

Correlation attacks on stream ciphers using convolutional codes
by

C.S. Bruwer

Submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

October 2004

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Correlation attacks on stream ciphers using convolutional codes

by

Christian Bruwer

Promoter: Prof. W. T. Penzhorn

Department: Electrical, Electronic and Computer Engineering

Degree: Master of Engineering (Electronic)

Keywords
Stream cipher; Non-linear combining function; Cryptanalysis; Correlation attack; Linear Feedback

Shift Register; Viterbi algorithm; Lempel-Ziv complexity; Binary derivative; Binary discriminator.

Summary
This dissertation investigates four methods for attacking stream ciphers that are based on nonlinear

combining generators:

• Two exhaustive-search correlation attacks, based on the binary derivative and the Lempel-

Ziv complexity measure.

• A fast-correlation attack utilizing the Viterbi algorithm

• A decimation attack, that can be combined with any of the above three attacks

These are ciphertext-only attacks that exploit the correlation that occurs between the ciphertext and an

internal linear feedback shift-register (LFSR) of a stream cipher. This leads to a so-called divide and

conquer attack that is able to reconstruct the secret initial states of all the internal LFSRs within the

stream cipher.

The binary derivative attack and the Lempel-Ziv attack apply an exhaustive search to find the secret

key that is used to initialize the LFSRs. The binary derivative and the Lempel-Ziv complexity

measures are used to discriminate between correct and incorrect solutions, in order to identify the

secret key. Both attacks are ideal for implementation on parallel processors. Experimental results

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

show that the Lempel-Ziv correlation attack gives successful results for correlation levels of p =

0.482, requiring approximately 62000 ciphertext bits. And the binary derivative attack is successful

for correlation levels of p = 0.47, using approximately 24500 ciphertext bits.

The fast-correlation attack, utilizing the Viterbi algorithm, applies principles from convolutional

coding theory, to identify an embedded low-rate convolutional code in the pn-sequence that is

generated by an internal LFSR. The embedded convolutional code can then be decoded with a low

complexity Viterbi algorithm. The algorithm operates in two phases: In the first phase a set of suitable

parity check equations is found, based on the feedback taps of the LFSR, which has to be done once

only once for a targeted system. In the second phase these parity check equations are utilized in a

Viterbi decoding algorithm to recover the transmitted pn-sequence, thereby obtaining the secret initial

state of the LFSR. Simulation results for a 19-bit LFSR show that this attack can recover the secret

key for correlation levels of p = 0.485, requiring an average of only 153,448 ciphertext bits.

All three attacks investigated in this dissertation are capable of attacking LFSRs with a length of

approximately 40 bits. However, these attacks can be extended to attack much longer LFSRs by

making use of a decimation attack. The decimation attack is able to reduce (decimate) the size of a

targeted LFSR, and can be combined with any of the three above correlation attacks, to attack LFSRs

with a length much longer than 40 bits.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Korrelasie aanvalle op stroomsyfers deur die gebruik van konvolusiekodes

deur

Christian Bruwer

Promotor: Prof. W. T. Penzhorn

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Graad: Meester in Ingenieurswese (Elektronies)

Sleutelwoorde
Stroomsyfer; Nie liniêre kombineer-funksie; Kritpto-analise; Korrelasie-aanval; Liniêere-terugvoer

skuifregister; Viterbi algoritme; Lempel-Ziv kompleksiteit; Binêre afgeleide; Binêre diskrimineerder.

Opsomming

Hierdie verhandeling ondersoek vier metodes om stroomsyfers, gebaseer op nie-liniêre

kombinatoriese generators, aan te val:

• Twee korrelasie aanvalle, gebasseer op die binêre differensiaal en die Lempel-Ziv
komplexiteit maatstaaf, deur middel van 'n volledige sleutel-soektog

• 'n Vinnige korrelasie-aanval wat gebruik maak van die Viterbi algoritme

• 'n Desimasie aanval wat gekombineer kan word met enige van die drie bogenoemde aanvalle.

Hierdie is syferteks-aanvalle wat die korrelasie tussen die syferteks en 'n interne liniêre terugvoer

skuifregister (LFSR) van 'n stroomsyfer benut. Dit lei tot 'n sogenaamde verdeeel-en-heers aanval, wat

die geheime begintoestande van die interne LFSRs binne die stroomsyfer kan herwin.

Die binêre afgeleide en die Lempel-Ziv aanvalle vind die geheime sleutel, waarme die LFSR’s ge-

inisialiseer word, deur middle van 'n volledige sleutel-soektog. Die Lempel-Ziv sekwensie-

kompleksiteit en 'n nuwe kompleksiteits-maatstaf vir die binêre afgeleide word gebruik om die

korrekte oplossing te identifiseer en die geheime sleutel te vind. Beide aanvalle is ideaal vir

implimentering op paralelle verwerkers. Eksperimentele resultate toon dat die Lempel-Ziv korrelasie

aanval goeie resultate lewer vir 'n korrelasie van p = 0.482 en benodig ongeveer 62000 syferteks bisse

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

hiervoor. Die binêre afgeleide aanval is suksesvol vir korrelasie vlakke van p = 0.47 en benodig

ongeveer 24500 syferteks bisse.

Die vinnige korrelasie-aanval, gebaseer op die Viterbi algoritme, maak gebruik van die teorie van

konvolusiekodes. 'n Lae-tempo konvolusie kode word gevind, op grond van die pn-sekwensie wat

deur die LFSR genereer is. Hierdie konvolusie kode kan dan met behulp van die Viterbi algoritme

gedekodeer word. Die algoritme benodig twee aparte stappe: In die eerste stap moet bruikbare pariteit

vergelykings gevind word, gebasseer op die terugvoertappe van die LFSR. Hierdie stap hoef slags

eenkeer uitgevoer te word tydens die aanval op 'n sisteem. In die tweede stap word die

pariteitsvergelykings in 'n Viterbi dekodeer algoritme gebruik om die pn-sekwensie te herwin en

sodoende word die geheime begintoestand van die LFSR gevind. Simulasie resultate vir 'n 19-bis

LFSR toon dat hierdie aanval die geheime sleutel kan herwin vir 'n korrelasie van p = 0.485, waarvoor

slegs 153,448 syferteks bisse benodig word.

Al drie aanvalle wat in hierdie verhandeling ondersoek word, is in staat om LFSRs met 'n lengte van

ongeveer 40 bisse aan te val. Hierdie aanvalle kan egter uitgebrei word na langer LFSRs deur van die

desimasie aanval gebruik te maak. Die desimasie aanval wat hier ondersoek word, is in staat om die

lengte van 'n LFSR te desimeer en kan gekombineer word met enigeeen van drie bo-genoemde

korrelase aanvalle om LFSRs van heelwat langer as 40 bisse aan te val.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

I wish to express my special thanks to:

My promoter, Prof. W. T. Penzhorn, for all his help during the researching, writing and

editing of this dissertation.

Prof. G. J. Kühn, for all his help and explanations on the theory and background of the fast-

correlation attack.

My family and friends for their support.

My employers during this time, Mecalc (Pty) Ltd and Azisa (Pty) Ltd, for the generous

amounts of study leave and flexible working hours.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION..9
1.1 PROBLEM STATEMENT ..9
1.2 OBJECTIVE...10
1.3 CONTRIBUTION ..11

1.3.1 CORRELATION ATTACKS...11
1.3.2 FAST CORRELATION ATTACK...11
1.3.3 DECIMATION ATTACK ...11

1.4 OUTLINE...11
CHAPTER 2 BACKGROUND ON STREAM CIPHERS...13

2.1 INTRODUCING THE STREAM CIPHER ...13
2.2 PRACTICAL RUNNING KEY GENERATORS..17

2.2.1 THE LINEAR FEEDBACK SHIFT REGISTER ..17
2.2.2 THE COMBINING FUNCTION FOR THE RUNNING KEY GENERATOR......................22

2.3 REVIEW OF THE STATISTICAL MODEL ..25
CHAPTER 3 CORRELATION ATTACKS..28

3.1 INTRODUCTION..28
3.2 LEMPEL-ZIV COMPLEXITY OF A BINARY SEQUENCE..29

3.2.1 EXAMPLE:..29
3.3 BINARY DERIVATIVE WITH RUNS TEST..33

3.3.1 BINARY DERIVATIVE OF SEQUENCE ..33
3.3.2 RUNS IN A BINARY SEQUENCE...34

3.3.2.1 EXAMPLE...35
3.3.3 GOODNESS-OF-FIT RUN TEST ...36

3.3.3.1 ALGORITHM D: 2χ GOODNESS-OF-FIT RUN TEST ...36
3.4 EXPERIMENTAL RESULTS...38

3.4.1 LEMPEL-ZIV ATTACK...38
3.4.2 BINARY DERIVATIVE AND RUNS ATTACK ..40

3.5 DISCUSSION...42
CHAPTER 4 FAST CORRELATION ATTACK...43

4.1 INTRODUCTION..43
4.2 REVIEW OF CODING THEORY...44

4.2.1 CONVOLUTIONAL CODES...44
4.2.1.1 POLYNOMIAL DESCRIPTION OF CONVOLUTIONAL CODES46
4.2.1.2 MATRIX DESCRIPTION OF CONVOLUTIONAL CODES....................................48

4.2.2 CONVERTING A LFSR TO A BLOCK CODE..50
4.2.2.1 EXAMPLE OF CONVERTING A LFSR TO A BLOCK CODE.51

4.2.3 FINDING PARITY EQUATIONS WITHIN A BLOCK CODE ..53
4.2.3.1 EXAMPLE FOR FINDING PARITY EQUATIONS IN A BLOCK CODE...............55
4.2.3.2 VERIFYING A PARITY EQUATION..58
4.2.3.3 THE EXPECTED NUMBER OF PARITY EQUATIONS WITHIN A BLOCK CODE
..59

4.2.4 CREATING A CONVOLUTIONAL ENCODER USING PARITY EQUATIONS61
4.2.4.1 EXAMPLE FOR USING PARITY EQUATIONS TO CREATE A
CONVOLUTIONAL ENCODER..63

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

4.2.5 THE VITERBI DECODING ALGORITHM...63
4.2.5.1 THE TRELLIS DIAGRAM ...63
4.2.5.2 THE VITERBI ALGORITHM...67
4.2.5.3 CALCULATING PATH METRICS..68
4.2.5.4 EXAMPLE...70
4.2.5.5 GENERATING THE RECEIVED STREAM..74
4.2.5.6 EXAMPLE FOR GENERATING THE RECEIVED STREAM.................................75
4.2.5.7 APPLYING THE VITERBI ALGORITHM FOR FAST CORRELATION ATTACKS
..75

4.3 INTRODUCING THE ALGORITHM BASED ON A SMALL EXAMPLE............................76
4.3.1 OBTAINING A CIPHERTEXT STREAM FOR SIMULATION PURPOSES.......................76
4.3.2 FIND PARITY EQUATIONS AND GENERATE CONVOLUTIONAL ENCODERS76
4.3.3 CREATING THE RECEIVED SEQUENCE..79
4.3.4 USING THE VITERBI ALGORITHM FOR A FAST CORRELATION ATTACK................80

4.4 SIMULATION RESULTS AND DISCUSSION...89
4.4.1 SUMMARY OF TOPICS TO BE INVESTIGATED USING SIMULATIONS89
4.4.2 APPROACH ..89
4.4.3 RESULTS...90

4.4.3.1 RESULTS FOR SYSTEMS WITH BSC BELOW 47.0=p91
4.4.3.2 RESULTS FOR SYSTEMS WITH BSC ABOVE 47.0=p97

4.4.4 DISCUSSION ..101
4.5 DEVIATIONS FROM METHOD DESCRIBED BY JOHANSSON AND JÖNSSON104

CHAPTER 5 DECIMATION ATTACK ...105
5.1 INTRODUCTION..105
5.2 DECIMATION OF LFSR SEQUENCES ..106

5.2.1 EXAMPLE OF FINDING A USEFUL DECIMATION FACTOR D107
5.2.2 DETERMINING THE FEEDBACK POLYNOMIAL OF THE SIMULATED LFSR110
5.2.3 THEORETICAL DISCUSSION OF DECIMATION METHOD ..111

5.2.3.1 EXAMPLE...111
5.2.4 RESULTS FROM INVESTIGATION...112

CHAPTER 6 CONCLUSION...114
6.1 CORRELATION ATTACKS ..115
6.2 FAST-CORRELATION ATTACKS ...116
6.3 DECIMATION ATTACK ...118
6.4 FUTURE WORK ON FAST CORRELATION ATTACK ...119

REFERENCES ...120

APPENDIX ...122

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Many practical stream cipher systems are based on binary linear feedback shift registers (LFSRs). A

keystream is generated by combining the output of a number of LFSRs using a non-linear combining

function f as shown in Figure 1.1 below.

Figure 1.1 Stream cipher based on a nonlinear combining generator

In a stream cipher system the plaintext is encrypted by modulo 2 addition with the keystream,

resulting in a ciphertext stream of the same length as the plaintext. The secret key for the stream

cipher is used to initialize each of the component LFSRs, and has to be in the possession of both the

sender and the receiver. In a brute force attack on such a stream cipher system an attacker would need

to test all the possible states of the combined LFSRs, which is computationally infeasible in any

contemporary system.

In practical stream cipher systems it is often found that a correlation occurs between the ciphertext

and the output of an individual LFSR within the key generator. By exploiting this correlation it is

possible to formulate a so-called divide-and-conquer attack, thereby attacking the individual LFSRs

LFSR 1

LFSR 2

LFSR n

ƒ

Keystream

Ciphertext Plaintext

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 10

separately. Such divide-and-conquer correlation attacks radically reduce the effort of finding the

secret key, since the initial condition of each LFSR may be reconstructed independently.

Let p denote the amount of correlation occurring between the ciphertext and an individual LFSR

within the key generator. For ideal cryptographic applications we would expect that p = 0.5. However,

in practical systems it is often found that p < 0.5, due to correlation weaknesses in the stream cipher.

The magnitude of the correlation p has important consequences for divide-and-conquer attacks on

stream ciphers. As will be demonstrated in this dissertation, the complexity of correlation attacks

generally increases exponentially when the value of p is close to 0.5.

1.2 Objective

This dissertation investigates four different ciphertext only correlation attacks on LFSR-based stream

cipher systems.

Firstly, two new correlation attacks are introduced which target a single LFSR within the key

generator:

o The binary derivative attack.

o The Lempel-Ziv attack.

In these attacks the Lempel-Ziv sequence complexity measure and the Binary Derivative being are

used to discriminate between random-looking and systematic binary streams.

Secondly, a fast-correlation attack, utilizing the Viterbi algorithm is introduced. The attack is quite

complex, and its description together with the simulation results, forms the largest part of this

dissertation. The attack models he targeted LFSR output as a wireless transmission that was corrupted

by noise in a binary symmetric channel. The algorithm is used to reconstructs the LFSR’s initial

condition from the ciphertext by means of a Viterbi decoder, which is derived using parity equations

that are embedded within the structure of any LFSR.

Thirdly, a decimation attack, based on an idea proposed by Filiol [1] is investigated. This attack

reduces (decimates) the key-space of a targeted LFSR. The attack can be applied in combination with

any of the above-mentioned attacks.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 11

1.3 Contribution

1.3.1 Correlation Attacks

Correlation attacks were first introduced by Siegenthaler [2] based on the correlation function. The

attacks in this dissertation extend his work, and are able to succeed for values of p close to 0.5, yet

with much lower complexity. The Lempel-Ziv correlation attack is successful for correlation levels as

low as p = 0.482. The binary derivative correlation attack was able to exploit correlation levels of p =

0.47. Simulation results show an exponential reduction of the number of ciphertext bits that are

needed when the attack applies more derivatives. Simulation results provide information on the

relationship between correlation level, number of derivatives, and the amount of ciphertext required

for a successful attack.

1.3.2 Fast Correlation Attack

The fast-correlation attack using Viterbi algorithm discussed in this dissertation gives a substantial

improvement over previous results, and is successful for correlation levels of only p = 0.485. This is

in contrast to results obtained by Johansson and Jönsson [3] who required a much greater correlation

level of at least at least p = 0.42. Numerous simulations in the dissertation give a detailed relationship

between the correlation levels, the number of parity equations, the number of required ciphertext bits,

the size of the targeted LFSR, as well as the size of the convolutional encoder. It was found that the

number of parity equations is the primary factor that determines the likelihood of success for a certain

correlation level. These results make it possible to predict beforehand whether an attack is likely to

succeed, since this leaves only two more parameters that can be varied. These are the size of the

convolutional encoder, and the number of ciphertext bits.

1.3.3 Decimation Attack

In the dissertation a list of all the useful decimation factors for LFSRs bigger than 18 bits and smaller

than 64 bits is presented. In many cases it was found that the decimation attack is ineffective because

of the unrealistically large number of ciphertext bits required for success attacks.

1.4 Outline

Chapter 2 provides a general introduction to stream ciphers, including a historical overview and the

general architecture of such a system. A detailed mathematical model is introduced which is used

throughout the remainder of the dissertation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 12

Chapter 3 investigates two correlation attacks, the Lempel-Ziv attack and the binary derivative attack.

A model for the attack is introduced, together with a detailed description of each attack. Simulation

results are given for both attacks, which investigate the conditions under which the attacks are likely

to succeed, followed by a discussion on the impact of these results.

Chapter 4 investigates a fast correlation attack based on the Viterbi algorithm. A overview of the

relevant mathematical background is presented, including a detailed description of the Viterbi

algorithm. All steps in the process of the attack are accompanied by a theoretical explanation,

followed by a practical example in the same section. These examples give a complete example for

performing a fast correlation attack using a small LFSR. Simulation results are presented and

discussed, followed by a number of general conclusions.

Chapter 5 investigates the decimation attack. Relevant mathematical theory is reviewed together with

examples of finding practical decimation factors. Methods are discussed for applying the decimation

attack to the previously introduced correlation attacks, and fast correlation attacks, as well as

performing a theoretical mathematical analysis of the feasibility of the attack.

Chapter 6 gives a conclusions of all the methods investigated. This chapter compares and contrasts the

various attacks, giving a global discussion of the results obtained and the practical implication

thereof.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

CHAPTER 2 BACKGROUND ON STREAM CIPHERS

2.1 Introducing the Stream Cipher

Keeping information secret and confidential is an age-old practice. Cipher systems have been used

and evolved from the times of the Romans. This evolution has been fueled by the battle between the

cryptographer and the cryptanalyst, i.e. the people designing methods to keep information private, and

those trying to break these methods. Throughout history there have been times when the

cryptographers were holding the upper hand, their ciphers being believed to be unbreakable, and then

there were times when no cipher was considered to be safe or unbreakable and the cryptanalyst were

in ascendancy.

Two main methods can be identified in a cryptanalyst’s armory. The first method involves the

guessing of the key by working through every possible combination of the key space and checking the

result to see if the guess proved to be correct. The larger the key space, the more difficult this

becomes. If the key-space is small enough that an exhaustive search is feasible, the cipher is too weak

and can be considered broken. It is therefore important to ensure the key space is large. The second,

and by far preferable, method involves identifying of a weakness in the cipher that will save the

cryptanalyst the trouble of trying every possible key. Using this method the key can be reconstructed

using statistical information embedded in the ciphertext. A simple example of this is the Caesar Shift

Cipher.

The Caesar Shift Cipher, used by the Romans, in generalized terms, is a substitution cipher where

each letter is substituted with another letter. The key in this case is the map, which tells a person

which letter is transformed to which, e.g. every ‘a’ is substituted with an ‘x’. The key space for this

example is huge: 689113726605635514032914611126!-226 =+ which even today at a key space

of around 882 would be close to impossible to break using automated methods. However, because of

the statistical nature of the language this system does not hide the statistical repetition and grouping of

letters in the ciphertext, making it easy to break. This weakness in the cipher provides a back door by

which one can retrieve the key without trying each possible one.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 14

Until the Second World War most ciphers were based on the substitution of characters, the so-called

substitution ciphers, some of which were extremely advanced, e.g. the German Enigma and the

Japanese Purple1 cipher systems. With the development of the modern information age however these

systems have changed to ones, which encipher digitally encoded data of any form and are thus not

limited to enciphering text-based characters. Modern cipher systems can be loosely grouped into two

categories, so-called stream ciphers and block ciphers.

Block ciphers work on the basis of transforming fixed blocks of data to blocks of ciphertext of equal

length (typically 64 bits in size) according to a key as shown in Figure 2.1 below which illustrates the

typical functioning of this type of cipher. Examples of block ciphers include DES, Triple-Des, IDEA,

Blowfish and RC-5 [4].

Figure 2.1 Diagram of encryption using a typical block cipher

Although the vast majority of network-based conventional cryptographic applications make use of

block ciphers, stream ciphers are also widely used. For example, the A5/1 stream cipher [5], used for

encryption in GSM, and RC 4 as well as many military communication systems. As far more effort

has gone into the analyzing of block ciphers, the field of stream ciphers presents a big opportunity for

further investigation and is the focus of this dissertation.

1 Both these ciphers made use of electro-mechanical devices for substituting characters based on a

session key and are famous for being broken by the Allies [4].

Plaintext Plaintext

Ciphertext Ciphertext

64 bits 64 bits

64 bits 64 bits

Cipher Text = f(Plaintext, Key)

Plaintext

Ciphertext

64 bits

64 bits

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 15

In a stream cipher the plaintext message m to be enciphered, is broken into successive characters

K,, 21 mm . Each plaintext character jm is enciphered by adding a keystream character jk resulting

in a ciphertext character jz . This type of cipher is also referred to as a Vernam cipher having been

introduced by Gilbert Vernam an AT&T engineer in 1918 [4]. In this dissertation only the binary form

of the Vernam cipher is considered where all additions are bitwise modulo 2 additions, equivalent to

an exclusive-or (XOR) shown in equation (2.1).

jjj kmz += K2,1,0=j (2.1)

The basic function of the Vernam cipher, illustrated in Figure 2.2 below, is to eliminate any statistical

relationship between the plaintext and the ciphertext. This is done with the addition (XOR) of a

random keystream with the plaintext. The device used to generate the random keystream, where each

bit is equally likely to be 0 or 1 independent of the preceding bits, is called a binary symmetric source

(BSS).

Figure 2.2 Vernam stream cipher model

A special form of the Vernam cipher proposed by Joseph Mauborgne [4] p 41 involves the use of a

random keystream that is the same length as the message, without any repetitions. This scheme is

known as a one-time-pad and is unbreakable. However, this method is impractical due to the fact that

both the sender and the receiver have to be in possession of the same key, which is huge if the data to

be encrypted is of any significant size. The key may also never be used again, otherwise there is

repetition and the ciphertext is no longer unbreakable.

BSS

Secure Channel

mj mj

kj kj

zj

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 16

Using a long random keystream, one can however still attain a very secure encryption system. The key

to the one-time-pad strength is the long and completely random keystream. If one can produce a

random sequence by seeding a generator with a shorter value, which always produces the same

sequence, one only has to communicate the short value used for seeding the generator to the receiver.

This generator is referred to as a Running Key Generator (RKG) and to the seeding value as the key

(K) which generates the random-looking keystream sequence)(jkk = as illustrated in Figure 2.3

below.

Figure 2.3 Additive stream cipher model

The ciphertext is now the bit-by-bit modulo-2 sum of the plaintext and the keystream, as shown in

equation (2.2).

jjj kmz ⊕= K,2,1,0=j (2.2)

Fortunately for the cryptanalysist, the keystream)(jk is not truly random but deterministic, being

determined by the secret key K and the algorithm of the running key generator. Unlike the key for the

Vernam cipher, the generator can only generate as many different keystreams as there are key input

values. Once the key K is known, the entire keystream sequence can be reconstructed which can be

exploited by the cryptanalysist. The main aim of an attacker would thus be to determine K as this

allows the reconstruction of the keystream, and hence the secret message. As long as the cipher

system is designed to ensure that it is practically impossible to determine K , the system is safe.

Running
Key

Generator

Secure

Running
Key

Generator

K K

mj mj zj

kj kj

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 17

2.2 Practical Running Key Generators

2.2.1 The Linear Feedback Shift Register

The running key generator needs to be designed to output a random keystream, which cannot easily be

distinguished from a truly random sequence. To make the implementation practical the generator must

be able to produce the keystream rapidly without being too complex. One well-known circuit that

efficiently produces a random looking sequence is the linear feedback shift register, referred to as a

LFSR from now on. The design of LFSRs is based on finite field theory, developed by the French

mathematic Évariste Galois apparently shortly before being killed in a dual [6]. In digital circuits,

which use binary arithmetic, the operations of LFSRs correspond to operations in a finite field, or

Galois Field, with l2 elements usually denoted as)2(lGF .

Figure 2.4 Structure of a linear feedback shift register of size l

Figure 2.4 displays the structure of an l-bit LFSR. The shift register’s serial input is fed by the modulo

2 addition of previous stages of the register. The connection determining whether a value is fed back

or not is represented by the coefficients 1210 ,,,, −lcccc K as shown in Figure 2.4. The next input bit to

the LFSR is thus computed as a linear function of the current contents as given in the form of a

recurrence relation in (2.3) below, where the initial contents of the shift register is given by the values

110 ,, −laaa K .

111100 −−+++= llk acacaca K (2.3)

Associated with a LFSR is a characteristic polynomial (often referred to as the generator

polynomial))(xg , which is also expressed in terms of the feedback coefficients shown in (2.4):

ll
l xxcxcxccxg +++++= −
−

1
1

2
210)(K (2.4)

a 2 a 1 a l-8 a 0

Cl-1 C2 C1 C0

a0, a1, a2,….

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 18

The feedback coefficient lc is equal to 1 by definition and 0c is always chosen as 1, because the

output sequence would otherwise just be a time-shifted version of the LFSR denoted by)(xgxn ⋅ . A

LFSR of l stages can produce a non-repeating sequence with a maximum length of 12 −= lL . This

so-called pseudo-random bit sequence is of maximum length if the feedback polynomial)(xg is

primitive. A primitive polynomial of degree l is an irreducible polynomial that divides 112 +−l

x , but

not 1+dx for any d that divides 12 −l .

The 5-bit LFSR in Figure 2.5 below represents an implementation of the primitive polynomial

1)(25 ++= xxxg and is used as an example to illustrate the contents of the shift register for each

clock cycle when started with the initial condition 01234 ,,,, aaaaa equal to 0,0,0,0,1 . The content

for the LFSR is shown in Table 2.1 for each clock cycle until the initial state is repeated.

