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Abstract

Substantial theoretical research has been carried out to study the phase tran-
sition between hadronic matter and a quark-gluon plasma (QGP). When cal-
culating the QGP signatures in relativistic nuclear collisions, the distribution
functions of quarks and gluons are traditionally described by Boltzmann-
Gibbs (BG) statistics. Here we investigate the effect of both extensive and
non-extensive forms of statistical mechanics on the formation of the QGP. We
suggest to represent the dominant part of the long-range interactions among
the constituents in the QGP by a change in the statistics of the system in this
phase, and we study the relevance of this statistics for the phase transition.
The results show that for small deviations (&~ 10%) from BG statistics in the
QGP phase, the critical temperature for the formation of a QGP does not
change substantially for a large variation of the chemical potential. This can

be interpreted as the formation of a QGP occurs at a critical temperature
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which is almost independent of the total number of baryons participating in
heavy ion collision. The resulting insensitivity of the critical temperature to
the total number of baryons presents a clear experimental signature for the

existence of fractal statistics for the constituents of the QGP.
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Chapter 1

Introduction

Quarks are usually bound in hadronic states. However, lattice calculations
of Quantum Chromodynamics (QCD) [3, 4, 5, 6, 7] predict that at high
temperature and pressure, the hadrons essentially melt and the quarks and
gluons become asymptotically free. Such a state is called a quark-gluon
plasma (QGP). One of the primary objectives of colliding heavy ions at very
high energies is to study this new phase of matter, the QGP. Collisions of
nuclei with highly relativistic speeds are expected to produce small volumes
of matter in which the quarks and gluons, ordinarily confined to protons and
neutrons, interact freely with each other?.

When the density of quarks and antiquarks in a system is low, the quarks
are confined in individual hadrons, surrounded by normal vacuum. However,
as the density is raised, by increasing temperature or baryon density, the
hadrons begin to overlap and matter is expected eventually to undergo a
transition to the QGP phase, in which the quarks and gluons are no longer
locally confined, but are free to roam over the entire system. If one imagines

hadrons as surrounded by little islands of perturbative vacuum, as in bag

'For a brief introduction of quarks and gluons see Appendix A.
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models, then at sufficiently high density, the inbetween regions of normal
vacuum are squeezed out, and the space becomes filled with perturbative
vacuum [8].

In the absence of a complete solution of QCD, one can describe confine-
ment and possible deconfinement of quarks to a first approximation in terms
of a picture of vacuum having two possible phases. The first, the normal
vacuum outside hadrons, is that in the absence of physical quarks and color
fields. Quarks and gluons modify the vacuum in their neighborhood, trans-
forming it into a second, high energy state, the perturbative vacuum, the form
of the vacuum inside hadrons. The crucial difference between between these
two states is that the nmormal vacuum excludes physical quark and gluon
fields, while they can propagate freely throughout the perturbative vacuum.
In terms of quark masses, one would say that in the normal vacuum the mass
of an isolated quark is infinite (provided confinement is exact), while in the
perturbative vacuum the quarks have the current mass values (see Appendix
A) [8].

In addition to man-made production of the QGP in heavy ion collisions
where heavy ions are accelerated to relativistic energies and made to collide,
the QGP can be found in cosmic rays, supernovae, neutron stars and the
early universe [8].

Substantial theoretical research has been carried out to study the phase
transition between hadronic matter and the QGP [1, 2, 9, 10, 11, 12]. When
calculating the QGP signatures in relativistic nuclear collisions, the distribu-
tion functions of quarks and gluons are traditionally described by Boltzmann-
Gibbs (BG) statistics. Here we investigate the effect of the non-extensive
form of statistical mechanics proposed by Tsallis [13] on the formation of a
QGP [14]. The crucial difference between the hadronic and QGP phase is
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the relative importance of short-range and long-range interactions among the
constituents on either side of the anticipated phase transition. The hadronic
phase is characterized by a dominant short-range interaction among hadrons
(which lends itself to BG statistics) while the QGP phase has a greatly
reduced short-range interaction (due to “asymptotic freedom”) and conse-
quently a dominant long-range interaction. We suggest to account for the
effects of the dominant part of this long-range interaction by a change in
statistics for the constituents in the QGP phase.

Since hadron-hadron interactions are of short-range, the BG statistics is
successful in describing particle production ratios seen in relativistic heavy
ion collisions below the phase transition [15, 16, 17, 18, 19, 20]. Our motiva-
tion for the use of generalized statistics in the QGP phase lies in the necessity
to include the long-range interactions on the QGP side. Recently Hagedorn’s
[21] statistical theory of the momentum spectra produced in heavy ion colli-
sions has been generalized using Tsallis statistics to provide a good descrip-
tion of ete~ annihilation experiments [22, 23]. Furthermore, Walton and
Rafelski [24] studied a Fokker-Planck equation describing charmed quarks in
a thermal quark-gluon plasma and showed that Tsallis statistics were rele-
vant. These results suggest that perhaps BG statistics may not be adequate
in the quark-gluon phase.

It has been demonstrated [25, 26] that the non-extensive statistics can
be considered as the natural generalization of the extensive BG statistics in
the presence of long-range interactions, long-range microscopic memory, or
fractal space-time constraints. It was suggested in [27, 28] that the extreme
conditions of high density and temperature in ultra-relativistic heavy ion
collisions can lead to memory effects and long-range color interactions. We

deem the non-dominant part of this long-range interaction negligible for the
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purpose of the phase diagram which we study here in detail. This latter view
is supported by the empirical insensitivity of the phase diagram to details of
the interaction among the constituents on either side of the phase transition.
Therefore, we use the generalized statistics of Tsallis to describe the QGP
phase while maintaining the usual BG statistics in the hadron phase (as we
shall see this may also be regarded as choosing Tsallis statistics in the hadron
phase with the Tsallis parameter g=1). In chapter two, we will discuss the
generalized statistics proposed by Tsallis and formulate the distribution func-
tions of fermions and bosons from maximum entropy principle. In chapter
three, we will apply the distribution functions formulated in chapter two to
the constituents of the QGP and study the effect of the generalized statistics
on the formation of a QGP.
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Chapter 2

Generalized Statistics

New developments in statistical mechanics have shown that in the presence
of long-range forces and/or in irreversible processes related to microscopic
long-time memory effects, the extensive thermodynamics, based on the con-
ventional BG thermostatistics, may not be correct and, consequently, the
equilibrium particle distribution functions can show different shapes from
the conventional well-known distributions [27, 28].

An interesting generalization of the conventional BG statistics has been
proposed by Tsallis [13] and proves to be able to overcome the shortcomings
of the conventional statistical mechanics in many physical problems, where
the presence of long-range interactions, long-range microscopic memory, or
fractal space-time constraints hinders the usual statistical assumptions.

