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Chapter 3

The Formation of a QGP

3.1 Deconfinement in Heavy Ion Collisions

Under given conditions of temperature and density the hadronic matter un-
dergoes a phase transition towards a plasma of deconfined quarks and gluons.
The possibility of obtaining energy densities which are large enough to cause
deconfinement in ultra-relativistic heavy ion collisions has acted as one of the
main stimuli to interest in such collisions, from both the experimental and
theoretical points of view.

Historically, much of the early interest in the deconfinement transition
came from the cosmological community, where the emphasis was on hadroniza-
tion in the early universe. The resulting calculations tended to be performed
at zero net baryon number, as befits the early universe scenario. More re-
cently, the high energy physics community, spurred by the development of
more powerful particle accelerators, have considered the possibility of ob-
taining the reverse process, i.e. deconfinement, in the laboratory from ultra-
relativistic heavy ion collisions. These collisions result in systems which cer-

tainly have non-zero baryon number; as a result, much effort has been devoted
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to determine full phase diagrams for strongly interacting systems. The major
theoretical thrusts in this direction have centered on two approaches, namely
lattice QCD and phenomenological models. While lattice QCD [3, 4, 5, 6, 7]
is the preferred method of studying the behavior of strongly interacting sys-
tems, the enormous computational requirements of such calculations have led
to an appreciable amount of work being directed towards phenomenological
descriptions of deconfinement [9].

In phenomenological calculations the relevant quantities are the densities
of the thermodynamic variables. Anticipating the formation of a QGP during
a heavy ion collision, it is at present by no means clear whether there is
sufficient time available for the hadron gas and the QGP to equilibrate, and
therefore whether traditional equilibrium thermodynamics should be applied
to these systems. In what follows, we will assume that the system is in fact
in equilibrium. However, the limitations inherent in this assumption should
be borne in mind when using the results of our calculations in analysis of
heavy ion collisions [9]. We now turn to the description of the system in the
QGP phase.

3.2 The QGP Phase

In this approach, the quarks and gluons are treated as forming an ideal
gas, apart from the non-perturbative corrections to the pressure and energy
density resulting from the bag model [2]. We initially (3.2.1) describe the
system by BG statistics in order to define our notations and general numerical
procedure. In (3.2.2) we lay out the differences due to the non-extensive
statistics. We emphasize that only (3.2.2) can incorporate the anticipated

long-range forces in the QGP phase.



University of Pretoria etd — Teweldeberhan, AM (2003)

3. The Formation of a QGP 12

3.2.1 Boltzmann-Gibbs (BG) Statistics

According to the BG statistics the energy density, pressure, and baryon num-
ber density for a QGP consisting of massless up and down quarks and an-
tiquarks, each with degeneracy factor dg = 12 (2 (spin) x 3 (color) x 2
(quarks and antiquarks)), and gluons, with degeneracy dg = 16 (2 (spin) x
8 (color)), at a temperature T and baryon chemical potential y are given by

(see Appendix C for details)

d £ d 00
uQGp=2—7‘32[0 dk k* (ﬁQ+ﬁQ)+ﬁfo dk k* i + B (3.1)
doT [° 1 —~1
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Integration by parts of (3.2) yields
f

Evaluating the integrals in (3.1-3.3) yields (see Appendix C)
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and
BT
nQGep = dQ (5—4 o= 4867’!’2) 3 (39)

where B is the bag constant which is taken here as (210 MeV)* [1] with an

uncertainty of ~ 15%.

3.2.2 Generalized Statistics

The quantum mechanical distribution function proposed by Buyukklic and
Demirhan (BD) [42] is given by
1
n; = = ; (3.10)
L+(g—-1)B(e—p)lTF1

where the upper and lower signs correspond to bosons and fermions, respec-

tively.