Figure 2.5 Implementation of LFSR for 1)(346 ++++= xxxxxg

It can be seen in Table 2.1 below that there are 31 unique states (125 −=L) for the LFSR shown in

Figure 2.5, where state 31 is a repeat of state 0 . Each consecutive state is a right-shifted version of

the previous state, with 4a being derived by the feedback taps from 0a and 2a , also from the

previous state. An interesting observation that can be made is the fact that the output sequence can be

seen in column 0a and is also 125 −=L of length before repeating. Each column (each entry in the

column represents the contents of a memory cell within the shift register at time j) represents a time-

shifted version of the output sequence.

a2 a1 a0 a4 a3

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 19

Table 2.1 State of LFSR shown in Figure 2.5 for each clock cycle up to first repeat

Contents
State 4a 3a 2a 1a 0a

0 1 0 0 0 0
1 0 1 0 0 0
2 0 0 1 0 0
3 1 0 0 1 0
4 0 1 0 0 1
5 1 0 1 0 0
6 1 1 0 1 0
7 0 1 1 0 1
8 0 0 1 1 0
9 1 0 0 1 1
10 1 1 0 0 1
11 1 1 1 0 0
12 1 1 1 1 0
13 1 1 1 1 1
14 0 1 1 1 1
15 0 0 1 1 1
16 0 0 0 1 1
17 1 0 0 0 1
18 1 1 0 0 0
19 0 1 1 0 0
20 1 0 1 1 0
21 1 1 0 1 1
22 1 1 1 0 1
23 0 1 1 1 0
24 1 0 1 1 1
25 0 1 0 1 1
26 1 0 1 0 1
27 0 1 0 1 0
28 0 0 1 0 1
29 0 0 0 1 0
30 0 0 0 0 1
31 1 0 0 0 0

A LFSR is usually specified using the polynomial representation, which does not easily map to a

hardware implementation. Consider a 8-bit LFSR, with feedback polynomial

1)(3568 ++++= xxxxxg (2.5)

It is easy to convert the polynomial representation to a recurrence relation representation, which can

be readily mapped to the hardware representation of a LFSR, as will be shown with equation (2.5) as

an example. Setting 0)(=xg one obtains:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 20

10 3568 ++++= xxxx (2.6)

Multiplying by nx gives:

nnnnn xxxxx ++++= ++++ 35680 (2.7)

Multiply by 8−x then produces

85320 −−−− ++++= nnnnn xxxxx (2.8)

Replacing nx with na results in:

85320 −−−− ++++= nnnnn aaaaa (2.9)

As these all are GF(2) or modulo 2 operations nn aa −= ; thus

2358 −−−− +++= nnnnn aaaaa (2.10)

which represents the LFSR shown in Figure 2.6 below where the output sequence is denoted by

K,,, 210 uuu and n denotes any relative point in time.

Figure 2.6 LFSR of size 8

an-7 an-6 an-5 an-8 an-3 an-2 an-1 an-4 ,.....,, 210 uuu

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 21

Thus, a LFSR generates a random looking bit sequence of length 12 −l using a short seeding value.

However a LFSR cannot be used on its own as a running stream generator. Consider the following

case illustrated in Figure 2.7:

Figure 2.7 Cracking a stream cipher with a weak running key generator

Looking at the viewpoint of the interceptor it is known somebody is writing to Alice, as is the inner

working of the cipher system being used and for this special case the keystream is referred to as

ju instead of jk . By guessing that the message starts with “Dear Alice” provides 10 letters of known

plaintext, as the ciphertext jz produced by jj um ⊕ is known. Assuming the guess is correct and the

message was written using ASCII letters allows for the retrieval of 808*10 = bits of the key

sequence as jjj zmu ⊕= . As long as the LFSR in the system shown in Figure 2.7 above is shorter

than 80 bits, the system has been cracked as one can derive the whole key sequence, forward or

backward, from the section retrieved. The reason this particular example of a running key generator

can be broken so easily is the lack of confusion, a concept that is introduced and elaborated on in the

following section.

Dear Alice…. Dear Alice….

LFSR

Secure Channel

LFSR

K K

zj

Interceptor

uj uj

Alice

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 22

2.2.2 The Combining Function for the Running Key Generator

The lesson learned from the hypothetical attack described at the end of the previous section is the fact

that if one wants to make use of the speed and simplicity of implementation of a LFSR in the

construction of the running key generator, measures must be taken to prevent an attacker from

retrieving the initial state of the LFSR.

The terms diffusion and confusion were introduced by Shannon [4], p60 and are fundamental to any

practical cryptographic system. In diffusion it is attempted to make each bit in the key influence many

plaintext bits in order to hide the statistical structure of the plaintext in the ciphertext. Confusion

attempts to make the statistical relationship between the ciphertext and the key as complex as

possible. When using LFSRs in a running key generator, the criteria set by diffusion is easily met as

changing one bit in the seeding value of the LFSR (which forms part of the key) changes the output

sequence of the LFSR, thus also the keystream and as a result the ciphertext.

Several methods are used to introduce confusion in stream ciphers for hiding the individual LFSR

output bits in order to prevent the reconstruction of the key. The most common methods [7] are

nonlinear filter generators, clock-controlled generators2 and nonlinear combining generators, the

latter being the focus of this dissertation. Nonlinear combining generators combine a fixed number of

n LFSRs using a nonlinear combining function f as shown in Figure 2.8 below. The individual

output streams from the various LFSRs are identified by the superscript na K1 .

2 A5/1 used for encryption in GSM networks makes use of clock-controlled generators.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 23

Figure 2.8 Stream cipher based on a nonlinear combining generator

An example of a simple combining function is the Geffe generator, shown in Figure 2.9 below [7].

The key of this generator is the initial conditions of the three component LFSRs.

Figure 2.9 The Geffe key generator

To investigate the confusion in the keystream introduced by the Geffe generator the truth table of the

combining function, shown in Table 2.2 below, is examined.

LFSR 3

LFSR 2

LFSR 1
a1

j

a2
j

a3
j

kj

LFSR 1

LFSR 2

LFSR n

ƒ

a1
j

a2
j

an
j

Keystream kj

Ciphertext zj Plaintext mj

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 24

Table 2.2 Truth table for Geffe combining function

1
ja 2

ja 3
ja jk

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Looking at the correlation between the individual LFSR outputs ia it can be seen that

4
3

8
6)()()(321 ======= jjjjjj kaPkaPkaP . Thus 75% of the time a bit in the keystream is

equal to the contents of a specific component LFSR. Because of this, it is no longer possible to

directly deduct the initial condition of a component LFSR from the keystream, however the

correlation can be exploited, as the remainder of this dissertation will endeavour to illustrate.

A brute force attack attempts to examine all the possible states of the component LFSRs. Such an

attack is however the last resort for a cryptanalysist when all else fails and is unlikely to succeed. Any

cipher system would be designed in such a way as to ensure that the key size is orders too large for a

brute force attack to succeed. In fact, because of the rapid rate at which computers are increasing in

speed, the key-size is usually huge and brute force attacks can typically only be expected to work on

very old systems.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 25

Fortunately for the cryptanalysist, Siegenthaler [2][1] has shown that by exploiting the measure of

correlation that exists between the running key k and the outputs of individual LFSRs ia , as shown

in the example of the Geffe generator, it is possible to perform a divide and conquer attack on the

individual LFSRs thereby reducing the effort of finding the key from ∏
n

li

1

2 to ∑
n

li

1
2 . This is

possible by performing a brute force attack, targeting the output of only one of the component LFSR’s

independently from the output of the others. This approach was shown to work for a number of

combining functions, e.g. as proposed by Brüer [8], Geffe [9] and Pless [10]. Siegenthaler used the

correlation function to discriminate between random-looking binary sequences, resulting from the

false initial states, and non-random (deterministic) binary sequences corresponding to the correct

state.

To prevent the type of attack introduced by Siegenthaler, one would ideally want to have a combining

function, which provides a keystream with a correlation for 5.0)(== kaP i that would be

completely random and thus the ultimate in confusion. In practice however, implementations of

combining functions never reach correlation levels that are completely random, and in general it is

found that 5.0)(≠= kaP i . In the following section a mathematical model is introduced that can be

used for exploiting this weakness.

2.3 Review of the Statistical Model

In this section a model for representing the statistical relationship between the individual LFSRs

within a nonlinear combining generator and the ciphertext is introduced. The model is slightly

different for each type of attack described in this text and is refined at the relevant sections. Assume

that a segment of N ciphertext bits is being observed by an attacker. From the attacker’s viewpoint it

is desirable that the value N should be as small as possible; i.e. 12 −=<< ilLN . The fundamental

assumption for correlation attacks of stream ciphers is that the ciphertext sequence)(jkk = is

correlated with probability 5.0'>q to the sequence)(jaa = generated by a particular internal LFSR,

i.e.

L,2,1,05.0)'1(')(=>−=== jpqakP jj (2.11)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 26

The corruption of the internal LFSR sequence)(ja due to other LFSRs in the stream cipher may be

modeled as “errors” in the sequence. In the case of binary-valued digits, the model may be simplified,

by setting L,2,1,0, =⊕= jrak jjj . This is illustrated in Figure 2.10.

Figure 2.10 Stream cipher model

The simplifying assumption that jk depends only on the input ja at time j is made. The corruption

of the LFSR sequence ja due to the other LFSRs in the stream cipher and the addition of the plaintext

may be modeled by the addition of “error digits” jr .

'1')0()(pqrPkaP jjj −===== (2.12)

The assumption is made that the “error bits”)(jr , generated by the memoryless Binary Noise Source

(BNS), are identical and independently distributed random variables. In typical applications one

further finds that 5.0)0(≠=jmP . In fact, the statistical nature of the data being encoded is usually

a known factor, for instance for the transmission of voice or the transmission of English ASCII text.

Because of this, the effect of the plaintext can be incorporated into the BNS allowing for the

simplification of the stream cipher model as shown Figure 2.11 below, where the corruption of the

LFSR sequence ja due to the other LFSRs in the stream cipher and the addition of the plaintext has

now been combined in a unified addition of “error digits” je .

kjLFSR

BNS

zjaj

rj

mj

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 2 Background on Stream Ciphers

Electrical, Electronic and Computer Engineering 27

Figure 2.11 Simplified stream cipher model

The simplified model has a lower correlation level between the LFSR output ja and the ciphertext

jz than exists between ja and jk making any attack more difficult. The huge advantage with the

simplified model is however that one now is able to perform a ciphertext-only attack on the system

instead of a known plaintext attack. This correlation level is shown by equation (2.13) where the

probabilities q and p now combine the effect of the combining function and the effects of the

statistical nature of the plaintext.

pqePzaP jjj −===== 1)0()((2.13)

The challenge of the cryptanalyst is to restore the unknown LFSR sequence)(ja from the observed

ciphertext sequence)(jz , which may be viewed as a “noisy” version of)(ja as shown with the

equivalent model in Figure 2.12 below.

Figure 2.12 BSC equivalent model for stream cipher

The BNS sequence of peP j ==)1(which determines the correlation between jz and ja has been

replaced by a Binary Symmetric Channel (BSC) with an error probability of p .

aj zj

0

1

0

1

 p

 p
 1-p

 1-p

LFSR

LFSR

BNS

zjaj

ej

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

CHAPTER 3 CORRELATION ATTACKS

3.1 Introduction

The correlation attack is a divide-and-conquer attack. The goal with this attack is the finding of the

initial condition of a targeted LFSR in the stream cipher model presented in section 2.3. To do this a

test LFSR, identical to the LFSR under attack is introduced to the simplified model of a stream cipher

system presented in Figure 2.10. For the attack, the Test LFSR is stepped through all 12 −l non-zero

initial states, and the output is XOR-ed with the output of the stream cipher model, as shown below.

Figure 3.1 Model for the attack

The amount of correlation between the LFSR-sequence and the ciphertext can be adjusted, by

changing the probability)1(== jePp of the BNS emitting a 1. A high level of correlation implies

that only very few 1’s are injected into the LFSR output sequence by the BNS. In general, the output

sequence)(jy of the model will appear to be ”random”, since it is the XOR of two out of phase pn-

sequences, the number of 0s and 1s in the sequence being roughly equal. However, when the Test

LFSR is initialized with the correct initial state (identical to the initial state of the LFSR under

attack), the output sequence)(jy will be unbalanced, consisting mainly of long runs of 0’s,

interspersed with a few 1’s. Two new methods are introduced for identifying this unbalanced binary

sequence from all other ”random”-looking sequences. Two new binary discriminators, based on the

Lempel-Ziv sequence complexity, and the Binary Derivative combined with the runs test, are

introduced.

yj

xj

LFSR

BNS

zj aj

ej

Test LFSR

Binary Discriminator

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 29

For the practical application of the attacks, it is important to estimate the number of ciphertext bits

that are required for the attacks to be successful. In a practical situation it is very unlikely that high

levels of correlation will occur between the ciphertext and any internal LFSR. Realistic correlation

levels that may be encountered in practice will lie in the range 60.052.0 ≤≤ q . Such fairly low

correlation levels imply that the output sequence of this model will be a very “noisy” version of the

LFSR sequence)(ja under attack.

3.2 Lempel-Ziv Complexity of a Binary Sequence

The Lempel-Ziv (L-Z) algorithm forms the basis of one the most useful and versatile universal,

noiseless, data compression algorithms [11]. It is a dictionary-type parsing algorithm that parses a

given sequence of digits into consecutive, non-overlapping phrases or codewords. The number of

parsed phrases, m _, serves as a measure of complexity and is commonly referred to as the Lempel-Ziv

complexity. The L-Z parsing process may be briefly summarized as follows:

• Search through all parsed codewords for a matching word. Determine the longest possible

matching word that serves as the prefix.

• Extend the selected prefix by one new bit from the sequence, i.e. by a suffix, and mark the

resulting codeword with a comma. Continue until all the bits in the given sequence have been

parsed.

The codewords in the parsed sequence are all unique. The L-Z complexity of the sequence is

determined by counting the number of parsed words.

3.2.1 Example:

Given the binary sequence:

110010010110100110010110 .

LZ-parsing gives:

.0,0110,101,0101,010,011,01,10,1,0

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 30

The sequence is parsed into m codewords, where the last codeword is incomplete. The corresponding

codebook entries may be tabulated as follows:

1: 0 6: 010
2: 1 7: 0101
3: 10 8: 101
4: 01 9: 0110
5: 011 10: 0.

The suffixes are shown in bold print. Note that the prefix of each word corresponds to a previously

occurring codeword. Gilbert et al have derived exact analytical results for the LZ-parsing of binary

sequences [12]. Based on their results, it is possible to use the L-Z algorithm to discriminate between

random and deterministic binary sequences.

The searching for the longest possible matching word in the list of all parsed codewords can be a time

consuming task. When adding the fact that this needs to be done for each bit parsed in the input string

the need arises to speed up this process. Using a hash-table it possible to determine in a single

operation whether a codeword is contained in the list or not. This is approached as follows: The

codeword is considered as an index into an array of Booleans. If true, the codeword is already

contained in the list, if false it is not. The obvious problem with this approach is the fact that although

any codeword starting with a ‘1’ is unique however considering the following two codewords: 0001

and 001 . Although these are completely different codewords both point to the same index in the

hash-table. This can be easily resolved by keeping two separate hash-tables, one for code words

starting with a ‘1’ and a different one for codewords starting with ‘ 0 ’. To find an entry in the hash-

table containing codewords starting with ‘ 0 ’ codeword to be looked up is inverted, thus 0001

becomes 1110 and 001 becomes 110 . These inverted codewords do provide unique index positions

in the hash-table for codewords starting with ‘ 0 ’.

This approach works well with random sequences as the size of the codeword grows slowly. When

working with non-random sequences a simple mind experiment can show that the memory

requirement for hash-table would be to big. Consider the sequence .111,111111,11111,1111,111,11,1

which is the same length as the one used before. The codewords for this sequence are shown below. It

is clear from these results that a hash-table approach would not work as the value of the codeword

grows exponentially with each bit parsed, thus quickly using up the available memory.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 31

1: 1 6: 111111
2: 11 7: 111.
3: 111
4: 1111
5: 11111

However, as one is working with random pn-sequences and using the Lempel-Ziv attack on LFSRs,

which are in the size ranges were a codeword is unlikely to exceed the memory available to the

cryptanalysist, this does not present a problem.

For the special case of equi-probable binary sequences, the required average length][mxE of a binary

sequence that has been parsed into codewords, is given by the following recursion [12] in (3.1):

][
2
1][1

0

1

−
=

−

∑ 













+= k

m

k

m

m xE
k
m

mxE (3.1)

with 1][1 =xE and 0][=mxE for 1<m

_

The second moment][2
mxE is recursively given by

()][2][][][
2
1][2

0
11

2
1

1
2

m

m

k
kmkk

m

m xEmmxExExE
k
mxE ⋅+−







 ⋅+













= ∑

=
−−−−

−

 (3.2)

starting with 0][2
0 =xE and 1][2

1 =xE . The standard deviation mσ is obtained as the square root of

the variance 22][][mm xExE − . In Table 1 selected values are shown for the number of parsed words

m and the corresponding average sequence length and standard deviation. These values can be used

to discriminate between random and deterministic binary sequences.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 32

Figure 3.2 and Figure 3.3 present graphs of][mxE and σ for 100000 ≤≤ m . The exact values can

be found in Appendix A. The calculation of][mxE and][2
mxE present a challenge in determining as

the complexity grows directly proportional to 2m . Further it can be seen that the factor
1

2
1 −









m

becomes minute as m grows while
!

))1(()2()1(
k

kmmmm
k
m −−−⋅−⋅=






 L
 is huge for certain

values of k as m grows. It is very easy to loose resolution of these values while calculating and

special care needs to be taken to continually use the factor
1

2
1 −









m

 to scale 







k
m

 as it is not feasible

to calculate these two factors separately and only then multiply them with each other.

Figure 3.2][mxE as a function of m for 100000 ≤≤ m

0

20000

40000

60000

80000

100000

120000

140000

0 2000 4000 6000 8000 10000

No Code words

Ex
pe

ct
ed

 N
o

of
 B

its

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 33

Figure 3.3 σ as a function of m for 100000 ≤≤ m

3.3 Binary Derivative with Runs Test

3.3.1 Binary Derivative of Sequence

The binary derivative has been proposed as a test for a binary sequence, to determine if it is random or

deterministic [13]. Consider the following binary sequence of length 16=n : 0101011000100011 .

The binary derivative of the sequence is obtained by computing the XOR of each pair of adjacent bits

in the sequence. The derivation process can be repeated recursively any number of times. The initial

sequence, as well as the first four derivatives, is shown below. Note also that the sequence length of

each derivative is one less than its preceding sequence. The index k denotes the thk − derivative,

with 0=k for the initial sequence.

The binary derivative can be rapidly computed by creating a copy of the sequence that is shifted 1 bit

to the right and then XOR-ing these two sequences. This can be done very efficiently by using, for

example, 32-bit unsigned integers, without the need for bit-operations. Note also, that if the initial

sequence is truly random, all subsequent derivatives will also be random.

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

No Code Words

St
an

da
rd

 D
ev

ia
tio

n

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 34

000110100000:4
0000100111111:3
00000111010101:2
111111010011001:1
1010101100010001:0

=
=
=
=
=

k
k
k
k
k

Several complexity measures based on the binary derivative have been suggested, to test the

randomness properties of a binary sequence as shown in [13],[14],[15] and [16]. These measures

comprise the counting of the number of 1’s or 0’s in a derivative sequence, and then determine the

maximum and minimum values thereof. The investigations in this dissertation have shown that these

measures are inadequate for the purpose of cryptanalysis considered here. Therefore, a new

complexity measure is introduced, based on the distribution of runs in a binary sequence.

3.3.2 Runs in a Binary Sequence

Consider a binary sequence of 16=n values: 0101011000100011 . A run is defined as a sequence of

identical observations that is preceded and followed by a different observation, or no observation at

all. In this example there are 11=r runs in the sequence.

The number of runs that occur in a sequence gives an indication of the randomness properties of the

sequence. Specifically, if the sequence may be regarded as random, then the number of runs r in the

sequence is approximately normal distributed, with the mean value given by equation (3.3):

12][01 +=
n
nnrE (3.3)

Where 1n is the number of runs in the sequence consisting of 1’s, and 0n the number of runs

consisting of 0’s. For the special case when the sequence is truly random, it follows that

2/10 nnn == , and the expected number of runs is given by

1
2

][+= nrE (3.4)

The expected number of runs of a binary sequence can be applied as a non-parametric test, to

evaluate the randomness properties of the sequence [17],[18].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 35

Counting the number of runs in a sequence is a time consuming exercise. To speed this process up a

trade-off of processing power versus memory usage is once again used. Instead of looking at two

adjacent bits, a hash table is setup for the number of runs contained in a word. The size of the word

depends on the amount of memory that is available. It makes sense to use words sizes inherent in the

addressing of the computer architecture being used, typically either an 8-, 16-, 32- or 64-bit words. In

this implementation a word-size of 16 bits was used (unsigned short). Thus the number of runs in

every number contained in a 16-bit word was calculated and entered in the corresponding index

position of the array. All that remains to be done is to compare the last bit of one word and the first bit

of the next word to see if the next word is also the start of a new run.

3.3.2.1 Example

Consider the sequence 00000000111000001111111111001111 . This sequence has 4 runs.

When using the hash-table method one works as follows:

• runs = ArrayOfAllPossibleRunsIn16BitWord[1111111111001111]

thus: 3=runs

(the entry ArrayOfAllPossibleRunsIn16BitWord[1111111111001111] was calculated

once before beginning the attack, as were all other possible index positions for 0 to 65535)

• Compare bit 15 of first word with bit 0 following word. If they mach one knows the last run

in the first word continues in the second word. In this case they mach:

runs += ArrayOfAllPossibleRunsIn16BitWord[0000000011100000] – 1

thus: 123 −+=runs

Now consider the sequence 11111111000111111111111111001111 . This sequence has 5

runs. Again using the hash table:

• runs = ArrayOfAllPossibleRunsIn16BitWord[1111111111001111]

thus: 3=runs

• If bit 15 of first word and bit 0 following word do not match as is now the case one gets:

runs += ArrayOfAllPossibleRunsIn16BitWord[1111111111001111]

thus: 23 +=runs

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 36

When using this approach the amount of effort for determining the number of runs in a sequence is

reduced by a factor of 16 when using a word size of 16. Using hash tables of word-size 32-bits would

further reduce the complexity although it has to be remembered that the effort is further reduced only

by a factor of 2 while the memory used for the hash-table grows from 65536 bytes to 4294967296

bytes, hardly worth the gain.

3.3.3 Goodness-Of-Fit Run Test

In this section a new non-parametric randomness test is proposed for binary sequences, by combining

the Binary Derivative with the runs test. The aim of this test is to discriminate between random and

deterministic binary sequences.

Let kr denote the number of runs in the thk − binary derivative. The expected number of runs for

the thk − derivative is given by

1
2

+=
k

k
e

nr (3.5)

where kn is the sequence length of the thk − derivative. Let kr0 denote the observed number of runs

of the thk − derivative. Next the 2χ goodness-of-fit test is applied to test the hypothesis that a given

sequence is random, if the observed number of runs closely follows the (theoretical) expected number

of runs. Thus the 2χ -value for a total of K binary derivatives is calculated as follows:

∑
=

−=
K

k
k

e

k
e

k

r
rr

0

2
02)(χ (3.6)

For each derivate, the difference between the observed and expected number of runs is determined,

then the difference is squared and summed. The resulting 2χ -value is approximately normal

distributed, with K degrees of freedom.

Based on this discussion, the 2χ goodness-of-fit run test leads to the following algorithm.

3.3.3.1 Algorithm D: 2χ Goodness-Of-Fit Run Test

(1) Initialize: Set the derivative counter 0=k .

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 37

(2) Count runs: Determine kr0 , the observed number of runs in the thk − derivative of the

given sequence.

(3) Compute 2χ : Compute the 2χ -value for the thk − derivative

∑
=

−=
K

k
k

e

k
e

k

r
rr

0

2
02)(χ

(4) Binary derivative: Differentiate the sequence, and obtain the next derivative.

(5) Loop: Set 1+= kk . Return to Step 2. Continue until a total of k derivatives have been

tested.

(6) Sum 2χ : Sum the K 2χ values.

(7) Compare 2χ : Choose a confidence level α and compare the computed 2χ value to the

theoretical limits that can be found in [19]. If the 2χ value is less than the limit, conclude that

the given binary sequence is random. Else the sequence is classed as deterministic.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 38

3.4 Experimental Results

3.4.1 Lempel-Ziv Attack

In Figure 3.4 experimental results are shown where the Lempel-Ziv algorithm is used to test the

output of the model shown in Figure 3.1. The probability)1(Pp = of the BNS was set to 47.0=p

and the Lempel-Ziv algorithm was set to parse 1000=m codewords. The Test LFSR was stepped

sequentially through all possible initial states. As can be seen from Figure 3.4, the correct initial state

is clearly recognizable as a peak in the otherwise noisy parsed sequence. The lower horizontal line in

Figure 3.4 depicts][2470xE while the upper horizontal line depicts mmxE σ⋅+ 4][.

Figure 3.4 Parsing with different initial states (2470=m , 47.0=p)

23550

23575

23600

23625

23650

23675

23700

23725

23750

0 20 40 60 80 100 120

State of Test-LFSR

N
o.

 o
f c

ip
he

rte
xt

 b
its

][2470xE

24702470 4][σ⋅+xE

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 39

Any peak exceeding the upper horizontal line can safely be considered the correct initial condition, as

is the case for relative initial condition 22 in Figure 3.4 above [19]. Figure 3.5 shows the number of

ciphertext bits that are needed for correlation values in the range 48.040.0 ≤≤ p where the peak of

the correct initial condition fulfills the criteria or exceeding mmxE σ⋅+ 4][. Note that there is an

exponential increase in the number of ciphertext bits, as the correlation between ciphertext and an

internal LFSR decreases. The exact values are can be found in Appendix B.