In the past few years the non-extensive form of statistical mechanics pro-
posed by Tsallis has found applications in astrophysical self-gravitating sys-
tems [29], solar neutrinos [30, 31], high energy nuclear collisions [27, 28],
cosmic microwave back ground radiation [32], high temperature supercon-
ductivity [33, 34] and many others. In these cases a small deviation of the

Tsallis parameter g (= 10%) from one (BG statistics) reduces the discrepan-
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cies between experimental data and theoretical models.
The generalized entropy proposed by Tsallis [13] takes the form:

1—2331193)

il (¢ eR), (2.1)

sq=1c(

where K is a positive constant (from now on set equal to 1), W is the total
number of microstates in the system, p; are the associated probabilities with
7. p; =1, and the Tsallis parameter (q) is a real number.

The new entropy has the usual properties of positivity, equiprobability,
concavity and irreversibility, preserves the whole mathematical structure of
thermodynamics (Legendre transformations) and reduces to the conventional
BG logarithmic entropy, S = — Y, p;Inp;, in the limit ¢ — 1. Only in
this limit is the ensuing statistical mechanics extensive [13, 26, 35]. For
general values of ¢, the measure S, is non-extensive. That is, the entropy of
a composite system A @ B consisting of two subsystems A and B, which are
statistically independent in the sense that p,gj-@B) = pgA)p_.(,-B), is not equal to
the sum of the individual entropies associated with each subsystem. Instead,
the entropy of the composite system is given by Tsallis’ g-additive relation
[13],

Sq(A@ B) = Sg(A) + Sq(B) + (1 — q)S,(A)S(B) - (2.2)

The quantity |1 — ¢g| can be regarded as a measure of the degree of non-
extensivity exhibited by S,.

Suppose that the set of W microstates is arbitrarily separated into two
subsets having Wy, and W), microstates (W + Wy = W) and define their
corresponding probabilities as pr, = 1% p; and py = E i w1 i With pr +

pu = 1. It can be shown that [36]

Sg({pi}) = Sq(pr,par) + 07 Se({pi/pL}) + Pis So{pi/Dr}), (2.3)
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where the sets {p;/pr} and {p;/pr} are the conditional probabilities. This is
a generalization of the famous Shanon’s property except for the appearance
of pj and pf, instead of p;, and pys in the second and third terms of the right
hand side of (2.3). Since the probabilities {p;} are normalized, p! > p; for
g <1 and p{ < p; for ¢ > 1. As a consequence the values ¢ < 1 (¢ > 1) will
favor rare (frequent) events, respectively [27, 28].

Starting from the one parameter deformation of the exponential func-
tion exp . (z) = (V1 + K222 + kz)*, a generalized statistical mechanics has
been recently constructed by Kaniadakis [37, 38], which reduces to the ordi-
nary BG statistical mechanics as the deformation parameter x approaches to
zero. The difference between Tsallis and Kaniadakis statistics is that: Tsal-
lis statistics is non-extensive and reduces to BG statistics (extensive) as the
Tsallis parameter g tends to one. On the other hand, Kaniadakis statistics
is extensive and tends to BG statistics as the deformation parameter x tends
to zero. The distribution functions for fermions and bosons can be derived
from maximum entropy principle [37, 39]. The x-entropy is linked to Tsallis
entropy S{*) through the following relationship [37]:

1. &% (T) 1k (T)
Kk — = S ® =TT —K . 2.4
S, ST R i+ +21—n 1% + const (2.4)

where « is a real positive constant. Here we consider the generalized statistics
proposed by the Tsallis to represent the dominant part of the long-range
interactions among the constituents in the QGP!.
The standard quantum mechanical distributions can be obtained from a
maximum entropy principle based on the entropic measure [40, 41],
S =—> [A;Inn; F (1 £ 7;) In(1 £+ 7)), (2.5)

2

1The phase diagram for Kaniadakis statistics is shown in fig. 3.8.
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where the upper and lower signs correspond to bosons and fermions, respec-
tively, and 7; denotes the number of particles in the i** energy level with
energy €. The extremization of the above measure under the constraints

imposed by the total number of particles,

Z = N (2.6)
and the total energy of the system,
Z niei = B, (2.7)
i
leads to the standard quantum distributions (see Appendix B),
i L (2.8)

" expBla—p)FL
where 8 = %, 41 is the chemical potential which is associated with the number
of particles and the upper and lower signs correspond to the Bose-Einstein
and Fermi-Dirac distributions, respectively.
To deal with non-extensive scenarios (characterized by ¢ # 1), the ex-
tended measure of entropy for fermions proposed in [33, 39] is:

(F) _ a; —a]  (L—7;) — (1 — ;)
& Z g—1 - g—1

; (2.9)

which for ¢ — 1 reduces to the entropic functional (2.5) (with lower signs).

The constraints

Y al=N (2.10)
and :
Zﬁ;’ &=EFE (211)
lead to (see Appendix B)
. s Sl (2.12)
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In the limit ¢ — 1 one recovers the usual Fermi-Dirac distribution (2.8) (with

lower sign).

Similarly,

= 1 (2.13)
[1+({g—1)B(e—p)]=T -1

for bosons.
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Chapter 3

The Formation of a QGP

3.1 Deconfinement in Heavy Ion Collisions

Under given conditions of temperature and density the hadronic matter un-
dergoes a phase transition towards a plasma of deconfined quarks and gluons.
The possibility of obtaining energy densities which are large enough to cause
deconfinement in ultra-relativistic heavy ion collisions has acted as one of the
main stimuli to interest in such collisions, from both the experimental and
theoretical points of view.

Historically, much of the early interest in the deconfinement transition
came from the cosmological community, where the emphasis was on hadroniza-
tion in the early universe. The resulting calculations tended to be performed
at zero net baryon number, as befits the early universe scenario. More re-
cently, the high energy physics community, spurred by the development of
more powerful particle accelerators, have considered the possibility of ob-
taining the reverse process, i.e. deconfinement, in the laboratory from ultra-
relativistic heavy ion collisions. These collisions result in systems which cer-

tainly have non-zero baryon number; as a result, much effort has been devoted
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to determine full phase diagrams for strongly interacting systems. The major
theoretical thrusts in this direction have centered on two approaches, namely
lattice QCD and phenomenological models. While lattice QCD [3, 4, 5, 6, 7]
is the preferred method of studying the behavior of strongly interacting sys-
tems, the enormous computational requirements of such calculations have led
to an appreciable amount of work being directed towards phenomenological
descriptions of deconfinement [9].

In phenomenological calculations the relevant quantities are the densities
of the thermodynamic variables. Anticipating the formation of a QGP during
a heavy ion collision, it is at present by no means clear whether there is
sufficient time available for the hadron gas and the QGP to equilibrate, and
therefore whether traditional equilibrium thermodynamics should be applied
to these systems. In what follows, we will assume that the system is in fact
in equilibrium. However, the limitations inherent in this assumption should
be borne in mind when using the results of our calculations in analysis of
heavy ion collisions [9]. We now turn to the description of the system in the
QGP phase.