Extremizing the entropic functional,

7. — n? 7:) — 7. )4
(B n; — 1, v, (1 +ns) (1 +nz) 11
% Xt: g—1 g—1 ’ (3-11)

under the constraints imposed by (2.10) and (2.11) yields the g-generalized
BD Bose-Einstein distribution, which is given by (3.10) with the minus sign.
A “probabilistic” interpretation of the entropic measure (3.11) and the asso-
ciated variational procedure leading to BD approach distribution for bosons
(3.10) is somewhat problematic [39]. If we use the generalized statistics to
describe the entropic measure of the whole system, the distribution func-
tion can not , in general, be reduced to a finite, closed, analytical expression
[39, 43, 44, 45, 46, 47]. For this reason, we use generalized statistics to de-
scribe the entropies of the individual particles, rather than of the system
as a whole. Even in this case, we are unable to obtain the “probabilistic”

interpretation for bosons (see Appendix B).
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The single particle distribution functions of quarks, antiquarks and gluons

are given by
1

1+ L(a— )k F ug)] ™ +1

NgQ) = (3.12)

and

1
g = — (3.13)

[1+4(g— 1)k -1
respectively. In the limit ¢ — 1, (3.12) and (3.13) reduce to (3.4) and (3.5)

respectively.

The expression for the pressure is given by

doT [ 11 i1
Pacp = 7> fﬂ dk k? (fQ — -

272 g—1 g—1
daT % e e —
7 | dkk (—q_l B, (3.14)
where !
1 =
1 =
and '
1 T—
e e [1+ —(g- l)k] , (3.17)

which in the limit ¢ — 1 reduces to (3.2).

Since the integrals in (3.1-3.3) are not integrable analytically, one has to
calculate these integrals numerically. For ¢ > 1, the quantity [1 + %(q -
1)(k — pg)] becomes negative if ug > k. To avoid this problem we use [48],

1

fQ=1+[1+%(q—1)(k—#Q)]tE, ki ek B R)

and X

g—1

g =1 [1+%(1—Q)(k—,u@)] ; k< pg. (3.19)
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In the limit ¢ — 1 one recovers, of course, the appropriate Fermi-Dirac
distribution in both cases. We now turn to the hadronic phase of the system

which is more readily accessible to experiment.

3.3 The Hadron Phase

The hadron phase is taken to contain only interacting nucleons and antinu-
cleons and an ideal gas of massless pions motivated by the findings in [49, 50].
The interactions between nucleons can be treated either by means of an ex-

cluded volume approximation or by a mean field approximation.

3.3.1 The Excluded Volume Approximation

In this approximation, the short range repulsive hadron-hadron interactions
are taken into account by a Van der Waals-type method. The assumption is
that a hadron is deformable, but has an intrinsic hard-core volume V, which
prevents compression of the hadron gas beyond a close-packing density v%,
One of the problems of the excluded volume is this close-packing density;
the physics in such a limit is by no means clear. The hard-core volumes of
hadrons are taken into account in calculations by reducing the total volume
available to the system from V to V — ¥ ; N* V!, where N* is the number of
hadrons of species ¢ and V/ is the hard-core volume of these species [9].

We consider a nucleon which consists of a meson cloud and a hard-core
volume where the quarks reside. The relationship between the hard-core
volume V; and the hard-core radius Ry is Vp = %:TRS , where the hard-core
radius Ry is in the range between 0.5 and 1 fm [51, 52]. In the simplest
approximation, one can assume that all baryons have the same hard-core

volume, and use the relevant value of V, (e.g. the nucleon volume) for all
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baryons, and ignore the meson hard-cores altogether. Alternatively, one can
assume a parameterization of the hard-core volume in terms of the hadron
mass. One such parameterization, which draws its inspiration from the MIT
bag model [53], is

=

Vai = %Nr (3.20)
my

where my is the nucleon mass and V" is the nucleon hard-core volume.
Once the form of the hard-core volume has been determined, the particle
number density n‘, the energy density u’ and the pressure P* are given by

[54]

: ni
nf=—_4W 3.21
_ i
P S (3.22)
1+ Zj T/0:" ngd
and
g pi
: - (3.23)

where the quantities with subscript id refer to the relevant quantities calcu-
lated for an ideal gas of point-like particles.

