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RESULTS

The results for the three change detection methods presertteziprevious chapter as well as the EKF
framework proposed in chapter 4 are shown in this chapter. The procedure for identifying ground truth

data which are used for training and validation is also shown.

6.1 IDENTIFYING EXAMPLES OF SETTLEMENT DEVELOPMENT

In any change detection method, representative examples of change and no-change are necess:
for not only training (supervised methods) but also for validation of the change detection method.
Examples of confirmed settlement developments and no-change areas were obtained by means
visual interpretation of high resolution Landsat and SPOT5 images of 2000 and 2008 respectively.
The following sections shows how the ground truth examples of no-change natural vegetation and
settlement MODIS pixels as well as examples of MODIS pixels that transitioned from natural
vegetation to settlement were identified.

6.1.1 Identification of change pixels

The extraction of the MODIS ground truth pixels which transitioned from natural vegetation in 2000
to settlement by 2008, was done using a six-step process. A graphical representation of each ste
is shown in Figure 6.1. During the first step, the SPOT5 imagery of Limpopo were used to identify
human settlements. On-screen digitizing was done by manually creating a polygon along the oute
edge of each settlement area (Step 2). This settlement polygon was then displayed on a co-locate
Landsat image from 2000 (Step 3). If the settlement polygon identified in 2008, was covered by
natural vegetation in 2000, the polygon is labeled as “changed”. The next step was to extract the
MODIS pixels corresponding to the area covered by the change polygon. This was done by overlying
the change polygons on a MODIS grid and identifying all MODIS pixels that intersect the change
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FIGURE 6.1: Graphical representation of the six steps used to identify MODIS pixels that changed
from natural vegetation to settlement.
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polygons (Step 4). The next step was to determine the pegemigerlap between the settlement
polygon and intersecting MODIS pixels (step 5). Step 5 of Figure 6.1 illustrates the percentage of
polygon area intersecting each MODIS pixel. The final step was to identify the MODIS pixels that
are covered by at least 70% of the change polygon, which yields the final set of MODIS pixels which

changed from natural vegetation to settlement.

6.1.2 Identification of no-change pixels

The procedure for identifying no-change settlement MODIS pixels is very similar to the procedure

described in the previous section with the only difference being step 3. If the Landsat 2000 image shows
that the settlement polygon identified in 2008 corresponds to a settlement area in 2000, the polygon i
classified as being a “no-change” settlement polygon. The procedure for extracting the corresponding
MODIS pixels was done using steps 4 to 6 described in the previous section. The procedure for
identifying no-change natural vegetation pixels is also conceptually similar. Representative natural
vegetation areas were identified throughout the study area using the 2008 SPOT5 imagery. Polygor
were created manually by means of on-screen digitization. These polygons were compared tc
co-located Landsat imagery in 2000 to ensure land-cover class consistency. Once the “no-change
natural vegetation polygons were identified, the process of extracting the corresponding MODIS pixels

was performed using steps 4 to 6 as described in section 6.1.1.

6.1.3 Validation of MODIS pixels using Google Earth

High resolution satellite imagery in Google Earth are being used more routinely in the validation
of land cover products [104]. As a validation procedure, the MODIS pixels identified during the
process given in sections 6.1.1 and 6.1.2 were investigated in Google Earth using QuickBird imagery
of multiple dates (Figure 6.2). The true color, high resolution QuickBird images from Google Earth
proved very useful when inspecting the class membership of MODIS pixels at different time-instances.
The only problem with using Google Earth for validation is that certain areas are imaged more regularly
than other areas and thus multiple images are not available everywhere. This implies that in certair
areas only one image was available which does not provide any information on the land cover change
history of MODIS pixels.
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2004 Google Earth Image

FIGURE 6.2: Validating MODIS pixels using QuickBird imagery at different dates (courtesy of
GoogldMEarth).

6.2 IMPROVING CLASS SEPARABILITY USING AN EXTENDED
KALMAN FILTER

6.2.1 Study area used for testing class separability

The methods introduced in chapter 4 were tested in two regions in the Limpopo province. The first
study area (Region A) is centered around latit4fd 7/21.43"”S and longitud€9°39'42.96"E and is 43
km south east of the city of Polokwane. Region A covers a geographic area of approximately?190 km
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FIGURE 6.3: QuickBird image of Region A together with the MODIS pixels corresponding to the
natural vegetation and settlement areas (courtesy of GBtggeath).

42 natural vegetation and settlement pixels were selected for analysis. Region B is centered around
latitude24°19'51.50”S and longitud€9°18'04.07”E and is 47 km south west of the city of Polokwane.
Region B covers a geographical areal 6 km?, 32 settlement an@1 natural vegetation pixels were
selected. The study regions that were considered had settlements and natural vegetation areas in clc
proximity which ensured that the rainfall, soil type and local climate were similar. Figure 6.3 shows
the MODIS pixels that where selected for region A. Each of the MODIS pixels were evaluated using
SPOT5 high resolution data to ensure that none of them had experienced any land-cover change durir
the study period (Section 6.1).

6.2.2 Separability results and discussion

To recap from chapter 4, the separability between two arbitrary NDVI time-series can be determined
by comparing the spectral characteristics of the two time-series by making use of the FFT. In particular,
the distance between the first and annual FFT components are calculated which produces a scal
guantity in each case. Based on these distance metrics, the similarity between two NDVI time-series
are quantified. When using the EKF to estimate thand o parameter sequence for each NDVI
time-series, the difference between the parameter sequences fluctuates over time. This is illustrate
in figure 6.4 where the, sequence estimated using the EKF is shown along with the FFT mean
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FIGURE 6.4: Comparing the EKF derived parameter with the FFT mean component for natural
vegetation and settlement for region A.

component for two typical NDVI time-series belonging to each of the two classes in region A.