Figure 3.5 Required ciphertext bits for L-Z attack

0

10000

20000

30000

40000

50000

60000

70000

0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

Correlation Level between ciphertext and internal LFSR

N
o

B
its

 re
qu

ire
d

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 40

3.4.2 Binary Derivative and Runs Attack

Figure 3.6 shows the results of the Binary Derivative, combined with the run test, with the probability

)1(Pp = of the BNS set to 45.0=p . The peak, corresponding to the correct initial state of the Test

LFSR, is clearly identifiable.

Figure 3.6 Illustration of Binary Derivative attack (45.0=p , 15=K , 8000=bits)

For the practical application of this attack, two parameters need to be investigated; the number of

binary derivatives K and the number of required ciphertext bits.

0

20
40

60

80
100

120

140
160

180

0 20 40 60 80 100 120

State of Test-LFSR

G
oo

dn
es

s

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 41

In Figure 3.7 experimental results for 47.04.0 ≤≤ p are shown for various derivatives in the range

250 <≤ K . The results indicate that a trade-off exists between the number of derivatives and the

required number of ciphertext bits needed for the attack to succeed.

0

50 000

100 000

150 000 0.4

0.42

0.44

0.46

0.48

0

5

10

15

20

25

Correl
ation Level (p

)

No. of Ciphertext Bits

N
o.

 o
f D

er
iv

at
iv

es

Figure 3.7 Binary Derivative attack as for 47.04.0 ≤≤ p

The exact values of the data acquired from simulation results for Figure 3.7 are listed in Appendix C.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 3 Correlation Attacks

Electrical, Electronic and Computer Engineering 42

As the number of available ciphertext bits increases (as can be seen in Figure 3.7), there is an

exponential decrease in the number of derivatives that need to be computed. This observation may be

of considerable importance in a practical situation where an attacker has a limited number of

ciphertext bits available. This can also be clearly observed in Figure 3.7 that the correct initial

condition can be obtained for a certain p by using fewer bits but more derivatives K .

A similar result can be seen in Figure 3.7 when looking at the relation between K and p for constant

amounts of available ciphertext. Higher values of p can still be broken when having the same amount

of bits available by increasing K . The fewer bits are available, the bigger K needs to be. It must be

noted however that this procedure cannot be continued indefinitely. Although it has been observed

that the correct initial condition could be retrieved when using values of K as big as 60, this could

not be reliably repeated. Experimental data would seem to indicate that using values of K in excess

of 25 have little or no benefit.

3.5 Discussion

Two new correlation attacks on stream ciphers have been introduced. The first attack utilizes the

Lempel-Ziv complexity measure of a binary sequence. The second attack is based on the Binary

Derivative of a sequence, combined with the runs test.

Both attacks give very good results, and are able to recover the unknown initial states of a LFSR-

based stream cipher, even if a very small correlation of 52.0=q occurs between the observed

ciphertext and an internal register of the stream cipher. Experimental results indicate that

approximately 60000 ciphertext bits are required for these attacks to succeed in the case of 52.0=q .

The memory requirements of the Binary Derivative attack are substantially lower than the Lempel-Ziv

attack. This makes the former attack suitable for stream ciphers with longer component LFSRs.

Furthermore, it is possible to reduce the computational complexity of both attacks by making use of

decimation techniques to reduce the total number of LFSR-states that have to tested.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

CHAPTER 4 FAST CORRELATION ATTACK

4.1 Introduction

The obvious problem with the exhaustive approach (used by the correlation attacks in the previous

chapter) of finding the correct initial condition of one of the LFSRs is the fact that a LFSR of size l

has 12 −l non-zero initial conditions. By increasing l>40 it becomes virtually impossible to find the

correct initial state by exhaustively searching for the correct key.

The fast correlation attack, like the correlation attacks described in the previous chapters, is a divide

and conquer attack. The model (presented in section 2.3) used for fast correlation attacks was shown

in Figure 2.12 and is repeated in Figure 4.1 below for convenience.

Figure 4.1 BSC equivalent model for a correlation attack

Fast correlation attacks, as described by [3], are based on the same principle used by convolutional

codes for correcting errors occurring during transmission of data over a noisy channel. This approach

is possible due to the fact that one can identify an embedded low-rate convolutional code in the pn-

sequence generated by the LFSR. The embedded convolutional code can then be decoded with low

complexity using the Viterbi algorithm. The Viterbi algorithm was chosen for this dissertation as it is

one of the most well-known and widely used decoding algorithms for convolutional codes.

All algorithms for fast correlation attacks operate in two phases: In the first phase the algorithms find

a set of suitable parity check equations based on the feedback taps from the LFSR, in this case from

the LFSR’s equivalent block code. The second phase uses these parity check equations in a fast

decoding algorithm to recover the transmitted codeword and thus the initial state of the LFSR.

aj zj

0

1

0

1

 p

 p
 1-p

 1-p

LFSR

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 44

The following aspects are covered in this chapter:

• A review is presented of the theory required by the different elements used for this attack.

• The Viterbi algorithm is introduced using a small example.

• Simulation results are presented and discussed.

4.2 Review of Coding Theory

4.2.1 Convolutional Codes

Convolutional codes are codes where redundancy is introduced into a data stream through the use of a

linear shift register [20]. Most codes for computer systems are over)2(GF and)2(bGF . This

dissertation will only concentrate on binary codes over)2(GF .

Figure 4.2 Rate 1/2 linear convolutional encoder

+

+
…, y2

(0), y1
(0), y0

(0)

…, y2
(1), y1

(1), y0
(1)

…, x2, x1, x0

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 45

Figure 4.2 shows a typical rate-1/2 linear convolutional encoder. The rate of this encoder is

established by the fact that the encoder outputs two bits for every input bit. In general, an encoder

with k inputs and n outputs is said to have a rate of
0

0

k
nR = . With each successive input to the shift

register, the values of the memory elements are tapped off and added according to a fixed patter,

creating a pair of output coded date streams, ...),,()0(
2

)0(
1

)0(
0

)0(yyyy = and ...),,()1(
2

)1(
1

)1(
0

)1(yyyy = .

These output streams can be multiplexed to create a single coded data stream

...),,,,,()1(
2

)0(
2

)1(
1

)0(
1

)1(
0

)0(
0 yyyyyyy = where y is the convolutional code word. The infinite set of all

infinitely long codewords that one obtains by exciting this encoder with every possible input sequence

is called an),(00 kn tree code [21], pp 348-350.

The constraint length v of a convolutional code is the maximum number of bits in a single output

stream that can be affected by any input bit. Although different definitions exist, for this text the

constraint length is defined by 0mkv = For convolutional encoders with a single input stream the

constraint length v will thus always be equal to the length of the shift register [21], pp 348-350.

There are several other length measures for a tree code. Let 0)1(kmk ⋅+= . This k is closely related

to the constraint length and is called the word length of a convolutional code. The corresponding

measure after encoding is called the blocklength n given by [21], pp 348-350:

0

0
0)1(

k
nknmn ⋅=+= (4.1)

The convolutional encoder in Figure 4.2 for instance, has 4,3,2,1 00 ==== kvnk and 8=n . An

),(00 kn tree code is linear, time invariant, and has finite wordlength 0)1(kmk ⋅+= and is called an

),(kn systematic convolutional code [21], pp 361-364. This means one can refer to the same code as

an),(00 kn tree code or as an),(kn convolutional code. Generally k is significantly larger than 0k

which should avoid confusion.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 46

4.2.1.1 Polynomial Description of Convolutional Codes

An))1(,)1((00 kmnm ++ convolutional code with constraint length 0mkv = can be encoded by

0n sets of finite impulse response (FIR) filters, each set consisting of 0k FIR filters [21], pp 348-350.

The input to the decoder is a stream of symbols with a rate of 0k symbols per unit time and the output

to the channel is a stream of 0n symbols per unit time.

Figure 4.3 A convolutional encoder

Each FIR filter can be represented by a polynomial of degree of at most m. If the input stream is

written as a polynomial (possibly of infinite length) the operation of the filter can be written as

polynomial multiplication. In this way, the encoder for the convolutional code can be represented by a

set of polynomials, and thus the code itself can also be represented by this same set of polynomials.

That is, the set of codewords that this set of polynomials will produce. These polynomials are called

the generator polynomials of the code.

In contrast to block codes, which are described by a single generator polynomial, a convolutional code

requires multiple generator polynomials to describe it, a total of 00 nk ⋅ polynomials. These can be put

together in a generator-polynomial matrix, a 0k by 0n matrix of polynomials given by:

)]([)(, xgxG ji= (4.2)

For example the matrices of generator polynomials for the encoder in Figure 4.2 is given by:

)](),([)(1,21,1 xgxgxG = (4.3)

1 Bit

5 Bits per unit FIR

FIR

FIR

FIR

FIR

1 Bit

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 47

with

1)(23
1,1 ++= xxxg (4.4)

and

1)(3
1,2 ++= xxxg (4.5)

Thus

]1,1[)(323 ++++= xxxxxG (4.6)

As the output of the convolutional encoder interleaves the two output streams from the two FIR filters

the generator matrix can also be shown as:

]...[)(1,21,11,21,11,21,1 1100 mm
ggggggxG = (4.7)

]11011011[)(=xG (4.8)

or for 1)(23
1,1 ++= xxxg and 3

1,2)(xxg = one gets

]11010001[)(=xG (4.9)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 48

4.2.1.2 Matrix Description of Convolutional Codes

A convolutional code consists of an infinite number of infinitely long codewords. It is linear and can

be described by an infinite generator matrix. A large number of generator matrices can be used to

describe each code, but only a few of them are convenient to deal with. Even in the best case, a

generator matrix for a convolutional code is more cumbersome than a generator matrix for a block

code [21], pp 361-364.

Figure 4.4 A general convolutional encoder (without feedback)

The generator polynomials, indexed by i and j , can be written

∑=
l

l
ijlij xgxg)((4.10)

For each l , let lG be the 0k by 0n matrix][ijll gG =

Then the code of blocklength n is























= −

−

0

20

110

210

0000

00
0

G

GG
GGG
GGGG

G m

m

m

n

MM

L

L

L

 (4.11)

where each 0 is a 0k by 0n matrix of zeros. The generator matrix for the convolutional code is

u t-1 u t-2 u t-m u t

G0 G1 Gm

+ ++

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 49



















=
−−

−

M

LL

LL

LL

0000
0000
0000

120

110

210

mmm

mm

m

GGGG
GGGG

GGGG

G (4.12)

where the matrix continues indefinitely down and to the right. Equation (4.12) depicts such a a bi-

infinite systematic convolutional encoder. Except for the diagonal band of m non-zero submatrices, all

other entries are equal to zero. For a systematic convolutional code, these two matrices can also be

written as:























= −

−

0

20

110

210

)(

000000

00000
0000
000

PI

PPI
PPPI
PPPPI

G m

m

m

n

L

MM

L

L

L

 (4.13)

and



























=

−

−−

−−

−

M

LM

LMM

LL

LL

LL

2

12

120

110

210

0
00
0000000

0000000
0000000

m

mm

mmm

mm

m

P
PP
PPPPI

PPPPI
PPPPI

G (4.14)

where the pattern is repeated, right-shifted in every row, and unspecified matrix entries to the left and

right are filled with zeros. Here I is a 0k by 0n identity matrix, 0 is a 0k by 0n matrix of zeros and

mPP ,...,0 are 0k by)(00 kn − matrices. The first row describes the encoding of the first information

frame into the first m codeword frames. One should interpret this matrix expression in terms of the

shift-register description of the encoder.

If the data symbols 110 ,...,, −kddd of every message d are unchanged and appear in the codeword

),...,(1−= no uuu , then the code is said to be a systematic code [22]. The generator matrix G in

equation (4.15) is in its systematic form.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 50

[]PI

ppp

ppp
ppp

G k

knkkk

kn

kn

=


















=

−−−−−

−−

−−

1,11,10,1

1,11,10,1

1,01,00,0

1000

0010
0001

LK

MMMMM

LL

LL

 (4.15)

The parity equations P introduce redundancy to the data being transmitted based on relations

between various data symbols. A decoder of a convolutional code (refer to section 4.2.5 - The Viterbi

Decoding Algorithm) exploits this redundancy to correct errors that occurred during transmission. A

big part of fast convolutional attacks on stream ciphers is the finding of suitable parity equations

within the equivalent block-code description of the LFSR.

4.2.2 Converting a LFSR to a Block Code

There is a corresponding Nl × generator matrix LFSRG which produces the same output as a LFSR,

namely LFSRGuU 0= where 0u is the initial stare of the LFSR. A LFSR of length l has a set of

possible LFSR code vectors nU denoted by L [3]. Clearly lL 2= and for a fixed length N the

truncated sequences from L is also a linear []lN , block code referred to as C . It can easily be seen

that for any code vector, all its cyclic shifts are also in L [22]. Using l linearly independent code

vectors or LFSR output sequences nU from L (which is the also the maximum amount of linearly

independent vectors in L) the equivalent linear []lN , block code is be obtained:



















lU

U
U

M
1

0

 =



















Nllll

N

N

uuuu

uuuu
uuuu

,2,1,0,

,12,11,10,1

,02,01,00,0

L

MM

L

L

 (4.16)

The matrix is now transformed to its systematic form to



















=

L

M

L

L

000

010
001

C (4.17)

A lot of effort can be saved by choosing the starting value for each LFSR sequence or code vector

nU as required for C in its reduced form. Thus for a LFSR of size l choose starting values:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 51



















=


















−

−

−

1000

0010
0001

,1,1,0,

,11,11,10,1

,01,01,00,0

L

MM

L

L

L

MM

L

L

llllll

ll

ll

uuuu

uuuu
uuuu

 (4.18)

Thus the first code vector is obtained by using the starting value]001[][10 LL =luuu

etc.

4.2.2.1 Example of Converting a LFSR to a Block Code.

The feedback taps of a LFSR are often specified using the polynomial representation. Consider a

length 8 LFSR, with feedback polynomial

1)(3568 ++++= xxxxxg (4.19)

Initially presented in section 2.2.1 and repeated here for convenience, the polynomial representation

can be easily converted to a recurrence relation representation, which can be more easily mapped to

the hardware representation of a LFSR. Setting 0)(=xg gives:

10 3568 ++++= xxxx (4.20)

Multiplying by nx produces:

nnnnn xxxxx ++++= ++++ 35680 (4.21)

Multiply by 8−x then gives:

85320 −−−− ++++= nnnnn xxxxx (4.22)

Now replacing nx with na results in:

85320 −−−− ++++= nnnnn aaaaa (4.23)

As these all are GF(2) or modulo 2 operations nn aa −= ; thus

2358 −−−− +++= nnnnn aaaaa (4.24)

which represents the LFSR shown in Figure 4.5 below.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 52

Figure 4.5 LFSR of size 8

Using the starting values

0,0,0,0,0,0,0,1 12345678 ======== −−−−−−−− nnnnnnnn aaaaaaaa (4.25)

one obtains

[]L000000010 =U (4.26)

Similarly using the starting value

0,0,0,0,0,0,1,0 12345678 ======== −−−−−−−− nnnnnnnn aaaaaaaa (4.27)

to obtain

[]L000000101 =U (4.28)

Continuing along the same lines gives

[]L000001002 =U (4.29)

[]L000010003 =U (4.30)

[]L000100004 =U (4.31)

[]L001000005 =U (4.32)

[]L010000006 =U (4.33)

[]L100000007 =U (4.34)

Which results in],[lN =]8,27[block code shown below. Obviously N can be made any size by

using a longer code vector obtained from the LFSR output.

a n-7 a n-6 a n-5 a n-8 a n-3 a n-2 a n-1 a n-4 ,.....,, 210 uuu

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 53

 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0
 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1
 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 =LFSRG
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1

 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1
 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0

 (4.35)

The same result can be achieved by using any initial values to obtain arbitrary code vectors nU . The

Gauss-Jordan reduction method can then be used to obtain the same],[lN block code C .

4.2.3 Finding Parity Equations within a Block Code

The finding of parity equations [3] in a block code is explained in this section using the equivalent

block code obtained for a LFSR as derived in the previous section (section 4.2.2). The generator

matrix for a block code is written in its systematic form,

[]ZIG lLFSR = (4.36)

which is already the case when using the method described in the previous section (section 4.2.3) used

to derive an equivalent block code from a LFSR.

To find these equations one can start by considering the index position 1+= Bn and introducing the

following notation for the generator matrix [3],









=

+−+−

++

)1()1(

11

0 BlBl

BB
LFSR Z

ZI
G (4.37)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 54

The parameter l is the size of the LFSR and B is a design parameter, which will later be shown

to be the size of the convolutional encoder that is in the process of being constructed. Using

equation (4.35) as an example and choosing 4=B , the form described by equation (4.37) is

easily understood:

 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0
 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1
 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 =LFSRG
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1

 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1
 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0

 (4.38)

The aim is to find all parity check equations in LFSRG that involve a current symbol nu , an arbitrary

linear combination of the b previous symbols Bnn uu −− ,...,1 , together with at most t other symbols.

For simplicities sake only 2=t is considered, as shown below:

0

0
0

2211

2222112

1221111

22

11

=++⋅++⋅+⋅+

=++⋅++⋅+⋅+
=++⋅++⋅+⋅+

++−−−

++−−−

++−−−

mm jninBnBmnmnmn

jninBnBnnn

jninBnBnnn

uuucucucu

uuucucucu
uuucucucu

L

M

L

L

 (4.39)

Thus one tries to find the index positions i and j together with the linear combination of

1010,10 2211 ====== BB corccorccorc L that satisfy each of the

equation above.

The column vectors in LFSRG are numbered as follows:

[])1(11 +−+= BNBLFSR ggIG L (4.40)

or

[])1(10)1(+−−−−= BNBBLFSR gggggG LL (4.41)

B+1

)1(+− Bl

l
1+B

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 55

The parameter B , in the equations above, is a design parameter chosen by the user, which will

determine the size of the convolutional decoder to be constructed. To find parity equations in LFSRG

one wants to find the columns that satisfy an equation in equation (4.42):

0011)1()1(

v
L =+++⋅++⋅+⋅ −−−−− jiBBBB ggggcgcgc (4.42)

The column pairs ji gg , need to satisfy the following:














∗∗∗=+

+− 48476
L

48476)1(

0,,0,0,1,,...,,][
BlB

T
ji gg (4.43)

As a column pair satisfying equation (4.43) with index positions i and j has now been found, all that

remains to be done is the trivial job of determining Bcc L1 to determine the column vectors Bg− to

1−g which will be used in equation (4.42). Terms where 0=yc , with y being any arbitrary index

position, are omitted.

4.2.3.1 Example for Finding Parity Equations in a Block Code

Equation (4.38) will now be used as an example with B chosen as 4=B . Column pairs in the

)1(+− BlZ part need to be found which, when added together, form the zero column vector)1(0 +− Bl .

Using the requirements set by equation (4.43) all pairs of columns ji gg , are found such that

}












∗∗∗∗=+

34

0,0,0,1,,,,][
876

T
ji gg (4.44)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 56

 n-
4

n-
3

n-
2

n-
1 n n+
1

n+
2

n+
3

n+
4

n+
5

n+
6

n+
7

n+
8

n+
9

n+
10

n+

11

n+
12

n+

13

n+
14

n+

15

n+
16

n+

17

n+
18

n+

19

n+
20

n+

21

n+
22

 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0
 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1
 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1=LFSRG
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1

 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1
 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0

 (4.45)

Assigning the index values as above to LFSRG , the following eight column pairs in equation (4.38) to

satisfy equation (4.44) are found:

Table 4.1 Finding parity equations in equation (4.38)

Columns

1g 16g

4g 9g

5g 6g

7g 10g

9g 17g

12g 15g

13g 15g

14g 15g

Vectors 4g and 9g in Table 4.1 above will now be used to illustrate how the column vectors that

were found to satisfy equation (4.44) are used to construct a parity equation. It can be seen that

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 57

































=

































+

































=+

0
0
0
1
1
1
1
0

0
1
1
1
0
1
1
1

0
1
1
0
1
0
0
1

94 gg (4.46)

satisfies equation (4.44).

The columns with indexes 0LB− that satisfy equation (4.42) now need to be found:

































=

































+

































+

































+

































+

































=+++++ −−−

0
0
0
0
0
0
0
0

0
0
0
1
1
1
1
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

][940123 gggggg (4.47)

Which results in the parity equation

094123 =+++++ ++−−− nnnnnn uuuuuu (4.48)

Re-writing the above gives:

094321 =+++++ ++−−− nnnnnn uuuuuu (4.49)

Applying the same process to the other column pairs found in Table 4.1 provides:

Table 4.2 Parity equations found in GLFSR, equation (4.38), with B=4

Equation no Columns Parity Equation

1 1g 16g 0161 =++ ++ nnn uuu

2 4g 9g 094321 =+++++ ++−−− nnnnnn uuuuuu

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 58

Equation no Columns Parity Equation

3 5g 6g 0654321 =++++++ ++−−−− nnnnnnn uuuuuuu

4 7g 10g 0107421 =+++++ ++−−− nnnnnn uuuuuu

5 9g 17g 0179432 =+++++ ++−−− nnnnnn uuuuuu

6 12g 15g 01512431 =+++++ ++−−− nnnnnn uuuuuu

7 13g 15g 01513321 =+++++ ++−−− nnnnnn uuuuuu

8 14g 15g 015142 =+++ ++− nnnn uuuu

4.2.3.2 Verifying a Parity Equation

A quick check that can be used to verify a parity equation is the requirement that a parity-check

polynomial)(xp must be divisible by the generator polynomial)(xg .

() 0)(mod)(=xgxp in)2(GF (4.50)

4.2.3.2.1 Example

The parity equation 0161 =++ ++ nnn uuu from Table 4.2 will be used as an example:

Replacing n
n xu = results in

0161 =++ ++ nnn xxx (4.51)

Multiplying with nx− produces

01 16 =++ xx (4.52)

Thus resulting in the polynomial

1)(16 ++= xxxp (4.53)

The feedback polynomial for the LFSR in Figure 4.5 (used to generate LFSRG , equation (4.38)) was

originally given in example (4.19) and is repeated here for convenience:

1)(3568 ++++= xxxxxg (4.54)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 59

All calculations are shown below for illustration purposes. Normally one would only be interested in

the remainder and would not try to calculate the quotient.

0
)1(

1
)(

1
)(

1
)(

1
)(

1
)(

1
)(

11
1

3568

3568

4679

345789

368911

456711

4791012

569101112

58101113

6891213

69111214

8111314

811131416

163568

34568

++++−
++++

++++−
+++++++

++++−
++++++

++++−
+++++++

++++−
++++++

++++−
+++++

++++−
++++++

++++++

xxxx
xxxx

xxxxx
xxxxxxx

xxxxx
xxxxxx

xxxxx
xxxxxxx

xxxxx
xxxxxx

xxxxx
xxxxx

xxxxx
xxxxxx

xxxxxx

(4.55)

As can be seen from the calculations in equation (4.55) that the requirement set by equation (4.50) has

been satisfied.

4.2.3.3 The Expected Number of Parity Equations within a Block Code

To find a parity equation one needs to find columns within LFSRG where the sum of the two columns

provides the following result T
Bl

ji gg]001**[*
448476

L

−

=+ . As the rows of LFSRG are PN-sequences

(refer to section 4.2.2) the probability of two corresponding bits in two columns either providing 0 or

1 as required is equal to 5.0 . Thus the probability of finding any two columns that satisfy equation

(4.43) is equal to Bl−5.0 .

In a generator matrix, LFSRG of dimensions Nl × there are N columns to be compared with each

other to find possible parity equations. When comparing N different columns vectors with each

other, this amounts to)1(
2
1 −⋅⋅ NN comparisons.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 60

When combining these two equations it is found that the amount of parity equations that can be

expected to be found in a generator matrix, LFSRG of dimensions Nl × , is given by equation (4.56)

below for a certain value of B . Γ is chosen to be equal to the number of parity equations.

eNNE
2
1)1(

2
1][⋅−⋅⋅=Γ (4.56)

where

Ble −= (4.57)

The graph shown in Figure 4.6 below gives a graphical representation of equation (4.56) for various

values of N and e . Tables of the exact values are given in Appendix D.

To simplify the presentation of Figure 4.6 the new parameter (n) in equation (4.58) below is

introduced. N is chosen to be equal to the number of columns to be searched. One can never search

more columns than there are ciphertext bits available, thus N is also equal to the minimum amount of

required ciphertext bits. This is because of the fact that the parity equations are subsequently applied

to the ciphertext to reconstruct the original LFSR output. Because of this there is no use in searching

more columns within LFSRG than there are available ciphertext bits as any parity equation containing

an index larger than the number of ciphertext bits available, cannot be used.

Nn 2log= (4.58)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 61

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

No. of Ciphertext Bits (n)

N
o.

 o
f P

ar
ity

 E
qu

at
io

ns

e = 10 e = 20 e = 30 e = 40

Figure 4.6 The expected number of parity equations to be found for selected values of e

Figure 4.6 represent the number of equations one can expect to find for selected values of e, showing

a general indication of the minimum required size of B (Ble −=) and the minimum amount of

ciphertext that is required for finding sufficient parity equations. A number of reference tables

showing the number of parity equations that can be found for 492 ≤≤ e are presented in Appendix

D. It can be seen from Figure 4.6 that a trade-off exists between e and the amount of ciphertext

required, thus by reducing e, less ciphertext is needed to find sufficient parity equations. For the case

of 49=− Bl , to find any equations, one needs to search at least 262=N columns, which amounts to

at least 512≈ operations, a figure close to impossible. The search for parity equations can however be

performed in parallel, potentially allowing this number of columns to be searched.