While the excluded volume approximation (3.21-3.23) with various vol-
ume corrections has been widely used as a method of including hadron-hadron
interactions in phenomenological hadron gas models, all such formulations
suffer from two main and severe deficiencies [54, 55, 56, 57, 58]. Firstly,
the equations of state (EOS) in these models are not thermodynamically
consistent because we do not have a well defined partition function or ther-
modynamic potential € such that the baryon number N, energy E, pressure
P and entropy S can be obtained directly from it (i.e. N # — (%%)T,V, E #
(%{ﬁﬂ})lf,p +uN, P #— (g_g)i‘",u and S # — (%)V,”). The second and

more crucial deficiency is that these models violate causality at high densities,
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1.e. information travels at a speed larger than the speed of light. Several pro-
posals appeared in the literature which removed the inconsistency problem
[59, 60, 61, 62, 63, 64] but they suffer from the causality problem.

It is possible to construct a thermodynamically consistent model using an
excluded volume approximation by formulating the problem in the pressure
ensemble [59, 60, 61, 62, 63, 64]. For simplicity, let’s consider one particle
species with eigenvolume v. The pressure P is related to the grand partition

function Z according to

P(T,p) =T lim InZ(T,p, V)

V—coo

(3.24)

where p, T and V are the chemical potential, temperature and volume of the
system respectively.
The grand partition function is defined as
00
2T, V)= exp (%) Z(T,N,V). (3.25)
N=0

To introduce the excluded volume, it is necessary to substitute the canonical

partition function Z in (3.25) by [63]
Z**4(T,N,V) = Z(T,N,V —u N)§(V — v N). (3.26)

This ansatz is motivated by considering N particles with eigenvolume v in
a volume V' as N point-like particles in the “available volume”, V — v N.
Substituting (3.26) in (3.25), one obtains

2T, V) = Nij:o = (%) Z(T,N,V —vN)O(V —vN). (3.27)

The main problem in evaluating (3.27) is the dependence of the available
volume on the varying number of particles N. To overcome this difficulty

one has to perform a Laplace transformation of (3.27). This method of
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the “isobaric partition function” [65] was successfully used [60, 61, 66] to
investigate the excluded volume effect in a gas of quark-gluon bags. In doing

so, one obtains [63]
g (T, . ) = / AV exp(—z V) Z54(T, u, V)
0

- f = AV ezp(—x V) Z(T, , V), (3.28)
0

where f=pu—vTx and V=V —uN.

From the definition of the pressure function one concludes that the grand
canonical partition function of the system, in the thermodynamical limit,
approaches
1

Pemd.’ T, vV
Zexd (T, ik, V)IV—)OO ~ exp [(—‘u)] i

From the first equality in (3.28) one sees that this exponentially increasing
part of 2 (T, 1, V') generates an extreme right singularity in the function
Zead (T, u,z) at some point z*. For z < P®/T the integration over V
for Zezd (T, p, ) diverges at its upper limit. Therefore, the extreme right
singularity of Z¢*(T, u, z) at z*(T, 41 gives a pressure [63],

In 22T, 1, V)
1%

P=HT,p) =T Jim = T z*(T, p). (3.29)
—+00

The direct connection of the extreme right z-singularity of Z¢*¢ to the
asymptotic behavior V — oo of Z%*¢ is a general mathematical property

of the Laplace transform. Using the above equations one obtains

nZ(T, 5V
(T, p) = lim E(A’—p’)

V—co

; fi=p—vTz*(T,p).

Applying (3.24) for Z(T, ji, V) and making use of (3.29) to eliminate z* one
gets
Pe(T, 1) = PT, i) fi = i — v P(T, ). (3.30)
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Therefore, we have an implicit equation for P#*(T, i) if P is a known func-
tion of its arguments.

