it should be 

mentioned that a significant level of user intervention was necessary. Since the 

method is a gradient-based method it is susceptible to becoming unstable when noise 

enters the gradient calculations. A remedy to this instability is to impose move limits 

for the variables to prevent the divergence of the algorithm and to prevent it from 

overshooting local minima. The choice of the size of these move limits is not typically 

intuitive beforehand. A small move limit may also result in a very long convergence 

time. A further value that needs specification is the perturbation size for the finite 

difference gradient calculation. The incorrect choice of this value may result in the 

algorithm being adversely affected by the noise exhibited in most engineering 

problems. Ultimately, response surface methods illustrated significantly more 

robustness in the problem of optimisation for sloshing. 

 

4.4.2.5 Quadratic LS-OPT Design 2 (Case 5) 

 

Table 4.8 below shows the final results for the Quadratic RSM optimisation of a 

design 2 2-D container. The result for TDV represents an improvement of 16.7% and 

utilised 184 function evaluations in 8 optimisation iterations. Figure 4.13 below 
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shows the progress of the optimisation versus optimisation iteration number. The total 

length of baffle used is 418.8mm. The only active inequality constraint for this design 

is g4(x), which prevents the middle baffle from moving too low. 

 

Table 4.8: Final results for Quadratic RSM design 2 

 Starting value Converged linear 
RSM result 

MBC (x1) 
[mm] 100 80.8 

SBC (x2) 
[mm] 100 79.29 

MBH (x3) 
[mm] 100 141.6 

SBW (x4) 
[mm] 100 138.6 

TDV 
(f*104) 
[m.s] 

27.03 22.52 
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Figure 4.13: Optimisation history for Quadratic RSM design 2 
 

The final result does provide a slight improvement for the optimum when compared to 

the design 1 container. However, the small improvement in TDV relative to the 

starting value does suggest a better overall design (one vertical and two horizontal 

baffles versus vertical slotted baffles).  
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4.4.2.6 Linear LS-OPT Design 2b (Case 6) 

 

Table 4.9 below shows the final results for the Linear RSM optimisation of a design 

2b 2-D container. The result for TDV represents an improvement of 40.3% and 

utilised 81 function evaluations in 10 optimisation iterations. Figure 4.14 below 

shows the progress of the optimisation versus optimisation iteration number. The total 

length of baffle used is 519mm. These results will be considered in conjunction with 

results in Chapter 5, when examining MDO of the liquid container in Chapter 6. The 

reason for repeating the 2D sloshing analysis for this case is to obtain a new TDV 

value for a higher container (400mm as apposed to 200mm). TDV is influenced by the 

height of the container since more space above the initial free-surface level will allow 

more deviation of the active free surface during the sloshing event from its initial 

location. Appendix R shows comparative frames, during the sloshing analysis, for the 

base case and the final design. 

 

Table 4.9: Final results for Linear RSM design 2b 

 Starting value Converged linear 
RSM result 

MBC (x2) 
[mm] 100 162 

SBC (x3) 
[mm] 100 78 

MBH (x4) 
[mm] 100 244 

SBW (x5) 
[mm] 100 136 

TDV 
(f*104) 
[m.s] 

49.17 29.37 
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Figure 4.14: Optimisation history for Linear RSM Design 2b 
 

4.4.2.7 Quadratic LS-OPT Saddle Point Design 2 (Case 7) 

 

Table 4.10 below shows the final results for the Quadratic RSM saddle-point 

optimisation of a design 2 2-D container. The result for TDV represents an 

improvement of 27.8% and utilised 257 function evaluations in 8 optimisation 

iterations. Figure 4.15 below shows the progress of the optimisation versus 

optimisation iteration number. The total length of baffle used is 442.8mm. These 

optimisation analysis results provide some level of confidence in the final design 

variable values attained, since the result for TDV represent the worst TDV that would 

occur for the set of variable values that the optimisation algorithm converged to.  

 
 
 
 
 
 
 
 

CHAPTER 4: Optimisation for Sloshing  94 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  KKiinnggsslleeyy,,  TT  CC    ((22000055))  



Table 4.10: Final results for Quadratic RSM saddle point Design 2 

 Starting value final linear RSM result 

F (x1) [m] 0.1 (50% full) 0.153 (77% full) 

MBC (x2) 
[mm] 100 83.7 

SBC (x3) 
[mm] 100 86 

MBH (x4) 
[mm] 100 139 

SBW (x5) 
[mm] 100 151.9 

TDV 
(f*104) 
[m.s] 

33.56 24.23 
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Figure 4.15: Optimisation history for Quadratic RSM saddle point Design 2 
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Saddle area 

 
Figure 4.16: Trade-off plot for TDV versus fill level for Quadratic RSM saddle point Design 2 

 

Figure 4.16 above shows all the analysis points plotted as TDV against Percentage 

fill. The trend clearly illustrates the reduction in sloshing due to extreme fill levels. 