4.2.4 Creating a Convolutional Encoder using Parity Equations

The parity equations found in the previous section (4.2.3) are now used to create a bi-infinite

systematic convolutional encoder. The generator matrix for such a code is in the form as shown in

equation (4.12) and repeated here for convenience.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 62



















=
−−

−

M

LL

LL

LL

0000
0000
0000

120

110

210

mmm

mm

m

GGGG
GGGG

GGGG

G (4.59)

Identifying the parity check equations from equation (4.39) with the descriptive form of the

convolutional code as in equation (4.12) gives [3]























=























BmBB

m

m

B ccc

ccc
ccc

G

G
G
G

L

MOMMM

L

L

L

M

21

22221

11211

2

1

0

0

0
0

1111

 (4.60)

Which results in a convolutional encoder with)1/(1 += mR . This is one more than the number of

equations found. One of the prerequisites of equation (4.39) is the fact that

1,,1,1,1 0020100 ==== mcccc L which is why it is never explicitly shown. The extra equation is

derived from 0=+ nn uu and can be seen in the first column (Thus

0,,0,0,0,1 030201000 ===== Bccccc L).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 63

4.2.4.1 Example for Using Parity Equations to Create a Convolutional Encoder

Looking at the equations found in LFSRG and shown in Table 4.2 it is seen that the parameters mic ..1

were determined as follows (using the same order as the equations are shown in):



















=



















00111100
01110110
11011110
01101110

4847464544434241

3837363534333231

2827262524232221

1817161514131211

cccccccc
cccccccc
cccccccc
cccccccc

 (4.61)

Which gives























=























001111000
011101100
110111100
011011100
111111111

4

3

2

1

0

G
G
G
G
G

 (4.62)

4.2.5 The Viterbi Decoding Algorithm

The Viterbi algorithm is an asymptotical optimum algorithm for the decoding of convolutional codes

in memoryless noise. The Viterbi algorithm is introduced here as a maximum likelihood decoding

algorithm for convolutional codes.

4.2.5.1 The Trellis Diagram

A trellis diagram is an extension of a convolutional code’s state diagram that explicitly shows the

passage of time [20]. The rate 1/3 encoder shown in Figure 4.7 has two memory cells, which results in

the state diagram with four states as shown in Figure 4.8.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 64

Figure 4.7 Encoder for a rate1/3 convolutional code

Figure 4.8 State diagram for encoder in Figure 4.7

+

+
…, y2

(0), y1
(0), y0

(0)

…, y2
(1), y1

(1), y0
(1)

…, x2, x1, x0

+ …, y2
(2), y1

(2), y0
(2)

S0

S2

1/111

1/0000/001

0/110
0/111

1/001

0/000

1/110

S3 S1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 65

In Figure 4.9 the state diagram is extended in time to form a trellis diagram. The branches of the

trellis diagram are labelled with the output bits corresponding to the associated state transitions. The

notation jk is used to identify the branch moving from state jS to state kS in the trellis. The

corresponding output bits are denoted as),,,()1(,1,0, −= njkjkjkjk yyyy L . The convolutional code is

time invariant, thus jky is always the same.

Figure 4.9 Trellis diagram for the encoder shown in Figure 4.7

Every code word in a convolutional code is associated with a unique path, starting and stopping at

state 0S , through the associated trellis diagram. The trellis structure enables certain useful

observations to be made. A general),(kn binary convolutional encoder with total memory M and

maximal memory order m will now be considered. The associated trellis diagram has M2 nodes at

each stage, or time increment t. There are k2 branches leaving each node, one branch for each

possible combination of input values. After time mt = , there are also k2 branches entering each

node. It is assumed that after the input sequence has been entered into the encoder, m state transitions

are necessary to return the encoder to state 0S . Given an input sequence of Lk ⋅ bits, the trellis

diagram must have mL + stages, the first and last stages starting and stopping respectively in state

0S .

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

000 000 000 000 000 000 000 000

111 111 111 111 111 111 111 111

110 110 110 110 110 110

001 001 001 001 001 001

001 001 001 001 001 001

110 110 110 110 110 110

111 111 111 111 111 111 111

000 000 000 000 000 000 000

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 66

There are thus kL2 distinct paths through the general trellis, each corresponding to a convolutional

code word of length)(mLn + . For example, the length-3 input sequence)011(=x is shown in

Figure 4.10 to correspond to a five-branch path associated with the 15)23(3 =+ -bit convolutional

code word)110001000111000(=y . Note that all paths though the trellis intersect all

other possible paths at one or more nodes. The Viterbi algorithm exploits this fact.

Figure 4.10 Trellis diagram for the input)011(=x to encoder shown in Figure 4.7

The Viterbi decoder operates iteratively frame by frame, tracing a path through a trellis identical to

that used by the encoder in an attempt to emulate the encoder’s behaviour [21], pp 348-350. At any

frame time the encoder does not know which node the encoder reached and thus does not try to

decode this node immediately. Given the received sequence, the decoder determines the most likely

path to every node, and it also determines the distance called the discrepancy of the path. If all paths

in the set of most likely paths begin in the same way, the decoder knows how the encoder began.

Then in the next frame, the decoder determines the most likely path to each of the new nodes of that

frame. But to get to any one of the new nodes the path must pass through one of the old nodes. One

can get the candidate paths to a new node by extending to this new node each of the old paths that can

be thus extended. The most likely path is found by adding the incremental discrepancy of each path

extension to the discrepancy of the path to the old node. As already mentioned there are k2 such

paths to each new node, and the path with the smallest discrepancy is the most likely path to the new

node. In this case as already mentioned k is always equal to 1 as one is always working with rate

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

000

111

001

110

000

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 67

)1/(1 +m encoders. This means there are always two paths entering each node and two paths leaving

each node. At the end of the iteration, the decoder knows the most likely path to each of the nodes in

the new frame.

When looking at the set of surviving paths to the set of nodes at the rth frame, one or more of the

nodes at the first frame time will be crossed by these paths. If all of the paths cross through the same

node at the first frame time, then regardless of which node the encoder visits at the rth frame time,

one knows the most likely node it visited at the first frame time. That is, one knows the first

information frame even though one has not yet made a decision for the r-th frame.

To implement a Viterbi decoder, one must choose a decoding-window width b, usually several times

as big as the blocklength. At frame time nt = , the decoder examines all surviving paths to see that

they agree in the first branch. This branch defines a decoded information frame, which is passed out

of the decoder.

Now the decoder drops the first branch and takes in a new frame of the received word for the next

iteration. If again all surviving paths pass through the same node of the oldest surviving frame, then

this information frame is decoded. The process continues in this way, decoding frames indefinitely.

4.2.5.2 The Viterbi Algorithm

The node corresponding to state jS at time t is denoted tjS , . Each node in the trellis is to be

assigned a value)(,tjSV . The node values are computed as follows:

(1) Set 0)(0,0 =SV and 0=t .

(2) At time t , compute the partial path metrics for all paths entering each node.

(3) Set)(,tkSV equal to the best partial path metric entering the node corresponding to state kS

at time t . Ties can be broken by randomly choosing any one of the two. The non-surviving

branches are deleted from the trellis.

(4) If mLt +< , increment t and return to step (2).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 68

4.2.5.3 Calculating Path Metrics

Each path in the trellis is assigned a metric [20]. The maximum likelihood (ML) decoder selects, by

definition, the estimate y’ that maximizes the probability)'|(yrp . If the distribution of the source

words is uniform, then the tow decoders are identical and can be related by Bayes’ rule:

)()|()()|(rprypypyrp = (4.63)

A rate nk / convolutional encoder takes k input bits and generates n output bits with each shift of

its internal registers. Suppose that one has an input sequence x composed of L k -bit blocks.

),,,,,,,,()1(
1

)1(
1

)1(
1

)0(
1

)1(
0

)1(
0

)0(
0

−
−

−−= k
L

kk xxxxxxxx LL (4.64)

The output sequence y will consist of L n -bit blocks (one for each input block) as well as m

additional blocks, where m is the length of the longest shift register in the encoder.

),,,,,,,,()1(
1

)1(
1

)1(
1

)0(
1

)1(
0

)1(
0

)0(
0

−
+−

−−= n
mL

nn yyyyyyyy LL (4.65)

A noise-corrupted version r of the transmitted code word arrives at the receiver, where the decoder

generates a maximum likelihood estimate 'y of the transmitted sequence. r and 'y have the

following form:

),,,,,,,,()1(
1

)1(
1

)1(
1

)0(
1

)1(
0

)1(
0

)0(
0

−
+−

−−= n
mL

nn rrrrrrrr LL (4.66)

)',',,',',',,','(')1(
1

)1(
1

)1(
1

)0(
1

)1(
0

)1(
0

)0(
0

−
+−

−−= n
mL

nn yyyyyyyy LL (4.67)

One assumes that the channel is memoryless meaning that the noise process affecting a given bit in

the received word r is independent of the noise process affecting all of the other received bits. Since

the probability of joint independent events is simply the product of the probabilities of the individual

events [20] it follows that:

)]'|()'|()'|([)'|(1)1(1)1(
1

0

)0()0(−−
−+

=
∏= n

i
n

iii

mL

i
ii yrpyrpyrpyrp L (4.68)

∏ ∏
−+

=

−

=








=⇒

1

0

1

0

)()()'|()'|(
mL

i

n

j

j
i

j
i yrpyrp (4.69)

There are two sets of product indices, one corresponding to the block numbers (subscripts) and the

other corresponding to bits within the blocks (superscripts). By taking the logarithm of each side of

equation (4.69) one obtains the log likelihood function

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 69

() ()∑ ∑
−+

=

−

=








=

1

0

1

0

)()('|(log)'|(log
mL

i

n

j

j
i

j
i yrpyrp (4.70)

In hardware implementations of the Viterbi decoder, the summands in equation (4.70) are usually

converted to a more easily manipulated form called the bit-metrics

()()byrpayrM j
i

j
i

j
i

i
i +=)'|(log)'|()()()((4.71)

a and b are chosen such that the bit-metrics are small positive integers that can be easily

manipulated by digital logic circuits. In this case the use of integers is preferred, as floating-point

operations take significantly longer on a processor. The path metric for a code word 'y is then

computed as follows.

∑ ∑
−+

=

−

=








=

1

0

1

0

)()()'|()'|(
mL

i

n

j

j
i

j
i yrMyrM (4.72)

If the probability of bit-errors is independent of the value of the transmitted bit, then the channel is

said to be a binary symmetric channel as shown in Figure 4.11.

Figure 4.11 Binary symmetric channel model

If a and b in equation (4.71) are set to () ()() 1
2 1loglog −−−= ppa and ()pb −−= 1log2 , the bit-

metrics are independent of the value of the crossover probability p .

() () () ()()pyrp
pp

yrM j
i

j
i

j
i

j
i −−

−−
= 1log)|(log

1loglog
1)|(2

)()(
2

22

)()((4.73)

011
100

10)|(

)(

)(

)()()()(

=
=

==

j
i

j
i

j
i

j
i

j
i

j
i

y
y

rryrM

(4.74)

1

0 0

1 1-p

1-p
 p

 p
Transmitted

Symbol
Received
Symbol

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 70

For the BSC case, the path metric for a code word y given a received word r is simply the Hamming

distance),(yrd . The surviving paths are those paths with the minimum partial path metric at each

node.

However, setting () ()ppa 22 log1log −−= and ()pb 2log−= the bit-metrics shown in equation

(4.75) is produced.

101
010

10)|(

)(

)(

)()()()(

=
=

==

j
i

j
i

j
i

j
i

j
i

j
i

y
y

rryrM
 (4.75)

4.2.5.4 Example

The encoder in Figure 4.7 encodes the sequence)101011(=x , generating the code word

)110111001111001001000111(=y .

This codeword, y , is transmitted over a noisy binary symmetric channel and is received as

)110111011111110001001101(=r , with the indicated bits having been

corrupted.

The bit-metrics as shown in equation (4.75) for calculating the partial path metrics to reconstruct the

transmitted sequence will be used. All surviving paths are shown in bold print within the trellis

diagrams (Figure 4.12 to Figure 4.19) shown in this section.

Figure 4.12 Trellis diagram at time 1=t

S3

S0

S1

S2

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

000

111 1)(1,0 =SV

2)(1,1 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 71

The decoder always starts from state 0S as it is known that this was the case on the encoder side.

Figure 4.13 Trellis diagram at time 2=t

Figure 4.14 Trellis diagram at time 3=t

When using a using a n/1 rate encoder a maximum of one path may enter each node and a maximum

of two paths may leave each node as can be seen for node 2,3S in Figure 4.14 above.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S0

S1

S2

S3

000 000

111 111

111

000

3)(2,0 =SV

2)(2,1 =SV

3)(2,2 =SV

4)(2,3 =SV

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

000 000 000

111 111 111

110

001

001

110

111 111

000 000

5)(3,0 =SV

6)(3,1 =SV

7)(3,2 =SV

4)(3,3 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 72

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

000 000 000 000

111 111 111

110 110

001 001

001 001 001

110 110

111 111 111

000 000 000

11)(5,1 =SV

10)(5,0 =SV

12)(5,2 =SV

9)(5,3 =SV

Figure 4.15 Trellis diagram at time 4=t

When using the path metrics as determined in equation (4.75) the path with the largest partial path

metric is always chosen. Looking at Figure 4.15 the path from 3,1S to 4,3S survives as it’s partial path

metric is 7)(4,3 =SV while the partial path metric for the path going from 3,3S to 4,3S would have

been 5)(4,3 =SV .

Sometimes ties occur. Looking at Figure 4.16 it can be seen that the partial path metric from 4,3S to

5,3S is 9)(5,3 =SV , while the partial path metric from 4,1S to 5,3S is also 9)(5,3 =SV . The partial

path that was chosen as shown was chosen randomly.

Figure 4.16 Trellis diagram at time 5=t

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S0

S1

S2

S3

000 000 000 000

111 111 111

110 110

001 001

001 001

110

111 111

000 000

9)(4,1 =SV

8)(4,0 =SV

8)(4,2 =SV

7)(4,3 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 73

15)(7,0 =SVS0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

000 000 000 000

111 111 111

110 110

001 001

001 001 001

110 110 110 110

111 111 111 111 111

000 000 000

17)(6,2 =SV

Figure 4.17 Trellis diagram at time 6=t

When inserting k input bits into a rate 0/1 n convolutional encoder,)(0 Lkn +⋅ output bits are

received, where L refers to the length of the LFSR. This means that the last L steps in the encoding

process only received 0 as input as the last state of a Viterbi encoder is always 0S . When decoding,

knowing this, one does not have to bother about the paths in the trellis diagram that result from

inputting 1 into the encoder. Looking at Figure 4.18 and Figure 4.19 it is seen that only the paths for

inputting 0 into the decoder are considered.

Figure 4.18 Trellis diagram at time 7=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

000 000 000 000

111 111 111 111

110 110 110

001 001

001 001 001

110 110 110

111 111 111 111

000 000 000

14)(6,1 =SV

13)(6,0 =SV

13)(6,2 =SV

12)(6,3 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 74

Looking at Figure 4.19 it can be seen that there is now only one surviving path left that can be traced

backwards from the final state 8,0S . Doing this it is found that the estimated transmitted 'y word is

given by)110111001111001001000111('=y . Comparing this with the transmitted

word)110111001111001001000111(=y it is seen that all errors that occurred

during transmission were successfully corrected.

Figure 4.19 Trellis diagram at time 8=t

4.2.5.5 Generating the Received Stream

The convolutional encoder in section 4.2.4.1 was derived using a part of each parity equation (index

positions Bni −= to ni =) shown in Table 4.2. Index positions ni = to BNni −+= (where N is

the number of ciphertext bits available) are now used to transform the ciphertext iz to the received

sequence ir .

mm

ii

jnin
m

n

jninn

jninn

nn

zzr

zzr
zzr

zr

++

++

++

+=

+=
+=

=

)(

)2(

)1(

)0(

22

M

 (4.76)

20)(8,0 =SVS0

S1

S2

S3

000 000 000

111 111 111

110 110

001

001 001 001

110 110 110 110

111 111 111 111 111

000 000 000

110

000

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 75

The index positions mii L1 and mjj L1 are the same as specified in equation (4.39). The equations

introduced in (4.76) are now used to construct the received stream with a length of at least lm ⋅+)1(

(where)(LFSRsizeofl =) from the ciphertext stream.

4.2.5.6 Example for Generating the Received Stream

Applying (4.76) to the parity equations found in Table 4.2 (Also refer to Table 4.1) the following

equations to generate the received stream are found:

1514
)8(

1513
)7(

1512
)6(

179
)5(

107
)4(

65
)3(

94
)2(

161
)1(

0
)0(

zzr
zzr
zzr
zzr
zzr
zzr
zzr
zzr

zr

n

n

n

n

n

n

n

n

n

+=
+=
+=
+=
+=
+=
+=
+=

=

 (4.77)

4.2.5.7 Applying the Viterbi Algorithm for fast Correlation Attacks

The received stream is now sent through the Viterbi decoder created in section 4.2.4. If the decoding

process is successful the output of the LFSR is extracted from the ciphertext. The Viterbi algorithm,

as introduced in section 4.2.5, relies in part on the fact that the decoder always starts and ends in the

all zero (0S) state. This does not apply for the case of fast correlation attacks, as this type of attack

has neither a fixed starting point nor endpoint. In this case the starting point is in the middle of the

trellis diagram and the paths with the best metrics are kept. The initial metric 00, =nS is assigned to

each state.

In the following section 4.3.4 an example of the implementation of the methods introduced in this

section is presented.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 76

4.3 Introducing the Algorithm Based on a Small Example

4.3.1 Obtaining a Ciphertext Stream for Simulation Purposes

For this example the LFSR depicted in Figure 4.5 is continued to be used. Using the initial condition

)10100000(=IC (4.78)

a pn-sequence of length 35 shown below is generated.

00000)111000110110110000000000010111(050 =xa (4.79)

050xa is now sent through a BSC with an error probability of 14.0=p resulting in a ciphertext

sequence of length 32=N (Erroneous bits have been overstruck).

)00111010000111000111101100000000010(=z (4.80)

4.3.2 Find Parity Equations and Generate Convolutional Encoders

To successfully execute the fast correlation attack, a sequence of eight sequential bits need to be

decoded correctly for finding the initial condition of an 8-bit LFSR. A ciphertext sequence with a

length of 35 bits was generated in the previous section (4.3.1). Thus an equivalent block code that

generates a stream of 27835 =− bits in length can be used to find a number of parity equations for

the pn-sequence generated by the example LFSR.

Choosing 4=B one can re-use the parity equations as found in Table 4.2 and the associated

convolutional encoder (equation (4.62)) derived in the example shown in section 4.2.4.1. This

convolutional encoder will be used as the Viterbi decoder and is shown here again for convenience:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 77























=























001111000
011101100
110111100
011011100
111111111

4

3

2

1

0

G
G
G
G
G

 (4.81)

This is equivalent to the convolutional encoder, which is shown in Figure 4.20 below together with its

state table shown in Table 4.3 below.

Figure 4.20 Implementation of convolutional encoder represented by equation (4.62)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 78

Table 4.3 State table for convolutional encoder shown in Figure 4.20

Current State Next State Input Output
0 0 0 000000000
0 1 1 111111111
1 2 0 001110110
1 3 1 110001001
2 4 0 001111011
2 5 1 110000100
3 6 0 000001101
3 7 1 111110010
4 8 0 001101110
4 9 1 110010001
5 10 0 000011000
5 11 1 111100111
6 12 0 000010101
6 13 1 111101010
7 14 0 001100011
7 15 1 110011100
8 0 0 000111100
8 1 1 111000011
9 2 0 001001010
9 3 1 110110101

10 4 0 001000111
10 5 1 110111000
11 6 0 000110001
11 7 1 111001110
12 8 0 001010010
12 9 1 110101101
13 10 0 000100100
13 11 1 111011011
14 12 0 000101001
14 13 1 111010110
15 14 0 001011111
15 15 1 110100000

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 79

4.3.3 Creating the Received Sequence

To decode eight bits, a received stream of length R⋅8 , where R is the rate of the Viterbi decoder,

needs to be generated. In this case a Viterbi encoder with a rate of 9=R was created, thus requiring

a received sequence of 72 bits. This received stream is now generated by applying equation (4.77),

found in the example given in section 4.2.5.7 on the key sequence z .

00
)0(

0 == zr (4.82)

110161
)1(

0 =+=+= zzr (4.83)

11094
)2(

0 =+=+= zzr (4.84)

10165
)3(

0 =+=+= zzr (4.85)

110107
)4(

0 =+=+= zzr (4.86)

101179
)5(

0 =+=+= zzr (4.87)

1011512
)6(

0 =+=+= zzr (4.88)

1011513
)7(

0 =+=+= zzr (4.89)

0001514
)8(

0 =+=+= zzr (4.90)

Thus receiving the sequence

)011111110(0 =r (4.91)

Applying the same process for 1r to 7r gives:

)000001011(1 =r (4.92)

)000000001(2 =r (4.93)

001100010)(3 =r (4.94)

001000100)(4 =r (4.95)

)111111111(5 =r (4.96)

)011100110(6 =r (4.97)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 80

)001001100(7 =r (4.98)

4.3.4 Using the Viterbi Algorithm for a Fast Correlation Attack

The following sequence of trellis diagrams (Figure 4.21 to Figure 4.28) depicts the received sequence

r being sent through the Viterbi decoder specified by equation (4.81).

Figure 4.21 Sending r through the Viterbi decoder given by equation (4.81), 1=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 5)(1,15 =SV

6)(1,14 =SV

6)(1,13 =SV

3)(1,12 =SV

5)(1,11 =SV

4)(1,10 =SV

4)(1,9 =SV

7)(1,8 =SV

6)(1,7 =SV

3)(1,6 =SV

5)(1,5 =SV

6)(1,4 =SV

4)(1,3 =SV

7)(1,2 =SV

7)(1,1 =SV

6)(1,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 81

Figure 4.22 Sending r through the Viterbi decoder given by equation (4.81), 2=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 9)(2,15 =SV

12)(2,14 =SV

8)(2,13 =SV

13)(2,12 =SV

11)(2,11 =SV

11)(2,10 =SV

10)(2,9 =SV

11)(2,8 =SV

9)(2,7 =SV

11)(2,6 =SV

10)(2,5 =SV

13)(2,4 =SV

13)(2,3 =SV

11)(2,2 =SV

12)(2,1 =SV

12)(2,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 82

Figure 4.23 Sending r through the Viterbi decoder given by equation (4.81), 3=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 14)(3,15 =SV

15)(3,14 =SV

14)(3,13 =SV

19)(3,12 =SV

13)(3,11 =SV

16)(3,10 =SV

19)(3,9 =SV

18)(3,8 =SV

15)(3,7 =SV

20)(3,6 =SV

16)(3,5 =SV

17)(3,4 =SV

18)(3,3 =SV

15)(3,2 =SV

16)(3,1 =SV

20)(3,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 83

Figure 4.24 Sending r through the Viterbi decoder given by equation (4.81), 4=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 19)(4,15 =SV

23)(4,14 =SV

26)(4,13 =SV

23)(4,12 =SV

21)(4,11 =SV

20)(4,10 =SV

21)(4,9 =SV

26)(4,8 =SV

24)(4,7 =SV

21)(4,6 =SV

19)(4,5 =SV

22)(4,4 =SV

21)(4,3 =SV

26)(4,2 =SV

23)(4,1 =SV

26)(4,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 84

Figure 4.25 Sending r through the Viterbi decoder given by equation (4.81), 5=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 28)(5,15 =SV

29)(5,14 =SV

28)(5,13 =SV

27)(5,12 =SV

28)(5,11 =SV

33)(5,10 =SV

26)(5,9 =SV

29)(5,8 =SV

26)(5,7 =SV

27)(5,6 =SV

32)(5,5 =SV

29)(5,4 =SV

26)(5,3 =SV

29)(5,2 =SV

30)(5,1 =SV

33)(5,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 85

Figure 4.26 Sending r through the Viterbi decoder given by equation (4.81), 6=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 31)(6,15 =SV

34)(6,14 =SV

35)(6,13 =SV

32)(6,12 =SV

39)(6,11 =SV

34)(6,10 =SV

33)(6,9 =SV

34)(6,8 =SV

34)(6,7 =SV

31)(6,6 =SV

38)(6,5 =SV

37)(6,4 =SV

34)(6,3 =SV

35)(6,2 =SV

42)(6,1 =SV

33)(6,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 86

Figure 4.27 Sending r through the Viterbi decoder given by equation (4.81), 7=t

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 37)(7,15 =SV

40)(7,14 =SV

40)(7,13 =SV

37)(7,12 =SV

45)(7,11 =SV

41)(7,10 =SV

39)(7,9 =SV

44)(7,8 =SV

45)(7,7 =SV

42)(7,6 =SV

40)(7,5 =SV

40)(7,4 =SV

44)(7,3 =SV

49)(7,2 =SV

39)(7,1 =SV

38)(7,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 87

Figure 4.28 Sending r through the Viterbi decoder given by equation (4.81), 8=t

The path with the largest metric is used to determine the estimated received sequence, which in this

case is the path entering node 8,5S with a metric of 54)(8,5 =SV . Using the Table 4.3 determines the

estimated initial state of the LFSR in Table 4.4 below.

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15 50)(8,15 =SV

49)(8,14 =SV

46)(8,13 =SV

47)(8,12 =SV

43)(8,11 =SV

46)(8,10 =SV

42)(8,9 =SV

47)(8,8 =SV

51)(8,7 =SV

51)(8,6 =SV

54)(8,5 =SV

53)(8,4 =SV

43)(8,3 =SV

46)(8,2 =SV

47)(8,1 =SV

50)(8,0 =SV

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 88

Table 4.4 Determining the estimated LFSR initial condition from Figure 4.28 and Table 4.3

State Change Estimated Transmitted Sequence Estimated Input

08 SS →)000111100('0 =r 00 =a

00 SS →)000000000('1 =r 01 =a

00 SS →)000000000('2 =r 02 =a

00 SS → 000000000)('3 =r 03 =a

00 SS → 000000000)('4 =r 04 =a

10 SS →)111111111('5 =r 15 =a

21 SS →)001110110('6 =r 06 =a

52 SS →)110000100('7 =r 17 =a

Looking at Table 4.4 it is seen that the input)00000101(=a to the convolutional encoder, which

produced the estimated transmitted sequence 'r matches the original initial condition

)00000101(=IC of the LFSR used in 4.3.1. The correct initial condition of the LFSR has thus been

successfully found.

The strength of the Viterbi algorithm can be seen in the fact that during the first few time intervals

(0=t to 5=t) the correct path is not yet identifiable. It takes time for each path to accumulate

enough of a history to be able to find the correct one. This initial phase of the algorithm is the most

vulnerable to failure as it is at this stage that an incorrect path is most likely to have a higher metric

when intersecting the correct path.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 89

4.4 Simulation Results and Discussion

4.4.1 Summary of Topics to be Investigated Using Simulations

(1) Investigate the relationship between B (Viterbi decoder size), N (available ciphertext bits) and

p (BSC error probability) as well as the number of parity equations needed to find the correct

initial condition

(2) Investigate whether the number of equations required for breaking a cipher system with a

certain BSC error probability is constant or also a function of B.