3.2 The QGP Phase

In this approach, the quarks and gluons are treated as forming an ideal
gas, apart from the non-perturbative corrections to the pressure and energy
density resulting from the bag model [2]. We initially (3.2.1) describe the
system by BG statistics in order to define our notations and general numerical
procedure. In (3.2.2) we lay out the differences due to the non-extensive
statistics. We emphasize that only (3.2.2) can incorporate the anticipated

long-range forces in the QGP phase.
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3.2.1 Boltzmann-Gibbs (BG) Statistics

According to the BG statistics the energy density, pressure, and baryon num-
ber density for a QGP consisting of massless up and down quarks and an-
tiquarks, each with degeneracy factor dg = 12 (2 (spin) x 3 (color) x 2
(quarks and antiquarks)), and gluons, with degeneracy dg = 16 (2 (spin) x
8 (color)), at a temperature T and baryon chemical potential y are given by

(see Appendix C for details)

d £ d 00
uQGp=2—7‘32[0 dk k* (ﬁQ+ﬁQ)+ﬁfo dk k* i + B (3.1)
doT [° 1 —~1
Pgep = 2"12 /0 dk k* {ln [1 + exp f(”‘? - k:)] +1n [1 + exp ?(,u@ + k)]}
1l ] 9 —k
~o | kR I {1 exp(T)] B (3.2)
and
nacr = & [~ dkk? (g — fig) (3.3
QGP = 53 [ ng —ng), 3)
where
i 1
"D exp Lk Fug) +1 0
1
g = ——F~v—— (3.5)
exp (%) -1
and pg = §.

Integration by parts of (3.2) yields
f

Evaluating the integrals in (3.1-3.3) yields (see Appendix C)

w2 i L B T N
UQGP = 30 (d(; + ng) T + 26 + 648 72 + B, (3.7)
71’2 7 dQ [12 T2 dQ }Ld

-+

By - ;
BEE ST 108 Toadz D (3:8)

(dG + ZdQ) T +
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and
BT
nQGep = dQ (5—4 o= 4867’!’2) 3 (39)

where B is the bag constant which is taken here as (210 MeV)* [1] with an

uncertainty of ~ 15%.

3.2.2 Generalized Statistics

The quantum mechanical distribution function proposed by Buyukklic and
Demirhan (BD) [42] is given by
1
n; = = ; (3.10)
L+(g—-1)B(e—p)lTF1

where the upper and lower signs correspond to bosons and fermions, respec-

tively.

Extremizing the entropic functional,

7. — n? 7:) — 7. )4
(B n; — 1, v, (1 +ns) (1 +nz) 11
% Xt: g—1 g—1 ’ (3-11)

under the constraints imposed by (2.10) and (2.11) yields the g-generalized
BD Bose-Einstein distribution, which is given by (3.10) with the minus sign.
A “probabilistic” interpretation of the entropic measure (3.11) and the asso-
ciated variational procedure leading to BD approach distribution for bosons
(3.10) is somewhat problematic [39]. If we use the generalized statistics to
describe the entropic measure of the whole system, the distribution func-
tion can not , in general, be reduced to a finite, closed, analytical expression
[39, 43, 44, 45, 46, 47]. For this reason, we use generalized statistics to de-
scribe the entropies of the individual particles, rather than of the system
as a whole. Even in this case, we are unable to obtain the “probabilistic”

interpretation for bosons (see Appendix B).
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The single particle distribution functions of quarks, antiquarks and gluons

are given by
1

1+ L(a— )k F ug)] ™ +1

NgQ) = (3.12)

and

1
g = — (3.13)

[1+4(g— 1)k -1
respectively. In the limit ¢ — 1, (3.12) and (3.13) reduce to (3.4) and (3.5)

respectively.

The expression for the pressure is given by

doT [ 11 i1
Pacp = 7> fﬂ dk k? (fQ — -

272 g—1 g—1
daT % e e —
7 | dkk (—q_l B, (3.14)
where !
1 =
1 =
and '
1 T—
e e [1+ —(g- l)k] , (3.17)

which in the limit ¢ — 1 reduces to (3.2).

Since the integrals in (3.1-3.3) are not integrable analytically, one has to
calculate these integrals numerically. For ¢ > 1, the quantity [1 + %(q -
1)(k — pg)] becomes negative if ug > k. To avoid this problem we use [48],

1

fQ=1+[1+%(q—1)(k—#Q)]tE, ki ek B R)

and X

g—1

g =1 [1+%(1—Q)(k—,u@)] ; k< pg. (3.19)
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In the limit ¢ — 1 one recovers, of course, the appropriate Fermi-Dirac
distribution in both cases. We now turn to the hadronic phase of the system

which is more readily accessible to experiment.

3.3 The Hadron Phase

The hadron phase is taken to contain only interacting nucleons and antinu-
cleons and an ideal gas of massless pions motivated by the findings in [49, 50].
The interactions between nucleons can be treated either by means of an ex-

cluded volume approximation or by a mean field approximation.

3.3.1 The Excluded Volume Approximation

In this approximation, the short range repulsive hadron-hadron interactions
are taken into account by a Van der Waals-type method. The assumption is
that a hadron is deformable, but has an intrinsic hard-core volume V, which
prevents compression of the hadron gas beyond a close-packing density v%,
One of the problems of the excluded volume is this close-packing density;
the physics in such a limit is by no means clear. The hard-core volumes of
hadrons are taken into account in calculations by reducing the total volume
available to the system from V to V — ¥ ; N* V!, where N* is the number of
hadrons of species ¢ and V/ is the hard-core volume of these species [9].

We consider a nucleon which consists of a meson cloud and a hard-core
volume where the quarks reside. The relationship between the hard-core
volume V; and the hard-core radius Ry is Vp = %:TRS , where the hard-core
radius Ry is in the range between 0.5 and 1 fm [51, 52]. In the simplest
approximation, one can assume that all baryons have the same hard-core

volume, and use the relevant value of V, (e.g. the nucleon volume) for all
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baryons, and ignore the meson hard-cores altogether. Alternatively, one can
assume a parameterization of the hard-core volume in terms of the hadron
mass. One such parameterization, which draws its inspiration from the MIT
bag model [53], is

=

Vai = %Nr (3.20)
my

where my is the nucleon mass and V" is the nucleon hard-core volume.
Once the form of the hard-core volume has been determined, the particle
number density n‘, the energy density u’ and the pressure P* are given by

[54]

: ni
nf=—_4W 3.21
_ i
P S (3.22)
1+ Zj T/0:" ngd
and
g pi
: - (3.23)

where the quantities with subscript id refer to the relevant quantities calcu-
lated for an ideal gas of point-like particles.

