
CHAPTER 2

BACKGROUND

Microstrip patch antennas can easily be made to conform to cylindrical surfaces to pro-

vide low profile omnidirectional arrays. A specified array pattern can also be obtained

by configuring the geometries of the elements, the array and the cylinder. For a design

procedure, the radiation patterns of the cylindrical patch elements and the array are

needed. The cavity model is well suited to analyse cylindrical patches etched on thin

substrates and to demonstrate the characteristics of these patch antennas. Two linear

polarisations with different radiation characteristics are available when utilising cylin-

drical patches. In the first part of this chapter, the characteristics of the radiated fields

for both polarisations will be discussed. The radiated fields will also be compared for

different substrates and cylinder radii.

Due to the cylindrical configuration of the microstrip patch array, the array is classi-

fied as a cylindrical array. An introduction to cylindrical arrays and equally spaced

cylindrical arrays, will be given. When the elements are equally spaced around the

circumference of the array, the elements can be excited by using phase-sequence exci-

tations. The orthogonal set of excitation vectors resulting from these phase-sequences

may be implemented in a pattern synthesis method to obtain an optimal set of excita-

tions for a required radiation pattern.

The objective in this thesis is to provide an omnidirectional radiation pattern with one

or more nulls at specified angle locations to suppress directional interferences. Differ-

ent techniques have been presented which perform null beam forming or null pattern

synthesis [41,43–55]. In null beam forming, additional nulls are introduced in the beam
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pattern, while null pattern synthesis provide omnidirectional coverage with directional

nulls. In this chapter, a discussion on various null synthesis techniques for omnidirec-

tional patterns will be given. These methods determine the element excitations which

provide the required array radiation pattern.

The element excitations are applied to the array by setting either the element currents

or voltages proportional to the excitations. When the mutual coupling between the

antenna elements in the array is not taken into account during the computation of the

excitations, the resulting radiation pattern may be distorted [53,72–74]. Not only does

the coupling deform the array imbedded radiation patterns of the individual elements,

but also modifies the active impedances at the element ports. Consequently, a technique

to compensate for the mutual coupling has to be implemented to obtain the desired

array radiation pattern. Different techniques to compensate for the mutual coupling

during the synthesis process, will also be discussed.

2.1 Characteristics of a cylindrical microstrip patch

Utilising the cavity model for the cylindrical patch antenna, the characteristics of the

patches can be studied. These antennas may be used in two linear polarisations with

different radiation characteristics, which will be discussed in the following paragraphs.

2.1.1 Cavity model for cylindrical microstrip patches

The geometry of a typical cylindrical microstrip patch antenna is shown in Figure 2.1.

2b and 2θ0 define the dimensions of the patch in the z and φ directions, respectively.

φ0 indicates the φ-position of the patch, while a and h define the radius of the cylinder

and height of the substrate, respectively. The position of the coaxial probe feed is

indicated by zf and φf .

One model for the cylindrical patch can be found by regarding the region underneath

the patch as a cavity bounded by four magnetic walls and two electric walls [5,7]. The

E-field in the cavity has only a ρ component, which is independent of ρ if the substrate

is thin (h ¿ a). When the coaxial probe feed is modeled by a current density, with
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Figure 2.1: Geometry of cylindrical microstrip patch antenna

an effective width w, the field in the cavity can be found by a summation over all the

cavity modes [13]:

Eρ = jωµ0

∑
m,n

Cmn cos

[
mπ

2θ0

(φ− φ0)

]
cos

[nπz

2b

]
, (2.1)

where m and n are the mode indexes. The modal amplitudes Cmn are defined as:

Cmn =
w

k2
eff − k2

mn

∆m∆n

4(a + h)bθ0

cos

[
mπφf

2θ0

]
cos

[nπzf

2b

]
sinc

[
mπw

4(a + h)θ0

]
, (2.2)

where

∆k =

{
1, k = 0

2, k 6= 0
, (2.3)
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kmn =

√(
mπ

2(a + h)θ0

)2

+
(nπ

2b

)2

, (2.4)

keff = k0

√
εr(1− jδeff ), (2.5)

sinc(x) = sin(x)/x, (2.6)

and

k0 = ω
√

µ0ε0. (2.7)

µ0 and ε0 are the permeability and permittivity of free space, respectively. The ra-

dial frequency and relative permittivity of the substrate are presented by ω and εr,

respectively. The effective loss tangent δeff represents all the losses in the cavity. The

radiation losses, the losses due to the finite conductivity of the conductor and the

losses in the substrate and through surface waves can be estimated using the method

described in [6]. The modal resonant frequency is given by:

fmn =
c

2
√

εr

√(
mπ

2(a + h)θ0

)2

+
(nπ

2b

)2

. (2.8)

When the dimensions 2(a + h)θ0 and 2b of the patch are fixed, Equation 2.8 indicates

that the resonant frequency fmn is independent of the curvature. This assumption is

only valid for thin substrates with h ¿ a [7].

2.1.2 Radiated fields

The four walls of the lossy cavity in the cavity model are considered as the radiating

apertures. Along each wall an equivalent magnetic current can be found from:

M̄ = Eρρ̂× n̂, (2.9)

where Eρ is given by Equation 2.1. These radiating walls are also referred to as radi-

ating slots. For these magnetic currents radiating in the vicinity of an infinitely long

cylindrical surface, the far zone radiation field may be obtained using the expressions
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presented in [98]. The resulting components of the far zone electric fields for each

cavity mode are given by [13]:

Eθ,mn(r, φ, θ) =
E0h

2π2 sin θ

e−jk0r

r

[
1− (−1)ne−j2k0b cos θ

]

·
∞∑

p=−∞

jp+1ejp(φ−φ0)I(θ0,m,−p)

H
(2)
p (k0a sin θ)

,

(2.10)

and

Eφ,mn(r, φ, θ) = −j
E0h

2π2a

e−jk0r

r
I(b, n,−k0 cos θ)

·
∞∑

p=−∞

jp+1ejp(φ−φ0)

H
(2) ′
p (k0a sin θ)

[
1− (−1)me−j2pθ0

]

− j
E0h

2π2a

e−jk0r

r

cos θ

k0 sin2 θ

[
1− (−1)ne−j2k0b cos θ

]

·
∞∑

p=−∞

jp+1pejp(φ−φ0)I(θ0,m,−p)

H
(2) ′
p (k0a sin θ)

,

(2.11)

where

I(b, n, u) =

0∫

−2b

cos
(nπz

2b

)
e−juzdz, (2.12)

and

I(θ0,m,−p) =

2θ0∫

0

cos

(
mπφ

2θ0

)
e−jpφdφ. (2.13)

The total radiated field is obtained by a summation over all the cavity modes m,n. The

infinite summations in Equations 2.10 and 2.11 are summations over the cylindrical

modes in which the fields have been expanded. The number of cylindrical modes needed

for convergence depends on the radius of the cylinder and the angle θ, but is usually

less than 2ka [11]. For θ-angles close to the cylinder axis, only a small number of terms

are required.
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2.1.3 Axial polarisation

The two slots of the cavity, oriented along the axis of the cylinder, are referred to as

axial slots, while the other two slots, oriented along the circumference of the cylinder,

are called circumferential slots. The patch antenna is axially polarised when fed sym-

metrically in φ, as shown in Figure 2.2. The dominant mode in the cavity will be the

mode m=0, n=1 (TM01). The two circumferential slots are excited equally in phase

and amplitude, while the two axial slots are excited 180◦ out of phase. The next two

higher order modes will be the TM20 and TM21 modes, with the TM20 mode mainly

contributing to the cross-polar radiation. The TM21 mode contributes weakly to both

the co-polar and cross-polar radiation. The TM01 mode itself gives rise to the Eθ co-

polar radiation with no cross-polar radiation in the symmetry planes. Since the other

higher modes are excited much weaker, most cross-polar radiation originate from the

TM20 mode. A small displacement in φf will cause the TM10 to be excited, which will

result in a higher cross-polarisation level [11]. Special care must be taken when feeding

square patches, since the TM01 and TM10 will have the same resonant frequency.