4.4.2 Approach

Although this fast correlation attack was used successfully on LFSRs in excess of 40 bits, the memory

requirements are much larger than for smaller LFSRs as the number of bits required to find sufficient

parity equations is greater for larger LFSRs and it takes longer to find them (see 4.2.3.3). Because of

this it was decided to use a LFSR of size 19 with the polynomial as shown below for the investigation.

1)(456791012141719 ++++++++++= xxxxxxxxxxxg (4.99)

The recurrence relation for)(xg is given as follows:

2579101213141519 −−−−−−−−−− +++++++++= nnnnnnnnnnn aaaaaaaaaaa (4.100)

Although a LFSR of this size can still be broken by an exhaustive search it however allows one to

easily investigate convolutional encoder sizes of B = 2 up to B = 11 which provides an adequate

range to draw conclusions from. If a larger size LFSR is chosen it becomes difficult to find a

sufficient number of parity equations (as described in section 4.2.3.3) when using small values of B.

A Viterbi decoder is created for the LFSR. A pn-sequence a is generated using a random initial value

for the LFSR. This pn-sequence is now corrupted sending it through a BSC of probability p creating

the ciphertext-stream z from which the Viterbi decoder determines an estimated initial value. This

estimation is compared with the actual initial value of the LFSR. The random sequence a is

generated 15 times using different random seeding values. If the estimated initial value matches the

actual initial value 80% of the time (thus allowing 3 incorrect estimates of the initial condition) it is

assumed the LFSR has been broken for that specific BSC probability p.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 90

The graphs in the following section indicate the minimum number of equations that are necessary to

find the correct initial condition for at least 80% of the time for a specific BSC probability p and

convolutional encoder size B.

4.4.3 Results

The results have been divided into two sections, largely due to the huge difference in the number of

parity equations required for breaking a system with a BSC probability below 47.0=p and above

47.0=p and the impact this has on the memory requirements for performing these simulations.

As the parameter p increases towards 0.5 the number of ciphertext bits and parity equations required

to succeed explode exponentially. Because of this two parameters are used; n originally introduced in

equation (4.58), repeated below for convenience

Nn 2log= (4.101)

as well as introducing γ defined below in equation (4.102)

Γ= 2logγ (4.102)

 where Γ is the number of parity equations.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 91

4.4.3.1 Results for Systems with BSC below 47.0=p

4.4.3.1.1 The number of bits required for finding the correct initial condition

2
4

6
8

10
12

0.1

0.2

0.3

0.4

0.5
5

10

15

20

Convolutional Encoder Size (B)
Channel Probability (p)

N
o.

 o
f C

ip
he

rte
xt

 B
its

 (n
)

Figure 4.29 No. of ciphertext bits required for a successful attack

The number of ciphertext bits, N, (where Nn 2log=), required to find the correct initial condition in

Figure 4.29 is given in logarithmic form as this relationship grows exponentially as a function of B

and p. Exact values used for generating this graph can be found in Table 4.5.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 92

2 3 4 5 6 7 8 9 10 11
7

8

9

10

11

12

13

14

15

16

17

Convolutional Encoder Size (B)

N
o.

 o
f C

ip
he

rte
xt

 B
its

 (n
)

p = 0.25

p = 0.3 p = 0.35

p = 0.4

p = 0.45

Figure 4.30 No of ciphertext bits (n) required to succeed for selected values of p

Figure 4.30 gives a two-dimensional representation using data from Figure 4.29 of the number of

ciphertext bits required, N, (where Nn 2log=), as a function of B for selected constant values of p.

The number of bits required to find the initial condition falls exponentially as B increases.

Furthermore it can also be clearly seen that the amount of ciphertext required to break the system

increases dramatically as p increases.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 93

Table 4.5 No. of ciphertext bits required for finding the correct initial condition (47.<p)

B
 p 2 3 4 5 6 7 8 9 10 11

0.1 1491 657 493 242 182 159 159 139 93 42
0.11 1643 796 493 266 231 166 182 152 93 54
0.12 1643 1062 517 279 231 174 191 152 111 60
0.13 1901 1115 657 306 254 200 191 159 116 60
0.14 1901 1115 796 306 254 200 220 166 127 89
0.15 1996 1170 876 448 279 210 231 166 133 89
0.16 2199 1170 876 517 279 242 231 166 152 93
0.17 2308 1420 964 597 353 254 242 166 159 166
0.18 2308 1420 1062 597 353 292 254 182 159 166
0.19 3755 2544 1811 1170 407 292 279 191 242 191
0.2 3755 2944 1811 1170 796 321 448 353 242 191

0.21 3755 2944 1811 1170 835 337 470 353 242 191
0.22 4139 3245 1811 1170 835 657 470 353 292 191
0.23 4139 3245 1811 1353 835 657 470 353 292 191
0.24 4139 3245 2308 1353 1062 759 569 353 321 191
0.25 5029 3245 2308 1353 1115 835 597 407 321 210
0.26 5029 3577 2544 1491 1115 919 657 407 321 220
0.27 5280 3577 2544 1565 1115 919 657 427 353 231
0.28 6417 3942 2804 1565 1289 919 657 427 353 231
0.29 6417 4345 2804 2199 1289 964 723 470 427 242
0.3 6417 4345 2804 2199 1289 964 835 493 427 306

0.31 7426 4562 3091 2308 1289 1170 835 626 470 370
0.32 7797 5029 3407 2671 1491 1228 876 723 470 388
0.33 7797 6112 3407 2671 1643 1420 1012 723 517 427
0.34 10445 6417 4139 2804 2095 1420 1062 759 569 427
0.35 10445 7426 5029 3091 2423 1643 1170 796 657 470
0.36 12090 7426 5280 3755 2671 1811 1289 964 723 569
0.37 13994 9948 6112 4562 3245 2308 1565 1115 796 657
0.38 16198 9948 6737 4790 3407 2671 1901 1289 919 759
0.39 17857 12090 8595 5544 3942 3091 2199 1725 1012 876
0.4 20670 12090 9948 6417 5029 3577 2671 1811 1565 1062

0.41 27602 18654 12358 8568 5406 3845 3086 2247 1808 1226
0.42 34289 23172 14280 12298 6246 4442 3832 2999 2244 1415
0.43 49223 28785 20499 12298 10358 7365 5115 3723 2994 2181
0.44 65734 41320 29425 20398 14867 8510 6353 4970 3996 2707
0.45 87784 63766 39294 25338 18468 13131 9801 6634 5735 3614
0.46 135473 73689 65188 42032 30635 20260 16258 11826 8849 5186
0.47 241543 175503 100601 74957 54632 38837 26969 22667 14676 12346

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 94

4.4.3.1.2 The number of equations required for finding the correct initial condition

2
4

6
8

10
12

0.1

0.2

0.3

0.4

0.5
0

5

10

15

20

Convolutional Encoder Size (B)
Channel Probability (p)

N
o.

 o
f P

ar
ity

 E
qu

at
io

ns

Figure 4.31 No. of parity equations (γ) required for a successful attack

Figure 4.31 shows the relationship between the number of parity equations, γ, (where Γ= 2logγ),

the convolutional encoder size, B, and the BSC error probability p. The largest error probability of

p=0.47 shown in this graph, thus requires a convolutional encoder with a rate of up to 296258 for

success. Exact values used for generating this graph can be found in Table 4.6.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 95

2 3 4 5 6 7 8 9 10 11
4

6

8

10

12

14

16

18

Convolutional Encoder Size (B)

N
o.

 o
f P

ar
ity

 E
qu

at
io

ns

p = 0.45

p = 0.4

p = 0.35

p = 0.3

p = 0.25

Figure 4.32 No. of parity equations (γ) required to succeed for selected values of p

Figure 4.32 is a two-dimensional representation for selected constant values of p based on data from

Figure 4.31. The number of parity equations, γ, (where Γ= 2logγ) are shown as a function of B for

selected constant values of p. The maximum value of p = 0.45 is the graph situated at the top of the

figure, while the minimum value of p = 0.25 is the bottommost graph. This result is to be expected, as

fewer parity equations are required to reconstruct a sequence that has been less corrupted by passing

through a BSC noise channel with a lower error probability. The number of parity equations required

to find the correct initial condition for a certain BSC value p decreases only slightly as the

convolutional encoder size increases. This is in contrast to Figure 4.30 where the amount of

ciphertext bits required for success decreases exponentially as the convolutional encoder size B

increases.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 96

Table 4.6 No. of parity equations required for finding the correct initial condition (47.0<p)

B
 p 2 3 4 5 6 7 8 9 10 11

0.1 5 5 5 4 4 4 4 5 6 4
0.11 7 5 5 5 6 4 5 7 6 8
0.12 7 8 5 6 6 5 6 7 6 8
0.13 10 9 7 7 6 7 6 8 7 8
0.14 10 9 8 7 6 7 10 10 7 12
0.15 10 9 10 8 8 7 10 10 8 12
0.16 11 9 10 10 8 9 10 10 12 14
0.17 14 15 11 11 10 10 11 10 14 45
0.18 14 15 14 11 10 13 12 12 14 45
0.19 47 43 47 46 14 13 15 13 47 63
0.2 47 57 47 46 43 15 44 62 47 63
0.21 47 57 47 46 47 15 47 62 47 63
0.22 62 77 47 46 47 46 47 62 70 63
0.23 62 77 47 60 47 46 47 62 70 63
0.24 62 77 75 60 68 59 70 62 94 63
0.25 87 77 75 60 75 74 75 77 94 77
0.26 87 92 91 73 75 89 92 77 94 82
0.27 94 92 91 78 75 89 92 87 115 95
0.28 142 112 111 78 108 89 92 87 115 95
0.29 142 140 111 135 108 93 111 105 169 106
0.3 142 140 111 135 108 93 149 120 169 165
0.31 196 154 141 154 108 149 149 175 206 249
0.32 222 188 171 201 141 173 169 234 206 263
0.33 222 268 171 201 171 230 228 234 256 325
0.34 399 297 252 220 264 230 255 252 303 325
0.35 399 397 376 279 343 308 322 271 394 395
0.36 555 397 414 420 418 375 406 426 473 589
0.37 743 738 557 608 618 605 585 586 563 799
0.38 991 738 675 679 683 813 851 805 769 1084
0.39 1193 1099 1093 921 924 1081 1155 1443 940 1432
0.4 1583 1099 1496 1250 1537 1477 1722 1593 2358 2117
0.41 2869 2621 2303 2235 1769 1742 2297 2455 3134 2881
0.42 4388 4082 3113 4615 2393 2340 3555 4342 4861 3874
0.43 9125 6286 6357 4615 6590 6579 6330 6755 8662 9119
0.44 16338 12828 13157 12651 13527 8829 9782 11944 15486 13991
0.45 29248 30756 23244 19496 20837 21099 23464 21302 31627 25215
0.46 70007 41250 64544 53671 57275 50156 64551 68266 76048 51895
0.47 222970 235261 154290 170993 181866 183936 177682 250904 209742 296258

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 97

4.4.3.2 Results for Systems with BSC above 47.0=p

Due to the fact that the memory requirements for the state table used to implement the Viterbi decoder

is directly proportional to the number of equations and exponentially proportional to B as in the

relation shown below

Γ⋅⋅∝ 22B
MemoryM (4.103)

the results for finding the correct initial condition for BSC probabilities in excess of 47.0=p these

results are only given for 72 ≤≤ B .

4.4.3.2.1 The number of bits required for finding the correct initial condition

2
3

4
5

6
7

0.47

0.48

0.49
15

16

17

18

19

20

Convolutional Encoder Size (B)Channel Probability (p)

N
o.

 o
f C

ip
he

rte
xt

 B
its

 (n
)

Figure 4.33 No. of ciphertext bits (n)required for a successful attack

 Figure 4.33 presents the relationship between the number of bits, N, (where Nn 2log=), required to

find the correct initial condition in Figure 4.33 as a function of 72 ≤≤ B and 484.047.0 ≤≤ p .

Exact values used for generating this graph can be found in Table 4.7.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 98

2 3 4 5 6 7
15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

Convolutional Encoder Size (B)

N
o.

 o
f C

ip
he

rte
xt

 B
its

 (n
)

p = 0.472

p = 0.476

p = 0.48

p = 0.484

Figure 4.34 No of ciphertext bits (n) required to succeed for selected values of p

Figure 4.34 shows the number of ciphertext bits, N, (where Nn 2log=), as a function of B for

selected constant values of p, based on the data also used for Figure 4.33. As can be expected, the

higher the BSC probability p becomes, the more ciphertext bits are required for success. The amount

of ciphertext bits required falls exponentially as B increases.

Table 4.7 No. of ciphertext bits required for finding the correct initial condition (47.0>p)

B
 p 2 3 4 5 6 7

0.47 241543 175503 116256 74957 54632 36128
0.471 241543 175503 116256 93117 63133 38837
0.472 279132 188665 116256 93117 63133 51864
0.473 300066 218025 134348 100100 63133 51864
0.474 346762 234376 144424 107607 67867 51864

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 99

B
 p 2 3 4 5 6 7

0.475 372769 234376 166899 124352 78428 59934
0.476 400726 251954 207337 124352 97430 59934
0.477 400726 270850 207337 124352 97430 59934
0.478 430780 336475 207337 133678 104737 59934
0.479 535155 336475 257573 133678 112592 80039
0.48 575291 361710 257573 154480 121036 92494

0.481 618437 449350 297656 191909 130113 99431
0.482 664819 449350 297656 206302 150361 106888
0.483 768281 449350 369776 238407 150361 123521
0.484 768281 600090 369776 256287 200801 123521
0.485 153448

4.4.3.2.2 The number of equations required for finding the correct initial condition

2
3

4
5

6
7

0.47

0.48

0.49
17

18

19

20

21

22

Convolutional Encoder Size (B)Channel Probability (p)

N
o.

 o
f P

ar
ity

 E
qu

at
io

ns

Figure 4.35 No. of parity equations (γ) required for a successful attack

Figure 4.35 represents the number of parity equations, γ, (where Γ= 2logγ) required for finding

the correct initial condition as a function of the BSC noise channel error probability, p, as well

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 100

as the chosen convolutional encoder size B. The number of parity equations required grows

exponentially as a function of B and p. Exact values used for generating this graph can be found in

Table 4.8.

2 3 4 5 6 7
17.5

18

18.5

19

19.5

20

20.5

21

21.5

Convolutional Encoder Size (B)

N
o.

 o
f P

ar
ity

 E
qu

at
io

ns

p = 0.484

p = 0. 48

p = 0.476

p = 0.72

Figure 4.36 No. of parity equations (γ) required to succeed for constant values of p

Figure 4.36 gives a two-dimensional presentation of the number parity equations, γ, (where

Γ= 2logγ) as a function of B for various constant values of p. Exact values used for generating this

graph can be found in Table 4.8. The maximum value of 484.0=p is the line situated at the top of

the graph, while the minimum value of 47.0=p is the bottommost line in the graph. In contrast to

Figure 4.34 the number of parity equations required to find the correct initial condition for a certain

BSC value p does not decrease exponentially as the convolutional encoders size B increases.

However, looking at the values contained in Table 4.8, it can be seen that increasing B from 2 to 7 can

lower the amount of parity equations required with up to 30%.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 101

Table 4.8 No. of parity equations required for finding the correct initial condition (47.>p)

B
 p 2 3 4 5 6 7

0.47 222970 235261 206036 170993 181866 159184
0.471 222970 235261 206036 264045 242813 183936
0.472 297406 272053 206036 264045 242813 328299
0.473 343589 363362 275387 305383 242813 328299
0.474 458711 419547 318088 353095 280347 328299
0.475 530267 419547 425320 472048 374349 438298
0.476 612724 484946 657298 472048 578345 438298
0.477 612724 560081 657298 472048 578345 438298
0.478 708049 863900 657298 545572 668597 438298
0.479 1092476 863900 1013556 545572 773096 781389
0.48 1262373 998125 1013556 728131 893819 1043558

0.481 1458833 1540588 1352677 1125075 1033094 1205921
0.482 1685983 1540588 1352677 1300193 1379039 1393708
0.483 2252082 1540588 2086818 1736191 1379039 1862100
0.484 2252082 2747188 2086818 2006344 2462071 1862100
0.485 2873370

4.4.4 Discussion

It was found that the amount of ciphertext required for finding the correct initial condition drops

exponentially as the convolutional encoder size increases, as predicted by equation (4.56).

Furthermore, it was also found that the number of parity equations required to find the correct initial

condition decreases slightly as the convolutional encoder size B increases, although no definitive

figures on the actual improvement can be derived from the data obtained. The slight improvement in

performance when using a larger convolutional encoder is to be expected as larger convolutional

encoders can correct longer error bursts (as the BSC error probability p increases, the likelihood of

more successive bits being corrupted also increases) than smaller convolutional encoders. Thus the

maximum number of parity equations required for a successful attack, occurs when the smallest

convolutional encoder used, i.e. B = 2. This is the worst case and as long as the number of parity

equations found for a certain BSC error probability p is equal to this worst case, the system can be

broken. The relationship showing the maximum number of parity equations required for success is

presented in Figure 4.37. A table of these values is presented in Appendix E.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 102

Figure 4.37 Worst case number of parity equations required for success

The number of parity equations found, depend on the size of LFSRG searched through (which amounts

to the amount of ciphertext required) as well as the size B chosen for the convolutional encoder.

The number of parity equations that are likely to be found grows exponentially with B (see equation

(4.50)). Unfortunately, as B grows, the memory requirements (MemoryM) and computational

complexity (sCompuationN) also grow exponentially, as can be approximated by equations (4.104) and

(4.105) below:

Γ⋅∝ +12B
MemoryM (4.104)

Γ⋅∝ +12B
nsComputatioN (4.105)

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6

Channel Probability (p)

N
o.

 o
f P

ar
ity

 E
qu

at
io

ns
 (γ

)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 103

Finding parity equations within LFSRG of dimensions Nl × grows directly proportional to the square

of N as shown in below in (4.106).

)1(
2
1 −⋅⋅∝ NNN nsComputatio (4.106)

At a first glance one would guess that searching for equations using more ciphertext should be easier

and one can thus reduce the size of the convolutional encoder that is constructed. Unfortunately the

amount of parity equations that can be found is reduced exponentially as B decreases, thus using

equation (4.56) the above relation can be rewritten as follows.

Bl
nsComputatioN −⋅Γ∝ 2 (4.107)

The actual number of computations and memory requirements obviously depend a lot on the

implementation of the algorithm and the use of more memory can be traded off for fewer operations

and vice versa.

The procedure for successfully using the fast correlation attack is summarized in the following points

if the attacker is to be successful, or alternatively for designing a cipher system that is safe from a fast

correlation attack.

(1) Using Figure 4.37 the worst case (B = 2) number of parity equations that are required, is

determined according to the correlation level p of the system.

(2) Equation (4.104) now establishes the maximum size convolutional encoder that can possibly

be constructed.

(3) Using equation (4.107) it can be determined if sufficient parity equations can be found in a

realistic time while at the same time looking at equation (4.56) it can be determined if

sufficient ciphertext is available.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 4 Fast Correlation Attack

Electrical, Electronic and Computer Engineering 104

4.5 Deviations from Method Described by Johansson and Jönsson

Johansson and Jönsson [3] suggest running the Viterbi decoding process over a number of dummy

information symbols before coming to the l information symbols to be decoded (One does not need to

correctly decode the initial state of the LFSR, knowing any state, at a given time, is enough as one can

derive any previous or future state from this information). Similarly they also suggest running the

Viterbi over another set of dummy information symbols after the l information symbols to be

decoded. It was experimentally found that this did not make identifiable difference to directly

decoding the first l symbols from the received stream nr generated by equation (4.76).

They further suggests using the metrics () prvP nn −== 1)0()0(and () 22)()()1(pprvP i
n

i
n +−== for

BlnB 101 +≤≤+ . It was found when trying to decode a LFSR of size 40, transmitted through a

channel with 4.0≈p , a rate in excess of 310=R was necessary, resulting in the fact that only)0(
nr

had a different metric while in excess of 10000 ()()1(m
nn rr L with 310≥m) bits in the stream where

assigned the same metric. As only)0(
nr is weighted differently this is insignificant, added to the fact

that these metrics complicate the implementation of the Viterbi algorithm it was found that the

implementation works adequately when using metrics as specified in equation (4.75).

A further specification not implemented was the assigning of initial metrics

()()),,,(log 21 BzzzsP L= for each state before starting the Viterbi algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

CHAPTER 5 DECIMATION ATTACK

5.1 Introduction

The same models are used for a decimation attack as for a correlation or fast-correlation attack. The

ciphertext is obtained by bitwise addition of the plaintext to a running key. A pseudo-random

generator whose initial state constitutes the secret key produces the running key.

Figure 5.1 Nonlinear combination generator

A decimation attack cannot be used on it’s own. The method attempts to reduce the size LFSR being

attacked by selectively only using every D -th bit of the ciphertext stream. This approach is used

when the LFSR is too large to directly attack. The LFSR has to be decimated to a size where the

reduced LFSR can be successfully attacked using a correlation or fast-correlation attack. This method

reduces the LFSR size to attack but massively increases the amount of ciphertext that is required.

Thus a tradeoff is made of reduced complexity for increased ciphertext amounts.

LFSR 1

LFSR 2

LFSR n

ƒ

a1
j

kja1
j

an
j

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 106

5.2 Decimation of LFSR Sequences

Consider a sequence L,, 21 aaa = , produced by a LFSR of length L whose feedback polynomial is

irreducible in)2(GF . By now taking every D -th element in a produces the subsequence

L,, *
2

*
1

* aaa = . This is equivalent to the D -decimation of the original sequence. This so-called D -

fold clocking of the LFSR causes the original LFSR to behave like a different LFSR called the

simulated LFSR. When choosing D correctly the simulated LFSR has properties, which can be

exploited to ones advantage.

Let L be the period of the LFSR of size l , thus:

12 −= lL (5.1)

Let *a be the sequence resulting from the D -th decimation of a , thus 0,* ≥= ⋅ daa di . The

simulated LFSR has the following properties of interest:

(1) The period *L of the simulated LFSR is equal to

),gcd(LD
L

 (5.2)

(2) The degree *l of the simulated LFSR is equal to the multiplicative order of q in *L

All D in kC , where

TkqkqkCk mod},,,,{ 2 L= (5.3)

denotes the cyclotomic set of Tk mod results in the same simulated LFSR, except for different initial

conditions. Every sequence produced by the simulated LFSR is equal to dia ⋅ for some choice of the

initial contents of the original LFSR.

The goal of this procedure is finding a decimation factor D which process a sequence *L where the

degree *l is lower than the degree l of the original sequence. The feedback polynomial)(* xP of the

simulated LFSR can be obtained by applying either the Berlekamp-Massey LFSR synthesis algorithm

[24] to the sequence *a , or using the algorithm proposed in section 5.2.2.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 107

5.2.1 Example of Finding a Useful Decimation Factor d

Consider a LFSR of size 18=l . The first step with finding an appropriate decimation factor D is the

factoring of 18,12 =−= lL l 3. L has the following prime factors: 73197333 ⋅⋅⋅⋅⋅=L . Thus, in

this case, there is a choice of 32 possible values for D . Example:

L,3337,337,37,7,333,33,3 ⋅⋅⋅⋅⋅⋅⋅⋅⋅=D . Table 5.2 gives a list of all possible decimation factors

D 4 (column 02⋅D) with its associated cyclotomic set. The cyclotomic set is formed by the sequence

LDLDLD l mod2,,mod2,mod2 10 ⋅⋅⋅ L .

Any cyclotomic set where the sequence repeats before reaching l elements has a lower degree *l

than l and thus a useful decimation factor D . The degree of *l is the length of a cyclotomic set

before repeating. Looking at Table 5.2 it can be seen that for 513=D the degree *l is equal to 9 .

Looking at Table 5.2 it can be seen that a size 18 LFSR has the 7 useful decimation factors shown in

Table 5.1 below.

