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Appendix A

Introduction to Quarks and

Gluons

Subatomic particles of matter can be described as fundamental or compos-
ite. A fundamental (elementary) particle of matter, strictly defined, is one
that has no internal structure, one that can not be broken up into smaller
constituent particles. Particles long thought to be elementary, including such
familiar ones as the proton and neutron, are not elementary at all. Instead
they appear to be composite structures made up of the more fundamental
entities named quarks and gluons, in much the same way that an atom is
made up of a nucleus and electrons [74].

The fundamental particles of matter are called quarks and leptons. There
are six flavors of quarks and six flavors of leptons (three pairs). The six flavors

of quarks and leptons can be summarized as follows:
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Quarks
Flavor Mass Electric Charge
Up 34+2 MeV -2
Down 6+3 MeV —:.1,;
Charm | 1.31092 GeVv +2
Strange | 100772 MeV —
Top | 174.3+5.1 GeV +2
Bottom | 4.3101 GeV -
Leptons
Flavor Mass (MeV) Electric Charge
Electron 0.510998902-+0.000000021 -1
Electron Neutrino < 3%10° 0
Muon 105.658357=+0.000005 -1
Muon Neutrino <0.19 0
Tauon 17770305 |
Tauon Neutrino <18.2 0

All particles have spin (intrinsic angular momentum), which is either odd-

L-integral-spin (3, 3, 2, ...) orintegral-spin (0, 1, 2, ...). For both force-carrier
and fundamental particles, spin determines the energy distribution function,
which can be either Bose-Einstein (bosons) or Fermi-Dirac (fermions). Par-
ticles with odd-3-integral-spin (fermions) obey the Pauli Exclusion Principle,

whereas particles with integral-spin (bosons) do not. In sum:
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Quantum Energy Distribution Functions

Particles Spin Statistics Pauli Exclusion Principle
Fermions | 1,3,2, Fermi-Dirac Obey
Bosons | 0, 1, 2, ... | Bose-Einstein Do not obey

The particles thought to be made up of quarks are those called hadrons;
they are distinguished by the fact that they interact with each other through
a strong nuclear force, the force that binds together the particles in the
atomic nucleus. (“Hadron” is derived from the Greek hadros, meaning stout
or strong). Leptons and photons do not respond to this strong force [74].

The hadrons are divided into two large subgroups named the baryons
(fermions) and the mesons (bosons). These two kinds of particle differ in
many of their properties, and indeed they play different roles in the struc-
ture of matter, but the distinction between them can be made most clearly
in the context of a simple quark model. All baryons consist of three quarks,
and there are also antibaryons consisting of three antiquarks. The least mas-
sive and the most familiar of the baryons are the proton and the neutron
[74]. Since these baryons are stable against decay through strong interac-
tions, they are composed of the lightest and most stable quarks: the up-
quarks and the down-quarks. A proton is composed of two up-quarks and
one down-quark, whereas a neutron is composed of two down-quarks and one
up-quark. Mesons have a different structure: they consist of quarks bound to
antiquarks. The least massive and the most long-lived meson against decay
through strong interactions is the positively charged pi-meson (pion, com-
posed of an up-quark and a down-antiquark, mass of 0.14 GeV), which has

an average lifetime measured in nanoseconds [75].
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Gluons are the exchange particles for the color force between quarks,
analogous to the exchange of photons in the electromagnetic force between
two charged particles. The photon does not carry electric charge with it,
while gluons do carry the “color” charge. Analogous to electrical charge
associated with electromagnetic force there is a “color” charge associated
with quarks and gluons. The colors of this charge are called red, green and
blue, not visual colors, but a kind of charge based on an analogy to colors.
Just as combining electrical positive and negative charge results in a neutral
electrical charge, combining red, green and blue color charge gives a neutral
color charge (analogy to color being that mixing the red, green and blue
primary colors gives neutral white) [75].

All quarks and gluons have color charge, but all the hadrons (protons,
neutrons, mesons) comprised of quarks, antiquarks and gluons have neutral
color charge (analogous to most atoms having a neutral electrical charge).
A quark can change color by emitting or absorbing gluons. If a red quark
becomes a green quark, it must have emitted a gluon carrying the colors red
and antigreen. Like the electric charge, color charge is always conserved [75].

For every matter particle there corresponds an antimatter particle. Anti-
matter particles correspond to matter particles in every respect except that
they have opposite charge, spin and chemical potential. An antielectron
(positron) has the same mass as an electron, but it is electrically positive. An-
tiquarks have electrical charges —% and +§. Associated with the antiquarks,
however, there are anticolor charges: antired, antigreen and antiblue. An

antiproton is composed of two up-antiquarks and one down-antiquark [75].
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Appendix B

Quantum Distributions from

Maximum Entropy Principle

I. The Standard Maximum Entropy Principle

In standard quantum mechanical statistics, the entropic measure is given
by [40, 41]
S =—> [a:lnf; F (1 £7;)In(1 £ 7)), (B.1)

(]
where the upper and lower signs correspond to bosons and fermions, respec-

tively, and 7; denotes the number of particles in the i** energy level with
energy €. The extremization of the above measure under the constraints

imposed by the total number of particles,

Z i, = N (B2)
i
and the total energy of the system,
Z e — E, (B3)
i

leads to a variational problem

A T
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Substituting (B.1) in (B.4), one obtains

In(l1—7;) —Inn; — (e+ B&)] =0 (B.5)
for fermions and

[In(1+7;) —In#; — (@ +fe)] =0 (B.6)

for bosons.

