
CHAPTERFIVE
DETECTING LAND-COVER CHANGE USING

MODIS TIME-SERIES DATA

5.1 INTRODUCTION

In this chapter two novel change detection methods are proposed. The first method, hereafter referred

to as the EKF change detection method, is based on the work done in the previous chapter. The

algorithm acts as a per-pixel change alarm and takes as input the NDVI time-series of a 3×3 grid of

MODIS pixels. The NDVI time-series for each of these pixels was modeled as a triply (mean, phase

and amplitude) modulated cosine function, and an EKF was used to estimate the parameters of the

modulated cosine function for each time-step. A spatial comparison between the center pixel of the

the 3×3 grid and each of its neighboring pixel’s mean and amplitude parameter sequence was done

to calculate a change metric. This change metric is then compared to a threshold to yield a change or

no-change decision.

The second method, hereafter referred to as the temporal ACF change detection method, is a per-pixel

change alarm that uses temporal autocorrelation to infer a change metric which also yields a change

or no-change decision after thresholding.

A third method, which is based on the work of Lunetta et al. [17] (see section 2.7.1.3), is also shown

in this chapter. This method uses a MODIS NDVI time-series to determine the occurrence of change

in areas that are typically covered by natural vegetation and was included for comparison. All three

these methods were compared with one another and their results are presented in chapter 6.

Both of the proposed methods (EKF and ACF change detection methods) make use of a simulated

change dataset for initial parameter estimation. Making use of simulated or synthetic data is a
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well-known concept in the remote sensing community [25, 97, 98]. The use of simulated change data

is twofold. Firstly, during development of the new method the simulated change data were used to

optimize the method and to tentatively evaluate the performance of the algorithm. Simulation was

opted for during the optimization phase, since new settlement developments are infrequently mapped

on an ad hoc basis in South Africa and the data on known settlement development amount to a relatively

small number of MODIS pixels. Secondly, the start date and rate of the land-cover change could be

controlled in the simulated or synthetic data which greatly facilitates the development and evaluation

phases. After the method was optimized and performing well on simulated (synthetic) change data, it

was evaluated by applying it to examples of known new settlement developments in South Africa.

5.2 EKF CHANGE DETECTION METHOD

Based on the results obtained in the previous chapter, the focus in this chapter shifts towards land-cover

change detection. In the previous chapter it was shown that a triply modulated cosine function can be

used to model an NDVI time-series and that the parameters of the function can be estimated for each

time-step using a non-linear EKF. The consequentµ andα parameter stream is expected to be similar

for the same class land-cover types and dissimilar for different land-cover types when considering

natural vegetation and settlement pixels. Assuming that land-cover separability is achievable, it can

be inferred that when a land-cover type changes from a naturally vegetated state to a settlement state,

the correspondingµ andα parameter sequence will also be affected. The proposed method uses a

MODIS 8-day NDVI time-series (see section 2.18) to calculate a change metric by means of a spatial

comparison of the EKF parameter sequence of any given pixel with that of its neighboring pixels. The

objective was to demonstrate that by making use of an EKF-derived change metric and a threshold

optimized based on simulated land-cover change, a semi-supervised change detection method can be

formulated that accurately detects change using MODIS NDVI time-series data.

5.2.1 Change metric formulation

As was shown in chapter 4, the NDVI time-series for a given pixel can be modeled by a triply

modulated cosine function given as

yk = µk + αk cos(ωk + φk) + vk, (5.1)

whereyk denotes the observed value of the NDVI time-series at timek andvk is the noise sample

at timek. The values ofµk, αk andφk are functions of time, and must be estimated givenyk for
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FIGURE 5.1: Mean parameter sequence comparison of a 3×3 pixel grid having an unchanged center
pixel.

k ∈ 1, . . . , N [99, 100]. An EKF was used to estimate these parameters for every increment ofk. The

estimated values forxk = [µk αk φk]
T over timek effectively results in a time-series for each of the

three parameters.