Table 5.1 Useful decimation factors for LFSR of size 18

D *l

513 9
3591 9
4161 6
12483 6
29127 6
37449 3
87381 2

3This obviously implies that if L is prime for a certain l the decimation attack will not work.
4For DDLGCDD =∈),(*

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 108

Table 5.2 Cyclotomic set of all possible decimation factors in)2(18GF

02⋅D 12⋅D 22⋅D 32⋅D 42⋅D 52⋅D 62⋅D 72⋅D 82⋅D 92⋅D 102⋅D 112⋅D 122⋅D 132⋅D 142⋅D 152⋅D 162⋅D 172⋅D
3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 131073
7 14 28 56 112 224 448 896 1792 3584 7168 14336 28672 57344 114688 229376 196609 131075
9 18 36 72 144 288 576 1152 2304 4608 9216 18432 36864 73728 147456 32769 65538 131076

19 38 76 152 304 608 1216 2432 4864 9728 19456 38912 77824 155648 49153 98306 196612 131081
21 42 84 168 336 672 1344 2688 5376 10752 21504 43008 86016 172032 81921 163842 65541 131082
27 54 108 216 432 864 1728 3456 6912 13824 27648 55296 110592 221184 180225 98307 196614 131085
57 114 228 456 912 1824 3648 7296 14592 29184 58368 116736 233472 204801 147459 32775 65550 131100
63 126 252 504 1008 2016 4032 8064 16128 32256 64512 129024 258048 253953 245763 229383 196623 131103
73 146 292 584 1168 2336 4672 9344 18688 37376 74752 149504 36865 73730 147460 32777 65554 131108
133 266 532 1064 2128 4256 8512 17024 34048 68096 136192 10241 20482 40964 81928 163856 65569 131138
171 342 684 1368 2736 5472 10944 21888 43776 87552 175104 88065 176130 90117 180234 98325 196650 131157
189 378 756 1512 3024 6048 12096 24192 48384 96768 193536 124929 249858 237573 213003 163863 65583 131166
219 438 876 1752 3504 7008 14016 28032 56064 112128 224256 186369 110595 221190 180237 98331 196662 131181
399 798 1596 3192 6384 12768 25536 51072 102144 204288 146433 30723 61446 122892 245784 229425 196707 131271
511 1022 2044 4088 8176 16352 32704 65408 130816 261632 261121 260099 258055 253967 245791 229439 196735 131327
513 1026 2052 4104 8208 16416 32832 65664 131328 513 1026 2052 4104 8208 16416 32832 65664 131328
657 1314 2628 5256 10512 21024 42048 84096 168192 74241 148482 34821 69642 139284 16425 32850 65700 131400
1197 2394 4788 9576 19152 38304 76608 153216 44289 88578 177156 92169 184338 106533 213066 163989 65835 131670
1387 2774 5548 11096 22192 44384 88768 177536 92929 185858 109573 219146 176149 90155 180310 98477 196954 131765
1533 3066 6132 12264 24528 49056 98112 196224 130305 260610 259077 256011 249879 237615 213087 164031 65919 131838
1971 3942 7884 15768 31536 63072 126144 252288 242433 222723 183303 104463 208926 155709 49275 98550 197100 132057
3591 7182 14364 28728 57456 114912 229824 197505 132867 3591 7182 14364 28728 57456 114912 229824 197505 132867

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 109

02⋅D 12⋅D 22⋅D 32⋅D 42⋅D 52⋅D 62⋅D 72⋅D 82⋅D 92⋅D 102⋅D 112⋅D 122⋅D 132⋅D 142⋅D 152⋅D 162⋅D 172⋅D
4161 8322 16644 33288 66576 133152 4161 8322 16644 33288 66576 133152 4161 8322 16644 33288 66576 133152
4599 9198 18396 36792 73584 147168 32193 64386 128772 257544 252945 243747 225351 188559 114975 229950 197757 133371
9709 19418 38836 77672 155344 48545 97090 194180 126217 252434 242725 223307 184471 106799 213598 165053 67963 135926
12483 24966 49932 99864 199728 137313 12483 24966 49932 99864 199728 137313 12483 24966 49932 99864 199728 137313
13797 27594 55188 110376 220752 179361 96579 193158 124173 248346 234549 206955 151767 41391 82782 165564 68985 137970
29127 58254 116508 233016 203889 145635 29127 58254 116508 233016 203889 145635 29127 58254 116508 233016 203889 145635
37449 74898 149796 37449 74898 149796 37449 74898 149796 37449 74898 149796 37449 74898 149796 37449 74898 149796
87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 110

5.2.2 Determining the Feedback Polynomial of the Simulated LFSR

The feedback polynomial,)(* xP , can be obtained by using the equivalent block code (see section

4.2.2) of the LFSR. As the size of the simulated LFSR is already known (refer to section 5.2 point

(2)), all that remains to be done is the determining of)(* xP . As has already been discussed

previously, the equivalent block code can be written in the following form:

[]ZIG lLFSR = (5.4)

A interesting observation that can be made is that the first column vector after the identity matrix lI

is always the recurrence relation of the)(xP from which LFSRG was formed as shown below.



















=

−−−

+−

−

L

M

L

L

L

MMOM

L

L

2,11,1

2,11,1

2,01,0

1

1

1000

0010
0001

lln

ln

ln

LFSR

zz

zz
zz

a

a
a

G (5.5)

Using this fact every D -th column from LFSRG is taken, using only the first *l rows. Because each

row in LFSRG was linearly independent one knows that *l rows in the decimated block matrix *
LFSRG

are also linearly independent. After performing Gauss-Jordan reduction on *
LFSRG one is left with a

matrix in the form []ZIG lLFSR *
* = .

It is known that the first column after the identity matrix is the recurrence relation of the equivalent

LFSR, thus when transforming this column vector from it’s recurrence relation to the polynomial

form,)(* xP has been found.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 111

5.2.3 Theoretical Discussion of Decimation Method

The size of the simulated LFSR can also be found by looking at the order of *L . The order *l of *L is

the smallest positive integer such that

1mod2 **

=Ll (5.6)

To see how effective the decimation attack can be, a new parameter, d , is introduced, which is equal

to the degree of D . E.g. 125 ++= xxD then 5=d .

It is known that
D
LL =* , thus

d

l

L
2

12* −≥ (5.7)

The smallest possible value for *l is achieved for

12
** −= lL (5.8)

thus when the simulated LFSR itself is also a maximum length pn-sequence.

Combining equation (5.7) and (5.8) and making the assumption that 12,12
*

>>>> ll it is found

that

d

l
l

2
22

*

≥ (5.9)

thus

dll −≥* (5.10)

Looking at equation (5.10) it is found that there is a direct trade-off between the size of the

decimation factor D and the size of the resulting simulated LFSR size *l .

5.2.3.1 Example

Looking at a LFSR of size 60, it is far too large to break using a correlation attack, and probably too

large (too memory intensive) to break by using a fast-correlation attack. Concentrating on the fast-

correlation attack, a LFSR of around 40 bits could be broken. Thus, if one could find a decimation

factor of around 201000000 ≈⇒= dD , one could produce a simulated LFSR of

402060* =−=l , which can be broken using the fast correlation attack within minutes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 112

The downside of this is if one has a channel probability of 47.0≈p , around 40000 bits are required

to break the 40-bit simulated LFSR. As only every 1000000-th bit of the original cipher stream is used

after the decimation process, effectively 35204000000000 ≈ bits of ciphertext are required, a tall

order.

5.2.4 Results from Investigation

Filiol [1] presents a list of LFSR which are impervious to the decimation attack as L is either prime

or does not have a decimation factor D which produces a simulated LFSR with ll <* . The list is

repeated below.

Table 5.3 LFSR of size l , immune to decimation attack

 l

Prime L 5, 7, 13, 17, 19, 31, 61, 89, 107, 127

*l not smaller than l 11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 83, 97, 101, 109, 113,

131, 139, 149, 151, 157, 163, 167, 173, 178, 179, 181, 191, 193,

197, 199, 211, 223, 227, 229, 233, 239, 241, 251

Further all LFSR sizes for 6418 ≤≤ l were parsed for useful decimation factors 1231−≤D . What

has to be remembered is that the total amount of ciphertext bits required when using the decimation

attack amounts to the product of the decimation factor and the number of bits typically required for

the attack used after decimating the LFSR for a certain channel probability p .

Appendix F lists all decimation factors smaller than 322 for 6418 ≤≤ l . From this list many more

values of l are found which probably can also be considered safe from a decimation attack due to the

enormous values of D which would require such a huge amount of ciphertext that a decimation

attack would be completely unfeasible.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 5 Decimation Attack

Electrical, Electronic and Computer Engineering 113

A new parameter reql is introduced as the maximum LFSR size that can be broken without

decimating. This allows for identifying weaknesses of LFSRs with sizes in excess of 64 bits which are

not contained in Appendix F. Using equation (5.10) it is found that the degree of the decimation factor

D then needs to be at least

reqlld −= (5.11)

When designing a stream cipher system l must be chosen such that D (if l is not contained in Table

5.3 or Appendix F) is too large to be useful for any known attack that could be successful on a LFSR

of size reql .

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

CHAPTER 6 CONCLUSION

Four methods were investigated for breaking stream ciphers based on nonlinear combining generators.

All four methods are ciphertext-only divide and conquer attacks which attempt to reconstruct the

initial state of the LFSRs within the running key generator. Three different types of attacks were

presented:

• A fast-correlation attack.

• Two correlation attacks:

o The binary derivative attack.

o The Lempel-Ziv attack.

• A decimation attack.

The investigation of the different type of attacks aims to give an indication whether a cipher system

could be susceptible to the specified attack and the resources that would be required. This information

can also be used when designing a new cipher system to choose the parameters so as to ensure that the

system is not endangered by the attacks described here.

It has to be remembered that all the attacks investigated, attack one of the LFSRs contained in the

running key generator. This means if one can obtain the initial state of a LFSR of size l bits, the

system that is attacked actually has a much larger key, which is the sum of all initial conditions of all

the component LFSRs contained within the key generator. Thus if the initial condition of a LFSR of

40 bits can be retrieved (as was successfully shown for the two correlation attacks as well as the fast

correlation attack), this may not sound very impressive as the key of most cipher systems is much

larger (128 bits is the magic number currently used for most block ciphers). However, remembering

that one is only talking about one of the component LFSRs here, this means, depending on the system,

that keys in excess of 120-bit in strength can be broken (assuming there are at least 3 component

LFSRs of similar size) and this is an important result.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 6 Conclusion

Electrical, Electronic and Computer Engineering 115

6.1 Correlation Attacks

The two new correlation attacks that were investigated, i.e. the Lempel-Ziv method and the binary

derivative method, are robust and easy to implement. These attacks where performed with a system

based on a Pentium I, 200MHz processor with 112MB of memory on a Linux platform. Both attacks

succeed even when only a very small measure of correlation occurs between the ciphertext and one of

the component LFSRs. The Lempel-Ziv method succeeds for a correlation of 482.0=p and requires

approximately 62000 cipher-bits. The binary derivative method succeeds for 47.0=p and requires

only 24500 bits for this when using 20 derivatives.

In the case of the binary derivative there is always a trade-off between speed and the amount of

ciphertext required. If no derivative is used, n operations are required. For every additional derivative

D the number of operations increases linearly with D , i.e. nD ⋅ . Generally speaking, the required

number of ciphertext bits required grows exponentially as the correlation level p drops. As the amount

of ciphertext bits increase, so do the memory requirements as well as the computational load. The big

advantage of the binary derivative method is the fact that a trade-off exists between the number of

derivatives and ciphertext. Although more derivatives require more processing power, in the process

the amount of required ciphertext is drastically reduced. This relationship was presented in Figure 3.7.

The Lempel-Ziv attack is simpler than the binary derivative method in the sense that the success of

this attack depends only on one parameter, which is the amount of ciphertext that is required. This

relationship was presented in Figure 3.5.

When comparing the two methods using the two figures mentioned it is found that the binary

derivative method and the Lempel-Ziv method use approximately the same amount of ciphertext, if

the binary derivative method uses a large number of derivatives. The Lempel-Ziv method gives better

results at correlation levels 47.0>p than the binary derivative. However, if sufficient ciphertext is

available, the binary derivative algorithm is faster than the Lempel-Ziv method when utilizing a small

number of derivatives.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 6 Conclusion

Electrical, Electronic and Computer Engineering 116

The obvious limitation with both these methods is the fact that they need to perform an exhaustive

search to find the correct LFSR initial condition. The longer the LFSR that is being attacked, the more

time it will take. Since this relationship is exponential, the attacks cannot be expected to be practical

for a LFSR of more than about 40 bits. However, the big advantage with these methods is the fact

that the amount of ciphertext required is independent of the size of the LFSR and both attacks are

ideal for execution on parallel processors.

6.2 Fast-Correlation Attacks

The fast-correlation attack using the Viterbi algorithm is fairly complex in comparison with the

correlation attacks although the extra complexity is worthwhile. All simulations for this method where

performed on a Pentium IV, 2GHz processor with 256MB memory on a Windows 2000 platform. The

fast correlation method was tested for correlation levels as low p = 0.485, using a 7-bit (128-state)

convolutional encoder and enough ciphertext to provide 2873370 parity equations; in this case, when

attacking a 19-bit LFSR, 153448 bits of ciphertext were required to succeed. The memory required for

this was about 160MB.

There are two distinct stages in this algorithm: Firstly, the finding of parity equations in the LFSR

structure, and thereafter using the convolutional encoder (constructed using the parity equations) for

the extraction of the targeted pn-sequence from the ciphertext. To break a system of a certain

correlation level p, sufficient parity equations to construct the convolutional encoder have to be

found. The relationship between the correlation level p and the number of required parity equations

was shown in Figure 4.37 and is repeated here in Figure 6.1 because of its importance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 6 Conclusion

Electrical, Electronic and Computer Engineering 117

Figure 6.1 No. of parity equations (γ) required for success

The number of computations (nsComputatioN) required for finding a certain number of parity equations,

Γ, was given by equation (4.107) and is repeated below.

Bl
nsComputatioN −⋅Γ∝ 2 (6.1)

An attacker can thus see from equation (6.1) whether it is feasible to find a sufficient number of parity

equations within the LFSR structure. Note that this has to be done only once for any given cipher

system, since finding parity equations is independent of the specific session key being attacked.

Therefore extensive resources can be allocated for this task.

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6

Channel Probability (p)

N
o.

 o
f P

ar
ity

 E
qu

at
io

ns
 (γ

)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 6 Conclusion

Electrical, Electronic and Computer Engineering 118

From equation (6.1) it can be seen that sufficient parity equations could always be found by

increasing the size B of the convolutional encoder. Unfortunately, there are two important restraints

on the size of the encoder when using it to extract the targeted LFSR output. The larger it becomes,

the more operations are required for the decoding process and the larger the memory requirement

(MemoryM) becomes. This relationship was originally presented in equations (4.104) and (4.105),

repeated below.

Γ⋅∝ +12B
nsComputatioN (6.2)

Γ⋅∝ +12B
MemoryM (6.3)

The extraction of the targeted LFSR output has to be performed each time a new session key is being

attacked. For this reason it should always be attempted to utilize as many resources as possible to find

parity equations in such a way as to minimize B.

The big advantage of the fast correlation attack is the fact that it does not perform an exhaustive

search for the initial condition of the targeted LFSR. However, the initial condition derived by the fast

correlation attack is not necessarily correct. The values of the minimum number of parity equations

required for success are average values and should succeed in at least 80% of the time. The results

however still need to be verified and for this, the correlation attack methods should be very effective,

as it’s complexity is not dependant on l if the intention is only to verify a LFSR initial condition.

Therefore a correlation attack can complement a fast correlation attack and is not obsoleted by it.

6.3 Decimation Attack

The decimation attack differs from the other two types in the sense that it is not a stand-alone attack

and still needs a secondary method to find the correct initial state. The purpose of the decimation

attack is to reduce the effective size of a LFSR targeted within the key generator by using only every

D-th bit of the cipher stream. In equation (5.10), repeated here for convenience, the best possible

result that can be achieved was shown. In the equation, *l represents the size of the reduced LFSR, l,

represents the size of the targeted LFSR and d represents the magnitude of the decimation factor D,

thus 122 +<≤ dd D .

dll −≥* (6.4)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

Chapter 6 Conclusion

Electrical, Electronic and Computer Engineering 119

When applying this attack only every D-th bit within the ciphertext is used for the secondary attack on

the decimated LFSR. To reduce a LFSR by any significant amount the equation above shows that D

must be large. A list of decimation factors of 312<D for 6418 ≤≤ l is presented in Appendix F. If

it is intended to use any of the previously discussed attacks for the secondary attack, it has already

been seen that several tens of thousand of bits are required to attack a cipher system which has low

correlation levels between the ciphertext and the targeted LFSR. Because of this, the amount of

ciphertext required is huge. Added to this it was found that the attack can only be considered if one is

lucky enough that the system to be attacked has a LFSR of size l for which a decimation factor D even

exists. Table 5.3 gives a list of for all the sizes l of a LFSR for which no decimation factors exist.

However, the decimation attack is still attractive since there is no processing or memory penalty when

using this method. If a decimation factor D exists, it can be used for attacking smaller LFSRs, which

automatically require smaller decimation factors to reduce.

6.4 Future Work on Fast Correlation Attack

Since the Viterbi decoding process is not started with the all-0 state, it is likely that the decoding

process may fail at the first stage of the trellis. This could result in the failure of all further decoding

stages. It is vital to starting with the correct initial path, so as to exploit the full power of the Viterbi

decoding algorithm. Hence it is worthwhile to investigate the adaptation of the Viterbi algorithm to

keep all paths (tree code) for the first two or three stages within the trellis diagram. This would allow

a longer history of the partial path metrics, which would give a better indication of the wrong paths

that may be discarded and also of the correct paths that are kept after completion of the first three

stages.

This would increase the memory requirement for this section by at least 23 = 8 times. However, this

would not influence the remaining memory usage, but is one of the reasons why it was not further

investigated in this dissertation as memory was the prime limitation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

REFERENCES

[1] E. Filiol, “Ciphertext Only Decimation Attack of Stream Ciphers”, INRIA Projet Codes, Le

Chesnay Cedex, France, 2000.

[2] T. Siegenthaler, “Decrypting a class of stream ciphers using ciphertext only”, IEEE Trans.

Computers, vol. C-34, pp. 81–85, 1985.

[3] T. Johansson, F. Jönsson, “Improved Fast Correlation Attacks on Stream Ciphers via

Convolutional Codes”, Dept. of Information Technology, Lund University, Sweden, 1999.

[4] W. Stallings, “Cryptography and Network Security: Principles and Practice”, Second Edition.

Prentice Hall, New Jersey, 1999.

[5] J. Golic, “Cryptanalysis of Alleged A5 Stream Cipher”, School of Electrical Engineering,

University of Belgrade, Yugoslavia, 1997.

[6] J. F. Wakerly, “Digital Design, Principles and Practices”, Second Edition, Prentice Hall, New

Jersey, USA, p 626, 1994.

[7] A. Menezes, P. van Oorschot, S. Vanstone, “Handbook of Applied Cryptography”, First

Edition, CRC Press, Boca Raton, Florida, USA, Chapter 6, 1996.

[8] J. O. Brüer, “On nonlinear combinations of linear shift register sequences”, Proc. IEEE ISIT,

les Arcs, France, June 21-25 1982.

[9] P. R. Geffe, “How to protect data with ciphers that are really hard to break”, Electronics, pp.

99–101, January 1973.

[10] V. S. Pless, “Encryption schemes for computer confidentiality”, IEEE Trans. Computers, vol.

C-26, pp. 1133–1136, November 1977.

[11] J. Ziv, A. Lempel, “Compression of individual sequences via variable-rate coding”, IEEE

Trans. On Information Theory, vol. IT-24, no. 5, pp. 530–536, September 1978.

[12] E. N. Gilbert, T. T. Kadota, “The Lempel-Ziv algorithm and message complexity”, IEEE

Trans. on Information Theory, vol. IT-38, no. 6, pp. 1839–1842, November 1992.

[13] J. M. Carrol, L. E. Robbins, “Using binary derivatives to test an enhancement of DES”,

Cryptologia, vol. XII, no. 4, pp. 193-208, October 1988.

[14] Barbé A, “Binary random sequences: Derivative sequences and multilevel α-typical

randomness”, 8th Benelux Symposium on Information Theory, University of Twente, Belgium,

1986.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

References

Electrical, Electronic and Computer Engineering 121

[15] J. M. Carrol, “The binary derivative test for the appearance of randomness and its use as a

noise filter”, Technical Report No. 221, Dept. of Computer Science, University of Western

Ontario, November 1988.

[16] J. W. McNair, “The binary derivative: A new method of testing for the appearance of

randomness in a sequence of bits”, M.Sc. Thesis, Dept. of Computer Science, University of

Western Ontario, London, Ontario, Canada, May 1989.

[17] J. S. Bendat, A. G. Piersol, “Random Data: Analysis and Measurement Procedures”, Second

Edition, Wiley, New York, 1986.

[18] H. R. Neave, P. L. Worthington, “Distribution-free tests”, Unwin Hyman, London, 1988.

[19] W. T. Penzhorn and C. S. Bruwer, "New correlation attacks on stream ciphers", Proc.

IEEE AFRICON 2002, 1 - 3 October 2002, George, South Africa, pp. 203-208, 2002.

[20] S. B. Wicker, “Error Control Systems for Digital Communication and Storage”, Prentice-Hall,

New Jersey, pp. 264-327, 1995.

[21] R. E. Blahut, “Theory and Practice of Error Control Codes”, Addison-Wesley, New York, pp.

348-350, 1983.

[22] T.R.N. Rao, E. Fujiwara, ”Error-Control Coding for Computer Systems”, Second Editions,

Prentice-Hall, New York, p 70, 1989.

[23] W. T. Penzhorn, “Discrimination of Deterministic Binary Sequences”, Internal Report,

University of Pretoria, 12 March 1993.

[24] J. L. Massey, “Shift-Register Synthesis and BCH Decoding”, IEEE Transactions on

Information Theory, Vol. IT-15, January 1969.

[25] S. B. Wicker, “Error Control Systems for Digital Communication and Storage”, Prentice-

Hall, New Jersey, pp. 21-45, 1995.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

TABLE OF CONTENTS
A LEMPEL-ZIV COMPLEXITY FOR RANDOM BINARY SEQUENCES123
B AMOUNT OF CIPHERTEXT BITS REQUIRED FOR LEMPEL-ZIV ATTACK TO BE
SUCCESSFUL ...130
C NUMBER OF DERIVATIVES FOR BINARY DERIVATIVE ATTACK TO SUCCEED.131
D EXPECTED NUMBER OF PARITY EQUATIONS ..133
E AVERAGE NUMBER OF PARITY EQUATIONS REQUIRED BY FAST CORRELATION
ATTACK..137
F SELECTED DECIMATION FACTORS...138

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 123

A LEMPEL-ZIV COMPLEXITY FOR RANDOM BINARY
SEQUENCES

m][mxE mσ m][mxE mσ m][mxE mσ
10 23.73 1.50 3 340 33 387.36 29.80 6 670 73 308.27 42.12
20 61.64 2.20 3 350 33 501.71 29.84 6 680 73 432.58 42.15
30 106.36 2.74 3 360 33 616.10 29.89 6 690 73 556.92 42.18
40 155.67 3.19 3 370 33 730.53 29.93 6 700 73 681.27 42.21
50 208.44 3.58 3 380 33 845.01 29.98 6 710 73 805.64 42.24
60 264.01 3.93 3 390 33 959.53 30.02 6 720 73 930.04 42.27
70 321.92 4.26 3 400 34 074.09 30.07 6 730 74 054.46 42.31
80 381.84 4.56 3 410 34 188.69 30.11 6 740 74 178.90 42.34
90 443.52 4.84 3 420 34 303.34 30.15 6 750 74 303.36 42.37
100 506.77 5.11 3 430 34 418.03 30.20 6 760 74 427.84 42.40
110 571.44 5.36 3 440 34 532.76 30.24 6 770 74 552.34 42.43
120 637.40 5.61 3 450 34 647.53 30.29 6 780 74 676.87 42.46
130 704.54 5.84 3 460 34 762.34 30.33 6 790 74 801.42 42.49
140 772.78 6.06 3 470 34 877.20 30.37 6 800 74 925.98 42.52
150 842.04 6.28 3 480 34 992.09 30.42 6 810 75 050.57 42.56
160 912.24 6.49 3 490 35 107.03 30.46 6 820 75 175.18 42.59
170 983.34 6.69 3 500 35 222.01 30.50 6 830 75 299.81 42.62
180 1 055.27 6.88 3 510 35 337.03 30.55 6 840 75 424.46 42.65
190 1 128.00 7.07 3 520 35 452.09 30.59 6 850 75 549.14 42.68
200 1 201.48 7.26 3 530 35 567.20 30.63 6 860 75 673.83 42.71
210 1 275.67 7.44 3 540 35 682.34 30.68 6 870 75 798.55 42.74
220 1 350.55 7.62 3 550 35 797.52 30.72 6 880 75 923.28 42.77
230 1 426.07 7.79 3 560 35 912.75 30.76 6 890 76 048.04 42.81
240 1 502.22 7.96 3 570 36 028.01 30.81 6 900 76 172.82 42.84
250 1 578.96 8.12 3 580 36 143.32 30.85 6 910 76 297.62 42.87
260 1 656.28 8.29 3 590 36 258.67 30.89 6 920 76 422.44 42.90
270 1 734.14 8.44 3 600 36 374.05 30.94 6 930 76 547.28 42.93
280 1 812.54 8.60 3 610 36 489.48 30.98 6 940 76 672.14 42.96
290 1 891.45 8.75 3 620 36 604.95 31.02 6 950 76 797.02 42.99
300 1 970.85 8.90 3 630 36 720.45 31.07 6 960 76 921.92 43.02
310 2 050.73 9.05 3 640 36 836.00 31.11 6 970 77 046.85 43.05
320 2 131.08 9.20 3 650 36 951.58 31.15 6 980 77 171.79 43.08
330 2 211.87 9.34 3 660 37 067.21 31.19 6 990 77 296.76 43.11
340 2 293.09 9.48 3 670 37 182.87 31.24 7 000 77 421.74 43.15
350 2 374.74 9.62 3 680 37 298.58 31.28 7 010 77 546.75 43.18
360 2 456.80 9.76 3 690 37 414.32 31.32 7 020 77 671.78 43.21
370 2 539.26 9.90 3 700 37 530.10 31.36 7 030 77 796.82 43.24
380 2 622.10 10.03 3 710 37 645.92 31.41 7 040 77 921.89 43.27
390 2 705.32 10.16 3 720 37 761.78 31.45 7 050 78 046.98 43.30
400 2 788.91 10.29 3 730 37 877.68 31.49 7 060 78 172.09 43.33
410 2 872.86 10.42 3 740 37 993.62 31.53 7 070 78 297.22 43.36
420 2 957.16 10.55 3 750 38 109.59 31.58 7 080 78 422.37 43.39
430 3 041.80 10.67 3 760 38 225.61 31.62 7 090 78 547.54 43.42