2.1.4 Circumferential polarisation

The TM10 mode is the dominant mode for a circumferentially polarised patch, since it

is fed symmetrically in z, as shown in Figure 2.3. The Eφ co-polar radiation is given

by the two axial slots excited in phase. The two higher order modes contributing the

most to the radiation are the TM02 and TM12 modes, with the cross-polarisation level

mainly determined by the radiation from the TM02 mode.

2.1.5 Characteristics of the radiation patterns

The radiation pattern of a cylindrical patch depends on the geometries of the cylin-

der (a) and the patch (θ0,b), as well as the characteristics of the substrate (h,εr). A

comparison of the radiation patterns for patches with different substrates is shown in

Figures 2.4 to 2.7. The radiation patterns were determined using the cavity model

(Equations 2.10 and 2.11) at 1.8 GHz.

An air substrate was used for the first patch, with dimensions L=73.6 mm and W=76 mm.
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Figure 2.2: Geometry of an axial polarised patch antenna

The dimensions for the second patch were L=38.3 mm and W=42 mm and the sub-

strate had an εr of 4.4. For both patches, h was 1.6 mm and φ0 = 90◦−θ0. A cylinder,

with a=131 mm, was used and the radiation patterns of the two patches were com-

pared for both polarisations. The radiated relative power density in the E-plane and

H-plane, for the patches used in the circumferential polarisation, is shown Figures 2.4

and 2.5, respectively. The patch, with an air substrate, radiates a co-polar component

(Pφ) with a higher directivity and a lower back lobe level in both the E-plane and

H-plane. The cross-polarisation level in the H-plane is also higher when using the air

substrate.

For the two patches used in the axial polarisation, Figures 2.6 and 2.7 show the ra-

diated relative power density in the H-plane and E-plane, respectively. The co-polar

component (Pθ) of the air substrate patch show again a higher directivity and lower

back lobe level in both principal planes. The cross-polar component in the H-plane is

also higher for this patch.
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Figure 2.3: Geometry of a circumferentially polarised patch antenna

When comparing Figures 2.4 and 2.6, it is seen that the back lobe level of the axially

polarised patches is much less (below -40 dB) than the back lobe level of the circum-

ferentially polarised patches. Depending on the permittivity of the substrate, the main

lobe of an axial polarised patch is either broader or narrower than the main lobe of

a circumferentially polarised patch. With εr = 1, the main lobe is broader for the

circumferentially polarised patch, and for the case where εr = 4.4, the axial polarised

patch has the broader main beam.

In Figure 2.7 it is observed that the level of radiation increases near the axis of the

cylinder. In the cavity model, the axial slots are not radiating in this cut (φ = 90◦) of

the radiation pattern and therefore these high levels of radiation are not suppressed. In

reality, the axial slots do radiate close to the cylinder axis to give the radiation pattern

a finite value. In the cavity model, it is also assumed that the cylinder has an infinite

length. For the radiation measurements to be comparable to the simulations using this

model, the cylinder has to be at least a few wavelengths long.
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The cylindrical patch with the air substrate was also simulated on a cylinder with a

different radius (a=265 mm) to show the effect of curvature. Figures 2.8 and 2.9 com-

pare the relative power density patterns of the circumferential polarisation for the two

different radii in the E-plane and H-plane, respectively. The back lobe level decreases

when using the larger radius, while the main lobe is only slightly effected in both prin-

ciple planes. The influence of the curvature is less when using the cylindrical patch in

the axial polarisation. The H-plane and E-plane relative power density patterns for the

axial polarisation are compared for the two radii in Figures 2.10 and 2.11, respectively.

A small decrease in the back lobe level in the H-plane is observed, while the effect of

the decreased curvature on the main lobe is insignificant in both principle planes. The

cross-polarisation levels for both polarisations appear to be almost unaffected by the

decrease in curvature.

2.2 Cylindrical array pattern

The geometry of a typical cylindrical array can be seen in Figure 2.12. Each array

element is placed on the circumference of the array at (xn, yn), where n = 1 . . . N . The

contribution of the n-th element to the far-field in direction (φ, θ) can be written as:

e (r, φ, θ) = En(r, φ, θ)ejk0(xn sin θ cos φ+yn sin θ sin φ), (2.14)

using the origin of the coordinate system as the reference point. En(r, φ, θ) represent

the co-polarised far-zone electric field of the n-th element with respect to its phase

reference. The radiated electric field of the elements is influenced by the structure on

which it is mounted, e.g. a conducting cylinder or mast, and must therefore be included

when computing element electric fields. The total co-polarised far-zone electric field

ETOT (r, φ, θ) of the array is found by superposition of the element electric fields:

ETOT (r, φ, θ) =
N∑

n=1

anEn(r, φ, θ)ejk0(xn sin θ cos φ+yn sin θ sin φ), (2.15)

where an denotes the relative complex excitation (amplitude as well as phase) of the

n-th element.
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Figure 2.4: Radiated relative power density at θ = 90◦ (E-plane) for circumferentially

polarised patches with εr = 1 and εr = 4.4
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Figure 2.5: Radiated relative power density at φ = 90◦ (H-plane) for circumferentially

polarised patches with εr = 1 and εr = 4.4
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Figure 2.6: Radiated relative power density at θ = 90◦ (H-plane) for axial polarised

patches with εr = 1 and εr = 4.4
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Figure 2.7: Radiated relative power density at φ = 90◦ (E-plane) for axial polarised

patches with εr = 1 and εr = 4.4
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Figure 2.8: Radiated relative power density at θ = 90◦ (E-plane) for circumferentially

polarised patches mounted on cylinders with a=13.1 cm and a=26.5 cm, respectively.
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Figure 2.9: Radiated relative power density at φ = 90◦ (H-plane) for circumferentially

polarised patches mounted on cylinders with a=13.1 cm and a=26.5 cm, respectively.
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Figure 2.10: Radiated relative power density at θ = 90◦ (H-plane) for axial polarised

patches mounted on cylinders with a=13.1 cm and a=26.5 cm, respectively.
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Figure 2.11: Radiated relative power density at φ = 90◦ (E-plane) for axial polarised

patches mounted on cylinders with a=13.1 cm and a=26.5 cm, respectively.
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Figure 2.12: Geometry of a cylindrical array

The far-field radiation pattern of the array may then be written as:

F (φ, θ) =
N∑

n=1

anEn(φ, θ)ejk0(xn sin θ cos φ+yn sin θ sin φ), (2.16)

with En(φ, θ) being the far-field radiation pattern of the n-th element.