While the excluded volume approximation (3.21-3.23) with various vol-
ume corrections has been widely used as a method of including hadron-hadron
interactions in phenomenological hadron gas models, all such formulations
suffer from two main and severe deficiencies [54, 55, 56, 57, 58]. Firstly,
the equations of state (EOS) in these models are not thermodynamically
consistent because we do not have a well defined partition function or ther-
modynamic potential € such that the baryon number N, energy E, pressure
P and entropy S can be obtained directly from it (i.e. N # — (%%)T,V, E #
(%{ﬁﬂ})lf,p +uN, P #— (g_g)i‘",u and S # — (%)V,”). The second and

more crucial deficiency is that these models violate causality at high densities,
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1.e. information travels at a speed larger than the speed of light. Several pro-
posals appeared in the literature which removed the inconsistency problem
[59, 60, 61, 62, 63, 64] but they suffer from the causality problem.

It is possible to construct a thermodynamically consistent model using an
excluded volume approximation by formulating the problem in the pressure
ensemble [59, 60, 61, 62, 63, 64]. For simplicity, let’s consider one particle
species with eigenvolume v. The pressure P is related to the grand partition

function Z according to

P(T,p) =T lim InZ(T,p, V)

V—coo

(3.24)

where p, T and V are the chemical potential, temperature and volume of the
system respectively.
The grand partition function is defined as
00
2T, V)= exp (%) Z(T,N,V). (3.25)
N=0

To introduce the excluded volume, it is necessary to substitute the canonical

partition function Z in (3.25) by [63]
Z**4(T,N,V) = Z(T,N,V —u N)§(V — v N). (3.26)

This ansatz is motivated by considering N particles with eigenvolume v in
a volume V' as N point-like particles in the “available volume”, V — v N.
Substituting (3.26) in (3.25), one obtains

2T, V) = Nij:o = (%) Z(T,N,V —vN)O(V —vN). (3.27)

The main problem in evaluating (3.27) is the dependence of the available
volume on the varying number of particles N. To overcome this difficulty

one has to perform a Laplace transformation of (3.27). This method of
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the “isobaric partition function” [65] was successfully used [60, 61, 66] to
investigate the excluded volume effect in a gas of quark-gluon bags. In doing

so, one obtains [63]
g (T, . ) = / AV exp(—z V) Z54(T, u, V)
0

- f = AV ezp(—x V) Z(T, , V), (3.28)
0

where f=pu—vTx and V=V —uN.

From the definition of the pressure function one concludes that the grand
canonical partition function of the system, in the thermodynamical limit,
approaches
1

Pemd.’ T, vV
Zexd (T, ik, V)IV—)OO ~ exp [(—‘u)] i

From the first equality in (3.28) one sees that this exponentially increasing
part of 2 (T, 1, V') generates an extreme right singularity in the function
Zead (T, u,z) at some point z*. For z < P®/T the integration over V
for Zezd (T, p, ) diverges at its upper limit. Therefore, the extreme right
singularity of Z¢*(T, u, z) at z*(T, 41 gives a pressure [63],

In 22T, 1, V)
1%

P=HT,p) =T Jim = T z*(T, p). (3.29)
—+00

The direct connection of the extreme right z-singularity of Z¢*¢ to the
asymptotic behavior V — oo of Z%*¢ is a general mathematical property

of the Laplace transform. Using the above equations one obtains

nZ(T, 5V
(T, p) = lim E(A’—p’)

V—co

; fi=p—vTz*(T,p).

Applying (3.24) for Z(T, ji, V) and making use of (3.29) to eliminate z* one
gets
Pe(T, 1) = PT, i) fi = i — v P(T, ). (3.30)
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Therefore, we have an implicit equation for P#*(T, i) if P is a known func-
tion of its arguments.

If we consider the ideal gas case, we have in (3.28)

Zu(T, i1, V) = explV F(T, 1), (3.31)
where
F(T, ) =1 [l—l—aexp (_“’“2 ;m””)] Sedl 43:32)

where a = =+ 1 refers for fermions/bosons and a — 0 for classical (Boltzmann)
approximation. Performing the integral in (3.28) yields

1

zezd(T, W, T) = :r:—F—(Tﬁ) ;

which gives

PGY(T,p) =T F(T, i) = Pua (T, p— v PF(T, 1)) . (3.33)

This is a special case of (3.30) for the ideal gas [62, 67]. The expression (3.30)
is valid also for more general cases.

The particle number density, the entropy density and the energy density
can be found from (3.33) using the relations [63]

emcl (T ,U,) (6 ezd) o nid(Ta :ﬂ‘) ; (3‘34)
7=

ou 1+vnu(T, i)
aPezcl ey (T ﬁ)
esud T Sy id\4L 5 ‘
(T, 1) = ( oT ) 1+ vn;a(T, z) (3:35)
and
uedxd(T, 'u) T Sezcl P;:izc! 5E 'u,nemcl uid(Tz Iu‘) (3.36)

1 +vnga(T, i)’
where n;4, 8;q and u;4 are the well-known expressions for an ideal gas of point-
like particles. The relations (3.33-3.36) are thermodynamically consistent, i.e.

fundamental thermodynamical relations are fulfilled.
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Since the excluded volume approximation suffers from the causality prob-
lem even if the consistency problem is addressed, we use the relativistic mean
field or Hartree approximation proposed by Walecka [68, 69], which is ther-

modynamically self-consistent, to treat the interactions.

3.3.2 The Mean Field Approximation

In this approximation, the interaction between nucleons is described by the
scalar-isoscalar ¢ and vector-isoscalar V* mesonic fields with baryon-meson
interaction terms in the Lagrangian: g,¥w¢ and g,4y,V#4. For nuclear
matter in thermodynamical equilibrium these mesonic fields (¢ and V*) are
considered to be constant classical quantities. The scalar field ¢ describes the
attraction between nucleons and lowers the nucleon (antinucleon) mass M
to M* = M — g, < ¢ >. The nucleon-nucleon repulsion is described by the
vector field V* which changes the nucleon (antinucleon) energy by (£U(n))
1

The Lagrangian density in the in the Walecka model is given by [70]

£= Bl (0" — guV*) — (M — 0.6)] 4 + 7 (0,996 — m24?)
1 It

——F, F*
Ayt * 2

where F'# = VY — g"VH and 6L contains renormalization counterterms

m2V,V* + 6L, (3.37)

required for quantum field theory. The parameters M, g;, g,, m, and m,
are phenomenological constants that can be determined from experimental
measurements.
The Euler-Lagrange equations [70]
9 { oL ] angpd
Oz | 0(0gi/0z+)|  Og;

IThe odd G-parity of the w-meson is responsible for the attractive w-exchange in NN

0, (3.38)

scattering as compared to the repulsive w-exchange in NN (N N) scattering.
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where g; is one of the generalized coordinates (¢, ¢ and V*), yield the field

equations
(8u0" +m3) ¢ = 9,409, (3.39)
8, F* +miV” = g7y (3.40)
and
[V*(i0p — 9o Vi) — (M — gs¢) [ = 0. (3.41)

Equation (3.39) is simply the Klein-Gordon equation with a scalar source,
Equation (3.40) looks like massive quantum electrodynamics (QED) with the

conserved baryon current
B* =y*p; 8,B* =0 (3.42)

rather than the (conserved) electromagnetic current as source and equation
(3.41) is the Dirac equation with the scalar and vector fields introduced in a
minimal fashion. These field equations also imply that the canonical energy-

momentum tensor
T = i 0 — - (0,407 — m3g?) g + 608

+% (8 VA0V — m2V,V7) g — 8*V30"V* (3.43)
is conserved (8,T* = 9,T* = 0).