Rearranging the terms in (B.5) and (B.6) and introducing a chemical

potential
o
H= _E ) (BT)
yields
i
7i; (B.8)

T epBla-mFL

where the upper and lower signs correspond to the Bose-Einstein and Fermi-

Dirac distributions, respectively.

II. The Non-extensive Maximum Entropy

Principle for Fermions

The extended measure of entropy for fermions is given by [33, 39]

7. — 79 P — 7.)4
) _ i —ny  (1—mn)— (1—7y)
S Z - =

: (B.9)

which for ¢ — 1 reduces to the entropic functional (B.1) (with lower signs).
Maximizing the extended measure of entropy in (B.9) subject to the con-

straints

A=V (B.10)

i
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and
Y nles=E (B.11)
leads to the variational problem
5%lS(gF)Jra(N—Zﬁg)+ﬁ(E—Zem§)] = (B.12)
Following the same procedure as in (I) yields
1
’FL,’ - —en i (B13)
[+ = Vple —p)l=—= +1

In the limit ¢ — 1 one recovers the usual Fermi-Dirac distribution (B.8)

(with lower sign).

III. The Bosonic Problem

The quantum mechanical distribution function proposed by Buyukklic

and Demirhan (BD) [42] is given by
[1+(g—1)B(& — p)]+" F 1

where the upper and lower signs correspond to bosons and fermions, respec-

tively. Ever since the BD proposal, the two cases suggested in (B.14) (that
is, the fermionic and bosonic case) were regarded as sharing the same degree
of validity. On the basis of [39], the fermionic and bosonic BD distributions
do not stand on an equal footing. First of all, each term in the entropic
functional (B.9) gives the correct expression, within the context of Tsallis
non-extensive thermostatistics, for the entropy of one single fermionic oscil-
lator (in thermal equilibrium) in terms of its average occupation number 7.

Secondly, the entropic functional (B.9) admits a reasonable “probabilistic”
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interpretation (see Sommerfeld [41] for a discussion of this point in the stan-

dard g=1 case). 7; can be regarded as the probability of the i state being

occupied and (1 — 7;) as the probability of that state being empty.
Extremizing the entropic functional,

i — 7y (1+7) — (1+m)?
S =% ( )~ ) (B.15)

= )

= g—1 qg—1

under the constraints imposed by (B.10) and (B.11) yields the g-generalized
BD Bose-Einstein distribution, which is given by (B.14) with the minus sign.
A “probabilistic” interpretation of the entropic measure (B.15) and the asso-
ciated variational procedure leading to BD approach distribution for bosons
(B.14) is somewhat problematic [39]. Let us denote by fi » the probability
of having m bosons in the state ¢ with energy ¢;. If we try to follow the steps
of Sommerfeld’s probabilistic approach for bosons [41], we should start by

extremizing the functional

fin— q
S,=Y =t <bn (B.16)
in 49— 1
under the set of constraints
Z fi,ﬂ = 13 Vti
E flam=N
and
> flaneg=E. (B.17)

For the sake of simplicity we use unnormalized g-constraints here, but the
same conclusions would obtain if normalized g-constraints are used instead
(notice that the quantities f; , are not occupation numbers. They are true

probabilities and, strictly speaking, the associated mean values should be
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normalized). The set in (B.17) does not consist of just three constraints.
There is one “normalization” constraint for each i. So, in principle, we are
dealing with an infinite set of constraints. Accordingly, we have to introduce
the Lagrange multipliers,

«, ,6: /\ia (BIS)

where there is one \; for each state :. The variational principle then reads,

R NEED) U Ene TP

The above variational problem leads to

I = ququl g—1 g—1
Tl'—}‘i—qanfi,n —QIanifi,n =0, (B.20)

which can be solved for f; ,, yielding

1

= [mll "= (1-gq)(an+fne)T. (B.21)
The mean occupation number of the state ¢ would then be given by

o0
e S (B.22)

n=0
where f; , is given by (B.21). Now, the difficulty is that the sum appearing in
(B.22) is not equal to the BD expression for the g-generalized Bose-Einstein
distribution. The sum in (B.22) cannot, in general, be reduced to a finite,
closed, analytical expression. The alluded to summation can be done analyt-
ically only for ¢=1, and it leads to the standard Bose-Einstein distribution

[41].
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Appendix C

Evaluation of Integrals

In BG statistics, the energy density, pressure and baryon number density of
fermions and bosons can be derived as follows!:
Fermions

The energy of fermions is given by

-dff dsqupe (C.1)

expr(e—p)+ 1’

where
e ¢ is relativistic energy
e d is degeneracy factor
e 4 is chemical potential
e T is temperature, and

e d3q d®p is the element of phase space.