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 124

m][mxE mσ m][mxE mσ m][mxE mσ
440 3 126.78 10.80 3 770 38 341.66 31.66 7 100 78 672.73 43.45
450 3 212.08 10.92 3 780 38 457.75 31.70 7 110 78 797.94 43.48
460 3 297.70 11.04 3 790 38 573.88 31.74 7 120 78 923.17 43.51
470 3 383.63 11.16 3 800 38 690.05 31.79 7 130 79 048.42 43.54
480 3 469.87 11.28 3 810 38 806.25 31.83 7 140 79 173.69 43.58
490 3 556.41 11.39 3 820 38 922.49 31.87 7 150 79 298.98 43.61
500 3 643.24 11.51 3 830 39 038.77 31.91 7 160 79 424.30 43.64
510 3 730.36 11.63 3 840 39 155.09 31.95 7 170 79 549.63 43.67
520 3 817.76 11.74 3 850 39 271.45 31.99 7 180 79 674.98 43.70
530 3 905.43 11.85 3 860 39 387.84 32.04 7 190 79 800.35 43.73
540 3 993.38 11.96 3 870 39 504.27 32.08 7 200 79 925.75 43.76
550 4 081.60 12.07 3 880 39 620.74 32.12 7 210 80 051.16 43.79
560 4 170.07 12.18 3 890 39 737.24 32.16 7 220 80 176.59 43.82
570 4 258.81 12.29 3 900 39 853.79 32.20 7 230 80 302.04 43.85
580 4 347.79 12.40 3 910 39 970.36 32.24 7 240 80 427.51 43.88
590 4 437.02 12.51 3 920 40 086.98 32.28 7 250 80 553.01 43.91
600 4 526.50 12.61 3 930 40 203.63 32.32 7 260 80 678.52 43.94
610 4 616.21 12.72 3 940 40 320.32 32.37 7 270 80 804.05 43.97
620 4 706.17 12.82 3 950 40 437.05 32.41 7 280 80 929.60 44.00
630 4 796.35 12.93 3 960 40 553.81 32.45 7 290 81 055.17 44.03
640 4 886.76 13.03 3 970 40 670.61 32.49 7 300 81 180.77 44.06
650 4 977.40 13.13 3 980 40 787.44 32.53 7 310 81 306.38 44.09
660 5 068.26 13.23 3 990 40 904.32 32.57 7 320 81 432.01 44.12
670 5 159.33 13.33 4 000 41 021.22 32.61 7 330 81 557.66 44.15
680 5 250.62 13.43 4 010 41 138.17 32.65 7 340 81 683.33 44.18
690 5 342.12 13.53 4 020 41 255.15 32.69 7 350 81 809.02 44.21
700 5 433.83 13.63 4 030 41 372.16 32.73 7 360 81 934.73 44.24
710 5 525.75 13.72 4 040 41 489.21 32.77 7 370 82 060.46 44.27
720 5 617.87 13.82 4 050 41 606.30 32.81 7 380 82 186.21 44.30
730 5 710.19 13.92 4 060 41 723.42 32.86 7 390 82 311.97 44.33
740 5 802.70 14.01 4 070 41 840.58 32.90 7 400 82 437.76 44.36
750 5 895.41 14.11 4 080 41 957.77 32.94 7 410 82 563.57 44.39
760 5 988.32 14.20 4 090 42 075.00 32.98 7 420 82 689.40 44.42
770 6 081.41 14.29 4 100 42 192.27 33.02 7 430 82 815.24 44.45
780 6 174.68 14.39 4 110 42 309.57 33.06 7 440 82 941.11 44.48
790 6 268.15 14.48 4 120 42 426.90 33.10 7 450 83 066.99 44.51
800 6 361.79 14.57 4 130 42 544.27 33.14 7 460 83 192.90 44.54
810 6 455.62 14.66 4 140 42 661.67 33.18 7 470 83 318.82 44.57
820 6 549.62 14.75 4 150 42 779.11 33.22 7 480 83 444.76 44.60
830 6 643.80 14.84 4 160 42 896.59 33.26 7 490 83 570.73 44.63
840 6 738.15 14.93 4 170 43 014.10 33.30 7 500 83 696.71 44.66
850 6 832.67 15.02 4 180 43 131.64 33.34 7 510 83 822.71 44.69
860 6 927.36 15.11 4 190 43 249.22 33.38 7 520 83 948.73 44.72
870 7 022.22 15.20 4 200 43 366.83 33.42 7 530 84 074.77 44.75
880 7 117.25 15.28 4 210 43 484.47 33.46 7 540 84 200.82 44.78
890 7 212.44 15.37 4 220 43 602.15 33.50 7 550 84 326.90 44.81
900 7 307.79 15.46 4 230 43 719.87 33.54 7 560 84 453.00 44.84
910 7 403.30 15.54 4 240 43 837.62 33.58 7 570 84 579.11 44.87
920 7 498.96 15.63 4 250 43 955.40 33.62 7 580 84 705.25 44.90

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 125

m][mxE mσ m][mxE mσ m][mxE mσ
930 7 594.79 15.71 4 260 44 073.22 33.65 7 590 84 831.40 44.93
940 7 690.77 15.80 4 270 44 191.07 33.69 7 600 84 957.58 44.96
950 7 786.90 15.88 4 280 44 308.95 33.73 7 610 85 083.77 44.99
960 7 883.18 15.96 4 290 44 426.87 33.77 7 620 85 209.98 45.02
970 7 979.62 16.05 4 300 44 544.82 33.81 7 630 85 336.21 45.05
980 8 076.20 16.13 4 310 44 662.81 33.85 7 640 85 462.46 45.08
990 8 172.93 16.21 4 320 44 780.83 33.89 7 650 85 588.72 45.10

1 000 8 269.81 16.29 4 330 44 898.88 33.93 7 660 85 715.01 45.13
1 010 8 366.82 16.38 4 340 45 016.96 33.97 7 670 85 841.31 45.16
1 020 8 463.99 16.46 4 350 45 135.08 34.01 7 680 85 967.64 45.19
1 030 8 561.29 16.54 4 360 45 253.23 34.05 7 690 86 093.98 45.22
1 040 8 658.73 16.62 4 370 45 371.42 34.09 7 700 86 220.34 45.25
1 050 8 756.31 16.70 4 380 45 489.64 34.13 7 710 86 346.72 45.28
1 060 8 854.03 16.78 4 390 45 607.89 34.16 7 720 86 473.12 45.31
1 070 8 951.88 16.86 4 400 45 726.17 34.20 7 730 86 599.54 45.34
1 080 9 049.87 16.93 4 410 45 844.49 34.24 7 740 86 725.97 45.37
1 090 9 147.99 17.01 4 420 45 962.84 34.28 7 750 86 852.43 45.40
1 100 9 246.25 17.09 4 430 46 081.22 34.32 7 760 86 978.90 45.43
1 110 9 344.63 17.17 4 440 46 199.63 34.36 7 770 87 105.39 45.46
1 120 9 443.15 17.25 4 450 46 318.08 34.40 7 780 87 231.90 45.49
1 130 9 541.79 17.32 4 460 46 436.56 34.44 7 790 87 358.43 45.52
1 140 9 640.56 17.40 4 470 46 555.07 34.47 7 800 87 484.98 45.54
1 150 9 739.46 17.48 4 480 46 673.61 34.51 7 810 87 611.55 45.57
1 160 9 838.48 17.55 4 490 46 792.19 34.55 7 820 87 738.13 45.60
1 170 9 937.63 17.63 4 500 46 910.80 34.59 7 830 87 864.73 45.63
1 180 10 036.90 17.70 4 510 47 029.44 34.63 7 840 87 991.36 45.66
1 190 10 136.29 17.78 4 520 47 148.11 34.67 7 850 88 118.00 45.69
1 200 10 235.80 17.85 4 530 47 266.81 34.71 7 860 88 244.65 45.72
1 210 10 335.43 17.93 4 540 47 385.55 34.74 7 870 88 371.33 45.75
1 220 10 435.19 18.00 4 550 47 504.32 34.78 7 880 88 498.02 45.78
1 230 10 535.05 18.07 4 560 47 623.12 34.82 7 890 88 624.74 45.81
1 240 10 635.04 18.15 4 570 47 741.95 34.86 7 900 88 751.47 45.84
1 250 10 735.14 18.22 4 580 47 860.81 34.90 7 910 88 878.22 45.86
1 260 10 835.36 18.29 4 590 47 979.70 34.93 7 920 89 004.99 45.89
1 270 10 935.70 18.37 4 600 48 098.63 34.97 7 930 89 131.77 45.92
1 280 11 036.14 18.44 4 610 48 217.58 35.01 7 940 89 258.58 45.95
1 290 11 136.70 18.51 4 620 48 336.57 35.05 7 950 89 385.40 45.98
1 300 11 237.37 18.58 4 630 48 455.59 35.09 7 960 89 512.24 46.01
1 310 11 338.15 18.65 4 640 48 574.64 35.12 7 970 89 639.10 46.04
1 320 11 439.04 18.72 4 650 48 693.72 35.16 7 980 89 765.98 46.07
1 330 11 540.04 18.80 4 660 48 812.84 35.20 7 990 89 892.87 46.10
1 340 11 641.15 18.87 4 670 48 931.98 35.24 8 000 90 019.78 46.12
1 350 11 742.37 18.94 4 680 49 051.15 35.28 8 010 90 146.71 46.15
1 360 11 843.69 19.01 4 690 49 170.36 35.31 8 020 90 273.66 46.18
1 370 11 945.12 19.08 4 700 49 289.59 35.35 8 030 90 400.63 46.21
1 380 12 046.65 19.15 4 710 49 408.86 35.39 8 040 90 527.62 46.24
1 390 12 148.29 19.22 4 720 49 528.16 35.43 8 050 90 654.62 46.27
1 400 12 250.03 19.28 4 730 49 647.48 35.46 8 060 90 781.64 46.30
1 410 12 351.87 19.35 4 740 49 766.84 35.50 8 070 90 908.68 46.33

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 126

m][mxE mσ m][mxE mσ m][mxE mσ
1 420 12 453.82 19.42 4 750 49 886.23 35.54 8 080 91 035.73 46.36
1 430 12 555.87 19.49 4 760 50 005.65 35.58 8 090 91 162.81 46.38
1 440 12 658.02 19.56 4 770 50 125.10 35.61 8 100 91 289.90 46.41
1 450 12 760.27 19.63 4 780 50 244.58 35.65 8 110 91 417.01 46.44
1 460 12 862.62 19.69 4 790 50 364.09 35.69 8 120 91 544.14 46.47
1 470 12 965.06 19.76 4 800 50 483.63 35.73 8 130 91 671.28 46.50
1 480 13 067.61 19.83 4 810 50 603.20 35.76 8 140 91 798.45 46.53
1 490 13 170.25 19.90 4 820 50 722.80 35.80 8 150 91 925.63 46.56
1 500 13 272.99 19.96 4 830 50 842.43 35.84 8 160 92 052.83 46.58
1 510 13 375.82 20.03 4 840 50 962.09 35.87 8 170 92 180.04 46.61
1 520 13 478.75 20.10 4 850 51 081.78 35.91 8 180 92 307.28 46.64
1 530 13 581.78 20.16 4 860 51 201.49 35.95 8 190 92 434.53 46.67
1 540 13 684.90 20.23 4 870 51 321.24 35.98 8 200 92 561.80 46.70
1 550 13 788.11 20.29 4 880 51 441.02 36.02 8 210 92 689.09 46.73
1 560 13 891.42 20.36 4 890 51 560.83 36.06 8 220 92 816.39 46.75
1 570 13 994.82 20.42 4 900 51 680.67 36.10 8 230 92 943.71 46.78
1 580 14 098.31 20.49 4 910 51 800.53 36.13 8 240 93 071.05 46.81
1 590 14 201.89 20.55 4 920 51 920.43 36.17 8 250 93 198.41 46.84
1 600 14 305.56 20.62 4 930 52 040.36 36.21 8 260 93 325.78 46.87
1 610 14 409.32 20.68 4 940 52 160.31 36.24 8 270 93 453.18 46.90
1 620 14 513.17 20.75 4 950 52 280.29 36.28 8 280 93 580.59 46.93
1 630 14 617.11 20.81 4 960 52 400.31 36.32 8 290 93 708.01 46.95
1 640 14 721.14 20.87 4 970 52 520.35 36.35 8 300 93 835.46 46.98
1 650 14 825.26 20.94 4 980 52 640.42 36.39 8 310 93 962.92 47.01
1 660 14 929.46 21.00 4 990 52 760.52 36.43 8 320 94 090.40 47.04
1 670 15 033.75 21.06 5 000 52 880.65 36.46 8 330 94 217.89 47.07
1 680 15 138.13 21.13 5 010 53 000.81 36.50 8 340 94 345.41 47.10
1 690 15 242.59 21.19 5 020 53 120.99 36.53 8 350 94 472.94 47.12
1 700 15 347.14 21.25 5 030 53 241.21 36.57 8 360 94 600.49 47.15
1 710 15 451.78 21.32 5 040 53 361.45 36.61 8 370 94 728.05 47.18
1 720 15 556.49 21.38 5 050 53 481.73 36.64 8 380 94 855.63 47.21
1 730 15 661.29 21.44 5 060 53 602.03 36.68 8 390 94 983.23 47.24
1 740 15 766.18 21.50 5 070 53 722.36 36.72 8 400 95 110.85 47.26
1 750 15 871.15 21.56 5 080 53 842.71 36.75 8 410 95 238.49 47.29
1 760 15 976.19 21.63 5 090 53 963.10 36.79 8 420 95 366.14 47.32
1 770 16 081.33 21.69 5 100 54 083.52 36.83 8 430 95 493.81 47.35
1 780 16 186.54 21.75 5 110 54 203.96 36.86 8 440 95 621.49 47.38
1 790 16 291.83 21.81 5 120 54 324.43 36.90 8 450 95 749.19 47.40
1 800 16 397.21 21.87 5 130 54 444.93 36.93 8 460 95 876.91 47.43
1 810 16 502.66 21.93 5 140 54 565.46 36.97 8 470 96 004.65 47.46
1 820 16 608.19 21.99 5 150 54 686.01 37.01 8 480 96 132.40 47.49
1 830 16 713.81 22.05 5 160 54 806.60 37.04 8 490 96 260.18 47.52
1 840 16 819.50 22.11 5 170 54 927.21 37.08 8 500 96 387.96 47.54
1 850 16 925.27 22.17 5 180 55 047.85 37.11 8 510 96 515.77 47.57
1 860 17 031.12 22.23 5 190 55 168.52 37.15 8 520 96 643.59 47.60
1 870 17 137.04 22.29 5 200 55 289.21 37.18 8 530 96 771.43 47.63
1 880 17 243.05 22.35 5 210 55 409.93 37.22 8 540 96 899.28 47.66
1 890 17 349.13 22.41 5 220 55 530.68 37.26 8 550 97 027.16 47.68
1 900 17 455.28 22.47 5 230 55 651.46 37.29 8 560 97 155.05 47.71

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 127

m][mxE mσ m][mxE mσ m][mxE mσ
1 910 17 561.51 22.53 5 240 55 772.27 37.33 8 570 97 282.95 47.74
1 920 17 667.82 22.59 5 250 55 893.10 37.36 8 580 97 410.88 47.77
1 930 17 774.20 22.65 5 260 56 013.96 37.40 8 590 97 538.82 47.80
1 940 17 880.66 22.71 5 270 56 134.85 37.43 8 600 97 666.77 47.82
1 950 17 987.19 22.76 5 280 56 255.77 37.47 8 610 97 794.75 47.85
1 960 18 093.79 22.82 5 290 56 376.71 37.51 8 620 97 922.74 47.88
1 970 18 200.47 22.88 5 300 56 497.68 37.54 8 630 98 050.74 47.91
1 980 18 307.22 22.94 5 310 56 618.68 37.58 8 640 98 178.77 47.93
1 990 18 414.05 23.00 5 320 56 739.70 37.61 8 650 98 306.81 47.96
2 000 18 520.94 23.05 5 330 56 860.75 37.65 8 660 98 434.86 47.99
2 010 18 627.91 23.11 5 340 56 981.83 37.68 8 670 98 562.94 48.02
2 020 18 734.95 23.17 5 350 57 102.94 37.72 8 680 98 691.03 48.05
2 030 18 842.07 23.23 5 360 57 224.07 37.75 8 690 98 819.14 48.07
2 040 18 949.25 23.28 5 370 57 345.23 37.79 8 700 98 947.26 48.10
2 050 19 056.50 23.34 5 380 57 466.41 37.82 8 710 99 075.40 48.13
2 060 19 163.83 23.40 5 390 57 587.63 37.86 8 720 99 203.56 48.16
2 070 19 271.22 23.45 5 400 57 708.87 37.89 8 730 99 331.73 48.18
2 080 19 378.68 23.51 5 410 57 830.13 37.93 8 740 99 459.92 48.21
2 090 19 486.22 23.57 5 420 57 951.43 37.96 8 750 99 588.13 48.24
2 100 19 593.82 23.62 5 430 58 072.75 38.00 8 760 99 716.35 48.27
2 110 19 701.49 23.68 5 440 58 194.09 38.03 8 770 99 844.59 48.29
2 120 19 809.23 23.74 5 450 58 315.47 38.07 8 780 99 972.84 48.32
2 130 19 917.03 23.79 5 460 58 436.87 38.10 8 790 100 101.11 48.35
2 140 20 024.91 23.85 5 470 58 558.29 38.14 8 800 100 229.40 48.38
2 150 20 132.85 23.90 5 480 58 679.74 38.17 8 810 100 357.71 48.40
2 160 20 240.86 23.96 5 490 58 801.22 38.21 8 820 100 486.03 48.43
2 170 20 348.93 24.01 5 500 58 922.73 38.24 8 830 100 614.37 48.46
2 180 20 457.07 24.07 5 510 59 044.26 38.28 8 840 100 742.72 48.49
2 190 20 565.28 24.13 5 520 59 165.82 38.31 8 850 100 871.09 48.51
2 200 20 673.56 24.18 5 530 59 287.40 38.35 8 860 100 999.48 48.54
2 210 20 781.89 24.24 5 540 59 409.01 38.38 8 870 101 127.88 48.57
2 220 20 890.30 24.29 5 550 59 530.64 38.42 8 880 101 256.30 48.60
2 230 20 998.77 24.34 5 560 59 652.31 38.45 8 890 101 384.73 48.62
2 240 21 107.30 24.40 5 570 59 773.99 38.49 8 900 101 513.19 48.65
2 250 21 215.90 24.45 5 580 59 895.71 38.52 8 910 101 641.65 48.68
2 260 21 324.56 24.51 5 590 60 017.45 38.55 8 920 101 770.14 48.71
2 270 21 433.29 24.56 5 600 60 139.21 38.59 8 930 101 898.64 48.73
2 280 21 542.08 24.62 5 610 60 261.00 38.62 8 940 102 027.15 48.76
2 290 21 650.93 24.67 5 620 60 382.82 38.66 8 950 102 155.69 48.79
2 300 21 759.85 24.72 5 630 60 504.66 38.69 8 960 102 284.24 48.81
2 310 21 868.83 24.78 5 640 60 626.53 38.73 8 970 102 412.80 48.84
2 320 21 977.87 24.83 5 650 60 748.42 38.76 8 980 102 541.38 48.87
2 330 22 086.97 24.89 5 660 60 870.34 38.80 8 990 102 669.98 48.90
2 340 22 196.14 24.94 5 670 60 992.28 38.83 9 000 102 798.59 48.92
2 350 22 305.36 24.99 5 680 61 114.25 38.86 9 010 102 927.22 48.95
2 360 22 414.65 25.04 5 690 61 236.25 38.90 9 020 103 055.86 48.98
2 370 22 524.00 25.10 5 700 61 358.27 38.93 9 030 103 184.52 49.00
2 380 22 633.41 25.15 5 710 61 480.31 38.97 9 040 103 313.20 49.03
2 390 22 742.88 25.20 5 720 61 602.38 39.00 9 050 103 441.89 49.06

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 128

m][mxE mσ m][mxE mσ m][mxE mσ
2 400 22 852.41 25.26 5 730 61 724.48 39.03 9 060 103 570.60 49.09
2 410 22 962.00 25.31 5 740 61 846.60 39.07 9 070 103 699.33 49.11
2 420 23 071.65 25.36 5 750 61 968.75 39.10 9 080 103 828.07 49.14
2 430 23 181.36 25.41 5 760 62 090.92 39.14 9 090 103 956.82 49.17
2 440 23 291.13 25.47 5 770 62 213.12 39.17 9 100 104 085.60 49.19
2 450 23 400.96 25.52 5 780 62 335.34 39.20 9 110 104 214.39 49.22
2 460 23 510.85 25.57 5 790 62 457.58 39.24 9 120 104 343.19 49.25
2 470 23 620.79 25.62 5 800 62 579.86 39.27 9 130 104 472.01 49.28
2 480 23 730.80 25.67 5 810 62 702.15 39.31 9 140 104 600.84 49.30
2 490 23 840.86 25.73 5 820 62 824.47 39.34 9 150 104 729.70 49.33
2 500 23 950.98 25.78 5 830 62 946.82 39.37 9 160 104 858.56 49.36
2 510 24 061.16 25.83 5 840 63 069.19 39.41 9 170 104 987.45 49.38
2 520 24 171.39 25.88 5 850 63 191.59 39.44 9 180 105 116.34 49.41
2 530 24 281.68 25.93 5 860 63 314.01 39.48 9 190 105 245.26 49.44
2 540 24 392.03 25.98 5 870 63 436.45 39.51 9 200 105 374.19 49.46
2 550 24 502.44 26.03 5 880 63 558.92 39.54 9 210 105 503.13 49.49
2 560 24 612.90 26.09 5 890 63 681.41 39.58 9 220 105 632.10 49.52
2 570 24 723.42 26.14 5 900 63 803.93 39.61 9 230 105 761.07 49.54
2 580 24 834.00 26.19 5 910 63 926.47 39.64 9 240 105 890.07 49.57
2 590 24 944.63 26.24 5 920 64 049.04 39.68 9 250 106 019.07 49.60
2 600 25 055.32 26.29 5 930 64 171.63 39.71 9 260 106 148.10 49.62
2 610 25 166.06 26.34 5 940 64 294.25 39.74 9 270 106 277.14 49.65
2 620 25 276.86 26.39 5 950 64 416.89 39.78 9 280 106 406.19 49.68
2 630 25 387.71 26.44 5 960 64 539.55 39.81 9 290 106 535.26 49.71
2 640 25 498.62 26.49 5 970 64 662.24 39.84 9 300 106 664.35 49.73
2 650 25 609.58 26.54 5 980 64 784.95 39.88 9 310 106 793.45 49.76
2 660 25 720.59 26.59 5 990 64 907.69 39.91 9 320 106 922.57 49.79
2 670 25 831.66 26.64 6 000 65 030.45 39.94 9 330 107 051.70 49.81
2 680 25 942.79 26.69 6 010 65 153.23 39.98 9 340 107 180.85 49.84
2 690 26 053.97 26.74 6 020 65 276.04 40.01 9 350 107 310.01 49.87
2 700 26 165.20 26.79 6 030 65 398.88 40.04 9 360 107 439.19 49.89
2 710 26 276.48 26.84 6 040 65 521.73 40.08 9 370 107 568.38 49.92
2 720 26 387.82 26.89 6 050 65 644.61 40.11 9 380 107 697.59 49.95
2 730 26 499.21 26.94 6 060 65 767.52 40.14 9 390 107 826.82 49.97
2 740 26 610.66 26.99 6 070 65 890.45 40.18 9 400 107 956.06 50.00
2 750 26 722.16 27.04 6 080 66 013.40 40.21 9 410 108 085.31 50.03
2 760 26 833.70 27.09 6 090 66 136.37 40.24 9 420 108 214.59 50.05
2 770 26 945.31 27.14 6 100 66 259.37 40.28 9 430 108 343.87 50.08
2 780 27 056.96 27.18 6 110 66 382.40 40.31 9 440 108 473.17 50.10
2 790 27 168.67 27.23 6 120 66 505.44 40.34 9 450 108 602.49 50.13
2 800 27 280.42 27.28 6 130 66 628.51 40.37 9 460 108 731.82 50.16
2 810 27 392.23 27.33 6 140 66 751.61 40.41 9 470 108 861.17 50.18
2 820 27 504.09 27.38 6 150 66 874.72 40.44 9 480 108 990.53 50.21
2 830 27 616.00 27.43 6 160 66 997.86 40.47 9 490 109 119.91 50.24
2 840 27 727.96 27.48 6 170 67 121.03 40.51 9 500 109 249.30 50.26
2 850 27 839.98 27.52 6 180 67 244.22 40.54 9 510 109 378.71 50.29
2 860 27 952.04 27.57 6 190 67 367.43 40.57 9 520 109 508.14 50.32
2 870 28 064.15 27.62 6 200 67 490.66 40.60 9 530 109 637.57 50.34
2 880 28 176.32 27.67 6 210 67 613.92 40.64 9 540 109 767.03 50.37

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 129

m][mxE mσ m][mxE mσ m][mxE mσ
2 890 28 288.53 27.72 6 220 67 737.20 40.67 9 550 109 896.50 50.40
2 900 28 400.80 27.77 6 230 67 860.50 40.70 9 560 110 025.98 50.42
2 910 28 513.11 27.81 6 240 67 983.83 40.74 9 570 110 155.48 50.45
2 920 28 625.47 27.86 6 250 68 107.18 40.77 9 580 110 284.99 50.48
2 930 28 737.89 27.91 6 260 68 230.55 40.80 9 590 110 414.52 50.50
2 940 28 850.35 27.96 6 270 68 353.95 40.83 9 600 110 544.07 50.53
2 950 28 962.86 28.00 6 280 68 477.37 40.87 9 610 110 673.63 50.55
2 960 29 075.42 28.05 6 290 68 600.81 40.90 9 620 110 803.20 50.58
2 970 29 188.03 28.10 6 300 68 724.27 40.93 9 630 110 932.79 50.61
2 980 29 300.68 28.15 6 310 68 847.76 40.96 9 640 111 062.39 50.63
2 990 29 413.39 28.19 6 320 68 971.27 41.00 9 650 111 192.01 50.66
3 000 29 526.14 28.24 6 330 69 094.81 41.03 9 660 111 321.65 50.69
3 010 29 638.94 28.29 6 340 69 218.36 41.06 9 670 111 451.30 50.71
3 020 29 751.79 28.33 6 350 69 341.94 41.09 9 680 111 580.96 50.74
3 030 29 864.69 28.38 6 360 69 465.54 41.13 9 690 111 710.64 50.76
3 040 29 977.63 28.43 6 370 69 589.17 41.16 9 700 111 840.33 50.79
3 050 30 090.63 28.47 6 380 69 712.81 41.19 9 710 111 970.04 50.82
3 060 30 203.67 28.52 6 390 69 836.48 41.22 9 720 112 099.76 50.84
3 070 30 316.75 28.57 6 400 69 960.18 41.25 9 730 112 229.50 50.87
3 080 30 429.89 28.61 6 410 70 083.89 41.29 9 740 112 359.26 50.90
3 090 30 543.07 28.66 6 420 70 207.63 41.32 9 750 112 489.02 50.92
3 100 30 656.29 28.71 6 430 70 331.39 41.35 9 760 112 618.81 50.95
3 110 30 769.57 28.75 6 440 70 455.17 41.38 9 770 112 748.60 50.97
3 120 30 882.89 28.80 6 450 70 578.98 41.42 9 780 112 878.42 51.00
3 130 30 996.25 28.85 6 460 70 702.80 41.45 9 790 113 008.24 51.03
3 140 31 109.67 28.89 6 470 70 826.65 41.48 9 800 113 138.09 51.05
3 150 31 223.12 28.94 6 480 70 950.52 41.51 9 810 113 267.94 51.08
3 160 31 336.63 28.98 6 490 71 074.42 41.54 9 820 113 397.81 51.10
3 170 31 450.18 29.03 6 500 71 198.33 41.58 9 830 113 527.70 51.13
3 180 31 563.77 29.08 6 510 71 322.27 41.61 9 840 113 657.60 51.16
3 190 31 677.41 29.12 6 520 71 446.23 41.64 9 850 113 787.51 51.18
3 200 31 791.10 29.17 6 530 71 570.21 41.67 9 860 113 917.44 51.21
3 210 31 904.83 29.21 6 540 71 694.22 41.70 9 870 114 047.39 51.23
3 220 32 018.60 29.26 6 550 71 818.25 41.74 9 880 114 177.35 51.26
3 230 32 132.42 29.30 6 560 71 942.29 41.77 9 890 114 307.32 51.29
3 240 32 246.29 29.35 6 570 72 066.37 41.80 9 900 114 437.31 51.31
3 250 32 360.20 29.39 6 580 72 190.46 41.83 9 910 114 567.31 51.34
3 260 32 474.15 29.44 6 590 72 314.57 41.86 9 920 114 697.33 51.36
3 270 32 588.15 29.48 6 600 72 438.71 41.89 9 930 114 827.36 51.39
3 280 32 702.19 29.53 6 610 72 562.87 41.93 9 940 114 957.41 51.42
3 290 32 816.28 29.57 6 620 72 687.05 41.96 9 950 115 087.47 51.44
3 300 32 930.41 29.62 6 630 72 811.25 41.99 9 960 115 217.55 51.47
3 310 33 044.58 29.66 6 640 72 935.47 42.02 9 970 115 347.64 51.49
3 320 33 158.80 29.71 6 650 73 059.72 42.05 9 980 115 477.74 51.52
3 330 33 273.06 29.75 6 660 73 183.99 42.08 9 990 115 607.86 51.54