Having the parameter sequence forµk, αk and φk for k ∈ 1, . . . , N for a given pixel, a change

detection method was formulated by comparing the parameter sequences of the pixel with that of

its direct neighboring pixels. This effectively means focusing on the center pixel of a3 × 3 grid of

pixels and examining each neighboring pixel’s EKF parameter sequence relative to the center pixel. It

was found that theφ parameter sequence does not yield any significant separability between natural

vegetation and settlement land-cover types and consequently only theµ andα parameter sequences

were considered (See section 6.2.2).

Figure 5.1 shows theµ parameter sequence of a natural vegetation pixel over the seven-year study

period compared to that of its neighboring pixels. As expected, theµ parameter sequence for the nine

pixels is highly correlated. Figure 5.2 shows theµ parameter sequence for the same grid but with the

center pixel gradually changing to settlement over a 6 month period. It is clear that theµ parameter

sequence for the center pixel becomes less correlated with that of its neighboring pixels. Theµ and

α parameter sequence difference between the center pixel and an arbitrary neighboring pixel at timek
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FIGURE 5.2: Mean parameter sequence comparison of a 3×3 pixel grid with simulated natural
vegetation to settlement change introduced to the center pixel.

can be written as

Dk
µ(n) = |µk − µn

k | n ∈ 1, . . . , 8, (5.2)

Dk
α(n) = |αk − αn

k | n ∈ 1, . . . , 8, (5.3)

whereDk
µ(n) is the distance between theµ parameter sequence of a selected pixel (µk) with its nth

neighboring pixel (µn
k ) at timek. Dk

α(n) is the distance between theα parameter sequence of a selected

pixel (αk) with its nth neighboring pixel (αn
k ) at timek. Equation 5.2 and 5.3 can be combined as

Dk
n = Dk

µ(n) +Dk
α(n) n ∈ 1, . . . , 8. (5.4)

Having obtained the distance of the center pixel’s parameter sequences relative to each of the

neighboring pixel’s parameter sequences, these could be combined at timek by simply adding all

the values ofDk
n n ∈ 1, . . . , 8 at timek

Dk =

8∑

n=1

Dk
n k ∈ 1, . . . , N. (5.5)

Having vectorD = [D1 D2 D3 . . . DN ], a change metric was derived by firstly determining how the

relative distance of the parameter sequences between the center pixel and its neighboring pixel changes
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FIGURE 5.3: 500 m MODIS pixel covering natural vegetation and settlement land-cover in close
proximity (courtesy of GoogleTMEarth).

through time. This was done by differentiating the vectorD. A single change metric was then derived

by summing all the values of the differentiatedD vector to yield

δ =
N∑

k=2

|Dk −Dk−1|, (5.6)

whereδ is a single valued change metric for the center pixel of the 3×3 pixel grid. The change metric

for each of the pixels in the study area was thus calculated by sliding a 3×3 pixel grid over the entire

study area and calculatingδ for the center pixel in each case.

5.2.2 Off-line optimization phase

Simulated change data are used together with a no-change dataset to optimize and tentatively evaluate

the change detection method. Simulated change data were created by linearly blending a time-series

of a pixel covered by natural vegetation with that of a pixel of a settlement which is in close proximity

to ensure that the rainfall, soil type and local climate was similar. Figure 5.3 shows the footprint

of a typical MODIS pixel covered by natural vegetation and a settlement pixel in close proximity.

Figure 5.4 shows the corresponding NDVI time-series from 2001/01 to 2008/01 for each of these

pixels as well as the simulated time-series where the blending period was set at 6, 12 and 24 months

respectively with the midpoint of the blending period being 2004/04. It was found that the method

was not sensitive to the exact date of change but rather to the transition duration, hence the variable

simulated blending period. As was discussed in section 5.2.1, the algorithm uses a 3×3 pixel grid with

the center pixel being compared to all neighboring pixels. It is, however, not realistic to assume that

only the center pixel has changed with all neighboring pixels remaining unchanged. For this reason,
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FIGURE 5.4: NDVI time-series of natural vegetation, settlement and simulated change pixels where
the simulated change time-series had blending periods of 6, 12 and 24 months respectively.

the center pixel, together with a subset of neighboring pixels (zero to all eight), were subjected to a

simulated land-cover change. The simulated change for each of the neighboring pixels was done in

a similar manner, ensuring that the initial state of each neighboring pixel is in a vegetated state and

gradually blends to a settlement state.