If we consider the ideal gas case, we have in (3.28)

Zu(T, i1, V) = explV F(T, 1), (3.31)
where
F(T, ) =1 [l—l—aexp (_“’“2 ;m””)] Sedl 43:32)

where a = =+ 1 refers for fermions/bosons and a — 0 for classical (Boltzmann)
approximation. Performing the integral in (3.28) yields

1

zezd(T, W, T) = :r:—F—(Tﬁ) ;

which gives

PGY(T,p) =T F(T, i) = Pua (T, p— v PF(T, 1)) . (3.33)

This is a special case of (3.30) for the ideal gas [62, 67]. The expression (3.30)
is valid also for more general cases.

The particle number density, the entropy density and the energy density
can be found from (3.33) using the relations [63]

emcl (T ,U,) (6 ezd) o nid(Ta :ﬂ‘) ; (3‘34)
7=

ou 1+vnu(T, i)
aPezcl ey (T ﬁ)
esud T Sy id\4L 5 ‘
(T, 1) = ( oT ) 1+ vn;a(T, z) (3:35)
and
uedxd(T, 'u) T Sezcl P;:izc! 5E 'u,nemcl uid(Tz Iu‘) (3.36)

1 +vnga(T, i)’
where n;4, 8;q and u;4 are the well-known expressions for an ideal gas of point-
like particles. The relations (3.33-3.36) are thermodynamically consistent, i.e.

fundamental thermodynamical relations are fulfilled.
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Since the excluded volume approximation suffers from the causality prob-
lem even if the consistency problem is addressed, we use the relativistic mean
field or Hartree approximation proposed by Walecka [68, 69], which is ther-

modynamically self-consistent, to treat the interactions.

3.3.2 The Mean Field Approximation

In this approximation, the interaction between nucleons is described by the
scalar-isoscalar ¢ and vector-isoscalar V* mesonic fields with baryon-meson
interaction terms in the Lagrangian: g,¥w¢ and g,4y,V#4. For nuclear
matter in thermodynamical equilibrium these mesonic fields (¢ and V*) are
considered to be constant classical quantities. The scalar field ¢ describes the
attraction between nucleons and lowers the nucleon (antinucleon) mass M
to M* = M — g, < ¢ >. The nucleon-nucleon repulsion is described by the
vector field V* which changes the nucleon (antinucleon) energy by (£U(n))
1

The Lagrangian density in the in the Walecka model is given by [70]

£= Bl (0" — guV*) — (M — 0.6)] 4 + 7 (0,996 — m24?)
1 It

——F, F*
Ayt * 2

where F'# = VY — g"VH and 6L contains renormalization counterterms

m2V,V* + 6L, (3.37)

required for quantum field theory. The parameters M, g;, g,, m, and m,
are phenomenological constants that can be determined from experimental
measurements.
The Euler-Lagrange equations [70]
9 { oL ] angpd
Oz | 0(0gi/0z+)|  Og;

IThe odd G-parity of the w-meson is responsible for the attractive w-exchange in NN

0, (3.38)

scattering as compared to the repulsive w-exchange in NN (N N) scattering.
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where g; is one of the generalized coordinates (¢, ¢ and V*), yield the field

equations
(8u0" +m3) ¢ = 9,409, (3.39)
8, F* +miV” = g7y (3.40)
and
[V*(i0p — 9o Vi) — (M — gs¢) [ = 0. (3.41)

Equation (3.39) is simply the Klein-Gordon equation with a scalar source,
Equation (3.40) looks like massive quantum electrodynamics (QED) with the

conserved baryon current
B* =y*p; 8,B* =0 (3.42)

rather than the (conserved) electromagnetic current as source and equation
(3.41) is the Dirac equation with the scalar and vector fields introduced in a
minimal fashion. These field equations also imply that the canonical energy-

momentum tensor
T = i 0 — - (0,407 — m3g?) g + 608

+% (8 VA0V — m2V,V7) g — 8*V30"V* (3.43)
is conserved (8,T* = 9,T* = 0).