The i sequence for the settlement and natural vegetation time-series clearly vary in similarity (Figure
6.4). This is to be expected as land-cover classes tend to be more similar during certain seasons thzg
others. This characteristic was exploited by only considering the maximum distance between eact

pair of parameter sequences.

In essence, both approaches takes as input two NDVI time-series and outputs two distance metric:
D, and D,, which is then subsequently used to quantify the similarity between these two NDVI
time-series. In order to determine which of these methods produce the best measure of similarity
the joint distribution ofD,, and D,, can be calculated using same-class NDVI time-series examples
(p(D,, D,|s)) and then compared to the corresponding distribution using different-class NDVI
time-series exampleg(D,, D,|d)). By integrating the relevant densities over the overlapping areas
of these distributions, the Bayes’ error can be calculated and used to determine the performance of eac
method. The underlying idea is that the lower the Bayes’ error, the more “unique” the distributions
and consequently, the better the class separability),, D,|s) was estimated by comparing the
NDVI time-series of each pixel in the natural vegetation class with each pixel in the natural vegetation

class, as well as each pixel in the settlement class with each pixel in the settlement class, calculatin:
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D, and D, for each instance. Similarlyp(D,, D,|d) was estimated by comparing the NDVI
time-series of each pixel in the natural vegetation class with each of the pixels in the settlement
class and calculating,, and D,, for each instance. The distributiopgD,,, D,|s) andp(D,, D,|d)

where estimated by means of the Parzen-Rosenblatt window method using Gaussian kernels [105,10¢

For the EKF method, the initial state parameters as well as the observation and process noise estimat
were determined off-line, based on known training data from the study areas. The training data were
a random selection df% of the total number of pixels per region. The initial state parameters were

calculated using the FFT mean and annual components of the training data as

Z .
Y
My = Z 70, (6.1)
=1
Z .
2|1Y%
=1
A .
/Y
b=t (6.3)

i=1
WhereZ is the total number of training time-series a¥¢ is then'th FFT component of time-series

1. The observation noise was determined as

z
std(e;)
Oy = ' 7 (6.4)
i=1
e; = ||y — ill- (6.5)

Hereo, is the estimated standard deviation of the observation noige; sislthe standard deviation of
a vector containing the difference between the original time-sgyiasd a filtered versiof; calculated

as

yi = FyY". (6.6)

Y is defined as

Yi(k)=1{ 0, 1<k<6 (6.7)
0, 8<k<SN
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TABLE 6.1: Initial EKF state parameter values.

Region | 1 oy ¢1

A 0.3008 | 0.0835 | 0.2700

B 0.3447 | 0.1185 | 0.1708

TABLE 6.2: EKF observation and process noise values.

Region O o 0o op)

A 3.8x 1072 | 8x107° |8 x 107° | 1.5 x 1072

B 44%x107219x107° | 9x107° | 1.7 x 102

andF,' denotes the inverse DFT operatiohfi is thus a copy ofY? but with only the mean and

seasonal FFT components. All other components were set to zero.

The initial state parameters as well as the observation and process noise standard deviation for regic
A and B is shown in Table 6.1 and 6.2 respectively. The valugs, of; and¢; in Table 6.1 were
calculated using equations (6.1), (6.2) and (6.3) respectively. In Table 6.2, the observation noise
varianceo, was calculated using equations (6.4) and (6.5) while the process noise varjance

ando, were estimated by maximizing the class separability on the training data for each region. This
was done by determining the parameter distributions of each of the classes using the training date
and varying the ratio between, and each of the process noise components. Using the maximum
distance between distributions as criterion and a non-linear optimizer, the corresponding process nois

parameters were determined.

Once determined, the parameters were kept fixed for all numerical results relating to the specific
region. Figure 6.5 shows the joint distribution bf, and D, using the FFT method (A) and EKF
method (B) respectively. Here(D,, D,|sy) is the distribution ofD, and D, calculated using the

FFT method and using same class NDVI exampig®),,, D,|dy) is the distribution ofD,, and D,
calculated using the FFT method and using different class NDVI examplés,, D,|s;) is the
distribution of D, and D,, calculated using the EKF method and using same class NDVI examples and

p(D,, D,|dy) is the distribution ofD, and D,, calculated using the EKF method and using different
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FIGURE 6.5: Joint distribution ofD,, and D,, using the FFT method (A) and EKF method (B) where
p(D,, Dy |sy) is the distribution ofD,, and D,, calculated using the FFT method and using same class
NDVI examplesp(D,,, D,|dy) is the distribution ofD, and D,, calculated using the FFT method and
using different class NDVI exampleg(D,,, D, |si) is the distribution ofD,, and D,, calculated using

the EKF method and using same class NDVI examplegahy, D, |d;) is the distribution ofD,, and

D,, calculated using the EKF method and using different class NDVI examples.

class NDVI examples. Table 6.3 gives the Bayesian decision error for both the FFT and EKF methods
as well as the standard deviation of the error. The standard deviation was computed by using a randor
subset of 90% of the time-series to estimate the distributigns,, D,|s) andp(D,, D,|d) to infer

the Bayes’ error, and then repeating the experiment 10 times.

Consistent with most EKF implementations, the tracking of state parameters is not instantaneous an:
does require a certain number of observations. As this period is unknown, an initial number of state
parameter values need to be excluded when calculddingnd D,,. The average square difference
between the EKF derived parameter and the FFT mean component is shown in figure 6.6, it can be
seen that the variation seems to stabilize within the first two years which relates to approximately 100

samples.
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FIGURE 6.6: Average square difference between the EKF derjvgihirameter and the FFT mean
component for all settlement pixels in Region A.

It can be seen from Table 6.3 that the Bayesian decision error in regiét¥AX() using the EKF was
reduced by nearl$% over the FFT method®*7). In region B the Bayes’ error of the EKF method

was reduced bg.63% over the FFT method. The standard deviation of the error probability was also
reduced using the EKF method for both regions. Thus, overall it may be concluded that the EKF
formulation has a reduced probability of error which implies that the EKF formulation offers improved
separability of land-cover classes for the study areas A and B. The phase parametsrfound

to provide negligible additional separability (less than 0.01%) in the classes and was consequently

disregarded.

