
CHAPTERTHREE
THE EXTENDED KALMAN FILTER

3.1 INTRODUCTION

As mentioned in chapter 1, one of the change detection methods proposed in this thesis is the Extended

Kalman Filter (EKF) change detection method. As the name suggests, the EKF is a critical component

of the change detection method and this chapter consequently aims to give some background on

conceptual state-space filtering and in particular, the EKF. As will become more apparent in the

chapters to follow, the underlying idea of the EKF change detection method lies in modeling an NDVI

time-series as a triply modulated cosine function, and tracking the parameters of the model for each

time-increment. The state-space filtering method is useful for this specific problem, as the parameters

of the triply modulated cosine function could be characterized as a time-variant state-vector which

relates to an observation model via the non-linear cosine function. As change detection is our primary

objective, the near real-time nature of the state-space filtering method is also particularly useful, as the

time from when the change occurred to when change is detected should ideally be minimal.

The EKF framework works on the basis that the posterior density of the state vector given the observed

data is always assumed to be Gaussian, which makes for simple implementation and fast execution

time [85]. Approximate grid based methods and Gaussian sum filters do not have the limitation of

assuming Gaussian posteriors densities, but the computational complexity of these methods are very

high which prevents their widespread use in practice [85]. The broader objective of this study is to

implement the change detection methods operationally. This requires that the specific non-linear state

space filter that is chosen be well understood and lend itself to be easily implemented. The EKF was

consequently chosen as it is a well established method which is easily implementable [85]. The EKF

was also compared to a sliding window FFT approach (section 4.5) and was found to be superior for

the specific problem presented in this thesis (see chapter 6).
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3.2 CONCEPTUAL STATE-SPACE FILTERING SOLUTION

In many applications, it is necessary to estimate the state of a dynamic system using only a time-series

of noisy-measurements made on the system. In many cases, a discrete-time state-space approach

is used to model the dynamic system. The underlying idea is that difference equations are used to

model the evolution of the system over time and that measurements are available at discrete times. It

is assumed that the state vector of the system contains a vector of state parameters that are able to

accurately describe the behavior of a system. For example, in tracking systems, these parameters can

be related to the kinematic characteristics of the target [85].

Using the state-space approach, at least two models are required to describe the noisy measurements

obtained from the dynamic system. The first model (process model) describes the evolution of each

state parameter from time-stepk − 1 to k. The second model (observation model) takes as input the

state parameters at time-stepk, obtained during the previous step, to produce an estimate of the output

of the system at time-stepk. For many applications, an estimate of the state parameters is required

every time a measurement is received. The recursive nature of the state-space approach implies that

a recursive filtering approach can be used where received data can be processed sequentially. Such a

filter consists of two stages, namely predict and update. In the predict stage, the state PDF is predicted

forward from one time-step to the next, which effectively broadens the state PDF. In the update stage,

the latest available measurement is used to tighten the state PDF. [85]

The two models can be described formally as

xk = f(xk−1) +wk−1, (3.1)

and

yk = h(xk) + vk. (3.2)

Wherexk is the state vector at time-stepk in the form

xk = [xk,1 xk,2 xk,3 ... xk,s], (3.3)

with s being the total number of state parameters. The relation betweenxk andxk−1 is given byf , a

known but possibly non-linear function. The state vectorxk is related to the observation vectoryk via

a known but possibly non-linear measurement functionh It should be noted thatf andh are allowed

to be time-variant, but the time-invariant assumption was assumed in this thesis.. Both these models
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are possibly non-perfect, so the addition of processwk−1 and measurementvk noise is included.

The task at hand is to produce an estimate ofxk given all available measurementsYk =

{y1,y2,y3, ...,yk} up to timek. It is thus required to construct the posterior PDFp(xk|Yk). The

initial estimate ofp(xk) should be provided where-afterp(xk|Yk) is estimated recursively using the

predict and update stages mentioned previously. The predicted PDFp(xk|Yk−1) is obtained by means

of the Chapman-Kolmogoroff equation [85]:

p(xk|Yk−1) =

∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1. (3.4)

Wherep(xk|xk−1) is obtained using (3.1) and known statistics ofwk−1. When the observation at time

k (yk) becomes available, the state PDF is updated via Bayes’ rule:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
, (3.5)

where the normalization constantp(yk|Yk−1) can be written as

p(yk|Yk−1) =

∫
p(yk|xk)p(xk|Yk−1)dxk. (3.6)

The likelihoodp(yk|xk) can be obtained by using (3.2) and known statistics ofvk. Knowledge of the

posterior densityp(xk|Yk) enables one to not only compute the optimal state estimate with respect to

any criterion, but also to determine the measure of accuracy of the state estimate [85]. For example, if

p(xk|Yk) is a multivariate Gaussian distribution, the covariance matrix can be used to determine the

state estimate accuracy.