Equations (3.39-3.41) are nonlinear quantum field equations, and their
exact solutions are very complicated. In particular, they describe mesons
and baryons that are not point like particles, but rather objects with intrinsic
structure due to the implied (virtual) mesonic and baryon-antibaryon loops.
When the source terms are large, the meson field operators can be replaced

by their expectation values, which are classical fields [70]:

$I< P>=0d; VFa<VE>=§, (3.44)

Il 722492 u
blL259b29
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For a static, uniform system, the quantities ¢y and V; are constants that
are independent of space and time. Rotational invariance implies that the
expectation value of the three-vector piece of V* vanishes.

The meson field equations (3.39) and (3.40) can be solved for constants
¢ and Vj to give

Gs -
Po = m_§ <y > (3.45)
and
Vo = g—”? <l > . (3.46)
mTJ’

When the meson fields in (3.41) are approximated by the classical fields

of (3.44), the Dirac equation becomes linear,

(70" — gu7°Vo — (M — gs¢h0)]9p = 0 (3.47)

and can be solved exactly. It is this linearization of the full field equation
(3.41) that allows the baryons to be interpreted as point particles. As for free

particles, the stationary state solutions for a uniform system have the form
P = (K, N Te®r (3.48)

where 1(k, A) is a four-component Dirac spinor and A denotes the spin index,
which corresponds to one of the two orthogonal polarizations chosen in the

particle’s rest frame [70]. The Dirac equation then becomes

where @ and 8 are the four matrices:

0 o 1 0
a = ( , B= ( ; (350)
o 0 0 -1

The effective mass M* is defined by

M* = M — g,y (3.51)
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The condensed scalar field ¢y thus serves to shift the mass of the baryons.
Evidently, the condensed vector field V; shifts the frequency (or energy) of
the solutions. The square of equation (3.49) and the properties of the Dirac

matrices yield the eigenvalue equations [70]

eF (k) = g,Vo £\ k2 + M*% = g,V + E* (k). (3.52)

The presence of both positive and negative square roots is the characteristic
of the Dirac equation. These solutions can be used to define quantum field
operators and the Hamiltonian density for the system can be constructed in

the canonical fashion (for the details of these procedures, see ref. [70]). The

result is
H = Hyrr +6H, (3.53)
Hyrr = g,VoB + Y E*(k) (ALAAICA r BIL\BH)
kA
1
1V (m2g? - m2V) | (3.54)
B =Y (Al\Au — Bl,Bw) (3.55)
kA
and
s =3 (Vie+ M2 - V1) (3.56)
kA

Here Ab, B,L\, Ay and By, are creation and destruction operators for
baryons and antibaryons with shifted mass and energy. The properties of

these operators are completely determined by the anticommutation relations:
{Ak.\; AL.!)\!} — 6‘{]{’6)\:\’ = {Bk)” .BILA!}

{Ak,\, ka}‘:} =0= {AL)\! BL‘\;} 5 ete. (357)

B is the baryon number operator, which clearly counts the number of baryons

minus the number of antibaryons, the index A denotes both spin and isospin
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projections and the correction term JH arises from placing the operators in
Hjpr in normal order [70].
The thermodynamic potential Q(u, V, T') can be computed using the stan-

dard expression from statistical mechanics:

Qp,V,T) = -Tln {Tq~ [exp (_g }”B )]} , (3.58)

where H is the Hamiltonian of the mean field theory and p is the chemical

potential of baryons.
The general form of the thermodynamically self-consistent EOS for nu-
clear matter which includes the mean field theory and pure phenomenological

models as special cases is [71, 72]:

3 k2
'YN/ d k‘ (nN+ﬁ'ﬁ)+nU(n)—
VR + M
/Oﬂ dn’ U(n’) + p(M*) - (359)
=1

7i B+M2FuxUn

AN = [exp (\/72“ pEU( )) wall o i)
g _ dp(M*) &k M
(JM*)T . dMmr "/Nf (27)3 \/m (Aw +75) =0, (3.61)
&k
and
d*k

u(T,m) = [ sV + M2 (A +7x) + /0 "' U') —p(M*), (3.63)

where P, n and u are the pressure, baryon number density and energy density
respectively, 7y, is the distribution function of nucleons (antinucleons), u
is the baryon chemical potential and ~yx is the spin-isospin degeneracy of the

nucleon which is 4 for symmetric nuclear matter. Equation (3.61) describes
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the dependence of the effective nuclear mass M* on 7" and p which is defined
by extremizing the thermodynamical potential (maximizing the pressure).

If we choose [68, 69],

p(M*) = ———(M — M*)?, Un) =C2n (3.64)

26’2

s

where C; = g, (Ma) and C, = gy ( v) The parameters M, M*, g;, Gy, Ms
and m, are taken here to be M= 0.940 GeV, M*= 0.543M, g, ~ 11 GeV 1,
gy &~ 14 GeV~1, m,= 0.520 GeV and m,= 0.783 GeV, which reproduce data
(see ref. [70, 72] for details) in the hadronic phase.

The energy density, pressure and baryon number density for the hadron

gas taken to contain nucleons, antinucleons and an ideal gas of massless pions

are:
o0 1
wug (T, 1) = 2'%/0 dk k*\/k2 + M*? (ﬁN+ﬁﬁ)+§C.3 n?+
1 * 1 2 4
Se 2(M M*)? T (3.65)
dk k* 1
P = ] b . e
671'2/ \/k2+M*2 (n +nN)+ Qcﬁ &
T 1
2CE(M M*)? + 5 > T4 (3.66)
and
=15 ] dk K (i — 7ig) (3.67)

where 7iy(x) as in (3.60) with U(n) as in (3.64).
Finally, we address the phase transition from the hadronic to the QGP

phase, within our model.