As discussed in section 4.5, a sliding window alternative was proposed to extend on the FFT methoc
presented in [56]. The mean and amplitude could be extracted by considering the relevant FFT
components of a windowed FFT iterating through the time-series with the vall)¢ ahd D,, being
calculated in an identical manner as was proposed for the EKF method (see section 4.5). The Bayes
error for the EKF, FFT and sliding window (SW) FFT method together with the corresponding
variance of each of these methods are shown in figure 6.7 . The window size of the SW FFT methoo
was varied between one and five years, denoted as SW FFT 1 to SW FFT 5 (figure 6.7).
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Table 6.3: Bayes’ error of the FFT and EKF method for region A Bn Percentage in parentheses
indicates the standard deviation of the error.

Region PIFT PPEE

A | 9.33% (1.95%) 4.34% (0.77%)

B | 5.85% (1.60%) 3.22% (1.24%)

The overall improved separability of natural vegetation seitlement land-cover types using the EKF
based on a triply modulated cosine function model over FFT and sliding window FFT is evident for
both regions A and B. In an effort to improve the results, a sum of sinusoids model was also considerec
but preliminary results showed a negligible performance increase with a significant increase in the
complexity as more parameters needed to be estimated. This corresponds to results shown in [56
where no significant added separability was achieved when considering more sinusoidal component

other than the annual component.

In conclusion, the initialization procedure used to determine the initial EKF parameters as shown in
section 6.2.2 was found to work well for each region. By using an initial training set and keeping

the EKF initialization parameters constant for each region, the EKF is effectively adaptable for each
region and requires minimal manual parameter selection. It was also found that the sliding window
FFT method did improve on the standard FFT method when the correct window size was selected. The
optimal window size for region A was 2 years whereas the optimal window size for region B was 1

year (figure 6.7). The EKF method had a lower percentage error compared to the sliding window FFT,

regardless of the window size.
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FIGURE 6.7: The Bayes’ error and variance for the EKF, FFT and SW FFT method for region A and
B. The window size of the SW FFT method was varied between one and five years.

6.3 DETECTING LAND-COVER CHANGE IN THE LIMPOPO PROVINCE
OF SOUTH AFRICA

The Limpopo province is located in the northern region of South Africa. Figure 6.8 shows the location
of the province. In this region, large families typically live under low-density conditions as opposed to
high density squatter communities that live on the urban fringe in southern regions [7]. The province
has a history of isolation from major urban and industrial centers. When compared to the rest of the
country, people in this province are more reliant on subsistence production. Limpopo is one of the
poorest provinces with more than 70% of people living under the poverty line [107]. The predominant

land-cover type in the province is natural vegetation with the land use being mostly informal [107].
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FIGURE 6.8: Location of the Limpopo province in South Africa.

The study area covers an approximate 25 008 kaving an upper left coordinate of3*20'12.09"”S ;
28°35'25.18”E) and a lower right coordinate a%°00'14.59”S ; 30°06'58.30"E).

A total of 1 497 examples of natural vegetation, 1 735 examples of settlement and 117 examples of rea
change 500 m MODIS pixels were identified within the study area. Landsat and SPOT high resolution

data were used to identify the aforementioned pixels as described in section 6.1.

6.3.1 Evaluation of the EKF change detection method in Limpopo
6.3.1.1 Off-line optimization of the EKF method in Limpopo

The simulated change dataset was generated using the methodology proposed in section 5.2.2. Rougt
half (750 pixels) of the natural vegetation dataset were used to generate the simulated dataset. Eac
of these pixels were blended with a settlement pixel as described in section 5.2.2. The wé&ue of
(as described in section 5.2.2) is shown for 6, 12 and 24 month blending periods in tables 6.4, 6.5
and 6.6 respectively. It is clear that the valueddivaries between .68 (when only the center pixel

changing over a six-month period) aih@7 (when all 9 pixels are changing over a 24-month period).
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Table 6.4: Land-cover change detection accuracy, falsenalate and optimal threshold*( for a

range of pixels having changed in the 3 pixel grid using the EKF change detection method in
Limpopo. The simulated change had a 6-month blending period and the value in parentheses indicate

the standard deviation.

Number of pixels changed in )
3,3 grid Detection accuracy| False alarm rate 0
1 91.79% (0.91%) 7.92% (0.67%) 1.68 (0.03)
2 92.90% (0.84%) 8.48% (0.62%) 1.65 (0.03)
3 92.59% (0.62%) 8.61% (0.60%) 1.66 (0.02)
4 92.63% (0.58%) 9.19% (0.93%) 1.63 (0.02)
5 92.70% (0.71%) | 10.03% (1.21%) | 1.59 (0.03)
6 93.11% (1.04%) | 11.21% (0.60%) | 1.56 (0.01)
7 92.73% (1.06%) | 12.87% (0.93%) | 1.52(0.01)
8 90.88% (0.83%) | 14.78% (0.73%) | 1.47 (0.01)
9 90.42% (0.93%) | 17.83% (1.01%) | 1.42(0.01)

The corresponding false alarm rate varies betweg2n and22.13% respectively. It follows that the
operator needs to choose the maximum desirable false alarm rate in the aforementioned false alari
rate range. For this application, that maximum false alarm rate was chosen 3§tbeSubstituting

these values in equation 5.11:

d=o00

5 =6" Where/ p(8|C) = 13% 6* € [1.36,1.68], (6.8)
5=6*

5 was calculated ak5 and was used to determine change in the operational phase, as will be discussec

in the following section.