The data conforms well to what is suggested in the literature, as discussed in section 

2.4.2 of this dissertation. The spread of values for a given fill level represents the 

various designs considered for that fill level, and illustrates the variation in 

performance of those designs. Figure of between 69 % and 77% full for the worst case 

TDV in the last 3 optimisation iterations support the previous use of 70% full as a fill 

level. The implication is that other fill levels would exhibit less sloshing for the same 

set of design variable values (hence the notation of a saddle point).   
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4.4.2.8 Summary of 2D optimisation results 

 

Table 4.11 below provides a summary of the 2D-sloshing optimisation results 

presented in this chapter.  

 

Table 4.11: Summary of 2D-sloshing optimisation results 

C
as

e 

TDV 
(start) 
f*104 

[m.s] 

TDV 
(final) 
f*104 

[m.s] 

TDV best 
data point 

f*104 

[m.s] 
(Iteration) 

Total 
baffle 
length 
[mm] 

Design variables 
(Start) 

Design 
variables 

(final) 

To
ta

l i
te

ra
tio

ns
 

Fu
nc

tio
n 

Ev
al

ua
tio

ns
 

A
ct

iv
e 

co
ns

tra
in

ts
 

1 36.46 22.66 22.66 
(8.1) 

373.8 (Hc,Hb,S) 
(100,100,50) 

(Hc,Hb,S) 
(77.28,134.6, 

10) 

10 50 g2,g6

2 36.46 23.26 22.9 
(8.3) 

370.8 (Hc,Hb,S) 
(100,100,50) 

(Hc,Hb,S) 
(76.68,133.6, 

10) 

8 128 g2,g6

3 36.46 26.41 22.9 
(1.115) 

349.5 (Hc,Hb,S) 
(100,100,50) 

(Hc,Hb,S) 
(73.24,126.5, 

10) 

1 129 g2,g6

4 36.46 23.18 23.18 
(10) 

378 (Hc,Hb,S) 
(100,100,50) 

(Hc,Hb,S) 
(78,136,10) 

10 40 g2,g6

5 27.03 22.52 22.52 
(7.1) 

418.8 (MBC,SBC, 
MBH,SBW) 

(100,100, 
100,100) 

(MBC,SBC, 
MBH,SBW) 
(80.8,79.29, 
141.6,138.6) 

8 184 g4

6 33.56 29.37 29.37 
(11.1) 

516 (MBC,SBC, 
MBH,SBW) 

(100,100, 
100,100) 

(MBC,SBC, 
MBH,SBW) 

(162,78, 
244,136) 

10 81 g4

7 33.56 24.23 - 443 (F,MBC,SBC, 
MBH,SBW) 

(100,100, 
100,100,0.1) 

(F,MBC,SBC, 
MBH,SBW) 
(0.153,84,86, 

139,152) 

8 257 g4

 

It is interesting to note that although most optimum values coincide with the best data 

point for the particular case, the two cases that do not (Case 2 and 3) use the same 

data set. It should be once again noted that the data points used for the nueral network 

are supplied by the database of points available from the quadratic SRSM (Case 2) 

analysis. The suspicion is that in both cases, insufficient resolution of points were 
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available near the optimum and that further optimisation iterations would have in all 

likelihood resulted in more accurate predictions of the location of the local minimum.  

 

The Linear RSM analyses provided very similar final results to the Quadratic RSM 

analyses with fewer function evaluations, e.g., 50 (Case 1) and 128 (Case 2) function 

evaluations for the Linear and Quadratic RSMs respectively for design 1. If one is 

interested in the optimum result only, one would therefore favour the Linear RSMs. If 

however one is interested in the trends exhibited for each design problem, one 

requires a higher level of confidence in the quality of the fit with respect the response 

in question. Figure 4.17 below provides some insightful data in this respect. The bar 

graphs provided represent ANalysis Of VAriance (ANOVA) [34] plots for both the 

Linear and Quadratic RSM analyses of the design 1 liquid container. Both plots are 

for the 3rd optimisation iteration of their respective analyses. Each bar represents a 

specific term in the equation which corresponds to the response surface fitted through 

the data for that optimisation iteration. Intuitively, the Linear fit requires only three 

(the number of variables) terms, as interaction effects are not considered, while the 

quadratic fit requires nine terms. The magnitudes of the bars relative to each other 

illustrate the relative significance of that term in the fit. The magnitude of the red 

portion of the bar provides a relative indication of the confidence in the value of the 

coefficient chosen for that term.  
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Figure 4.17: Comparative ANOVA plots for Quadratic and Linear RSM analyses 

 

It is clear from the plots that the quadratic fit provides a surface in which the 

optimisation algorithm has significantly higher confidence. The plot also shows that 

the quadratic cross or interaction terms are as significant as the linear terms. These 

data provide strong motivation for the use of a Quadratic RSM if the trends in the 

performance of the design are of significant interest, e.g., when considering trade offs. 
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4.5 Conclusion 

 

The main point that can be concluded form this chapter is that RSMs in conjunction 

with LS-OPT provide a robust and insightful method of numerical design 

optimisation of liquid containers for sloshing. The over-sampling method used by LS-

OPT ensures minimal susceptibility to noise and a good estimation of the response for 

the specific design subspace.  

 

A final observation from this chapter is that global meta-model methods like Kriging 

and Neural Networks can provide interesting plots when contemplating global trends 

for up to two variables.  
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