When only the cross-section of the radiation pattern in the plane of the cylindrical

array (θ = 90◦) is considered, Equation 2.16 reduces to:

F (φ) =
N∑

n=1

anEn(φ)ejk0(xn cos φ+yn sin φ), (2.17)

where En(φ) is the n-th element’s radiation pattern in the θ = 90◦ plane. The array

radiation pattern may be evaluated in vector form [57] :

F = BA. (2.18)

The radiation pattern vector F is given as:

F = [f1, f2, . . . , fq, . . . , fQ]T , (2.19)
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where fq is the value of the radiation pattern in the φq-direction for a total number of

Q field points. A is the excitation vector:

A = [a1, a2, . . . , an, . . . , aN ]T , (2.20)

while B is defined as the radiation matrix. The bnq-th element of B is the contribution

of the n-th antenna element to the radiation pattern in the q-th direction:

bnq = anEn(φq)e
jk0(xn cos φq+yn sin φq). (2.21)

When all the antenna elements have the same radiation pattern E(φ), polarisation

properties and pointing direction, the array radiation pattern may be written as:

F (φ) = E(φ) ·
[

N∑
n=1

ane
jk0(xn cos φ+yn sin φ)

]
. (2.22)

From this radiation pattern an array factor can be extracted:

AF (φ) =
N∑

n=1

anejk0(xn cos φ+yn sin φ), (2.23)

which is the radiation pattern of an array of isotropic point sources located at the

phase centres of the original elements and with excitations equal to the original element

excitations. Isotropic point sources are fictitious antenna elements that radiate an equal

amount of energy in all directions.

2.2.1 Equally spaced cylindrical arrays

The geometry of an equally spaced cylindrical array in the xy-plane (θ = 90◦) is shown

in Figure 2.13. The n-th is located at the angle:

φn =
2πn

N
. (2.24)

The far-field array factor for an equally spaced array with elements identical in radiation

pattern, is given by [41]:

AF (φ) =
N∑

n=1

anejk0R cos(φ−φn)

=
N∑

n=1

anejk0R cos(φ− 2πn
N ),

(2.25)
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Figure 2.13: Geometry of an equally spaced cylindrical array in the xy-plane

where the radius of the cylindrical array is equal to R.

These equally spaced arrays are very suitable to form omnidirectional radiation pat-

terns. It is evident from symmetry that any constant-amplitude excitation with an

integral number of closed cycles of phase variations around the array will produce an

omnidirectional pattern. Such an excitation is called a phase-sequence excitation [41].

There will, however, always be a ripple in the array radiation pattern which will de-

pend on the distances between the antenna elements and on the element radiation

patterns [42] . The m-th sequence excitation is one in which the total phase change

around the array is m2π, with m an integer. For m = 0, all the elements are fed in

phase, which also gives an omnidirectional array pattern. Consequently, the excitation

of the n-th element for the m-th sequence excitation is:

anm = ej 2πmn
N . (2.26)

The element excitations for a sequence excitation of order m + N will be the same as

for the m-th sequence excitation, since sine and cosine functions are periodical with

2π. Using Equation 2.26 it can also be shown that the element excitations of the (m+

p)-th sequence excitation are orthogonal to those of the m-th sequence excitation, with

p 6= N . The sequence excitations of orders 0 to N−1 thus form a complete orthogonal

base for the space of element excitations. Every possible array pattern can therefore be
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realised by the superposition of N sequence excitations. The transformations between

the vectors of element excitations and sequence excitations are given by:

an =
N−1∑
m=0

smej 2πmn
N , (2.27)

and

sm =
1

N

N−1∑
n=0

ane−j 2πmn
N . (2.28)

Equation 2.27 and Equation 2.28 can be seen as a discrete Fourier transform (DFT) and

an inverse discrete Fourier transform (IDFT), respectively. Subsequently, the far-field

array factor of the m-th sequence excitation can be expressed as:

AFm(φ) =
N−1∑
n=0

smej 2πmn
N ejk0R cos(φ− 2πn

N ). (2.29)

Since the element excitations are superpositions of N sequence excitations, the array

factor becomes:

AF (φ) =
N−1∑
m=0

N−1∑
n=0

smej 2πmn
N ejk0R cos(φ− 2πn

N ). (2.30)

When the resulting array pattern has a constant amplitude and linear phase, it is called

a phase mode [44]. The order of the phase mode is determined by the number of phase

variations over 2π. A phase mode of order m is:

pm(φ) = ejmφ. (2.31)

The zero order phase mode has constant amplitude and phase, while the negative order

phase modes indicate a reverse variation of phase change with angle. For small inter-

element spacings, the array can be approximated by a continuous source of radiation

and the array factor can then be expressed as [43]:

AF (φ) = N

m=mmax∑
m=−mmax

jmsmJm(k0R)ejmφ, (2.32)

where Jm(x) is the Bessel function of the first kind of order m and mmax < N/2. This

array factor is a superposition of N scaled phase modes with −N/2 < m < N/2.

Consequently, a pattern caused by a sequence excitation of order m is a good approx-

imation for a phase mode of the same order if the array radius is small.
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2.3 Null synthesis techniques

Various null synthesis techniques for omnidirectional patterns have been presented

[41, 43–55]. These techniques utilise different characteristics of a cylindrical array to

obtain a null at the desired angle location. Some use the sequence excitations, phase

modes or the orthogonal base of realisable array patterns, while others utilise pattern

search techniques. A short overview of these techniques will be given after defining

some null synthesis parameters.

2.3.1 Definitions of parameters in null synthesis

The definitions describing the omnidirectional radiation pattern with a null, differ from

conventional beam forming parameters such as beam width and side lobe levels. Illus-

trations of the definitions used to characterise the null pattern, are given in Figure 2.14.

The gain ripple (in dB) is defined as the ratio between the maximum and minimum

level in the omniregion. The angular distance between the two points, 10 dB below

the maximum, is defined as the null width. The null depth is given by the ratio of

the radiation intensity in the direction of the null and the maximum, which is also an

indication of the suppression level of the interference. For null depths smaller than 10

dB, another appropriate level may be defined at which the null width is measured. The

definition of gain ripple is only valid if the value of the ripple is below this null width

definition level.

2.3.2 Superposition of sequence excitations

The superposition of two sequence excitations to produce a null in an omnidirectional

radiation pattern, was presented by Davies and Rizk [44]. A zero crossing null, where

the radiation pattern show an abrupt phase reversal across the angle position of the

null, was produced. The two phase modes, which had the same amplitude, but were

180◦ out of phase in the direction of the null, were utilised. The difference in the orders

of the two modes had to be exactly one to avoid any other abrupt phase reversals. The

authors consequently employed the zero and first order sequence excitations. The
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Figure 2.14: Definitions of parameters used to characterise null forming

excitations of the n-th element was:

an = ej2π n
N + Aejφp . (2.33)

The levels of excitation of the two modes were made equal by means of an attenuator

A, and the direction of the null was controlled by a phase shifter φp. Acceptable null

depths are obtainable if the number of elements and the radius of the array is kept

small. If the inter-element spacing is not kept small, the two modes do not exactly

cancel each other. This will lead to finite null depths and errors in the direction of

the null. This technique produced very wide nulls as the amplitude of the radiation

pattern falls monotonically from the maximum towards the null.