6.3.1.2 Real change detection performance of the EKF method in Limpopo

Substituting the value cﬁyields,

ifo>15
if § < 1.5.

true
Change =
false

The change detection accuracy using the thresholtdsofvas 89% using the 117 examples of real

change in the study area. The false alarm rate Més
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Table 6.5: Land-cover change detection accuracy, falsenalate and optimal threshold*( for a

range of pixels having changed in the 3 pixel grid using the EKF change detection method in
Limpopo. The simulated change had a 12-month blending period and the value in parentheses indicate
the standard deviation.

Number of pixels changed in )
33 grid Detection accuracy| False alarm rate 0*
1 91.22% (0.96%) 7.92% (1.09%) 1.68 (0.04)
2 91.97% (0.84%) 8.24% (0.67%) 1.66 (0.02)
3 92.56% (0.65%) 8.64% (0.84%) 1.64 (0.03)
4 92.46% (1.16%) 9.27% (1.15%) 1.62 (0.02)
5 92.65% (0.95%) | 10.38% (0.93%) | 1.59(0.02)
6 92.69% (0.60%) | 11.53% (1.03%) | 1.55(0.01)
7 91.65% (1.25%) | 13.06% (0.87%) | 1.50 (0.02)
8 89.77% (1.11%) | 15.25% (0.89%) | 1.46 (0.01)
9 89.65% (0.91%) | 18.83% (0.98%) | 1.40 (0.01)

Table 6.6: Land-cover change detection accuracy, falsenalare and optimal threshold*( for a

range of pixels having changed in thec3 pixel grid using the EKF change detection method in
Limpopo. The simulated change had a 24-month blending period and the value in parentheses indicate
the standard deviation.

Number of pixels changed in . No Change
33 grid Change simulated smulated 0
1 91.46% (0.74%) 9.25% (0.79%) 1.63 (0.02)
2 91.54% (1.20%) 9.33% (0.86%) 1.63 (0.01)
3 91.53% (0.65%) | 10.25% (1.18%) | 1.61(0.02)
4 92.12% (0.66%) | 11.10% (0.53%) | 1.58 (0.02)
5 92.34% (0.86%) | 11.52% (1.14%) | 1.54(0.01)
6 92.47% (0.58%) | 13.69% (1.18%) | 1.50(0.01)
7 90.63% (0.82%) | 14.93% (1.37%) | 1.48 (0.01)
8 87.98% (0.49%) 17.53% (0.98%) 1.43 (0.01)
9 87.06% (1.24%) | 22.13% (0.61%) | 1.37(0.01)
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Table 6.7: Confusion Matrix, overall accurac® () and optimal thresholdd{) showing the best
land-cover change detection performance during the ACF method’s off-line optimization phase using
MODIS band 4(550 nm)with a lag of 104 days. Value in parentheses indicates the standard deviation.

Simulated No Change
change (n=750) (n=1616)

Change Detected 78.16% (1.5%) | 12.25% (1.4%) | 0.13(0.01) | 82.95% (1.4%)

No Change Detected| 21.84% (1.5%) | 87.75% (1.4%)

0 O4

6.3.2 Evaluation of the temporal ACF change detection methoth Limpopo

6.3.2.1 Off-line optimization of the ACF method in Limpopo

As described in section 5.3.2, a subset of the no-change dataset, consisting of vegetation an
settlement pixels were used in the off-line optimization phase. Of the available 1 497 examples
of natural vegetation and 1 735 settlement pixels, 750 simulated change pixels were generated b
linearly blending a time-series of a pixel covered by natural vegetation with that of a settlement pixel
time-series (Section 5.3.2). The resulting simulated change database had a uniformly spread chanc
date between 2001/01 and 2008/01. The blending period was found not to influence the method’s
performance [108], and a representative blending period of six months was chosen. From the total o
3 232 no-change pixels, a random selection of 1 616 pixels were used during the off-line optimization
phase with the remainder (1 616 pixels) being used to infer the false alarm rate performance during
the real change detection phase.

The overall accuracy({4) as calculated in (5.19) was calculated for each bamd{1, 2, ...,8} and

lag 7 € {1,2,...,46} using the no-change and change dataset described above is shown in figure
6.9. It was found that the highest overall detection accuracy was obtained by using the change inde;
6 = 51, = R*(13). Because the time-series has an observation of 8 daysvtilae of13 corresponds

to 104 days. The value of{; was found to be).13. Table 6.7 summarizes the performance of the

method when using the aforementioned parameters.

6.3.2.2 Real change detection performance of the ACF method in Limpopo

After the band, lag and optimal threshold selection was completed, the performance of the proposet
method was validated using the no-change and real change datasets. A change or no-change decisi
for each pixel was obtained by evaluating
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FIGURE 6.9: Overall accuracy of the ACF method computed for a range of band and lag combinations
using a no-change and simulated change dataset for the Limpopo province.

true if R°(7)>0.13
Change =
false  if R°(7) < 0.13.
Table 6.8 summarizes the performance of the method using the parameters obtained during the off-lin

optimization phase.

Table 6.8: Confusion Matrix, overall accurac® ) and threshold) for the case of real change
detection using the MODIS band (850 nm)with a lag of 104 days as determined during the ACF
method’s off-line optimization phase. Value in parentheses indicates the standard deviation.

Real change No Change
(n=117) (n=1616)
Change Detected | 81.20% (2.7%) | 12.00% (1.1%) | 0.13(0.01) | 84.60% (2%)

No Change Detected| 18.80% (2.7%) | 88.00% (1.1%)

d Oa

Department of Electrical, Electronic and Computer Engimeger 98
University of Pretoria



=
W UNIVERSITEIT VAN PRETORIA
Qe

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 6 Results

Table 6.9: Confusion matrix of the NDVI differencing methaging a fixed and optimal threshold for
the Limpopo province. Value in parentheses indicates the standard deviation.