As previously stated, the method requires ana-priori database of simulated change and no-change

examples. The change metric is firstly calculated (equation 5.6) for all the no-change and simulated

change pixels in the database. The distribution ofδ for both cases is then calculated. Figure 5.5 shows

an example of the anticipated distribution ofδ in the case of no-changep(δ|C) and simulated change

p(δ|Cp
r ) respectively. Inp(δ|Cp

r ), r is the rate of simulated change, i.e. 6, 12 or 24 months andp is the

number of pixels in the 3×3 grid subjected to a simulated change. The value of the optimal threshold

(δ∗) will change depending on the value ofp andr respectively. The Bayesian decision error can be

calculated as
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FIGURE 5.5: Probability distribution ofδ in the case of no-changep(δ|C) and simulated change
p(δ|Cp

r ) respectively.

P (C|C) =

∫ δ=∞

δ=δ∗
p(δ|Cp

r ), (5.7)

P (C|C) =

∫ δ=∞

δ=δ∗
p(δ|C), (5.8)

P (C|C) =

∫ δ=δ∗

δ=0

p(δ|Cp
r ), (5.9)

P (C|C) =

∫ δ=δ∗

δ=0

p(δ|C). (5.10)

P (C|C) is the probability that a change was detected given that a change was introduced (percentage

change correctly detected),P (C|C) is the probability that a change was detected given that no change

was introduced (percentage false alarms),P (C|C) is the probability that no change was detected given

that a change was introduced andP (C|C) is the probability that no change was detected given that no

change was introduced (5.7)-(5.10). The value ofδ∗ is the optimal decision threshold that minimizes

the Bayesian decision error.

The underlying idea is thatp(δ|C), which is estimated using actual no-change examples, remains

constant, whilep(δ|Cp
r ) which is estimated using simulated change data varies for different realizations

of p andr. This implies that thatδ∗ will vary for different values ofr andp. By calculatingδ∗ for all
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FIGURE 5.6: Range ofδ∗ and corresponding maximum and minimum false alarm rate.

values ofr ∈ {6, 12, 24} andp = {1, 2, 3, ..., 9}, will result in a range ofδ∗ values. Each of theδ∗

values in this range result in a different false alarm rate, calculated usingp(δ|C). Figure 5.6 shows an

example ofp(δ|C), together with a range ofδ∗, which was determined by means of simulated change

with all permutations ofr ∈ {6, 12, 24} andp = {1, 2, 3, ..., 9}. The corresponding maximum and

minimum false alarm rate is also shown. Having a range of false alarm rates that were identified as

being optimal for different change scenarios, it is up to the operator to select the maximum allowable

false alarm rate that is deemed acceptable in the given application environment.

5.2.3 Operational phase

The threshold that is selected for operational use (δ̂) is within the range[δ∗min, δ
∗
max] and corresponds

to the maximum allowable false alarm rate (∆) chosen by an operator for the specific application and

region. Theδ∗ value corresponding to∆ (δ̂) is expressed as:

δ̂ = δ∗ where

∫ δ=∞

δ=δ∗
p(δ|C) = ∆ δ∗ ∈ [δ∗min, δ

∗
max]. (5.11)

Having the value of̂δ, the EKF change detection method is run in an unsupervised manner for the

entire study area. The value ofδ (equation 5.6) is calculated for each pixel and a change is declared if

δ exceeds the threshold valueδ̂
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Change =





true if δ ≥ δ̂

false if δ < δ̂.