 10 000 115 737.99 51.57

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 130

B AMOUNT OF CIPHERTEXT BITS REQUIRED FOR LEMPEL-ZIV
ATTACK TO BE SUCCESSFUL

p Min Bits p Min Bits p Min Bits
0.4 637 0.43 4097 0.46 13701

0.401 765 0.431 4166 0.461 14076
0.402 919 0.432 4272 0.462 15512
0.403 1022 0.433 4410 0.463 15881
0.404 1180 0.434 4586 0.464 16815
0.405 1236 0.435 4752 0.465 17312
0.406 1345 0.436 4924 0.466 18552
0.407 1568 0.437 5167 0.467 19379
0.408 1619 0.438 5356 0.468 21096
0.409 1723 0.439 5435 0.469 22184
0.41 1856 0.44 5592 0.47 23565
0.411 2013 0.441 5671 0.471 25403
0.412 2104 0.442 6067 0.472 27807
0.413 2196 0.443 6332 0.473 30103
0.414 2299 0.444 6725 0.474 31780
0.415 2359 0.445 6783 0.475 35825
0.416 2459 0.446 7009 0.476 39424
0.417 2602 0.447 7530 0.477 42338
0.418 2711 0.448 7794 0.478 45450
0.419 2755 0.449 8082 0.479 50134
0.42 2959 0.45 8333 0.48 53265
0.421 3079 0.451 8566 0.481 57489
0.422 3145 0.452 8841 0.482 62496
0.423 3203 0.453 9641
0.424 3251 0.454 10589
0.425 3334 0.455 11028
0.426 3445 0.456 11462
0.427 3524 0.457 11831
0.428 3899 0.458 12427
0.429 3997 0.459 13087

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 131

C NUMBER OF DERIVATIVES FOR BINARY DERIVATIVE ATTACK
TO SUCCEED

p

No Bits

0.
4

0.
40

5

0.
41

0.
41

5

0.
42

0.
42

5

0.
43

0.
43

5

0.
44

0.
44

5

0.
45

0.
45

5

0.
46

0.
46

5

0.
47

 3 072 8 x x x x x x x x x x x x x x
 6 144 3 6 8 8 11 20 17 19 18 17 x x x x x
 9 216 2 3 4 4 5 10 12 12 16 15 19 x x x x

 12 288 1 1 2 3 3 5 6 7 11 10 15 22 20 22 x
 15 360 0 1 1 2 2 3 4 5 9 9 12 19 17 22 x
 18 432 0 0 1 1 2 3 3 4 8 8 11 16 14 20 x
 21 504 0 0 0 1 1 2 3 3 6 6 9 12 13 20 x
 24 576 0 0 0 0 1 2 2 3 5 5 8 11 11 17 20
 27 648 0 0 0 0 0 1 2 3 4 5 7 9 11 16 17
 30 720 0 0 0 0 0 1 2 2 4 5 6 9 10 12 17
 33 792 0 0 0 0 0 0 1 2 4 4 6 8 9 12 15
 36 864 0 0 0 0 0 0 1 2 3 4 5 8 9 11 15
 39 936 0 0 0 0 0 0 1 2 3 4 5 7 8 10 15
 43 008 0 0 0 0 0 0 0 2 2 3 5 7 8 10 13
 46 080 0 0 0 0 0 0 0 2 2 3 4 6 7 9 13
 49 152 0 0 0 0 0 0 0 2 2 3 4 5 7 9 13
 52 224 0 0 0 0 0 0 0 2 2 3 4 5 6 9 12
 55 296 0 0 0 0 0 0 0 2 1 3 4 5 6 9 12
 58 368 0 0 0 0 0 0 0 1 1 2 4 5 6 8 11
 61 440 0 0 0 0 0 0 0 1 1 2 3 4 5 8 10
 64 512 0 0 0 0 0 0 0 1 1 2 3 4 5 7 9
 67 584 0 0 0 0 0 0 0 1 0 2 3 3 5 7 9
 70 656 0 0 0 0 0 0 0 1 0 2 3 3 5 6 9
 73 728 0 0 0 0 0 0 0 1 0 2 3 3 5 6 8
 76 800 0 0 0 0 0 0 0 0 0 1 3 4 5 6 8
 79 872 0 0 0 0 0 0 0 0 0 1 2 3 4 6 8
 82 944 0 0 0 0 0 0 0 0 0 0 2 3 4 6 8
 86 016 0 0 0 0 0 0 0 0 0 0 2 3 4 6 8
 89 088 0 0 0 0 0 0 0 0 0 0 2 3 4 6 8
 92 160 0 0 0 0 0 0 0 0 0 0 2 3 4 5 8
 95 232 0 0 0 0 0 0 0 0 0 0 2 3 4 5 8
 98 304 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8

 101 376 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8
 104 448 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8
 107 520 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8
 110 592 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8
 113 664 0 0 0 0 0 0 0 0 0 0 1 3 3 5 7
 116 736 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 132

p

No Bits

0.
4

0.
40

5

0.
41

0.
41

5

0.
42

0.
42

5

0.
43

0.
43

5

0.
44

0.
44

5

0.
45

0.
45

5

0.
46

0.
46

5

0.
47

 119 808 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7
 122 880 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7
 125 952 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6
 129 024 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6
 132 096 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7
 135 168 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6
 138 240 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6
 141 312 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6
 144 384 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6
 147 456 0 0 0 0 0 0 0 0 0 0 0 1 3 4 6
 150 528 0 0 0 0 0 0 0 0 0 0 0 1 3 4 6
 153 600 0 0 0 0 0 0 0 0 0 0 0 1 3 4 6
 156 672 0 0 0 0 0 0 0 0 0 0 0 1 2 4 6
 159 744 0 0 0 0 0 0 0 0 0 0 0 1 2 4 6

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 133

D EXPECTED NUMBER OF PARITY EQUATIONS

Choosing Ble −= the tables (Table 6.1 to Table 1.4) below represent the amount of equations one

can expect to find for 492 ≤≤ e . For the instance of 49=e , to find any equations, one needs to

search at least 262=N columns, which amounts to 512≈ operations, a figure close to impossible.

The search for parity equations can however be performed in parallel, potentially allowing this

amount of columns to be searched. The values where calculated using (4.56), repeated below.

BlNNequE −⋅−⋅⋅=
2

1)1(
2
1][(1.1)

Table 6.1 Expected no. equations in 121 2...2=N for Blee −== |22...2

N
e 21 22 23 24 25 26 27 28 29 210 211 212

2 0 1 7 30 124 504 2032 8160 32704 130944 524032 2096640
3 0 0 3 15 62 252 1016 4080 16352 65472 262016 1048320
4 0 0 1 7 31 126 508 2040 8176 32736 131008 524160
5 0 0 0 3 15 63 254 1020 4088 16368 65504 262080
6 0 0 0 1 7 31 127 510 2044 8184 32752 131040
7 0 0 0 0 3 15 63 255 1022 4092 16376 65520
8 0 0 0 0 1 7 31 127 511 2046 8188 32760
9 0 0 0 0 0 3 15 63 255 1023 4094 16380
10 0 0 0 0 0 1 7 31 127 511 2047 8190
11 0 0 0 0 0 0 3 15 63 255 1023 4095
12 0 0 0 0 0 0 1 7 31 127 511 2047
13 0 0 0 0 0 0 0 3 15 63 255 1023
14 0 0 0 0 0 0 0 1 7 31 127 511
15 0 0 0 0 0 0 0 0 3 15 63 255
16 0 0 0 0 0 0 0 0 1 7 31 127
17 0 0 0 0 0 0 0 0 0 3 15 63
18 0 0 0 0 0 0 0 0 0 1 7 31
19 0 0 0 0 0 0 0 0 0 0 3 15
20 0 0 0 0 0 0 0 0 0 0 1 7
21 0 0 0 0 0 0 0 0 0 0 0 3
22 0 0 0 0 0 0 0 0 0 0 0 1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 134

Table 1.2 Expected no. equations in 2413 2...2=N for Blee −== |22...2

N
e 213 214 215 216 217 218 219 220 221 222 223

2 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
3 4193792 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
4 2096896 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
5 1048448 4194048 n/a n/a n/a n/a n/a n/a n/a n/a n/a
6 524224 2097024 n/a n/a n/a n/a n/a n/a n/a n/a n/a
7 262112 1048512 4194176 n/a n/a n/a n/a n/a n/a n/a n/a
8 131056 524256 2097088 n/a n/a n/a n/a n/a n/a n/a n/a
9 65528 262128 1048544 4194240 n/a n/a n/a n/a n/a n/a n/a
10 32764 131064 524272 2097120 n/a n/a n/a n/a n/a n/a n/a
11 16382 65532 262136 1048560 4194272 n/a n/a n/a n/a n/a n/a
12 8191 32766 131068 524280 2097136 n/a n/a n/a n/a n/a n/a
13 4095 16383 65534 262140 1048568 4194288 n/a n/a n/a n/a n/a
14 2047 8191 32767 131070 524284 2097144 n/a n/a n/a n/a n/a
15 1023 4095 16383 65535 262142 1048572 4194296 n/a n/a n/a n/a
16 511 2047 8191 32767 131071 524286 2097148 n/a n/a n/a n/a
17 255 1023 4095 16383 65535 262143 1048574 4194300 n/a n/a n/a
18 127 511 2047 8191 32767 131071 524287 2097150 n/a n/a n/a
19 63 255 1023 4095 16383 65535 262143 1048575 4194302 n/a n/a
20 31 127 511 2047 8191 32767 131071 524287 2097151 n/a n/a
21 15 63 255 1023 4095 16383 65535 262143 1048575 4194303 n/a
22 7 31 127 511 2047 8191 32767 131071 524287 2097151 n/a

Table 1.3 Expected no. equations in 2413 2...2=N for Blee −== |49...23

N
e 213 214 215 216 217 218 219 220 221 222 223 224

23 3 15 63 255 1023 4095 16383 65535 262143 1048575 4194303 n/a
24 1 7 31 127 511 2047 8191 32767 131071 524287 2097151 n/a
25 0 3 15 63 255 1023 4095 16383 65535 262143 1048575 4194303
26 0 1 7 31 127 511 2047 8191 32767 131071 524287 2097151
27 0 0 3 15 63 255 1023 4095 16383 65535 262143 1048575
28 0 0 1 7 31 127 511 2047 8191 32767 131071 524287
29 0 0 0 3 15 63 255 1023 4095 16383 65535 262143
30 0 0 0 1 7 31 127 511 2047 8191 32767 131071
31 0 0 0 0 3 15 63 255 1023 4095 16383 65535
32 0 0 0 0 1 7 31 127 511 2047 8191 32767
33 0 0 0 0 0 3 15 63 255 1023 4095 16383
34 0 0 0 0 0 1 7 31 127 511 2047 8191
35 0 0 0 0 0 0 3 15 63 255 1023 4095
36 0 0 0 0 0 0 1 7 31 127 511 2047
37 0 0 0 0 0 0 0 3 15 63 255 1023
38 0 0 0 0 0 0 0 1 7 31 127 511

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 135

N
e 213 214 215 216 217 218 219 220 221 222 223 224

39 0 0 0 0 0 0 0 0 3 15 63 255
40 0 0 0 0 0 0 0 0 1 7 31 127
41 0 0 0 0 0 0 0 0 0 3 15 63
42 0 0 0 0 0 0 0 0 0 1 7 31
43 0 0 0 0 0 0 0 0 0 0 3 15
44 0 0 0 0 0 0 0 0 0 0 1 7
45 0 0 0 0 0 0 0 0 0 0 0 3
46 0 0 0 0 0 0 0 0 0 0 0 1
47 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.4 Expected no. equations in 3025 2...2=N for Blee −== |49...23

N
e 225 226 227 228 229 230

23 n/a n/a n/a n/a n/a n/a
24 n/a n/a n/a n/a n/a n/a
25 n/a n/a n/a n/a n/a n/a
26 n/a n/a n/a n/a n/a n/a
27 4194303 n/a n/a n/a n/a n/a
28 2097151 n/a n/a n/a n/a n/a
29 1048575 4194303 n/a n/a n/a n/a
30 524287 2097151 n/a n/a n/a n/a
31 262143 1048575 4194303 n/a n/a n/a
32 131071 524287 2097151 n/a n/a n/a
33 65535 262143 1048575 4194303 n/a n/a
34 32767 131071 524287 2097151 n/a n/a
35 16383 65535 262143 1048575 4194303 n/a
36 8191 32767 131071 524287 2097151 n/a
37 4095 16383 65535 262143 1048575 4194303
38 2047 8191 32767 131071 524287 2097151
39 1023 4095 16383 65535 262143 1048575
40 511 2047 8191 32767 131071 524287
41 255 1023 4095 16383 65535 262143
42 127 511 2047 8191 32767 131071
43 63 255 1023 4095 16383 65535
44 31 127 511 2047 8191 32767
45 15 63 255 1023 4095 16383
46 7 31 127 511 2047 8191
47 3 15 63 255 1023 4095
48 1 7 31 127 511 2047
49 0 3 15 63 255 1023

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 136

Table 1.5 Expected no. equations in 3631 2...2=N for Blee −== |49...23

N
e 231 232 233 234 235 236

23 n/a n/a n/a n/a n/a n/a
24 n/a n/a n/a n/a n/a n/a
25 n/a n/a n/a n/a n/a n/a
26 n/a n/a n/a n/a n/a n/a
27 n/a n/a n/a n/a n/a n/a
28 n/a n/a n/a n/a n/a n/a
29 n/a n/a n/a n/a n/a n/a
30 n/a n/a n/a n/a n/a n/a
31 n/a n/a n/a n/a n/a n/a
32 n/a n/a n/a n/a n/a n/a
33 n/a n/a n/a n/a n/a n/a
34 n/a n/a n/a n/a n/a n/a
35 n/a n/a n/a n/a n/a n/a
36 n/a n/a n/a n/a n/a n/a
37 n/a n/a n/a n/a n/a n/a
38 n/a n/a n/a n/a n/a n/a
39 4194303 n/a n/a n/a n/a n/a
40 2097151 n/a n/a n/a n/a n/a
41 1048575 4194303 n/a n/a n/a n/a
42 524287 2097151 n/a n/a n/a n/a
43 262143 1048575 4194303 n/a n/a n/a
44 131071 524287 2097151 n/a n/a n/a
45 65535 262143 1048575 4194303 n/a n/a
46 32767 131071 524287 2097151 n/a n/a
47 16383 65535 262143 1048575 4194303 n/a
48 8191 32767 131071 524287 2097151 n/a
49 4095 16383 65535 262143 1048575 4194303

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 137

E AVERAGE NUMBER OF PARITY EQUATIONS REQUIRED BY
FAST CORRELATION ATTACK

Table 1.6 The number of required parity equations as a function of channel probability for B=2

p Equ p Equ p Equ
0.1 5 0.3 142 0.473 343589
0.11 7 0.31 196 0.474 458711
0.12 7 0.32 222 0.475 530267
0.13 10 0.33 222 0.476 612724
0.14 10 0.34 399 0.477 612724
0.15 10 0.35 399 0.478 708049
0.16 11 0.36 555 0.479 1092476
0.17 14 0.37 743 0.48 1262373
0.18 14 0.38 991 0.481 1458833
0.19 47 0.39 1193 0.482 1685983
0.2 47 0.4 1583 0.483 2252082
0.21 47 0.41 2869 0.484 2252082
0.22 62 0.42 4388
0.23 62 0.43 9125
0.24 62 0.44 16338
0.25 87 0.45 29248
0.26 87 0.46 70007
0.27 94 0.47 222970
0.28 142 0.471 222970
0.29 142 0.472 297406

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 138

F SELECTED DECIMATION FACTORS

Table 1.7 Decimation factors for LFSRs smaller than 64 bits

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

18 3 513 9
 3 3591 9
 3 4161 6
 7 12483 6
 19 29127 6
 73 37449 3
 87381 2

19 prime
20 3 1025 10
 5 3075 10
 5 11275 10
 11 31775 10
 31 95325 10
 41 33825 5
 69905 4
 209715 4
 349525 2

21 16513 7
 299593 3

22 3 2049 11
 23 47127 11
 89 182361 11
 683 1398101 2

23 47 None
 178481

24 3 4097 12
 3 12291 12
 5 20485 12
 7 28679 12
 13 36873 12
 17 53261 12
 241 61455 12
 86037 12
 143395 12
 159783 12
 184365 12
 258111 12
 372827 12
 430185 12
 479349 12

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 139

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

 1290555 12
 65793 8
 197379 8
 328965 8
 986895 8
 266305 6
 798915 6
 1864135 6
 1118481 4
 3355443 4
 2396745 3
 5592405 2

25 31 1082401 5
 601
 1801

26 8191 8193 13
 3 22369621 2
 2731

27 7 262657 9
 73 1838599 9
 262657 19173961 3
 134217727 1

28 3 16385 14
 43 49155 14
 127 704555 14
 5 2080895 14
 29 6242685 14
 113 2113665 7
 17895697 4
 53687091 4
 89478485 2

29 233 None
 1103
 2089

30 3 32769 15
 3 229383 15
 7 1015839 15
 11 4948119 15
 31 7110873 15
 151 1049601 10
 331 3148803 10
 11545611 10
 32537631 10
 97612893 10
 17043521 6
 51130563 6
 119304647 6
 34636833 5

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 140

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

 153391689 3
 357913941 2

31 prime
32 3 65537 16
 5 196611 16
 17 327685 16
 257 983055 16
 65537 1114129 16
 3342387 16
 5570645 16
 16711935 16
 16843009 8
 50529027 8
 84215045 8
 252645135 8
 286331153 4
 858993459 4
 1431655765 2

33 7 4196353 11
 23 96516119 11
 89 373475417 11
 599479 1227133513 3

34 3 131073 17
 43691
 131071

35 31 270549121 7
 71 1108378657 5
 127
 122921

36 3 262145 18
 3 786435 18
 3 1835015 18
 5 2359305 18
 7 4980755 18
 13 5505045 18
 19 7077915 18
 37 14942265 18
 73 16515135 18
 109 19136585 18
 34865285 18
 44826795 18
 57409755 18
 104595855 18
 133956095 18
 172229265 18
 313787565 18
 363595115 18
 401868285 18

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 141

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

 516687795 18
 1205604855 18
 16781313 12
 16781313 12
 50343939 12
 83906565 12
 117469191 12
 151031817 12
 218157069 12
 251719695 12
 352407573 12
 587345955 12
 654471207 12
 755159085 12
 1057222719 12
 1527099483 12
 1762037865 12
 1963413621 12
 134480385 9
 941362695 9
 1090785345 6

37 223 None
 616318177

38 3 524289 19
 174763
 524287

39 7 67117057 13
 79
 8191
 121369

40 3 1048577 20
 5 3145731 20
 5 5242885 20
 11 5242885 20
 31 11534347 20
 41 15728655 20
 17 26214425 20
 61681 32505887 20
 34603041 20
 42991657 20
 57671735 20
 78643275 20
 97517661 20
 128974971 20
 162529435 20
 173015205 20
 214958285 20
 288358675 20

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 142

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

 357564757 20
 472908227 20
 487588305 20
 644874855 20
 812647175 20
 865076025 20
 1072694271 20
 1332741367 20
 1418724681 20
 1787823785 20
 1074791425 10

41 13367 None
 164511353

42 3 2097153 21
 3 14680071 21
 7 102760497 21
 7 266338431 21
 43 706740561 21
 127 1864369017 21
 337 268451841 14
 5419 805355523 14

43 431 None
 9719
 2099863

44 3 4194305 22
 5 12582915 22
 23 96469015 22
 89 289407045 22
 397 373293145 22
 683 1119879435 22
 2113

45 7 1073774593 15
 31
 73
 151
 631
 23311

46 3 8388609 23
 47 394264623 23
 178481
 2796203

47 2351 None
 4513
 13264529

48 3 16777217 24
 3 50331651 24
 5 83886085 24
 7 117440519 24

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 143

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

 13 150994953 24
 17 218103821 24
 241 251658255 24
 97 285212689 24
 257 352321557 24
 673 587202595 24
 654311463 24
 754974765 24
 855638067 24
 1056964671 24
 1090519105 24
 1426063445 24
 1526726747 24
 1761607785 24
 1962934389 24
 1996488823 24

49 127 None below 2^31
 270549121

50 3 33554433 25
 11 1040187423 25
 31
 251
 601
 1801
 4051

51 7 None below 2^31
 103
 2143
 11119
 131071

52 3 67108865 26
 5 201326595 26
 53
 157
 1613
 2731
 8191

53 6361 None below 2^31
 69431
 20394401

54 3 134217729 27
 3 939524103 27
 3
 3
 7
 19
 73
 87211

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 144

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

 262657
55 23 None below 2^31
 31
 89
 881
 3191
 201961

56 3 268435457 28
 5 805306371 28
 17 1342177285 28
 29
 43
 113
 127
 15790321

57 7 None below 2^31
 32377
 524287
 1212847

58 3 536870913 29
 59
 233
 1103
 2089
 3033169

59 179951 None below 2^31

320343178033

7
60 3 1073741825 30
 3
 5
 5
 7
 11
 13
 31
 41
 61
 151
 331
 1321

61 prime

62 3 None below 2^31
 715827883
 2147483647

63 7 None below 2^31
 7

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

APPENDIX

Electrical, Electronic and Computer Engineering 145

LFSR SIZE
L

Factors of
12 −L

Decimation Factor
D

Decimated LFSR Size
*L

 73
 127
 337
 92737
 649657

64 3 None below 2^31
 5
 17
 257
 641
 65537
 6700417

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– BBrruuwweerr,, CC SS ((22000055))

	FRONT
	Title page
	Key words
	Summary
	Sleutelwoorde
	Opsomming
	Acknowledgements
	Table of contents

	CHAPTER 1 - INTRODUCTION
	Problem Statement
	Objective
	Contribution
	Correlation Attacks
	Fast Correlation Attack
	Decimation Attack

	Outline

	CHAPTER 2 - BACKGROUND ON STREAM CIPHERS
	Introducing the Stream Cipher
	Practical Running Key Generators
	The Linear Feedback Shift Register
	The Combining Function for the Running Key Generator

	Review of the Statistical Model

	CHAPTER 3 - CORRELATION ATTACKS
	Introduction
	Lempel-Ziv Complexity of a Binary Sequence
	Example:

	Binary Derivative with Runs Test
	Binary Derivative of Sequence
	Runs in a Binary Sequence
	Example

	Goodness-Of-Fit Run Test
	Algorithm D: �Goodness-Of-Fit Run Test

	Experimental Results
	Lempel-Ziv Attack
	Binary Derivative and Runs Attack

	Discussion

	CHAPTER 4 - FAST CORRELATION ATTACK
	Introduction
	Review of Coding Theory
	Convolutional Codes
	Polynomial Description of Convolutional Codes
	Matrix Description of Convolutional Codes

	Converting a LFSR to a Block Code
	Example of Converting a LFSR to a Block Code.

	Finding Parity Equations within a Block Code
	Example for Finding Parity Equations in a Block Code
	Verifying a Parity Equation
	Example

	The Expected Number of Parity Equations within a Block Code

	Creating a Convolutional Encoder using Parity Equations
	Example for Using Parity Equations to Create a Convolutional Encoder

	The Viterbi Decoding Algorithm
	The Trellis Diagram
	The Viterbi Algorithm
	Calculating Path Metrics
	Example
	Generating the Received Stream
	Example for Generating the Received Stream
	Applying the Viterbi Algorithm for fast Correlation Attacks

	Introducing the Algorithm Based on a Small Example
	Obtaining a Ciphertext Stream for Simulation Purposes
	Find Parity Equations and Generate Convolutional Encoders
	Creating the Received Sequence
	Using the Viterbi Algorithm for a Fast Correlation Attack

	Simulation Results and Discussion
	Summary of Topics to be Investigated Using Simulations
	Approach
	Results
	Results for Systems with BSC below
	The number of bits required for finding the correct initial condition
	The number of equations required for finding the correct initial condition

	Results for Systems with BSC above
	The number of bits required for finding the correct initial condition
	The number of equations required for finding the correct initial condition

	Discussion

	Deviations from Method Described by Johansson and Jönsson

	CHAPTER 5 - DECIMATION ATTACK
	Introduction
	Decimation of LFSR Sequences
	Example of Finding a Useful Decimation Factor d
	Determining the Feedback Polynomial of the Simulated LFSR
	Theoretical Discussion of Decimation Method
	Example

	Results from Investigation

	CHAPTER 6 - CONCLUSION
	Correlation Attacks
	Fast-Correlation Attacks
	Decimation Attack
	Future Work on Fast Correlation Attack

	REFERENCES
	APPENDIX