'For the sake of simplicity the Boltzmann’s constant kg, the reduced Planck’s constant

h and the speed of light ¢ are set equal to one.
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The integral over the phase space yields

Vd e dp p?
E= 2/* O S (C.2)
272 Jo expp(e—p)+1

where

e V is volume and
e p is momentum.
The relativistic energy is given by
e =k>+m?, (C.3)

where k is wave vector and m is rest mass.

For relativistic fermions with m=0,
e=k. (C.4)

Substituting € by k and dp p? by dk k? in (C.2), one obtains

o0 dk k3
27r2./ expr(k—p)+1° =)

Therefore, the energy density, that is energy per unit volume, is given by

L e dk k3
T 2720 expi(k—p)+1°

(C.6)

The expressions for the pressure and baryon number density can be de-

rived in a similar manner and are given by

P 27r2[ dkkz{ln[l—!-exp;j(u k,)]} (C.7)

and

d [o° dk k*
n_27r2.[) expr(k—p)+1° (5:5)

Integration by parts of (C.7) yields

P= %u (C.9)
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Bosons
The energy of bosons is given by
d> d3
E=d [ [ S22 q pe (C.10)
exp
The integral over the phase space yields
Vd e dpp®
E=_o [ 25— (C.11)
271 Jo exp (:}) -1
For relativistic bosons with m=0, the energy density is given by
dupr & dkk?
u=5 . (C.12)
27 Jo  exp (%) -1
Letting z = £, one obtains
aa dz z°
= ! C.13
E 2%2/0 exp(z) — 1 (C.13)
Evaluating the integral yields
_Llaem (C.14)
30
The pressure, which is P = % u, is given by
P=—dmT". (C.15)
90

The energy density residing in the quarks alone, or the antiquarks alone,

can not be calculated analytically in the general case, u, 7" # 0. However,

the sum of both yields a simple analytical formula as can be derived in the

following way:
The energy density carried by quarks is given by

-l dg [ dk k*
®" o220 expBk—p)+1°

(C.16)
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Letting z = B(k — u), one obtains

_dg  [* dz(z+Bug)
‘T o p /—ﬂm exp(z) +1 ° =19

The only change occurring in the same expression for antiquarks is the re-

placement of x by (-x). Up on letting z = 8(k + 1), one obtains

dg [ dz(z—Bug)’
5 = ! il
2 272 34 fﬁuo exp(z) + 1 (C.18)
The integral in (C.18) can be split up in the following way:
© dz(z—Bug)® _ [edu(z—Pug)?® [freds(z—Bug)®
g = - [ . (C.19)
Bug exp(z)+1 o exp(z)+1 0 exp(z) + 1
Substituting x by (-x) in the second integral and using the relation
1 1
=1-— C.20
exp(—z) +1 exp(z) +1 S0)

yields

/"" dz (z — B po)® _/mdx(w—ﬁﬂq)3+/“ﬂ“o dz (z + B pg)®
Bug exp(z)+1  Jo  exp(z)+1 0 exp(z) +1

/U_MQ dz (z + B jg)?. (C.21)

Therefore, the energy density of the QGP, which is the sum of the energy

density of quarks, antiquarks and gluons is given by

_dg © dz(z+ fug)? % dz (z — B ug)?
YaCP = o fop { /;ﬁuq exp(z) +1 T -/(; exp(z) +1 T

—fue dz (x4 B pg)® | [0 3 dg (> dza’
/0 exp(z) +1 +/;ﬂyqd$ (2 + 8 1a) +27T2ﬁ4j(; exp(a:)—l+B'

(C.22)

Combining the first and the third integrals yields

g {/mdm(‘”+5HQ)3 /’wdz(:r—ﬁucz):
QP om2pt | Jo exp(z) +1 o exp(z) +1
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0 d © drg®
d 3 G / B. 2
/—ﬁuq (et Hie) }+27r2ﬁ4 0 exp(:n)—l+ (5:28)
Expanding and rearranging these integrals, one obtains
dg 20 gy g o drg
=i [ e [
i 27?254{ o exp(z)+1 +65% kg 0 exp(z) +1+
0 dg © dxazd
d 3 i B. C.24
/—ﬁuq B8 o) }+2772ﬁ4 0 exp(:c)—1+ ( )
Evaluation of these integrals yields
> 7 dgut®® dgpt
=T e L ) 7 R 2 LB :
ReEE 30(G+4 Y- T35 ThasaT (C:25)
The pressure, which is 3 (ugep — 4B), is given by
i 7 dou?T?  dout
Bl L ) gy 58 9l 5 .
P50 (dG ) P S S (C20)
The baryon number density is given by
it
noep = 3 (ng —ng) , (C.27)
where
o dg [ dk k?
@7 272 Jo exp Bk —pu) +1
and
2y o dg [> dk k?
T on2dy expBlk+p)+1°
Using the same procedure as the energy density, it can be shown that
T2 3

54 486 72
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