University of Pretoria etd — Teweldeberhan, AM (2003)

3. The Formation of a QGP 26

3.4 Phase Transition

Assuming a first order phase transition between hadronic matter and QGP,
one matches an EOS for the hadronic system and the QGP via Gibbs con-

ditions for phase equilibrium:

Py = Pggp, T = Tqeep, BH = PJQGP (3.68)

With these conditions the pertinent regions of temperature 7" and baryon
chemical potential p are shown in figures (3.1-3.3) for ¢= 1, 1.1 (0.9) and
1.25 (0.75). At low values of 2 and T the nuclear matter is composed of
confined hadrons, but as the energy density is raised, with increasing T' or
i, or both, the hadronic matter undergoes a phase transition towards a
plasma of deconfined quarks and gluons. The critical temperature at © = 0
for ¢= 1, 1.1 (0.9) and 1.25 (0.75) are found to be 122 MeV, 101 MeV
and 66 MeV with B=(180 MeV)*; 148 MeV, 122 MeV and 79 MeV with
B=(210 MeV)* and 180 MeV, 148 MeV and 96 MeV with B=(250 MeV)*,
respectively. As the non-extensive parameter deviates from ¢g= 1 to 1.25
(0.75), the critical temperature becomes almost independent of the baryon
chemical potential which is associated with the number of particles. Variation
of the bag constant B between (180 MeV)! and (250 MeV)* (fig. 3.1-3.3)
and excluding interactions among the constituents in the hadron phase (fig.
3.4) do not alter our findings significantly. One still observes a flattening
of the T'(u) curves as |1 — g| increases. The only effect is a shift of the
value of the maximal p and T(0). The agreement between BG and the
generalized statistics as the critical temperature approaches to zero is evident
from equations (3.2) and (3.14). Figures (3.5-3.7) show the dependence of
the critical temperature on the non-extensive parameter at yu = 0, 250 MeV

and 1000 MeV. The dependence is almost linear for small values of |1 — g
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with a slope [4T| ~ 190 MeV , |37 ~ 240 MeV, and | 37| ~ 302 MeV for
B=(180 MeV)*, B=(210 MeV)* and B=(250 MeV)*, respectively . This can
be interpreted as a new type of universality condition [33] which suggests that
the formation of a QGP occurs (almost) independent of the total number of
baryons participating in heavy ion collisions.

We also consider the extensive Kaniadakis statistics [37, 38] to represent
the constituents of the QGP [73]. Figure (3.8) shows the T'(u) curves for
k=0, k=0.23 and k=0.29. Since the two statistics are fractal in nature, we
observe a similar flattening of the T'(u1) curves as the deformation & increases.
For k=0.23 (see fig. 3.9), we obtain essentially the same phase diagram as

in the case of Tsallis statistics with ¢=1.1.

3.5 Conclusion

We have studied the phase transition from a system in the hadronic phase to
the QGP phase. The phase diagrams shown in figures (3.1-3.3, 3.8) are for
interacting hadrons and non-interacting QGP. Excluding interactions among
the constituents in the hadron phase (fig. 3.4) does not change the flattening
of the T'(u) curves. The empirical insensitivity of the phase diagram to
details of the interactions in the hadron phase shows that the short-range
interactions among the constituents in the hadron phase are unimportant
for the phase transition. On the QGP side the short-range interactions have
died out (due to “asymptotic freedom”) and have made room for the only
remaining long-range interactions among the constituents. Although we do
not explicitly consider the interactions, we account for the dominant part of
this interaction by a change in the statistics of the system in the QGP phase.

In the present work, we consider two entropic measures (Tsallis and Ka-
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niadakis) to represent the constituents of the QGP. Both are fractal in nature
but differ in that: Tsallis statistics is non-extensive and reduces to BG statis-
tics (extensive) as the Tsallis parameter ¢ tends to one. On the other hand,
Kaniadakis statistics is extensive and tends to BG statistics as the deforma-
tion parameter x tends to zero. Due to lack of experimental data, we choose
different values of ¢ and s to determine the phase diagram in both cases.
For k=0.23 (see fig. 3.9), we obtain essentially the same phase diagram as
in the case of Tsallis statistics with g=1.1. This agreement suggests that the
flattening in the phase diagram is due to the fractal nature of both Tsallis
and Kaniadakis statistics.

We present here testable consequences of using extensive and non-extensive
form of generalized statistical mechanics on the formation a QGP. The result-
ing insensitivity of the critical temperature to the total number of baryons
presents a clear experimental signature for the existence of generalized statis-

tics for the constituents of the QGP.
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Figure 3.1: Phase transition curves between the hadronic matter and QGP
for g=1 (solid line), g=1.1 (0.9) (dotted line) and ¢g=1.25 (0.75) (dashed line)
with B=(180 MeV)*.
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Figure 3.2: Phase transition curves between the hadronic matter and QGP

for g=1 (solid line) [1], g=1.1 (0.9) (dotted line) and ¢=1.25 (0.75) (dashed
line) with B=(210 MeV)*.
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Figure 3.3: Phase transition curves between the hadronic matter and QGP
for g=1 (solid line), g=1.1 (0.9) (dotted line) and ¢g=1.25 (0.75) (dashed line)
with B=(250 MeV)*.
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Figure 3.4: Phase transition curves between the hadronic matter and QGP

for g=1 (solid line) [2] and g=1.25 (0.75) (dashed line) with B=(148 MeV)".
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Figure 3.5: The dependence of T on |1 —g| at y= 0 (solid line), u= 250 MeV
(dotted line) and pu= 1000 MeV (dashed line) with B=(180 MeV)*.
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Figure 3.6: The dependence of T on |1 —g| at u= 0 (solid line), u= 250 MeV
(dotted line) and pu= 1000 MeV (dashed line) with B=(210 MeV)*.
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Figure 3.7: The dependence of T on |1 —g| at u= 0 (solid line), u= 250 MeV
(dotted line) and p= 1000 MeV (dashed line) with B=(250 MeV)*.
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Figure 3.8: Phase transition curves between the hadronic matter and QGP
for k=0 (solid line) [1], k=0.23 (dotted line) and £=0.29 (dashed line) with
B=(210 MeV)*.
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Figure 3.9: Phase transition curves between the hadronic matter and QGP

for k=0.23 (dashed line) and g=1.1 (solid line) with B=(210 MeV).
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Appendix A

Introduction to Quarks and

Gluons

Subatomic particles of matter can be described as fundamental or compos-
ite. A fundamental (elementary) particle of matter, strictly defined, is one
that has no internal structure, one that can not be broken up into smaller
constituent particles. Particles long thought to be elementary, including such
familiar ones as the proton and neutron, are not elementary at all. Instead
they appear to be composite structures made up of the more fundamental
entities named quarks and gluons, in much the same way that an atom is
made up of a nucleus and electrons [74].