Real change No Change
(n=117) (n=1616)

Fixed false alarm rate
Change Detected | 69.00% (3.7%)| 13.00% (1.0%) 2.1 77.79% (1.8%)
No Change Detected| 31.00% (3.7%)| 87.00% (1.0%)
Optimal Threshold
Change Detected | 83.76% (4.7%)| 25.34% (4.1%)| 1.6 (0.2)| 79.21% (1.3%)
No Change Detected| 16.24% (4.7%)| 15.40% (4.1%)

6.3.3 Evaluation of the NDVI differencing method in Limpopo

Using the methodology given in section 5.4, the NDVI differencing change detection method was
applied in the Limpopo province, Table 6.9 shows the performance of the method using an optimal
threshold as well as the threshold corresponding to a constant false alarm iat.ofTo get an
indication of the NDVI method’s performance as a functionzotthe false alarm rate and change
detection accuracy was calculated for a series wélues ranging from 1 to 3.5 (figure 6.10). The
optimal threshold{*) and the threshold corresponding to a false alarm rate of 23% (ndicated on

the false alarm rate curve.

6.4 DETECTING LAND-COVER CHANGE IN THE GAUTENG
PROVINCE OF SOUTH AFRICA

The Gauteng province is located in northern South Africa, because of a high level of urbanization
it has seen significant human settlement expansion during the 2001 and 2008 period. A total are:
of approximately 17 000 kinwas considered being centered aro@ie7'29.62"S, 28°05'40.40"E.

Figure 6.11 shows the location of the Gauteng province in South Africa. Gauteng is the smallest
province in South Africa, occupying a land area of only 1.4% of the land area of the country, but it is

highly urbanized as it contains two of the largest cities in South Africa, Johannesburg and Pretoria.

A total of 592 examples of natural vegetatiodi;2 examples of settlement aril@1 examples of real

change 500 m MODIS pixels were identified within the study area. Landsat and SPOT high resolution
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FIGURE 6.10: NDVI differencing method’s change detection accuracy and false alarm rate for a range

of z values in Limpopo.

data were used to identify the aforementioned pixels as described in section 6.1.

6.4.1 Evaluation of the EKF change detection method in Gauteng

6.4.1.1 Off-line optimization of the EKF method in Gauteng

The simulated change dataset was also generated using the methodology proposed in section 5.2,

In this case296 pixels in the natural vegetation dataset were used to generate the simulated dataset
The value ofé* (as described in section 5.2.2) is shown for 6, 12 and 24 month simulated blending
periods in tables 6.10, 6.11 and 6.12 respectively. The valdéwdried betweer2.5 and1.91 with a
corresponding false alarm rate being betw&éa% and16.05% respectively. As in the previous study

area, a maximum false alarm rate was chosen tt3be Substituting these values in Equation 5.11

d=o0
5o Where/ p(3[C) = 13% &* € [1.91,2.5], (6.9)
[

—5*

Swas calculated ak975.
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Table 6.10: Land-cover change detection accuracy, falsenaiate and optimal threshold*() for

a range of pixels having changed in the 3 pixel grid using the EKF change detection method in
Gauteng. The simulated change had a 6-month blending period and the value in parentheses indicat:
the standard deviation.

Number of pixels changed in )
33 grid Detection accuracy| False alarm rate 0*
1 99.29% (0.40%) 3.33% (0.59%) 2.49 (0.06)
2 99.23% (0.34%) 3.15% (0.56%) 2.49 (0.04)
3 99.44% (0.43%) 3.63% (0.60%) 2.45 (0.04)
4 98.86% (0.32%) 4.17% (0.73%) 2.44 (0.03)
5 98.09% (0.67%) 4.88% (1.03%) 2.36 (0.05)
6 98.26% (0.97%) 7.26% (1.03%) 2.22(0.03)
7 98.52% (0.37%) 8.69% (0.80%) 2.14 (0.02)
8 97.11% (0.75%) 9.32% (1.45%) 2.09 (0.02)
9 95.14% (0.84%) | 11.39% (1.07%) | 2.02(0.01)

Table 6.11: Land-cover change detection accuracy, falsenaiate and optimal threshold*( for

a range of pixels having changed in the 3 pixel grid using the EKF change detection method in
Gauteng. The simulated change had a 12-month blending period and the value in parentheses indicat
the standard deviation.

Number of pixels changed in )
33 grid Detection accuracy| False alarm rate 0*
1 99.44% (0.38%) 3.62% (0.79%) 2.50 (0.04)
2 99.29% (0.40%) 3.76% (0.82%) 2.42 (0.05)
3 99.29% (0.41%) 4.24% (0.39%) 2.38 (0.04)
4 98.99% (0.49%) 4.45% (0.73%) 2.37 (0.05)
5 98.29% (0.65%) 5.98% (0.73%) 2.28 (0.04)
6 98.44% (0.63%) 8.18% (0.83%) 2.16 (0.04)
7 98.24% (0.49%) 8.89% (0.66%) 2.10(0.02)
8 97.37% (0.75%) 10.28% (0.85%) 2.05 (0.03)
9 94.58% (0.94%) 12.79% (1.07%) 1.97 (0.02)
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FIGURE 6.11: Location of the Gauteng province in South Africa.

6.4.1.2 Real change detection performance of the EKF method in Gauteng

Substituting the value cﬁyields,

true if 6 >1.97
false if & < 1.97.

Change =

The change detection accuracy using the threshold9fwas 75% using the 181 examples of real

change in the study area. The false alarm rate Mag%.

6.4.2 Evaluation of the temporal ACF change detection method in Gauteng

6.4.2.1 Off-line optimization of the ACF method in Gauteng

Of the availablés92 examples of natural vegetation aBtR settlement pixels;92 simulated change
pixels were generated. From the totabéfl no-change pixels, a random selectiont8® pixels were
used during the off-line optimization phase with the remaind8? (pixels) being used to infer the

false alarm rate performance during the real change detection phase.
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Table 6.12: Land-cover change detection accuracy, falsenaiate and optimal threshold*() for
a range of pixels having changed in the 3 pixel grid using the EKF change detection method in
Gauteng. The simulated change had a 24-month blending period and the value in parentheses indicat

the standard deviation.

