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Chapter 2

Generalized Statistics

New developments in statistical mechanics have shown that in the presence
of long-range forces and/or in irreversible processes related to microscopic
long-time memory effects, the extensive thermodynamics, based on the con-
ventional BG thermostatistics, may not be correct and, consequently, the
equilibrium particle distribution functions can show different shapes from
the conventional well-known distributions [27, 28].

An interesting generalization of the conventional BG statistics has been
proposed by Tsallis [13] and proves to be able to overcome the shortcomings
of the conventional statistical mechanics in many physical problems, where
the presence of long-range interactions, long-range microscopic memory, or
fractal space-time constraints hinders the usual statistical assumptions.

In the past few years the non-extensive form of statistical mechanics pro-
posed by Tsallis has found applications in astrophysical self-gravitating sys-
tems [29], solar neutrinos [30, 31], high energy nuclear collisions [27, 28],
cosmic microwave back ground radiation [32], high temperature supercon-
ductivity [33, 34] and many others. In these cases a small deviation of the

Tsallis parameter g (= 10%) from one (BG statistics) reduces the discrepan-
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cies between experimental data and theoretical models.
The generalized entropy proposed by Tsallis [13] takes the form:

1—2331193)

il (¢ eR), (2.1)
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where K is a positive constant (from now on set equal to 1), W is the total
number of microstates in the system, p; are the associated probabilities with
7. p; =1, and the Tsallis parameter (q) is a real number.

The new entropy has the usual properties of positivity, equiprobability,
concavity and irreversibility, preserves the whole mathematical structure of
thermodynamics (Legendre transformations) and reduces to the conventional
BG logarithmic entropy, S = — Y, p;Inp;, in the limit ¢ — 1. Only in
this limit is the ensuing statistical mechanics extensive [13, 26, 35]. For
general values of ¢, the measure S, is non-extensive. That is, the entropy of
a composite system A @ B consisting of two subsystems A and B, which are
statistically independent in the sense that p,gj-@B) = pgA)p_.(,-B), is not equal to
the sum of the individual entropies associated with each subsystem. Instead,
the entropy of the composite system is given by Tsallis’ g-additive relation
[13],

Sq(A@ B) = Sg(A) + Sq(B) + (1 — q)S,(A)S(B) - (2.2)

The quantity |1 — ¢g| can be regarded as a measure of the degree of non-
extensivity exhibited by S,.

Suppose that the set of W microstates is arbitrarily separated into two
subsets having Wy, and W), microstates (W + Wy = W) and define their
corresponding probabilities as pr, = 1% p; and py = E i w1 i With pr +

pu = 1. It can be shown that [36]

Sg({pi}) = Sq(pr,par) + 07 Se({pi/pL}) + Pis So{pi/Dr}), (2.3)
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where the sets {p;/pr} and {p;/pr} are the conditional probabilities. This is
a generalization of the famous Shanon’s property except for the appearance
of pj and pf, instead of p;, and pys in the second and third terms of the right
hand side of (2.3). Since the probabilities {p;} are normalized, p! > p; for
g <1 and p{ < p; for ¢ > 1. As a consequence the values ¢ < 1 (¢ > 1) will
favor rare (frequent) events, respectively [27, 28].

Starting from the one parameter deformation of the exponential func-
tion exp . (z) = (V1 + K222 + kz)*, a generalized statistical mechanics has
been recently constructed by Kaniadakis [37, 38], which reduces to the ordi-
nary BG statistical mechanics as the deformation parameter x approaches to
zero. The difference between Tsallis and Kaniadakis statistics is that: Tsal-
lis statistics is non-extensive and reduces to BG statistics (extensive) as the
Tsallis parameter g tends to one. On the other hand, Kaniadakis statistics
is extensive and tends to BG statistics as the deformation parameter x tends
to zero. The distribution functions for fermions and bosons can be derived
from maximum entropy principle [37, 39]. The x-entropy is linked to Tsallis
entropy S{*) through the following relationship [37]:

1. &% (T) 1k (T)
Kk — = S ® =TT —K . 2.4
S, ST R i+ +21—n 1% + const (2.4)

where « is a real positive constant. Here we consider the generalized statistics
proposed by the Tsallis to represent the dominant part of the long-range
interactions among the constituents in the QGP!.
The standard quantum mechanical distributions can be obtained from a
maximum entropy principle based on the entropic measure [40, 41],
S =—> [A;Inn; F (1 £ 7;) In(1 £+ 7)), (2.5)

2

1The phase diagram for Kaniadakis statistics is shown in fig. 3.8.
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where the upper and lower signs correspond to bosons and fermions, respec-
tively, and 7; denotes the number of particles in the i** energy level with
energy €. The extremization of the above measure under the constraints

imposed by the total number of particles,

Z = N (2.6)
and the total energy of the system,
Z niei = B, (2.7)
i
leads to the standard quantum distributions (see Appendix B),
i L (2.8)

" expBla—p)FL
where 8 = %, 41 is the chemical potential which is associated with the number
of particles and the upper and lower signs correspond to the Bose-Einstein
and Fermi-Dirac distributions, respectively.
To deal with non-extensive scenarios (characterized by ¢ # 1), the ex-
tended measure of entropy for fermions proposed in [33, 39] is:

(F) _ a; —a]  (L—7;) — (1 — ;)
& Z g—1 - g—1

; (2.9)

which for ¢ — 1 reduces to the entropic functional (2.5) (with lower signs).

The constraints

Y al=N (2.10)
and :
Zﬁ;’ &=EFE (211)
lead to (see Appendix B)
. s Sl (2.12)
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In the limit ¢ — 1 one recovers the usual Fermi-Dirac distribution (2.8) (with

lower sign).

Similarly,

= 1 (2.13)
[1+({g—1)B(e—p)]=T -1

for bosons.
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