In the case thatwk−1 andvk in (3.1) and (3.2) are Gaussian distributed and bothf(xk−1) andh(xk)

are linear functions, the functional recursion of (3.4) and (3.5) is the Kalman filter [86]. The Kalman

filter will be discussed in further detail in the following section.

3.3 KALMAN FILTER

The Kalman filter is named after Rudolf E. Kalman and is a well-established method that was

published in 1960 [86]. Since the algorithm was proposed, it has been widely used, especially in

military and space applications.
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As stated previously, the Kalman filter assumes that the process and observation noise is Gaussian

distributed and that both thef andh functions in (3.1) and (3.2) are linear. It follows that (3.1) and

(3.2) can be written as:

xk = Fxk−1 +wk−1, (3.7)

and

yk = Hxk + vk, (3.8)

whereF andH are known matrices defining the linear functions [85]. It is assumed thatwk−1 and

vk are zero-mean Gaussian distributed with covariancesQk−1 andRk respectively. The distributions

p(xk−1|Yk−1), p(xk|Yk−1) andp(xk|Yk) given in equations (3.4) and (3.5) can then be expressed as:

p(xk−1|Yk−1) = N (xk−1; x̂k−1|k−1,Pk−1|k−1) (3.9)

p(xk|Yk−1) = N (xk; x̂k|k−1,Pk|k−1) (3.10)

p(xk|Yk) = N (xk; x̂k|k,Pk|k), (3.11)

whereN (x;m,P) is a Gaussian distribution with argumentx, mean (m) and covariance (P) given as:

N (x;m,P) =
√

|2πP| e− 1

2
(x−m)TP

−1(x−m). (3.12)

The mean and covariance parameters in (3.9)-(3.11) is given as [86]:

x̂k|k−1 = F x̂k−1|k−1 (3.13)

Pk|k−1 = Qk−1 + F Pk−1|k−1F
T (3.14)

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) (3.15)

Pk|k = Pk|k−1 −KkSkK
T
k , (3.16)

where

Sk = HPk|k−1H
T +Rk, (3.17)

is the innovation term and

Kk = Pk|k−1H
TS−1

k , (3.18)

is the Kalman gain. The Kalman filter thus effectively computes the mean and covariance of the

Gaussian posteriorp(xk|Yk) and is optimal in the linear Gaussian environment. Unfortunately, many
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real world applications are non-linear and quite often non-stationary. In this case, approximation

methods have to be used. A popular extension of the Kalman filter to the non-linear case is the Extended

Kalman Filter, which will be discussed in more detail in the following section.

3.4 EXTENDED KALMAN FILTER

The extended Kalman filter (EKF) is the nonlinear version of the popular Kalman filter. Similar to

the standard Kalman filter, for every increment ofk (the discrete time) a state vectorxk is defined

containing the parameters to be estimated. If one were, for example, to estimate the mean (µ) amplitude

(α) and phase (φ) of a cosine function, the state vector could be in the formxk = [µk αk φk]
T . The

state vector can be estimated over timek by recursive iteration based on the observation dataYk up to

timek. For the EKF, equations (3.7) and (3.8) can be reformulated as:

xk = f(xk−1) +wk−1, (3.19)

and

yk = h(xk) + vk. (3.20)

In this formulation, either or both functionsf andh are non-linear functions. The basic idea is that

these non-linear functions can be sufficiently described using local linearization. The posterior PDF

p(xk|Yk) is approximated by a Gaussian distribution which implies that (3.9)-(3.11) are assumed to

hold. Equations (3.13)-(3.18) can then be rewritten as:

x̂k|k−1 = f(x̂k−1|k−1) (3.21)

Pk|k−1 = Qk−1 + F Pk−1|k−1F
T (3.22)

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)) (3.23)

Pk|k = Pk|k−1 −KkSkK
T
k , (3.24)

where

Sk = HkPk|k−1H
T
k +Rk (3.25)

Kk = Pk|k−1H
T
kS

−1
k , (3.26)

andF andH are the local linearization of the non-linear functionf andh respectively. They are defined

as Jacobians evaluated atx̂k−1|k−1 andx̂k|k−1 respectively [85]:
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F̂ = ‖ ▽xk−1
fT (xk−1)

T‖xk−1=x̂k−1|k−1
(3.27)

Ĥ = ‖ ▽xk
hT (xk)

T‖xk=x̂k|k−1
, (3.28)

where

▽xk
=

[
∂

∂xk,1

...
∂

∂xk,s

]
. (3.29)

The EKF is referred to as an analytical approximation because the JacobiansF̂ andĤ are computed

analytically.