For example, if the no-change PDF corresponded to the one shown in Figure 5.6, the region of the

optimal false alarm rate would be between 2.85% and 13.37%, which corresponds to aδ∗ value of

3 and 2.5 respectively. An operator thus needs to choose the maximum allowable false alarm rate

within the aforementioned range. If the maximum false alarm rate chosen by the operator was 10%,

the corresponding value ofδ∗ could easily be determined as being 2.65, in which case:

Change =





true if δ ≥ 2.65

false if δ < 2.65.

5.3 TEMPORAL ACF METHOD

The ACF, in the temporal context, have been used selectively in remote sensing [101], but is mostly

applied in the spatial context [102], [103]. In this section the temporal ACF of a pixel’s time-series

was considered. An ACF of a time-series that is stationary behaves differently from an ACF of

a time-series that is non-stationary due to land-cover change.It should be noted that the ACF of

a non-stationary time-series under the ergodic assumption can not be technically defined as being

the ACF of the time-series. When referring to the ACF in this context, it only refers to the ACF

operation performed on the given time-series under the assumption that the time-series is stationary.

By determining suitable detection parameters using only a no-change database, it will be shown that

real land-cover change can be detected reliably in a semi-supervised fashion.

Similar to the EKF change detection method, the temporal ACF change detection method uses a

two-stage approach. Firstly, a simulated change dataset, together with a no-change dataset, is used

in an off-line optimization phase to determine the appropriate parameters (band, lag and threshold

selection). Second, the method is run in an unsupervised manner using the parameter-set that was

determined during the aforementioned off-line optimization phase. These two stages will be discussed

in further detail in the following sections.

5.3.1 Change metric formulation

Assume that the time-series for any given band of MODIS is expressed as:

Xb
n n ∈ {1, 2, ..., N} b ∈ {1, 2, ..., 8}, (5.12)
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FIGURE 5.7: Autocorrelation of a change and no-change pixel’s MODIS band 4 time-series.

whereXb
n is the observation from spectral bandb at time n and N is the number of time-series

observations available. It should be noted that band 8 in (5.12) refers to computed NDVI. It is assumed

thatN is equal for all seven bands.

The normalized ACF for time-seriesXb = [Xb
1, X

b
2, ..., X

b
N ] can then be expressed as:

Rb(τ) =
E[(Xb

n − µb)(Xb
n+τ − µb)]

var(Xb)
, (5.13)

whereτ is the time-lag andE denotes the expectation. The mean ofXb is given asµb and the variance,

which is used for normalization, is given asvar(Xb). Figure 5.7 shows the typical ACF of an actual

change and no-change pixel’s time-series. It is clear that the no-change pixel has a symmetrical form

relative to theRb(τ) = 0 axis, whereas the change pixel shows a strong non-symmetrical property.

The reason for this is the stationarity requirement of the ACF in (5.13). The mean and variance of the

time-series ofXb
n in (5.13) is required to remain constant through time to determine the true ACF of

the time-series. The inconsistency of the mean and variance typically associated with a change pixel’s

non-stationary time-series thus becomes apparent when analyzing the ACF of the time-series. The

change metric is thus simply equivalent to the temporal correlation of a specific band (b) at a specific

lag (τ )
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FIGURE 5.8: Example of the distribution ofδbτ in the case of change and no-change respectively.

Rb(τ) = δbτ . (5.14)

It is clear, however, that the distribution ofδbτ in the case of change and no-change, as shown in figure

5.8, will vary for different values ofτ andb. The aim is thus to determine the value ofτ andb in δbτ

that will result in the most separable distributions betweenδbτ for the change (p(δbτ |C)) and no-change

(p(δbτ |C)) case respectively. The value of the optimal threshold (δb∗τ ) also needs to be determined.

The selection procedure for these parameters are done in an off-line optimization phase and will be

discussed in more detail in the following section.