As an extension of this technique, the above authors also proposed the superposition

of a third sequence excitation to reduce the null width. A dipole type or figure-of-eight

pattern was superposed to the original pattern. This type of pattern was produced by

the sequence excitations of orders 1 and -1 and has two zero crossing nulls. One of the

two nulls was made to coincide with the original null. The complete excitation vector
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was given by:

an = Aejφp + (B + 1)ej2π n
N + Be(j2φp−j2π n

N ). (2.34)

The decrease in null width is obtained at the expense of higher gain ripple. The

attenuator B controls the null width, but also has to be fixed at a suitable value to

achieve an acceptable compromise between the null width and gain ripple.

Lim and Davies [41] proposed the use of two phase modes with a higher difference

in order. This would have decreased the null width, but also would have lead to

additional nulls in the radiation pattern. To avoid the additional nulls, the zero order

mode was replaced with a beam pattern, which had a main beam of constant phase

in the direction of the null. The beam pattern with a constant phase beam in the

direction φp was obtained for a cylindrical array of omnidirectional elements by using

the element excitations:

an,beam = e−jk0R cos(φp−2π n
N ). (2.35)

A sequence excitation, which was multiplied with a complex factor A, was added to

the excitation of the constant phase beam to obtain a null in the direction φp. The

factor A had to satisfy the following condition:

A · Fm(φp) + Fbeam(φp) = 0, (2.36)

where Fm(φp) was the far-field radiation pattern of the sequence excitation of order m.

The complex factor was found to be:

A = − N

Fm(φp)
, (2.37)

and the resulting element excitations were:

an = e−jk0R cos(φp−2π n
N ) − N

Fm(φp)
ej 2πmn

N . (2.38)

The sequence excitation in Equation 2.38 approximates a phase mode of the same

order (m). Theoretically, an infinitely deep null with low gain ripple can be achieved.

The gain ripple is determined by the interference of the phase mode with the sidelobes

of the phase constant beam. The amount of interference is influenced by the number

of elements, the array radius and the order of the phase mode. For a small number of
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elements in the array, the order of the phase mode is usually low (zero or one). Larger

arrays require a higher order phase mode to decrease the null width, which may result

in an increased gain ripple. Therefore, the optimal order of the phase mode to be used,

is determined by the radius of the array, the number of elements and the required ripple

and null width.

2.3.3 Fourier approximation of an ideal pattern

The phase modes, which can be approximated by sequence excitations, form an orthog-

onal base for the array factor. A pattern can thus be synthesised by transforming the

desired pattern into a number of phase modes with a Fourier transformation and then

synthesising the phase modes with the sequence excitations. A Fourier transformation

will however result in an infinite number of phase modes, but only the realisable orders

of phase modes may be used to synthesise the pattern (m ≤ N/2).

Lim [43] proposed the approximation of an ideal zero pattern using this method of

approximation. For a minimum null width, an abrupt phase reversal in the pattern

was needed in the direction of the null. To avoid the occurrence of a second null, the

phase in the omniregion also had to change progressively at half the rate of the change

in azimuth angle. An idealised pattern that satisfied these requirements was:

F0(φ) = ej
2π−φ+φp

2 ,

φp ≤ φ ≤ φp + 2π.
(2.39)

The phase of the pattern changes linearly from 0 (at φ = φp) to π (at φ = φp + 2π)

and has an abrupt phase reversal at φp, as shown in Figure 2.15 for phip = 180◦.

The approximation of the amplitude pattern of F0(φ) will result in a null of finite

depth, because the realisable pattern is limited in bandwidth and the derivations, with

respect to φ, also have to be smooth. Using the standard method for calculating Fourier

coefficients, the set of phase modes can be determined as:

pm =
1

2π

φp+2π∫

φp

F0 (φ) e−jmφdφ

=
e−jmφp

π
(
m− 1

2

) .

(2.40)
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Figure 2.15: Phase of the idealised null pattern

For cylindrical arrays with identical elements and small inter-element spacings, the

resulting sequence excitations will be:

sm =
e−jm(π

2
+φp)

πN
(
m− 1

2

)
Jm(k0R)

, (2.41)

where Jm(x) is the Bessel function of the first kind of order m. The element excitations

are obtained from the DFT relation in Equation 2.27.

The Fourier approximation will yield a pattern with a relatively narrow null, but with a

gain ripple of about 2 dB. The realisable null depths are also low when a small number

of elements are used. For small inter-element spacings (< λ0/4) and radii, where the

Bessel function Jm(k0R) is not close to zero, the results appear to be insensitive to the

array radius. For certain array radii, it will not be possible to create all the phase modes

in the far field, if one or more Bessel functions Jm(k0R) are very small or zero [43].

For the sequence excitations, where Jm(k0R) is very small, the phase mode distortions

in the far field pattern of these excitations will be much larger in amplitude than the

wanted phase modes. The corresponding sequence excitations will be very large and
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the distortion will dominate the far field, resulting in a large error of the approximation.

Since the approximation is a superposition of phase modes, it will also lead to errors

when the far field patterns, caused by the sequence excitations, are not exactly phase

modes.

2.3.4 Orthogonal projection method

Instead of using the phase modes, the patterns gm, caused by the sequence excitations,

can be used as basis functions. These patterns are also mutually orthogonal and span

the whole space of possible array patterns. Unlike the phase modes in the Fourier

approximation, they can be synthesised exactly. The approximation will thus be better,

especially when using larger inter-element spacings. Vescovo [50] applied this synthesis

procedure to cylindrical arrays to synthesise beam patterns.

Every realisable array pattern, F (φ), of a cylindrical array with equally spaced antenna

elements, can be written as the result of the sequence excitations sm:

F (φ) =
N−1∑
m=0

smgm(φ), (2.42)

where

gm(φ) =
N−1∑
n=0

ej2π mn
N En(φ). (2.43)

For a cylindrical array of equally spaced elements, the gm(φ) of two different values of

m are orthogonal to each other. A complete orthogonal base for the space of realis-

able array patterns is thus given by gm(φ). For a cylindrical array of omnidirectional

elements gm(φ) is given by:

gm(φ) =
N−1∑
n=0

ej2π mn
N ejk0R cos(φ− 2πn

N ). (2.44)

The unconstrained optimal array pattern Foptim(φ) is the orthogonal projection of the

idealised pattern F0(φ) onto the space of realisable array patterns, when Foptim(φ) gives

the minimum squared distance between F (φ) and F0(φ). The squared distance ρ2(A)

is defined as:

ρ2(A) =

2π∫

0

|F (φ;A)− F0(φ)|2 dφ, (2.45)
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where F (φ;A) denotes the array radiation pattern for the excitation vector A. The

unconstrained optimum sequence excitations are thus obtained through the orthogonal

projection [50]:

soptim m =
〈F0(φ), gm(φ)〉
‖gm(φ)‖2 , (2.46)

with the scalar product given by:

〈f, g〉 =

2π∫

0

f(φ)g(φ)dφ, (2.47)

and the norm obtained from:

‖f‖ =
√
〈f, f〉. (2.48)

The idealised radiation pattern F0(φ) of [43] in Equation 2.39, may be used in the

projection method to form a null in an otherwise omnidirectional array pattern. This

null synthesis technique was proposed by Abele et al [53, 54]. The pattern F0(φ) is

projected onto the space of realisable array patterns of a cylindrical array of omnidi-

rectional elements, to obtain the sequence excitation. The element excitations are then

obtained through the DFT relation.