Equations (3.39-3.41) are nonlinear quantum field equations, and their
exact solutions are very complicated. In particular, they describe mesons
and baryons that are not point like particles, but rather objects with intrinsic
structure due to the implied (virtual) mesonic and baryon-antibaryon loops.
When the source terms are large, the meson field operators can be replaced

by their expectation values, which are classical fields [70]:

$I< P>=0d; VFa<VE>=§, (3.44)

Il 722492 u
blL259b29
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For a static, uniform system, the quantities ¢y and V; are constants that
are independent of space and time. Rotational invariance implies that the
expectation value of the three-vector piece of V* vanishes.

The meson field equations (3.39) and (3.40) can be solved for constants
¢ and Vj to give

Gs -
Po = m_§ <y > (3.45)
and
Vo = g—”? <l > . (3.46)
mTJ’

When the meson fields in (3.41) are approximated by the classical fields

of (3.44), the Dirac equation becomes linear,

(70" — gu7°Vo — (M — gs¢h0)]9p = 0 (3.47)

and can be solved exactly. It is this linearization of the full field equation
(3.41) that allows the baryons to be interpreted as point particles. As for free

particles, the stationary state solutions for a uniform system have the form
P = (K, N Te®r (3.48)

where 1(k, A) is a four-component Dirac spinor and A denotes the spin index,
which corresponds to one of the two orthogonal polarizations chosen in the

particle’s rest frame [70]. The Dirac equation then becomes

where @ and 8 are the four matrices:

0 o 1 0
a = ( , B= ( ; (350)
o 0 0 -1

The effective mass M* is defined by

M* = M — g,y (3.51)
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The condensed scalar field ¢y thus serves to shift the mass of the baryons.
Evidently, the condensed vector field V; shifts the frequency (or energy) of
the solutions. The square of equation (3.49) and the properties of the Dirac

matrices yield the eigenvalue equations [70]

eF (k) = g,Vo £\ k2 + M*% = g,V + E* (k). (3.52)

The presence of both positive and negative square roots is the characteristic
of the Dirac equation. These solutions can be used to define quantum field
operators and the Hamiltonian density for the system can be constructed in

the canonical fashion (for the details of these procedures, see ref. [70]). The

result is
H = Hyrr +6H, (3.53)
Hyrr = g,VoB + Y E*(k) (ALAAICA r BIL\BH)
kA
1
1V (m2g? - m2V) | (3.54)
B =Y (Al\Au — Bl,Bw) (3.55)
kA
and
s =3 (Vie+ M2 - V1) (3.56)
kA

Here Ab, B,L\, Ay and By, are creation and destruction operators for
baryons and antibaryons with shifted mass and energy. The properties of

these operators are completely determined by the anticommutation relations:
{Ak.\; AL.!)\!} — 6‘{]{’6)\:\’ = {Bk)” .BILA!}

{Ak,\, ka}‘:} =0= {AL)\! BL‘\;} 5 ete. (357)

B is the baryon number operator, which clearly counts the number of baryons

minus the number of antibaryons, the index A denotes both spin and isospin
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projections and the correction term JH arises from placing the operators in
Hjpr in normal order [70].
The thermodynamic potential Q(u, V, T') can be computed using the stan-

dard expression from statistical mechanics:

Qp,V,T) = -Tln {Tq~ [exp (_g }”B )]} , (3.58)

where H is the Hamiltonian of the mean field theory and p is the chemical

potential of baryons.
The general form of the thermodynamically self-consistent EOS for nu-
clear matter which includes the mean field theory and pure phenomenological

models as special cases is [71, 72]:

3 k2
'YN/ d k‘ (nN+ﬁ'ﬁ)+nU(n)—
VR + M
/Oﬂ dn’ U(n’) + p(M*) - (359)
=1

7i B+M2FuxUn

AN = [exp (\/72“ pEU( )) wall o i)
g _ dp(M*) &k M
(JM*)T . dMmr "/Nf (27)3 \/m (Aw +75) =0, (3.61)
&k
and
d*k

u(T,m) = [ sV + M2 (A +7x) + /0 "' U') —p(M*), (3.63)

where P, n and u are the pressure, baryon number density and energy density
respectively, 7y, is the distribution function of nucleons (antinucleons), u
is the baryon chemical potential and ~yx is the spin-isospin degeneracy of the

nucleon which is 4 for symmetric nuclear matter. Equation (3.61) describes
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the dependence of the effective nuclear mass M* on 7" and p which is defined
by extremizing the thermodynamical potential (maximizing the pressure).