5.3.2 Off-line optimization phase

Similar to the methodology used in section 5.2.2, a no-change and simulated change dataset is used to

optimize the parameters of the temporal ACF change detection method. A simulated change dataset

is generated by linearly blending a time-series of a pixel covered by natural vegetation with that of

a settlement pixel time-series. Unlike the simulated change dataset used in section 5.2.2, the start

date of change is chosen at random. The resulting simulated change database thus has a uniformly

spread change date between 2001/01 and 2008/01 corresponding to the study period. The blending

period was found not to influence the method’s performance, and a representative blending period of
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6 months was chosen.

The right sided normalized ACF for bandb can be expressed asRb(τ) = [Rb(0), Rb(1), ..., Rb(N)].

The task at hand is to determine the separation between the ACF of the change and no-change dataset

for each band at each lag. The Bayesian decision error in the form of a confusion matrix was calculated

based on the distribution of the change metricδbτ for the change and no-change dataset:

P (C|C) =

∫ δbτ=∞

δbτ=δb∗τ

p(δbτ |C), (5.15)

P (C|C) =

∫ δbτ=∞

δbτ=δb∗τ

p(δbτ |C), (5.16)

P (C|C) =

∫ δbτ=δb∗τ

δbτ=0

p(δbτ |C), (5.17)

P (C|C) =

∫ δbτ=δb∗τ

δbτ=0

p(δbτ |C). (5.18)

P (C|C) is the probability that a change was detected given that a change was present (percentage

change correctly detected),P (C|C) is the probability that a change was detected given that no change

was present (percentage false alarms),P (C|C) is the probability that no change was detected given

that a change was introduced andP (C|C) is the probability that no change was detected given that

no change was introduced. The value ofδb∗τ is the optimal decision threshold. To relate the confusion

matrix into a single measure of accuracy, the overall accuracy was calculated as:

OA =
P (C|C) + P (C|C)

P (C|C) + P (C|C) + P (C|C) + P (C|C)
. (5.19)

The optimal value ofτ, b andδb∗τ could thus be calculated by solving

[τ, b, δb∗τ ] = argmax
τ,b,δb∗τ

∫ δbτ=∞

δbτ=δb∗τ
p(δbτ |C) +

∫ δbτ=δb∗τ
δbτ=0

p(δbτ |C)
∫ δbτ=∞

δbτ=δb∗τ
p(δbτ |C) +

∫ δbτ=δb∗τ
δbτ=0

p(δbτ |C) +
∫ δbτ=∞

δbτ=δb∗τ
p(δbτ |C) +

∫ δbτ=δb∗τ
δbτ=0

p(δbτ |C)
, (5.20)

wherep(δbτ |C) is estimated by means of the simulated change dataset andp(δbτ |C) is calculated using

the no-change dataset.

5.3.3 Operational phase

After the off-line optimization phase is complete, the resulting parameters are used to run the algorithm

in an unsupervised manner for the entire area of interest. A pixel is labeled as having changed by
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FIGURE 5.9: Comparison between a raw and filtered NDVI signal.

evaluating the following,

Change =





true if Rb(τ) ≥ δb∗τ

false if Rb(τ) < δb∗τ ,

whereRb(τ) is the ACF of bandb evaluated at lagτ andδb∗τ is the decision threshold. The value ofτ , b

andδb∗τ , was provided in the aforementioned off-line optimization phase. The results obtained for both

the off-line optimization phase and operational phase are presented in Chapter 6.

5.4 ANNUAL NDVI DIFFERENCING METHOD

Both the EKF and ACF change detection methods are compared to a computationally simple change

detection method proposed by Lunettaet al. [17]. Using this method, the NDVI time-series was

firstly filtered and cleaned using Fourier transformation filtering. In this step, the raw NDVI signal is

transformed to the frequency domain using the FFT. The high frequency components are removed and

the remainder is transformed back to the time-domain using the IFFT. Figure 5.9 shows the raw NDVI

signal as well as the FFT filtered signal. It is clear that the filtered signal is considerably smoother

than the original raw NDVI signal.
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Assume that the entire time-series of the filtered NDVI time-series is denoted as

y = [y1, y2, y3, ..., yN ], (5.21)

wherey is a vector containing the filtered NDVI value for each time-step andN is the total number of

observations. A new time-series can be obtained by summing all the filtered NDVI values for a year

and reducing the time-series elements to the number of years.

c = [c1, c2, c3, ..., cK ], (5.22)

whereK is number of years that the time-series spans andci is the cumulative NDVI for yeari given

as:

ci =

k=46+46(i−1)∑

k=1+46(i−1)

yk. (5.23)

The number 46 in equation 5.23 refers to the total number of eight day observations in a single year.