When the inter-element spacing is small (¿ λ0/2), the base functions gm(φ) are good

approximations of the phase modes of the pattern and consequently the results of the

projection method and the Fourier approximation will be comparable. The projection

method also takes into account the distortion of the phase modes and will therefore

give better results than the Fourier approximation for larger inter-element spacings.

Figures 2.16 and 2.17 respectively compare the amplitude and phase of the radiation

patterns for a single null, using the Fourier approximation and orthogonal projection

method. An array with 16 elements and a radius of λ0 was used to form an infinitely

deep null at 180◦. Using this small inter-element spacing, the two methods yield similar

results in both amplitude and phase. The amplitude and phase of the radiation patterns

for the same null, using a larger inter-element spacing (R = 1.385λ0), are shown in

Figures 2.18 and 2.19, respectively. For this larger inter-element spacing, the orthogonal

projection method produces a deeper null with less gain ripple. A smaller phase ripple

is also observed in the phase pattern of the orthogonal projection method.

The gain ripple may be reduced by using window functions [53, 54]. The spectral

components of the array pattern, which have to be multiplied with the window function,
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are the phase modes. Since the sequence excitations and phase modes are related

through a multiplication of a constant factor, the window function may be applied to

the sequence excitations, instead of the phase modes.

Abele [54] proposed the application of a Hamming window of length N to the sequence

excitations:

WHM(k) = 0.54 + 0.46cos

(
2π

k

N

)
. (2.49)

The idealised pattern has a constant phase slope of a 1
2

and therefore its Fourier compo-

nents are symmetric to k = 1
2
. This symmetry may not be disturbed by the application

of the window in order to maintain the linear phase change. The best results are thus

obtained if the window is shifted and the m-th sequence excitation coefficient is mul-

tiplied by W (m− 1
2
). The window function may be applied to the sequence excitation

coefficients of both the Fourier approximation and the orthogonal projection. The rip-

ple is decreased using the window function, while the null width is increased. The null

depth may also be significantly increased. As an example, an array with N = 16 and

R = λ0 was used to form a single null at 180◦. The effects of the Hamming window

on the amplitude and phase of the radiation patterns resulting from the orthogonal

projection method, are shown in Figures 2.20 and 2.21, respectively. It is observed

that although a deeper null with less ripple is formed, the null width is increased.

The idealised pattern can be extended to contain multiple phase reversals to achieve

more than one null in an otherwise omnidirectional pattern. Abele proposed idealised

patterns for an odd and even numbers of nulls. The phase reversals for an even number

of nulls sum up to a total phase change of zero, while the phase reversals for an odd

number of nulls give an overall phase change of ±180◦. Hence, a linear phase change

has to be introduced to a pattern with an odd number of nulls, while no phase is needed

for an even number of nulls.

The null widths of the multiple nulls do not differ much from the null width of a single

null if the angular spacing between the nulls are kept large enough. On the other hand,

the ripple changes significantly as the ripple caused by the abrupt phase reversals are

superimposed. The angular distances between the nulls determine if there will be an

increase or decrease in the ripple between the nulls. The angular distance between two

nulls may not be too small, otherwise one null will be formed between the nulls.
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Figure 2.16: Comparison of the amplitude radiation patterns for a single null using

the Fourier approximation and orthogonal projection (N=16 and R = λ0)
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Figure 2.17: Comparison of the phase patterns for a single null using the Fourier

approximation and orthogonal projection (N=16 and R = λ0)
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Figure 2.18: Comparison of the amplitude radiation patterns for a single null using

the Fourier approximation and orthogonal projection (N=16 and R = 1.385λ0)
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Figure 2.19: Comparison of the phase patterns for a single null using the Fourier

approximation and orthogonal projection (N=16 and R = 1.385λ0)
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Figure 2.20: Comparison of the amplitude radiation patterns for a single null using

the orthogonal projection method with and without a Hamming window (N=16 and

R = λ0)
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Figure 2.21: Comparison of the phase patterns for a single null using the orthogonal

projection method with and without a Hamming window (N=16 and R = λ0)
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An omnidirectional pattern with two nulls at 90◦ and 270◦, respectively, were simulated

using the orthogonal projection method with a Hamming window. Figures 2.22 and

2.23 show the resulting amplitude and phase of the radiation pattern, respectively. An

additional null was introduced at 180◦ and the amplitude and phase of the radiation

pattern with three nulls are shown in Figures 2.24 and 2.25.

The difference in the phase patterns for odd and even nulls can be seen when Fig-

ures 2.23 and 2.25 are compared. A linear phase change is required for the introduction

of the three nulls, whereas introduction of two nulls require no phase change. When

comparing Figures 2.22 and 2.24, the effect of the spacing between the nulls on the

null depths can also be seen. The null depths changed as the null spacing decreased

from 180◦ to 90◦.

Phase reversals of±180◦ do not guarantee infinitely deep nulls. In general, the depths of

the realised nulls depend on the array radius, the number of elements and the angular

distance between the nulls. Abele [54] proposed the use of a variable phase step to

provide control over the realised null depth. For a phase step of angle α, the absolute

value of the average of both sides of the step will be:

∣∣∣F̂
∣∣∣ =

|1 + ejα|
2

= cos
α

2
.

(2.50)

If the desired null depth is expressed in dB relative to the maximum of the pattern,

the required phase difference to achieve this null depth will be:

α = 2arccos
(
10F̂dB/20

)
. (2.51)

The overall phase slope for a single null has to be α/2π to keep the pattern smooth in

the omni-region. To introduce multiple nulls with specified null depths in the idealised

pattern, the overall phase difference, after introducing the appropriate phase steps, has

to be cancelled by a linear phase change. Therefore, the required phase slope of the

idealised pattern for a number (L) of step angles αl will be:

ν = − 1

2π

L∑

l=1

∆lαl, (2.52)

where ∆l is the step direction of the phase step which may be equal to -1 or 1.
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Figure 2.22: Amplitude radiation pattern for two nulls using the orthogonal projec-

tion method with a Hamming window (N=16 and R = λ0)
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Figure 2.23: Phase pattern for two nulls using the orthogonal projection method with

a Hamming window (N=16 and R = λ0)
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Figure 2.24: Amplitude radiation pattern for three nulls using the orthogonal pro-

jection method with a Hamming window (N=16 and R = λ0)
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Figure 2.25: Phase pattern for three nulls using the orthogonal projection method

with a Hamming window (N=16 and R = λ0)
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The directions of the phase steps are chosen in such a way as to minimise the sum

of the phase differences and consequently minimise the required phase slope. If the

previously mentioned windowing is required, the window displacement must be equal

to ν. This method provides control over the null depths with acceptable accuracy,

if the null depths are kept below 20 dB. Again the accuracy depends on the array

configuration as well as the angular spacing between the nulls. The specified angular

position of a null also has an influence on the null depth accuracy.