If we choose [68, 69],

p(M*) = ———(M — M*)?, Un) =C2n (3.64)

26’2

s

where C; = g, (Ma) and C, = gy ( v) The parameters M, M*, g;, Gy, Ms
and m, are taken here to be M= 0.940 GeV, M*= 0.543M, g, ~ 11 GeV 1,
gy &~ 14 GeV~1, m,= 0.520 GeV and m,= 0.783 GeV, which reproduce data
(see ref. [70, 72] for details) in the hadronic phase.

The energy density, pressure and baryon number density for the hadron

gas taken to contain nucleons, antinucleons and an ideal gas of massless pions

are:
o0 1
wug (T, 1) = 2'%/0 dk k*\/k2 + M*? (ﬁN+ﬁﬁ)+§C.3 n?+
1 * 1 2 4
Se 2(M M*)? T (3.65)
dk k* 1
P = ] b . e
671'2/ \/k2+M*2 (n +nN)+ Qcﬁ &
T 1
2CE(M M*)? + 5 > T4 (3.66)
and
=15 ] dk K (i — 7ig) (3.67)

where 7iy(x) as in (3.60) with U(n) as in (3.64).
Finally, we address the phase transition from the hadronic to the QGP

phase, within our model.
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3.4 Phase Transition

Assuming a first order phase transition between hadronic matter and QGP,
one matches an EOS for the hadronic system and the QGP via Gibbs con-

ditions for phase equilibrium:

Py = Pggp, T = Tqeep, BH = PJQGP (3.68)

With these conditions the pertinent regions of temperature 7" and baryon
chemical potential p are shown in figures (3.1-3.3) for ¢= 1, 1.1 (0.9) and
1.25 (0.75). At low values of 2 and T the nuclear matter is composed of
confined hadrons, but as the energy density is raised, with increasing T' or
i, or both, the hadronic matter undergoes a phase transition towards a
plasma of deconfined quarks and gluons. The critical temperature at © = 0
for ¢= 1, 1.1 (0.9) and 1.25 (0.75) are found to be 122 MeV, 101 MeV
and 66 MeV with B=(180 MeV)*; 148 MeV, 122 MeV and 79 MeV with
B=(210 MeV)* and 180 MeV, 148 MeV and 96 MeV with B=(250 MeV)*,
respectively. As the non-extensive parameter deviates from ¢g= 1 to 1.25
(0.75), the critical temperature becomes almost independent of the baryon
chemical potential which is associated with the number of particles. Variation
of the bag constant B between (180 MeV)! and (250 MeV)* (fig. 3.1-3.3)
and excluding interactions among the constituents in the hadron phase (fig.
3.4) do not alter our findings significantly. One still observes a flattening
of the T'(u) curves as |1 — g| increases. The only effect is a shift of the
value of the maximal p and T(0). The agreement between BG and the
generalized statistics as the critical temperature approaches to zero is evident
from equations (3.2) and (3.14). Figures (3.5-3.7) show the dependence of
the critical temperature on the non-extensive parameter at yu = 0, 250 MeV

and 1000 MeV. The dependence is almost linear for small values of |1 — g
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with a slope [4T| ~ 190 MeV , |37 ~ 240 MeV, and | 37| ~ 302 MeV for
B=(180 MeV)*, B=(210 MeV)* and B=(250 MeV)*, respectively . This can
be interpreted as a new type of universality condition [33] which suggests that
the formation of a QGP occurs (almost) independent of the total number of
baryons participating in heavy ion collisions.

We also consider the extensive Kaniadakis statistics [37, 38] to represent
the constituents of the QGP [73]. Figure (3.8) shows the T'(u) curves for
k=0, k=0.23 and k=0.29. Since the two statistics are fractal in nature, we
observe a similar flattening of the T'(u1) curves as the deformation & increases.
For k=0.23 (see fig. 3.9), we obtain essentially the same phase diagram as

in the case of Tsallis statistics with ¢=1.1.