The difference between theci for consecutive years can be expressed as a vectord = [d1, d2, d3, ..dK−1]

wheredi is calculated as:

di = ci − ci+1. (5.24)

The value ofdi is calculated for each of the pixels in the study area, the underlying idea being that

pixels experiencing a considerable reduction in NDVI will have a higherdi value and would thus be

a good indication of land-cover change. The problem, however, is identifying a suitable threshold

value that when compared todi, produces a change or no-change decision. The threshold value would

obviously also need to be adjusted for each value ofi. A pixel would be flagged as having changed

if any of the values ofdi exceed the thresholdδi for i ∈ [1, 2, 3, .., K − 1]. A change vector could be

formulated asζ = {ζ1, ζ2, ζ3, ..., ζK−1} whereζi is defined as

ζi =





0 if di ≥ δi

1 if di > δi.

A change or no-change decision is made as

Change =





true if
∑

ζ > 0

false if
∑

ζ = 0.

Where
∑

ζ refers to the summation of all the values in the vectorζ given as
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FIGURE 5.10: Distribution of the annual NDVI difference between 2002 and 2003 for the study period.

∑
ζ =

K−1∑

i=1

ζi. (5.25)

Choosing the threshold valuesδi for i ∈ {1, 2, 3, .., K − 1} is not a trivial task. This was achieved

by using standard normal statistics. Firstly, the difference value (di , i ∈ {1, 2, 3, .., K − 1} ) is

computed for all the pixels in the study area. This is then used to estimate normal distribution

p(di) i ∈ {1, 2, 3, .., K− 1}. Figure 5.10 shows the annual NDVI difference between two consecutive

years (2002 and 2003) during the study period. It can also be seen that the actual distribution of the

NDVI difference is well approximated using a normal distribution.

Using standard normal distribution statistics, the threshold valueδi was determined by choosing the

NDVI difference value that corresponds to thez value that is representative of thea-priori probability

of change in the study area [17]. Figure 5.11 shows a normal distribution. It can be seen that95% of

the values fall between az value of -1.98 and 1.98 where99% of the values are between the values of

-2.58 and 2.58. It follows that if thea-priori change probability of2.5% is expected for a specific area,

the threshold value will correspond to az value of1.98 because only the right tail of the distribution is

considered, as a reduction in NDVI from year to year will result in a positivedi value when considering

equation 5.24.
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FIGURE 5.11: The Normal distribution.

5.5 SUMMARY

In this chapter, two novel land-cover change detection methods were proposed. The first method

models an NDVI time-series as a triply modulated cosine function and estimates the mean, amplitude

and phase for each time-increment using an EKF. A change index was derived by comparing each

pixel’s mean and amplitude parameters with that of its neighboring pixels, effectively considering

the center pixel of a 3×3 grid of pixels. The threshold that determined whether the change index

associated with each pixel should be classified as change or no-change was determined by means of

land-cover change simulation.

The second method that was proposed is a temporal ACF change detection method. This method

exploits the non-stationary property that is typical of a time-series of a pixel that undergoes land-cover

change by considering the temporal ACF of the time-series. A change metric is defined by considering

an ACF band and lag combination. The most appropriate band, lag and threshold selection is

performed using a no-change and simulated change dataset.

For comparison, the NDVI differencing method proposed in [17] is also discussed. The performance of

all three methods are evaluated on two study areas in South Africa, the results of which are presented

in the following chapter.
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