Number of pixels changed in )
3,3 grid Detection accuracy| False alarm rate 0
1 99.25% (0.48%) 4.50% (0.77%) 2.40 (0.04)
2 99.29% (0.35%) 4.78% (0.79%) 2.37 (0.05)
3 99.01% (0.56%) 5.28% (0.65%) 2.34 (0.04)
4 98.20% (0.82%) 5.82% (0.66%) 2.28 (0.04)
5 97.73% (0.64%) 8.51% (0.60%) 2.18(0.03)
6 97.75% (1.09%) 9.53% (0.95%) 2.09 (0.02)
7 97.71% (0.88%) | 10.53% (0.65%) | 2.04 (0.03)
8 94.92% (1.55%) | 12.37% (1.03%) | 1.98(0.01)
9 91.61% (0.70%) | 16.05% (1.25%) | 1.91(0.02)

O 4 was calculated for each bahad= {1,2,...,8} and lagr € {1, 2, ...,46} using the aforementioned

no-change and simulated change datasets (figure 6.12). It was found that the highest overall detectic

accuracy was obtained by using the change ifdex 6}, = R*(12). Ther value of12 corresponds to

96 days. The value of; was found to b&.16. Table 6.13 summarizes the performance of the method

when using the aforementioned parameters.

Table 6.13: Confusion Matrix, overall accuraay {) and optimal thresholdé{) showing the best
land-cover change detection performance during the ACF method’s off-line optimization phase using
MODIS band 4550 nm)with a lag of 96 days. Value in parentheses indicates the standard deviation.

Simulated No Change
0* Oy
change (n=592) (n=482)
Change Detected 75.17%(4.0%) | 14.73% (1.6%) | 0.16 (0.01) | 80.22% (2%)
No Change Detected| 24.83% (4.0%) | 85.27% (1.6%)
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FIGURE 6.12: Overall accuracy evaluated for a range of band and lag combinations using a no-change
and simulated change dataset for the Gauteng province.

6.4.2.2 Real change detection performance of the ACF method in Gauteng

After the band, lag and optimal threshold selection was completed, the performance of the proposet
method was validated using the no-change and real change datasets. A change or no-change decisi

for each pixel was obtained by evaluating

true if R°(7) >0.16
Change =
false  if R°(7) < 0.16.
Table 6.14 summarizes the performance of the method using the parameters obtained during the off-lin

optimization phase.

6.4.3 Evaluation of the NDVI differencing method in Gauteng

Using the methodology given in section 5.4, the NDVI difference change detection method was used
in the Gauteng province, Table 6.15 shows the performance of the method at the optimal threshold a
well as the threshold corresponding to a constant false alarm rag&ofFigure 6.13 shows the false

alarm rate and change detection accuracy as a function ofvakie.
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Table 6.14: Confusion Matrix, overall accuraay ) and threshold{) for the case of real change
detection using the MODIS band (850 nm)with a lag of 96 days as determined during the ACF
method’s off-line optimization phase. Value in parentheses indicates the standard deviation.

Real change No Change
(n=181) (n=482)
Change Detected | 92.27% (4.5%) | 15.35% (1.9%) | 0.16 (0.02) | 88.46% (3%)

No Change Detected| 7.73% (4.5%) 84.65% (1.9%)

o O4

Table 6.15: Confusion matrix of the NDVI differencing methaging a fixed and optimal threshold for
the Gauteng province. Value in parentheses indicates the standard deviation.

Real change No Change
(n=181) (n=482)

Fixed false alarm rate
Change Detected 56.91% (4.5%)| 13.51% (1.0%) 1.8 71.70% (2.2%)
No Change Detected| 43.09% (4.5%)| 86.49% (1.0%)
Optimal Threshold
Change Detected | 78.45% (4.2%)| 26.27% (5.2%)| 1.4 (0.11)| 76.09% (1.7%)
No Change Detected| 21.55%(4.2%) | 73.73% (5.2%)
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FIGURE 6.13: NDVI differencing method’s change detection accuracy and false alarm rate for a range
of z values in Gauteng.

6.5 DISCUSSION OF THE CHANGE DETECTION METHODS

Table 6.16 gives a performance comparison of all the methods presented in this chapter. The threshol
was selected so that the false alarm rate is within the 10% — 15% range to enable a fair comparison c
all three methods. The following section will discuss the results obtained using each of these method:
for the case of real change detection in greater detail.

6.5.1 Discussion of the EKF change detection method results

From Table 6.16 it is evident that the performance of the EKF method is acceptable in both provinces,
achieving more than @&% detection accuracy with the false alarm rate being less thanfor each

of the areas. The performance of the method is, however, better in the Limpopo region. The reasor
for this could be that the Limpopo province is mostly covered by natural vegetation which implies an
inherent high correlation between pixels when considering«8 Bixel grid in a natural vegetation
area. As was shown in tables 6.10, 6.11 and 6.12, the method performs best when fewer pixels in th
3x3 grid change, for example, 7.92% with only the center pixel changing versus 18.83% with all 9
pixels changing in the case of a 6-month simulated land cover change (Table 6.10). The conclusior

can thus be drawn that the EKF method performs best in an environment where most of the pixels in
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Table 6.16: Summary of real change detection results. Valymrentheses indicates the standard
deviation.