3.5 Conclusion

We have studied the phase transition from a system in the hadronic phase to
the QGP phase. The phase diagrams shown in figures (3.1-3.3, 3.8) are for
interacting hadrons and non-interacting QGP. Excluding interactions among
the constituents in the hadron phase (fig. 3.4) does not change the flattening
of the T'(u) curves. The empirical insensitivity of the phase diagram to
details of the interactions in the hadron phase shows that the short-range
interactions among the constituents in the hadron phase are unimportant
for the phase transition. On the QGP side the short-range interactions have
died out (due to “asymptotic freedom”) and have made room for the only
remaining long-range interactions among the constituents. Although we do
not explicitly consider the interactions, we account for the dominant part of
this interaction by a change in the statistics of the system in the QGP phase.

In the present work, we consider two entropic measures (Tsallis and Ka-
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niadakis) to represent the constituents of the QGP. Both are fractal in nature
but differ in that: Tsallis statistics is non-extensive and reduces to BG statis-
tics (extensive) as the Tsallis parameter ¢ tends to one. On the other hand,
Kaniadakis statistics is extensive and tends to BG statistics as the deforma-
tion parameter x tends to zero. Due to lack of experimental data, we choose
different values of ¢ and s to determine the phase diagram in both cases.
For k=0.23 (see fig. 3.9), we obtain essentially the same phase diagram as
in the case of Tsallis statistics with g=1.1. This agreement suggests that the
flattening in the phase diagram is due to the fractal nature of both Tsallis
and Kaniadakis statistics.

We present here testable consequences of using extensive and non-extensive
form of generalized statistical mechanics on the formation a QGP. The result-
ing insensitivity of the critical temperature to the total number of baryons
presents a clear experimental signature for the existence of generalized statis-

tics for the constituents of the QGP.
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Figure 3.1: Phase transition curves between the hadronic matter and QGP
for g=1 (solid line), g=1.1 (0.9) (dotted line) and ¢g=1.25 (0.75) (dashed line)
with B=(180 MeV)*.
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Figure 3.2: Phase transition curves between the hadronic matter and QGP

for g=1 (solid line) [1], g=1.1 (0.9) (dotted line) and ¢=1.25 (0.75) (dashed
line) with B=(210 MeV)*.
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Figure 3.3: Phase transition curves between the hadronic matter and QGP
for g=1 (solid line), g=1.1 (0.9) (dotted line) and ¢g=1.25 (0.75) (dashed line)
with B=(250 MeV)*.
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Figure 3.4: Phase transition curves between the hadronic matter and QGP

for g=1 (solid line) [2] and g=1.25 (0.75) (dashed line) with B=(148 MeV)".



University of Pretoria etd — Teweldeberhan, AM (2003)

3. The Formation of a QGP 33

150 E 1 T T T T T

100

T (MeV)

50 =

I I i | 1 |
OO 0.05 0.1 0.15 0.2 0:25

I1-ql

Figure 3.5: The dependence of T on |1 —g| at y= 0 (solid line), u= 250 MeV
(dotted line) and pu= 1000 MeV (dashed line) with B=(180 MeV)*.
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Figure 3.6: The dependence of T on |1 —g| at u= 0 (solid line), u= 250 MeV
(dotted line) and pu= 1000 MeV (dashed line) with B=(210 MeV)*.
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Figure 3.7: The dependence of T on |1 —g| at u= 0 (solid line), u= 250 MeV
(dotted line) and p= 1000 MeV (dashed line) with B=(250 MeV)*.
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Figure 3.8: Phase transition curves between the hadronic matter and QGP
for k=0 (solid line) [1], k=0.23 (dotted line) and £=0.29 (dashed line) with
B=(210 MeV)*.
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Figure 3.9: Phase transition curves between the hadronic matter and QGP

for k=0.23 (dashed line) and g=1.1 (solid line) with B=(210 MeV).
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