The fundamental particles of matter are called quarks and leptons. There
are six flavors of quarks and six flavors of leptons (three pairs). The six flavors

of quarks and leptons can be summarized as follows:
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Quarks
Flavor Mass Electric Charge
Up 34+2 MeV -2
Down 6+3 MeV —:.1,;
Charm | 1.31092 GeVv +2
Strange | 100772 MeV —
Top | 174.3+5.1 GeV +2
Bottom | 4.3101 GeV -
Leptons
Flavor Mass (MeV) Electric Charge
Electron 0.510998902-+0.000000021 -1
Electron Neutrino < 3%10° 0
Muon 105.658357=+0.000005 -1
Muon Neutrino <0.19 0
Tauon 17770305 |
Tauon Neutrino <18.2 0

All particles have spin (intrinsic angular momentum), which is either odd-

L-integral-spin (3, 3, 2, ...) orintegral-spin (0, 1, 2, ...). For both force-carrier
and fundamental particles, spin determines the energy distribution function,
which can be either Bose-Einstein (bosons) or Fermi-Dirac (fermions). Par-
ticles with odd-3-integral-spin (fermions) obey the Pauli Exclusion Principle,

whereas particles with integral-spin (bosons) do not. In sum:
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Quantum Energy Distribution Functions

Particles Spin Statistics Pauli Exclusion Principle
Fermions | 1,3,2, Fermi-Dirac Obey
Bosons | 0, 1, 2, ... | Bose-Einstein Do not obey

The particles thought to be made up of quarks are those called hadrons;
they are distinguished by the fact that they interact with each other through
a strong nuclear force, the force that binds together the particles in the
atomic nucleus. (“Hadron” is derived from the Greek hadros, meaning stout
or strong). Leptons and photons do not respond to this strong force [74].

The hadrons are divided into two large subgroups named the baryons
(fermions) and the mesons (bosons). These two kinds of particle differ in
many of their properties, and indeed they play different roles in the struc-
ture of matter, but the distinction between them can be made most clearly
in the context of a simple quark model. All baryons consist of three quarks,
and there are also antibaryons consisting of three antiquarks. The least mas-
sive and the most familiar of the baryons are the proton and the neutron
[74]. Since these baryons are stable against decay through strong interac-
tions, they are composed of the lightest and most stable quarks: the up-
quarks and the down-quarks. A proton is composed of two up-quarks and
one down-quark, whereas a neutron is composed of two down-quarks and one
up-quark. Mesons have a different structure: they consist of quarks bound to
antiquarks. The least massive and the most long-lived meson against decay
through strong interactions is the positively charged pi-meson (pion, com-
posed of an up-quark and a down-antiquark, mass of 0.14 GeV), which has

an average lifetime measured in nanoseconds [75].
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Gluons are the exchange particles for the color force between quarks,
analogous to the exchange of photons in the electromagnetic force between
two charged particles. The photon does not carry electric charge with it,
while gluons do carry the “color” charge. Analogous to electrical charge
associated with electromagnetic force there is a “color” charge associated
with quarks and gluons. The colors of this charge are called red, green and
blue, not visual colors, but a kind of charge based on an analogy to colors.
Just as combining electrical positive and negative charge results in a neutral
electrical charge, combining red, green and blue color charge gives a neutral
color charge (analogy to color being that mixing the red, green and blue
primary colors gives neutral white) [75].

All quarks and gluons have color charge, but all the hadrons (protons,
neutrons, mesons) comprised of quarks, antiquarks and gluons have neutral
color charge (analogous to most atoms having a neutral electrical charge).
A quark can change color by emitting or absorbing gluons. If a red quark
becomes a green quark, it must have emitted a gluon carrying the colors red
and antigreen. Like the electric charge, color charge is always conserved [75].

For every matter particle there corresponds an antimatter particle. Anti-
matter particles correspond to matter particles in every respect except that
they have opposite charge, spin and chemical potential. An antielectron
(positron) has the same mass as an electron, but it is electrically positive. An-
tiquarks have electrical charges —% and +§. Associated with the antiquarks,
however, there are anticolor charges: antired, antigreen and antiblue. An

antiproton is composed of two up-antiquarks and one down-antiquark [75].
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Appendix B

Quantum Distributions from

Maximum Entropy Principle

I. The Standard Maximum Entropy Principle

In standard quantum mechanical statistics, the entropic measure is given
by [40, 41]
S =—> [a:lnf; F (1 £7;)In(1 £ 7)), (B.1)

(]
where the upper and lower signs correspond to bosons and fermions, respec-

tively, and 7; denotes the number of particles in the i** energy level with
energy €. The extremization of the above measure under the constraints

imposed by the total number of particles,

Z i, = N (B2)
i
and the total energy of the system,
Z e — E, (B3)
i

leads to a variational problem

A T
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Substituting (B.1) in (B.4), one obtains

In(l1—7;) —Inn; — (e+ B&)] =0 (B.5)
for fermions and

[In(1+7;) —In#; — (@ +fe)] =0 (B.6)

for bosons.

Rearranging the terms in (B.5) and (B.6) and introducing a chemical

potential
o
H= _E ) (BT)
yields
i
7i; (B.8)

T epBla-mFL

where the upper and lower signs correspond to the Bose-Einstein and Fermi-

Dirac distributions, respectively.

II. The Non-extensive Maximum Entropy

Principle for Fermions

The extended measure of entropy for fermions is given by [33, 39]

7. — 79 P — 7.)4
) _ i —ny  (1—mn)— (1—7y)
S Z - =

: (B.9)

which for ¢ — 1 reduces to the entropic functional (B.1) (with lower signs).
Maximizing the extended measure of entropy in (B.9) subject to the con-

straints

A=V (B.10)

i
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and
Y nles=E (B.11)
leads to the variational problem
5%lS(gF)Jra(N—Zﬁg)+ﬁ(E—Zem§)] = (B.12)
Following the same procedure as in (I) yields
1
’FL,’ - —en i (B13)
[+ = Vple —p)l=—= +1

In the limit ¢ — 1 one recovers the usual Fermi-Dirac distribution (B.8)

(with lower sign).

III. The Bosonic Problem

The quantum mechanical distribution function proposed by Buyukklic

and Demirhan (BD) [42] is given by
[1+(g—1)B(& — p)]+" F 1

where the upper and lower signs correspond to bosons and fermions, respec-

tively. Ever since the BD proposal, the two cases suggested in (B.14) (that
is, the fermionic and bosonic case) were regarded as sharing the same degree
of validity. On the basis of [39], the fermionic and bosonic BD distributions
do not stand on an equal footing. First of all, each term in the entropic
functional (B.9) gives the correct expression, within the context of Tsallis
non-extensive thermostatistics, for the entropy of one single fermionic oscil-
lator (in thermal equilibrium) in terms of its average occupation number 7.