As an example, three nulls of depths 10 dB, 15 dB and 25 dB were required at 60◦,

180◦ and 270◦, respectively. The orthogonal projection, with a Hamming window, was

utilised to form the desired nulls in the omnidirectional pattern of a 16 element array

with a radius of λ0. Figures 2.26 and 2.27 show the resulting amplitude and phase

of the realised radiation pattern. The realised null depths are 9.9 dB, 15.1 dB and

24.1 dB at 60◦, 180◦ and 270◦, respectively. Each null depth requires a different phase

step, as seen in the phase pattern in Figure 2.27. As the required null depth decreases,

the null is also broadened.

2.3.5 Pattern synthesis with null constraints

When the radiation pattern is already given, Vescovo [50,51,55] proposed a method to

introduce nulls into the pattern subsequently. The method was applied to reduce the

sidelobe level by forming additional nulls near the main beam in a conventional beam

pattern.

A radiation pattern, which does not necessarily satisfy the null constraint, is given by

the N excitations a0
n. The L null constraints, at the angles φl, are given by F (φl) = 0

for l = 1 . . . L− 1.

The N excitations that minimise the Euclidean distance between the radiation pattern

of a0
n and the pattern that satisfies the null constraint, are defined as a′n. The squared

Euclidean distance between the two patterns given by the sequence excitations s0
m and

s′m, is defined as:

η2 =
N−1∑

k=0

∣∣b0
m − b′m

∣∣2

=
∥∥b0 − b′

∥∥2
,

(2.53)
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Figure 2.26: Amplitude radiation pattern of three nulls of required depths 10 dB,

15 dB and 25 dB at 60◦,180◦ and 270◦, respectively. (N=16 and R = λ0)
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Figure 2.27: Phase pattern for three nulls of required depths 10 dB, 15 dB and 25 dB

at 60◦,180◦ and 270◦, respectively. (N=16 and R = λ0)
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where

b0
m = ‖gm‖s0

m (2.54)

and

b′m = ‖gm‖s′m. (2.55)

Subsequently, the null constraints can be expressed as Bb′ = 0, where B = [Blm] and

Blm = gm(φl)/‖gm‖ for l = 0 . . . L− 1 and m = 0 . . . N − 1. The problem can therefore

be described as minimising the Euclidian distance ‖b0 − b′‖2 under the constraint

Bb′ = 0. The optimal vector b′ is given by [51]:

b′ = [IN −BH(BBH)−1B]b0, (2.56)

where IN is a N ×N identity matrix and BH denotes the complex conjugate transpose

of B.

To obtain an omnidirectional pattern with nulls, the excitation vector a0 must be

chosen in such a way as to yield an acceptable a′. For the lowest possible ripple, a0

will be an excitation vector, which results in an omnidirectional pattern. The method

produces infinitely deep nulls exactly at the desired angles, but with a gain ripple which

can be as high as 20 dB.

Vescovo also proposed this technique to introduce nulls in the desired pattern of an arc

array of directional elements [56]. Each directional element had a theoretical radiation

pattern of:

En(φ) = 1 + cos(φ− φn). (2.57)

Since the element radiation patterns point in different directions, the element pattern

can not be factorised out of the array pattern to obtain an array factor [4,57]. Therefore,

the orthogonal base defined in Equation 2.43 is used to obtain the desired pattern

through the projection method. Additional nulls are formed afterwards by using null

constraints.

2.3.6 Constrained minimisation with Lagrange multipliers

In this method, the distance between an idealised pattern and the realised pattern is

also minimised [47]. As opposed to other methods, the idealised pattern has a constant

phase and therefore the phase of the realised pattern will be almost constant. This
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will result in an tangential null, where the phase is constant within the null and the

resulting null width will consequently not be optimal. The squared error function:

ε2 =

π∫

−π

|AF (φ)− 1| dφ, (2.58)

is minimised, subject to AF (φp) = 0, where φp is the angle position of the null. The

squared error is minimised using the method of Lagrange multipliers, which result in

the vector of element excitations:

a = Q−1

[
p− dH(φp)Q

−1p

d(φp)Q−1d(φp)
d(φp)

]
, (2.59)

where Q is an N ×N matrix with elements:

Qij = J0

(
2k0Rsin

( π

N
|i− j|

))
. (2.60)

The N -dimensional vectors d(φ) and p have elements:

di(φ) = ejk0Rcos(φ− 2π
N ), (2.61)

and

pi(φ) = J0(k0R), (2.62)

respectively.

The realised pattern of this method has an infinitely deep null exactly at the desired

location of the null. The tangential null is wider than the zero-crossing null and show

a gain ripple between 2.5 and 3.5 dB. The constant idealised phase appears not to be

suitable for the synthesis of an omnidirectional pattern with a narrow null and low gain

ripple.

2.3.7 Constrained optimisation techniques

The methods, which have been discussed in the previous sections, all provide an om-

nidirectional pattern with nulls, but with different null depths, null widths and gain

ripples. These methods do not have the ability to constrain a certain property of the

array pattern.

Department of Electrical, Electronic and Computer Engineering 42

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  NNiieemmaanndd,,  PP    ((22000055))  



Chapter 2 Background

Constrained optimisation allows the prescription of some of the characteristics of the

array pattern, while optimising the others. The null width, for example, may be

optimised for a given gain ripple and null depth, or the gain ripple may be minimised,

while specifying the null width and null depth values. An optimisation technique

may also allow the definition of any criteria relevant to the specified application e.g.

allowable excitation amplitudes and phases.

These optimisation techniques may utilise methods such as the least squares optimisa-

tion method [45], the minimax and linear programming methods [48], the Hooke and

Jeeves algorithm [45] and the simulated annealing method [52]. Prasad [45] applied the

least squares optimisation method to circular and arc arrays to form a beam pattern

with a specified beamwidth. Additional nulls were also placed in the sidelobe region by

using null constraints while minimising the mean square difference between the desired

pattern and the optimum pattern. The Hook and Jeeves algorithm was also used to

perform an iterative search to find the optimum excitation vector while satisfying the

null constraints. During the search, the sidelobe level was minimised.

For linear arrays, Mismar [48] introduced a method to locate nulls in the prescribed

directions while keeping the main beam towards the desired signal. A minimax approx-

imation technique is used to search for the maximum point in the constraint region

to control the sidelobe level directly, while at the same time control the main beam

characteristics as required. Ares et al. [52] used a simulated annealing technique to

produce beam patterns for a circular arc array on a cylinder. A cost function, which

could include terms to control the radiation pattern, was minimised. Terms which

placed constraints on the excitations, could also be included in the cost function.

Since the desired pattern is a function of the excitation vector, the search is executed

in a 2N -dimensional space. A high computational expense is thus encountered. The

choice of the starting values also plays a very important roll in the success of these

pattern search techniques. Choosing the starting values carefully can limit the compu-

tational time and avoid local minima. The use of an excitation vector, with a resulting

pattern error close to the global minimum, is encouraged.
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2.4 Mutual coupling compensation

If the element excitations, obtained from the null synthesis technique, are applied to

the antenna elements, distortion of these excitations may occur due to the mutual

coupling between the antenna elements in the array. The consequent errors in the

element excitations deteriorate the desired radiation pattern [72, 73]. Therefore, the

mutual coupling must be compensated for to avoid errors in the desired characteristics

of the null.