No. of Real| % Change
: % False
Algorithm Change Correctly Threshold
) Alarms
Pixels Detected
Limpopo Province
EKF method 117 89% (2.8%) | 13% (0.98%) 0=1.5
ACF method 117 81% (4.5%) | 12% (1.9%) 0=0.13
NDVI Differencing method [17] 117 69% (3.7%) | 13% (1.0%) z=2.1
Gauteng Province
EKF method 181 75% (2.9%) | 13% (0.9%) 0 =197
ACF method 181 92% (2.7%) | 15% (1.1%) 0=0.16
NDVI Differencing method [17] 181 57% (4.5%) | 14% (1.3%) z2=1.8

the 3x3 pixel grid are highly correlated. This was found to be the case in Limpopo as the province
is mostly covered by natural vegetation. A typicat3grid of pixels in Limpopo thus have a high
probability of having the same land-cover type and consequently a high correlation when considering
the EKF derived parameter sequences. In the case of Gauteng, being the smallest province wit
the highest population, the landscape is much more diverse. A typicaldgsid of pixels, which
corresponds to an area of 2.25%rhas a much higher probability of having de-correlated pixels and
subsequently, the method’s performance in this area was compromised. To test this hypothesis, th
standard deviation between the center pixel and neighboring pixels:o8aXel grid was calculated

for all the pixels in the Limpopo and Gauteng study area. The underlying idea is that a low standard
deviation would indicate that the grid area is more homogeneous than a pixel grid having a high
standard deviation. A summer MODIS image over the Limpopo and Gauteng study area was used fo
the experiment. As expected, it was found that Gauteng had a 15% increase in the standard deviatic
relative to Limpopo. This finding was also supported when considering the bio-diversity in both study
areas (Figure 6.15).

In an effort to determine the stability of the false alarm rate as a function of the region size, the EKF
method was run blindly, i.e. without having any knowledge of the land cover type or usage, over

a 70km radius from the center of each study area in the Limpopo and Gauteng provinces (Figure
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FIGURE 6.14: Percentage pixels flagged as changed as a function of the distance from the center o

each region.

6.14). The rationale behind this experiment is that, with all other parameters being kept constant,
there will be a dramatic change in the percentage pixels flagged as having changed if the thresholc
which determines the false alarm rate, becomes invalid when increasing the radius of the operation
It is evident that the percentage pixels having changed does not vary significantly as a function of
the distance from the region center, having a standard deviation of roughly 1% for both the Limpopo
and Gauteng province. The 70 km radius was postulated to be representative when considering th
bio-regions found in South Africa which are typically less than 140km in diameter (Figure 6.15).

Bio-regions are characteristic flora, fauna, and environmental conditions and as such would have to b

40 45 &0 &5 60 65 70
Distance from region centre [Km]

taken into consideration when determining the threshold for operational use.
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FIGURE 6.15: Location of the Gauteng and Limpopo study areas as well as the bio-regions found in
South Africa.

Another interesting point is that the number of pixels having been flagged as changed which rangec
between 24% and 34%. The false alarm rate in the study area using the predetermined threshold we
found to be less than 14% (Table 6.16) in both provinces which raises the question of the source o
the remaining 10 to 20%. One obvious source of the additional pixels being flagged as change, othe
than the false alarms, are pixels that did in fact change from a natural vegetation to settlement lanc
cover and were consequently detected as having changed. As this type of change is a relatively rar
event in a regional landscape (typically 4% according to F. Schoetan[67]), it is highly unlikely

that this is the only source of the additional percentage difference. It is safe to assume that land cove
change from natural vegetation to settlement in both provinces is not the only type of land cover change
possibility which implies that the additional 6 to 16% of pixels flagged as changed could be because
of a host of other changes which could include, for example, agriculture, mining, deforestation, etc. It
is very probable that the EKF change detection method was sensitive to these types of changes as we
which could have resulted in the higher than expected number of pixels flagged as having changed
There is also a strong possibility that the EKF method could be sensitive to other land cover types,
for example, water. Sensitivity for various types of land cover changes is advantageous when using

the method as a change alarm, this thesis only considered settlement expansion as an example but t
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FIGURE 6.16: Percentage pixels flagged as changed using the ACF method as a function of the distanc
from the center of each region.

detection capability of the method to other land cover changes, for example deforestation is definitely

a topic for further investigation (see section 7.2).

6.5.2 Discussion of the temporal ACF change detection method results

The ACF method performance is also acceptable, achieving more thadladetection accuracy

with the false alarm being5 % or lower for both provinces (Table 6.16). As opposed to the results
obtained by the EKF change detection method, the performance of the temporal ACF change detectio
method is better for the Gauteng province than the Limpopo province. The performance of the

false alarm rate of the temporal ACF change detection method in Limpopo is very similar for the
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TABLE 6.17: O 4 performance for different start of change dates.

Mean start
of change O
2001/06 | 70.67%
2002/06 | 83.57%
2003/06 | 85.33%
2004/06 | 85.43%
2005/06 | 84.92%
2006/06 | 81.74%

2007/06 | 76.66%

off-line optimization and operational phase beira§: and12.25% respectively. The change detection
accuracy for the corresponding areas wea6% and81.20% respectively (Tables 6.7 and 6.8) which

is also relatively similar. In the Gauteng province the false alarm rate for both the off-line optimization
and operational phase was again very simildri{3% and15.35%), but the change detection accuracy
was considerably different$.17% and 92.27%). It might seem counterintuitive that the simulated
change is more difficult to detect than real change examples in the Gauteng province, but this doe:
make sense when considering the timing of the change. The mean start of change date of the re:
change dataset in Gauteng is 2004 with a standard deviation of two years. The simulated change dat
on the other hand, was distributed uniformly over the entire date range of the time-series. Therefore
when the change occurs in the center of the time-series, the non-stationarity of the time-series will
be at a maximum and will decrease as the change date moves towards the beginning or end of th
time-series. The performance of the method for detecting simulated change is shown for different star
years (Table 6.17). It is clear that the ACF change detection method is slightly compromised when
change occurs in the first or last year with no significant decrease in the performance for the others
years. Unfortunately, no change date information was available in the Limpopo province, only images
at the start and end of the time-series. It is, however, very probable that the change date in Limpopc
was distributed more uniformly over the study period, which resulted in the higher correlation between

that simulated change and real change detection performance.