3.5 EXAMPLE OF AN EKF TRACKING APPLICATION

In this section, an example of tracking a cosine function with varying amplitude and phase using an

EKF is shown. Assume that noisy observations are made of a process that is governed by the following

function:

yk = α cos(ωk + φ) + nk, (3.30)

whereω = 2πf . It is assumed that the fundamental frequencyf is known and that the task at hand is to

estimate the value ofα andφ for each time-stepk given observations up to time-stepk. It is proposed

that this non-linear problem be solved using an EKF. The state vector can be defined as:

xk = [αk φk]
T . (3.31)

The process and observation models can be formulated as:

xk = xk−1 +wk−1, (3.32)

and

yk = h(xk) + vk, (3.33)

whereh(xk) = xk,1 cos(ωk + xk,2). In the process model (3.32), it is assumed that the state vector

remains constant from one time-step to the next with an additive process noise component. This implies

that:

f(x) = Fx = Ix, (3.34)

Department of Electrical, Electronic and Computer Engineering 52

University of Pretoria

 
 
 



Chapter 3 The Extended Kalman Filter

whereI is a 2×2 Identity matrix. It is assumed that the noise componentwk−1 is Gaussian distributed

having zero mean and covarianceQk−1, i.e. p(wk−1) = N ([0 0]T ,Qk−1)

The observation model (3.33) is based on (3.30) with the amplitude and phase parameter being

replaced by the state parameters representing each of these variables and the noise component

vk also being assumed to be Gaussian distributed with zero mean and varianceRk = σ2
v , i.e.

p(vk) = N (0, σ2
v).

The state parameter(x̂k|k−1) prediction given in (3.21), can be re-written for this specific problem as:

x̂k|k−1 = f(x̂k−1|k−1) (3.35)

= Ixk−1|k−1 (3.36)

= xk−1|k−1. (3.37)

The predicted covariance term (Pk|k−1), as calculated in (3.22) can also be re-written as:

Pk|k−1 = Qk−1 + F Pk−1|k−1F
T (3.38)

= Qk−1 + I Pk−1|k−1I
T (3.39)

= Qk−1 +Pk−1|k−1. (3.40)

In the state vector update phase of the EKF (3.23), the observation(yk) is used to update the current

state vector̂xk|k−1 and can be written as:

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)) (3.41)

= x̂k|k−1 +Kk(yk − Ĥx̂k|k−1), (3.42)

whereĤ is the local linearization of functionh(x) given as:

Ĥ = ‖ ▽xk
h(xk)‖xk=x̂k|k−1

(3.43)

=

[
∂

∂xk,1
h(xk)

∂

∂xk,2
h(xk)

]

xk=x̂k|k−1

, (3.44)

where

∂

∂xk,1
h(xk) =

∂

∂xk,1
xk,1 cos(ωk + xk,2) (3.45)

= cos(ωk + xk,2), (3.46)
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and

∂

∂xk,2
h(xk) =

∂

∂xk,2
xk,1 cos(ωk + xk,2) (3.47)

=
∂

∂xk,2
xk,1

[
cos(ωk) cos(xk,2)− sin(ωk) sin(xk,2)

]
(3.48)

= −xk,1

[
sin(ωk) cos(xk,2) + cos(ωk) sin(xk,2)

]
. (3.49)

The termSk in the parameter covariance update equation (3.24) can also be rewritten for the present

case as:

Sk = HkPk|k−1H
T
k +Rk (3.50)

= ĤkPk|k−1Ĥ
T
k + σ2

v . (3.51)

A time-series was generated with a Signal-to-noise Ratio (SNR) of 5 dB (Figure 3.1A). Figures 3.1B

and 3.1C show the corresponding amplitude and phase being tracked using the EKF framework. In

Figure 3.1A, the noisy observations as well as the actual signal is shown together with the filtered EKF

estimate. It can be seen that the filter requires an initial number of observations before the EKF state

parameters start to stabilize. The stabilized state vector corresponds to the accurate tracking of the

underlying signal by the EKF, i.e. as soon as the state parameters start to stabilize, the value of the

underlying signal is very accurately tracked by the EKF.
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(A)

(B)

(C)

FIGURE 3.1: FigureA shows the noisy observation, actual signal and EKF output. FiguresB andC
show the estimated amplitude and phase state parameter for each time-step.
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