Secondly, the entropic functional (B.9) admits a reasonable “probabilistic”
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interpretation (see Sommerfeld [41] for a discussion of this point in the stan-

dard g=1 case). 7; can be regarded as the probability of the i state being

occupied and (1 — 7;) as the probability of that state being empty.
Extremizing the entropic functional,

i — 7y (1+7) — (1+m)?
S =% ( )~ ) (B.15)

= )

= g—1 qg—1

under the constraints imposed by (B.10) and (B.11) yields the g-generalized
BD Bose-Einstein distribution, which is given by (B.14) with the minus sign.
A “probabilistic” interpretation of the entropic measure (B.15) and the asso-
ciated variational procedure leading to BD approach distribution for bosons
(B.14) is somewhat problematic [39]. Let us denote by fi » the probability
of having m bosons in the state ¢ with energy ¢;. If we try to follow the steps
of Sommerfeld’s probabilistic approach for bosons [41], we should start by

extremizing the functional

fin— q
S,=Y =t <bn (B.16)
in 49— 1
under the set of constraints
Z fi,ﬂ = 13 Vti
E flam=N
and
> flaneg=E. (B.17)

For the sake of simplicity we use unnormalized g-constraints here, but the
same conclusions would obtain if normalized g-constraints are used instead
(notice that the quantities f; , are not occupation numbers. They are true

probabilities and, strictly speaking, the associated mean values should be
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normalized). The set in (B.17) does not consist of just three constraints.
There is one “normalization” constraint for each i. So, in principle, we are
dealing with an infinite set of constraints. Accordingly, we have to introduce
the Lagrange multipliers,

«, ,6: /\ia (BIS)

where there is one \; for each state :. The variational principle then reads,

R NEED) U Ene TP

The above variational problem leads to

I = ququl g—1 g—1
Tl'—}‘i—qanfi,n —QIanifi,n =0, (B.20)

which can be solved for f; ,, yielding

1

= [mll "= (1-gq)(an+fne)T. (B.21)
The mean occupation number of the state ¢ would then be given by

o0
e S (B.22)

n=0
where f; , is given by (B.21). Now, the difficulty is that the sum appearing in
(B.22) is not equal to the BD expression for the g-generalized Bose-Einstein
distribution. The sum in (B.22) cannot, in general, be reduced to a finite,
closed, analytical expression. The alluded to summation can be done analyt-
ically only for ¢=1, and it leads to the standard Bose-Einstein distribution

[41].
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Appendix C

Evaluation of Integrals

In BG statistics, the energy density, pressure and baryon number density of
fermions and bosons can be derived as follows!:
Fermions

The energy of fermions is given by

-dff dsqupe (C.1)

expr(e—p)+ 1’

where
e ¢ is relativistic energy
e d is degeneracy factor
e 4 is chemical potential
e T is temperature, and

e d3q d®p is the element of phase space.

'For the sake of simplicity the Boltzmann’s constant kg, the reduced Planck’s constant

h and the speed of light ¢ are set equal to one.
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The integral over the phase space yields

Vd e dp p?
E= 2/* O S (C.2)
272 Jo expp(e—p)+1

where

e V is volume and
e p is momentum.
The relativistic energy is given by
e =k>+m?, (C.3)

where k is wave vector and m is rest mass.

For relativistic fermions with m=0,
e=k. (C.4)

Substituting € by k and dp p? by dk k? in (C.2), one obtains

o0 dk k3
27r2./ expr(k—p)+1° =)

Therefore, the energy density, that is energy per unit volume, is given by

L e dk k3
T 2720 expi(k—p)+1°

(C.6)

The expressions for the pressure and baryon number density can be de-

rived in a similar manner and are given by

P 27r2[ dkkz{ln[l—!-exp;j(u k,)]} (C.7)

and

d [o° dk k*
n_27r2.[) expr(k—p)+1° (5:5)

Integration by parts of (C.7) yields

P= %u (C.9)
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Bosons
The energy of bosons is given by
d> d3
E=d [ [ S22 q pe (C.10)
exp
The integral over the phase space yields
Vd e dpp®
E=_o [ 25— (C.11)
271 Jo exp (:}) -1
For relativistic bosons with m=0, the energy density is given by
dupr & dkk?
u=5 . (C.12)
27 Jo  exp (%) -1
Letting z = £, one obtains
aa dz z°
= ! C.13
E 2%2/0 exp(z) — 1 (C.13)
Evaluating the integral yields
_Llaem (C.14)
30
The pressure, which is P = % u, is given by
P=—dmT". (C.15)
90

The energy density residing in the quarks alone, or the antiquarks alone,

can not be calculated analytically in the general case, u, 7" # 0. However,

the sum of both yields a simple analytical formula as can be derived in the

following way:
The energy density carried by quarks is given by

-l dg [ dk k*
®" o220 expBk—p)+1°

(C.16)
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Letting z = B(k — u), one obtains

_dg  [* dz(z+Bug)
‘T o p /—ﬂm exp(z) +1 ° =19

The only change occurring in the same expression for antiquarks is the re-

placement of x by (-x). Up on letting z = 8(k + 1), one obtains

dg [ dz(z—Bug)’
5 = ! il
2 272 34 fﬁuo exp(z) + 1 (C.18)
The integral in (C.18) can be split up in the following way:
© dz(z—Bug)® _ [edu(z—Pug)?® [freds(z—Bug)®
g = - [ . (C.19)
Bug exp(z)+1 o exp(z)+1 0 exp(z) + 1
Substituting x by (-x) in the second integral and using the relation
1 1
=1-— C.20
exp(—z) +1 exp(z) +1 S0)

yields

/"" dz (z — B po)® _/mdx(w—ﬁﬂq)3+/“ﬂ“o dz (z + B pg)®
Bug exp(z)+1  Jo  exp(z)+1 0 exp(z) +1

/U_MQ dz (z + B jg)?. (C.21)

Therefore, the energy density of the QGP, which is the sum of the energy

density of quarks, antiquarks and gluons is given by

_dg © dz(z+ fug)? % dz (z — B ug)?
YaCP = o fop { /;ﬁuq exp(z) +1 T -/(; exp(z) +1 T

—fue dz (x4 B pg)® | [0 3 dg (> dza’
/0 exp(z) +1 +/;ﬂyqd$ (2 + 8 1a) +27T2ﬁ4j(; exp(a:)—l+B'

(C.22)

Combining the first and the third integrals yields

g {/mdm(‘”+5HQ)3 /’wdz(:r—ﬁucz):
QP om2pt | Jo exp(z) +1 o exp(z) +1
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0 d © drg®
d 3 G / B. 2
/—ﬁuq (et Hie) }+27r2ﬁ4 0 exp(:n)—l+ (5:28)
Expanding and rearranging these integrals, one obtains
dg 20 gy g o drg
=i [ e [
i 27?254{ o exp(z)+1 +65% kg 0 exp(z) +1+
0 dg © dxazd
d 3 i B. C.24
/—ﬁuq B8 o) }+2772ﬁ4 0 exp(:c)—1+ ( )
Evaluation of these integrals yields
> 7 dgut®® dgpt
=T e L ) 7 R 2 LB :
ReEE 30(G+4 Y- T35 ThasaT (C:25)
The pressure, which is 3 (ugep — 4B), is given by
i 7 dou?T?  dout
Bl L ) gy 58 9l 5 .
P50 (dG ) P S S (C20)
The baryon number density is given by
it
noep = 3 (ng —ng) , (C.27)
where
o dg [ dk k?
@7 272 Jo exp Bk —pu) +1
and
2y o dg [> dk k?
T on2dy expBlk+p)+1°
Using the same procedure as the energy density, it can be shown that
T2 3

54 486 72
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