Lo [74] investigated the effect of the mutual coupling on the beam scanning and null

steering performance of a linear monopole array. It was found that null filling and/or

null steering errors occurred when the mutual coupling was not compensated for during

the computation of the element excitations. The effect of the mutual coupling on the

null pattern of a cylindrical dipole array was studied by Abele et al. [54]. The mutual

coupling between the dipoles had a deforming effect on the the null pattern. Null filling

and null position errors also occurred and the gain ripple was increased.

One direct way of minimising the effect of the mutual coupling, is by reducing the

mutual coupling itself. The antenna elements in the array, for example, can be designed

in such a way as to exhibit small coupling values. Absorbing material can be placed

between the elements to reduce the coupling or the spacing between the elements can

be chosen in such a way, that the coupling has an insignificant effect on the desired

radiation pattern.

Another way of dealing with the coupling, is to compensate for it in the pattern syn-

thesis technique. Impedance and coupling matrixes are used in the pattern synthesis

technique to compute corrected element excitations, which compensate for the mutual

coupling. According to Ghorbani [87], the mutual coupling also causes a mismatch

between the driving impedances of the antenna elements and the feeding system of the

array. This effect may significantly degrade the performance of narrowband arrays.

These driving impedances can be corrected by altering the physical properties of the

antenna elements to obtain the desired driving impedances for a required set of element

excitations. A short overview of these techniques is given in the following sections.
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2.4.1 Minimising the mutual coupling effects

Lo and Vu [74] investigated the use of guard elements in a linear monopole array to

reduce the effect of the mutual coupling on null steering. Due to mutual coupling, the

active element patterns are not comparable, which result in null filling and null steering

errors. It was found that by placing guard elements at both ends of the linear array,

the active element patterns resemble each other more closely. The perturbation of the

zeros is reduced and consequently the null filling and null steering error are minimised.

The method does not completely compensate for the mutual coupling, but is able to

minimise the coupling effect without changing the element excitations.

When computing the coupling between array elements, the coupling of the electro-

magnetic fields in the free space immediately above the elements, is usually considered

in the calculation. For microstrip array elements constructed on the same common

substrate, additional coupling occurs due to the surface wave in the substrate. When

using thick substrates, this surface wave coupling can be very strong due to a larger

surface wave being generated. Bamford et al [81] examined the direct radiation and

surface wave coupling separately through a method based on the reaction theorem.

The behaviour of the total coupling was also studied for various element separation

distances and substrate thicknesses. It was found that when the two coupling parame-

ters are in phase, they add to form an upper limit curve for the coupling, but also form

a lower limit curve when they are opposite in phase. A reduction in mutual coupling

is thus possible through an appropriate choice of substrate thickness and separation

distance between the array elements. The possible heights for the substrate are usually

determined by the required bandwidth and the available substrate thicknesses as sup-

plied by the manufacturers. Similarly, the possible separation distances are limited by

the desired radiation pattern characteristics. Therefore, the reduction of the mutual

coupling using this method may be limited by the requirements on the impedance and

radiation behaviour of the array.

2.4.2 Compensation using coupling and impedance matrixes

Steyskal and Herd [76] showed that the element excitations an can always be chosen

in such a way as to compensate for the pattern error due to mutual coupling. The

technique uses the formulation that any composite array pattern is a weighted sum
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of the isolated element patterns and that the mutual coupling parasitically excites all

the elements. The mutual coupling can thus be compensated for by driving the array

with modified element excitations in such a way that the desired radiation pattern is

obtained in the presence of these parasitics. The coupling perturbed signals and the

unperturbed desired signals, can be related through a coupling matrix C:

v = Cvd, (2.63)

where the vectors v and vd represent the coupling perturbed signals vn and the desired

signals vd
n, respectively. The compensation for the mutual coupling can thus be accom-

plished by simply multiplying the received signals v with the inverse of the coupling

matrix:

vd = C−1v. (2.64)

This method restores the signals as being received by the isolated antenna elements

in the absence of coupling. The coupling coefficients can be obtained from two differ-

ent methods: a Fourier decomposition of the measured element patterns or coupling

measurements between the array ports. The matrix C−1 may be very difficult or im-

practical to realise with an analog network, but can be easily realised in a digital beam

forming antenna system. Darwood et al also extended this technique for planar ar-

rays [82]. The method assumes that the current distribution over the array elements

is not affected by the coupling and remains unchanged from one element to the other

in the array. It is furthermore assumed that only the input impedance of the element

is affected by the mutual coupling. This approach may fail when electrically large

elements and arrays of dissimilar elements are considered.

Any errors in the coupling matrix, due to these assumptions, will contribute to the

degradation of difference beam patterns. Fletcher et al [80] derived a covariance ma-

trix for any signal direction of arrival that includes the effects of the mutual coupling.

By multiplying the inverse of this covariance matrix with the coupling corrected dif-

ference beam excitation vector, an optimum excitation vector is found which restores

the difference beam pattern.

Derneryd [79] proposed an alternative way of viewing the matrix multiplication tech-

nique. An array antenna can be represented by a multiport network that is charac-

terised by a N×N scattering matrix, S [75]. This scattering matrix relates the forward
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and backward travelling waves, v+ and v−, respectively, on the feed lines:

v− = Sv+. (2.65)

The array excitation vector A is given by the sum of the incident and reflected signals

and in the transmitting mode it becomes:

A = v+ + v−

= (I + S)v+

= Cv+,

(2.66)

where I is the unit matrix. The modified incident signals to produce the desired

radiation pattern in the mutually coupled environment, is thus given by:

v+ = C−1vd. (2.67)

These modified signals can be controlled by amplifiers and phase shifters.

The inclusion of the mutual coupling in the relation of the incident and reflected waves

is also applied by Eclercy et al [72,77], though in this method the effect of the mutual

coupling is taken into account in the radiated field of the array. The reflection coefficient

at the feed line of the n-th antenna element is defined as:

Γn =
v−n
v+

n

, (2.68)

where

v−n =
N∑

p=1

Snpv
+
p . (2.69)

Keeping the mutual coupling in mind, the radiation pattern can be written as:

F (φ) =
N∑

n=1

En(φ)(v+
n + v−n )ejk0(xn cos φ+yn sin φ)

=
N∑

n=1

En(φ)v+
n (1 + Γn)ejk0(xn cos φ+yn sin φ).

(2.70)
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This radiation pattern is then used in the pattern synthesis method to obtain the

modified element excitations, which compensate for the mutual coupling.

Using the vector notation of Equation 2.18, the array radiation pattern can be written

as [83]:

F = B(I + S)v+

= B′v+,

(2.71)

where A is replaced using Equation 2.66. The matrix B′ and the pattern F are com-

puted at more angles than there are elements in the array. The solution for v+ is thus

obtained in a least squares sense. This method assumes that the element patterns are

all equal to the element pattern of an isolated element. Where antenna elements are

closely spaced, the current distributions of the elements are changed by the coupling,

resulting in active element patterns. Taking this into consideration, Caccavale et al [85]

proposed an active element convex programming method (ACE-COP), in which the

array radiation pattern is expressed as the superposition of active element patterns.

The method is mostly applicable to small arrays, due to the additional computational

burden required by the evaluation of the active element patterns. In large arrays,

where most of the elements experience similar electromagnetic environments, it can be

assumed that all the elements radiate the same active element pattern. This approach

is referred to as the modified element pattern (m.e.p.) technique [85].