Combining multiple bands in this study did not significantly improve on the separability achieved

using only band 4. This does not suggest that band 4 is the best for all types of land-cover change
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However, for our study area and land-cover change case, tfiecAthe band 4 time-series showed
the highest separability between the no-change and simulated change datasets. Multiple ban
combinations could also be used to improve the separability at the cost of increased computationa

complexity in cases where no single band gives adequate separability.

The stability of the false alarm rate for the ACF method was also evaluated as a function of the
region size. Similar to the experiment shown in section 6.5.1, the ACF method was run blindly over a
70 km radius from the center of each study area in the Limpopo and Gauteng provinces (Figure 6.16)
Although there was slightly more variation in the percentage pixels having changed compared to the
EKF method, the ACF method does not vary significantly as a function of the distance from the region
center, having a standard deviation of roughly 2% for both the Limpopo and Gauteng province. As with
the corresponding experiment in the case of the EKF method, some interesting results where observe
when considering the percentage of pixels flagged as having changed. The percentage of pixels flagge
as having changed varied between 7 and 20%, which is much lower than the corresponding result
obtained using the EKF method. The difference between the false alarm rate of less than 15% in bott
of the study regions (table 6.16) to that of the number of pixels flagged as having changed in the ‘blind
run’ experiment is much smaller which indicates that the ACF method is potentially not so sensitive to
other types of land cover changes using the parameters derived during the off-line optimization phase
which made use of the simulated change and no-change datasets of natural vegetation and settleme
land cover types.

6.5.3 Discussion of the NDVI differencing method

The NDVI differencing method, proposed in [17],was found not to be very successful, having a change
detection accuracy of less than% in the false alarm region of5% and less for both study areas
(Table 6.16). A possible explanation for this is that because the NDVI differencing method assumes
that the annual NDVI difference is distributed normally, the method could have difficulty in detecting
land-cover change when the study area is heterogeneous and consequently compromises the normal
assumption that is fundamental to this method. As expected, the method performs the poorest ir
the Gauteng province because of the land-cover diversity of the area (see figure 6.15). The metho
does perform better in the Limpopo province, but still has a change detection accuracy performance
decrease 0£0% when compared to the EKF change detection method at the same false alarm rate.
The NDVI differencing method also reduces the eight day composited time-series over the seven-yea
period to an effective seven observations by only considering the total annual NDVI value for each

year. This reduces the information available for change detection considerably. The threshold value
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that corresponded with a false alarm rate in the region of 12% between 1.8 and 2.1 (see figures
6.10 and 6.13) with the change detection accuracy being less than 70% in both cases. These resul
correspond well to those reported by Lune&ttal. for non-agricultural areas in the Albemarle-Pamlico
estuary system (APES) located in North Carolina and Virginia in the United States. For their study, a

threshold value of 2 resulted in a change detection accuracy of 68% with a false alarm rate of 15% [17].

6.6 CONCLUSION

In this chapter, the performance of three change detection methods was presented. Firstly, as
buildup to the EKF change detection framework, it was shown that that the separation between
natural vegetation and settlement land-cover types can be improved over FFT separation by usin
an EKF (Section 6.2.2). After EKF separability between natural and settlement time-series data was
determined, the method was adapted to the change detection case by formulating a change metr
that is based on a comparison of theand o parameter sequences of a pixel to the EKF derived
parameter sequences of its neighboring pixels. The EKF change detection method was used to dete
new settlement developments in the Limpopo and Gauteng provinces of South Africa (section 6.3.1
and 6.4.1).

The second method that was proposed was the temporal ACF change detection method. The tempor
ACF was used to exploit the non-stationarity of change pixels relative to no-change pixels by using
the correlation coefficient of a pre-determined band and lag combination as a change metric. The
method was also used to detect new settlement developments in both provinces (section 6.3.2 ar
6.4.2). Both these methods were compared to a recently published change detection method that us
NDVI differencing to determine land-cover change. The performance of this method is also given for

both provinces (section 6.3.3 and 6.4.3).

It was found that the EKF change detection method performed best in the Limpopo province. This
was attributed to the fact that most of the province is covered by natural vegetation which resulted in a
high correlation between the EKF derived parameter sequences of neighboring pixels in a tyBical 3
pixel grid. The neighboring pixel parameter sequences could thus be utilized when calculating the
change metric. Even though the settlements are low density and have a high component of vegetatiot
the relative difference in the EKF parameter steams of the change pixel and its neighboring pixels
was high enough to detect change. In the Gauteng province the performance of the EKF method wa
lower. This was attributed to the land-cover diversity that is typical to this province; st3epxel

grid was not as highly correlated as in the Limpopo province, which translated into a subsequent
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performance degradation. It is concluded that EKF changecteh can effectively exploit the
additional information provided by neighboring pixels when the area that is considered is relatively
homogeneous for a typical 2.25 knarea and the number of contiguous pixels having changed is
limited to 4 or 5.

It was found that the temporal ACF change detection method had the best performance in the Gauten
province. The non-stationarity of the change pixels relative to the no-change pixel time-series was
effectively exploited. The method considered a single pixel time-series as opposed to a grid of pixels
as in the EKF change detection method and was therefore not influenced by heterogeneity of the pixe
grid. It was shown that the change detection accuracy of the temporal ACF method is at a maximum
when the change date is at the center of the time-series and slightly compromised as the change da
moves towards the beginning or end of the time-series. However, the method was able to achieve
more than an 80% detection accuracy in both provinces. It is concluded that the temporal ACF change
detection method is very robust as it only considers the ACF of a single pixel time-series and is not
dependent on the homogeneity of the considered area. The timing of the change should, howeve
also be considered when most of the change is anticipated to be at the end or start of the time-serie
Both the proposed methods performed well for both provinces when compared to a simple NDVI

differencing method.
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