The correction for the mutual coupling may also be done through the impedance [54,

78,85] or admittance [84] relations between the antenna element currents and voltages.

If the currents of the antenna elements are set proportional to the computed excitation

coefficients, the driving voltages of the elements can be expressed as:

V = ZI, (2.72)

with V and I being 1 × N the driving voltage and current vectors, respectively, and

Z being a N × N impedance matrix. The driving voltage of the m-th element, that

compensates for the mutual coupling with the other antenna elements, can thus be
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written as:

Vm =
N∑

n=1

ZmnIn

= Zs
mmIm +

N∑
n=1
n6=m

ZmnIn,

(2.73)

where Zs
mm is the self impedance of the m-th antenna element and Zmn is the mu-

tual impedance between the m-th and n-th antenna elements. The self and mutual

impedances depend on the type of antenna elements as well as the mounting structure

used to construct the array. Abele et al [54] introduced a variable:

Zn =





Zs
nn for n mod N = 0,

Z1,n mod N for n mod N 6= 0,
(2.74)

for n = 1 . . . N . Equation 2.73 can then be written as:

Vm =
N∑

n=1

Zm−nIn

= {Zn; n = 1 . . . N} ∗ {In; n = 1 . . . N},

(2.75)

where the asterisk denotes a circular convolution.

The correction for the mutual coupling can be included in the design procedure by

multiplying the desired sequence excitation coefficients with the DFT of the impedances

Zn, before computing the element excitations an. The element currents and driving

voltages are then defined as:

In = I0 · IDFT{sm; m = 1 . . . N}, (2.76)

and

Vn = I0 · IDFT(DFT{Zn; n = 1 . . . N} · {sm; m = 1 . . . N}). (2.77)

When setting the element voltages proportional to the excitation coefficient, similar

expressions can be found for the necessary driving currents, using the admittance

relation:

I = YV. (2.78)
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The driving current of the m-th element may also be written as:

Im =
N∑

n=1

YmnVn

= Y s
mmVm +

N∑
n=1
n6=m

YmnVn,

(2.79)

with Y s
mm and Ymn respectively denoting the self admittance of the m-th element and

mutual admittance between the m-th and n-th elements.

2.4.3 Modification of the driving impedances

From Equation 2.73, the driving impedance of the m-th element can be expressed as:

Za
m = Zs

mm +
N∑

n=1
n6=m

Zmn
In

Im

. (2.80)

It is observed that the driving impedances do not only depend on the configurations

of the array and the antenna elements, but also on the currents of the elements. When

designing the feed network of the array, it is these driving impedances which have to

be matched. If the mismatches at the feed ports are not taken into account, it may

significantly degrade the performance of narrowband arrays. The resulting driving

impedances obtained from the radiation pattern correction methods remain unmatched

and unequal. Consequently, the design of a feeding and matching network can be

complicated.

Another possibility is to alter the individual element geometries physically in order to

have equal driving impedances for the required element excitations [86, 88, 89]. Yang

et al [86] proposed this technique for an electromagnetically coupled (EMC) dipole

antenna array. From Equation 2.79, the driving admittance of each element in the

array can be obtained as:

Y a
m = Y s

mm +
N∑

n=1
n6=m

Ymn
Vn

Vm

. (2.81)
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In a linear system, a second design equation can be derived from the current in each

dipole:

Ia
m

Vm

=
Imm

Vm

+
N∑

n=1
n6=m

Imn

Vn

, (2.82)

where Imm is the current of the m-th dipole in the absence of other dipole and Imn is

the current of the m-th dipole due to the current on the n-th dipole. The admittances

and currents are functions of the voltages, dipole lengths and dipole offsets from the

microstrip feed line. For a given design goal, e.g. the active currents on the dipoles,

a set of dipole lengths and offsets is found, which not only satisfies Equation 2.82,

but also provides the prescribed driving admittances seen by the feed lines. Design

curves for the mutual admittances and self admittances are obtained from a method

of moments solution. A desired bandwidth and voltage standing wave ratio (VSWR)

at the resonant frequency are obtainable, while finding good agreement between the

desired and measured radiation patterns.

Chen et al proposed a similar technique for a linear array of parallel dipoles [88]. In

this case, the lengths and the radii of the dipoles were changed to obtain the desired

radiation pattern as well as equal driving impedances for the dipoles. This resulted in

a feed network that was much simpler than usual. The technique was also extended

to planar dipole arrays [89]. Input impedances of 75Ω for the dipoles, as well as the

required radiation pattern, were obtained.

2.5 Summary

Different characteristics of the cylindrical microstrip patch antenna have been dis-

cussed. The cavity model was used to illustrate the influence of some of the design

parameters of the cylinder and the patch antenna on the radiated element pattern.

Therefore the design of the antenna element, has an influence on the characteristics

of the total radiated array pattern. Since the radiation characteristics of the cylindri-

cal patch antenna also depend on the polarisation, the choice of polarisation must be

included in the design procedure of the array pattern.

The radiated array pattern of a cylindrical array has also been discussed. Equally

spaced cylindrical arrays have the unique characteristic that they can produce omni-
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directional patterns by being excited with phase-sequence excitations. A combination

of these sequence excitations can be used to form a desired array radiation pattern.

The element excitations are obtained from the resulting coefficients of the sequence

excitations through a discrete Fourier transform.

An omnidirectional radiation pattern, with nulls at the specified angle directions, is

defined as the desired radiation pattern. An overview of null synthesis techniques

was given to obtain this desired radiation pattern with cylindrical arrays. The su-

perposition of sequence excitations is only suitable for arrays with a small number of

elements, while the Fourier approximation perform well only for small inter-element

spacings. When null constraints are used to form the nulls, the resulting ripple is very

high. The increased null width is the main drawback of constraint minimisation with

Lagrange multipliers. The orthogonal projection method and its extensions are well

suited to form the desired radiation pattern for most cylindrical array configurations.

Some control over the null depths and ripple are provided through variable phase steps

and a window function. Pattern optimisation techniques can be used to obtain the

desired pattern, while optimising certain array pattern characteristics. In Chapter 3,

the orthogonal projection method is extended for a cylindrical microstrip patch array

to provide an omnidirectional pattern with one or more nulls. The resulting excitation

vector is also used as the starting value for two optimisation algorithm, which allows

the specification and/or optimisation of certain pattern characteristics, e.g. null depth,

null width and gain ripple.

The synthesis of the radiation pattern is influenced by the mutual coupling between

the antenna elements. If the mutual coupling is not compensated for in the design pro-

cedure, the consequent errors in the element excitations may deteriorate the radiation

pattern. Minimisation of the coupling reduces the effect of the coupling on the radia-

tion pattern, but does not totally compensate for the coupling. By using a coupling or

impedance matrix to include the mutual coupling in the design procedure, the coupling

is completely compensated for. However, the driving impedances remain unmatched

and may result in complicated feed networks. As an alternative, the geometries of

the elements may be varied to provide matched and equal driving impedances for all

the antenna elements, given a required set of element excitations. This compensation

technique is applied to the cylindrical patch array in Chapter 4 by altering the geome-

tries of the patch antenna elements. This technique provides the desired pattern by

correcting the driving impedances.
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