
CHAPTERONE
INTRODUCTION

1.1 PROBLEM STATEMENT

Anthropogenic changes to natural land cover are being driven by a need to provide water, food and

shelter to more than six billion people [1]. Unfortunately, these changes have a major impact on

hydrology, biodiversity, climate, socio-economic stability and food security [1,2]. Changes in land-use

contribute to human impact on the climate as we are changing the natural rate of exchange of carbon

dioxide between the atmosphere and the terrestrial biosphere, for example huge stocks of carbon are

released as a result of deforestation [2,3].

The most pervasive form of land-cover change in South Africa is human settlement expansion [4]. In

many cases, new human settlements and settlement expansion are informal and occur in areas that

were previously covered by natural vegetation. Informal or unplanned settlements usually evolve as

people move closer to employment opportunities [4]. These settlements can occur in various locations

and are normally without basic services, which includes electricity, running-water, water-borne

sewage and refuse removal. The spatial layout is often not planned but informally developed by the

inhabitants of the settlements themselves [5]. Figure 1.1 shows an informal settlement in the Limpopo

province of South Africa which developed between 2003 and 2009 in an area that was initially mostly

covered by natural vegetation.

A report from the nineteenth special session of the general assembly of the United Nations (UN)

identified sustainable human settlements as a matter requiring urgent attention and states that local

government needs to be empowered to plan, implement, develop and manage human settlements [6].

It further states that local government needs to be enabled to manage existing informal settlements,

and prevent the establishment of new ones. The occurrence of new small rural villages and scattered
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FIGURE 1.1: QuickBird image of a new settlement development (courtesy of GoogleTMEarth)

settlements is difficult to monitor by local government as the majority are informal and erected rapidly

without the prior consent of the relevant government or municipal authorities. This leads to inadequate

water, water-borne sewage and refuse removal provision [7]. Settlements are infrequently mapped on

an ad-hoc basis in South Africa. It follows that determining where and when new informal settlements

occur is beneficial not only from an environmental, but also from a socio-economic point of view.

1.2 OBJECTIVE OF THIS THESIS

As shown in the previous section, there exists a need to perform regular land cover change evaluations

to identify change areas of interest. Change detection can be defined as the process of identifying

differences in the state of an area by observing it at different times [8]. Human operator-dependent

change mapping through visual interpretation of imagery is time consuming and resource intensive.

Hence there is a need for automated change detection to reduce operator dependence and to enable

large datasets to be processed frequently [9,10].

Remote sensing is the science of obtaining information on an object or area without being in contact

with the object or area under investigation [11]. Using various sensors, data are acquired remotely

and analyzed to obtain information on the area that is measured by the sensor. Coarse resolution

remotely sensed data provides an effective mechanism to monitor large areas on a frequent basis as

the wide swath (2000 – 3000 km) of coarse resolution sensors (250 – 1000 m pixel size) enables the

same area to be observed at a very high temporal sampling rate (near daily), thus resulting in a highly

sampled (hyper-temporal) coarse spatial resolution time-series. This hyper-temporal time-series could
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potentially be used as a first step as a change alarm leading to further investigation using higher

resolution sensors such as Landsat 7, Ikonos, and QuickBird [12].

Automated land-cover change detection at regional or global scales, using hyper-temporal, coarse

resolution satellite data has been a highly desired [13], but elusive goal of environmental remote

sensing and has even been described by some as the “holy grail” of remote sensing [9].

Digital change detection encompasses the quantification of temporal phenomena from multi-date

imagery that is usually acquired by satellite-based, multi-spectral sensors [14,15]. Land-cover change

can be categorized into two types. The first type is referred to as land-cover modification where subtle

changes affect the character of the land-cover without changing its overall classification, such as

drought and burned areas within natural vegetation [14]. Land-cover modification is often associated

with natural climate variability. The second type of land-cover change is referred to as land-cover

conversion where there is a complete replacement of one land-cover type by another such as the

transformation of natural vegetation by agriculture.

Change detection methods have been extensively reviewed by Lu and Weng [15] as well as Coppin

et al. [14]. The majority of the methods that were reviewed by the aforementioned authors are

based on image differencing, post-classification comparison and change trajectories of multi-date

high resolution data. In most cases, these methods only consider two images for change detection,

effectively trying to detect areas of change from one image to the next. Coarse resolution satellite

data provide frequent observations (daily or multi-day composites) of land surface conditions at

regional to global scales and are thus an attractive option for regional-scale change detection. Many

change detection methods based on high-frequency, coarse resolution satellite data do not rely on true

time-series analysis. The data are mostly treated as hyper-dimensional or as derived metrics [16–19]

but not as hyper-temporal, failing to exploit the valuable temporal components, for example, the

phase or frequency modulation of the signal, which is driven by seasonal changes in land surface

phenology [20]. In addition, many of these methods consider large-scale ecosystem disturbances, for

example, wildfires, insect outbreaks and natural disasters [18, 19] as opposed to the relatively small

spatial extent of a new settlement development which involves but a few contiguous MODIS pixels.

As stated in the previous section, the most pervasive form of land-cover change in South Africa is

human settlement expansion. Consequently, developing a change detection framework for detecting

the formation of new settlements using a remote sensing approach will be the point of departure towards
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Chapter 1 Introduction

the greater objective of developing a global or regional automated land cover change detection method.

It follows that the primary objective of this thesis is to develop and test an automated change detection

framework that is able to detect the transformation of natural vegetation to human settlement which

could then be adapted to consider many other types of land cover change. Two novel change detection

methods were formulated to solve the aforementioned problem. Both of these methods utilize the

hyper-temporal time-series data that are available from coarse resolution imagery. The novelty of these

methods is underpinned by the fact that the temporal dimension of the time-series is considered as a

highly sampled (relative to the natural phenological variation) data-stream, and change classification

is done by combining standard signal processing based methods for feature extraction with machine

learning methods for change classification.

1.3 PROPOSED SOLUTION

As stated previously, change detection methods are required to be sufficiently automated with minimal

operator involvement. Machine learning enables computers to make decisions based on volumes of

empirical data that are often impossible to analyze in a timeous manner by a single, or even multiple

human operators. When considering the use of machine-learning methods for change detection based

on remote sensing data, there are a few factors to consider. Firstly, a change metric needs to be

calculated. This change metric should effectively quantify the level of change that is associated with

each pixel. This change metric is then compared to a threshold value to determine whether a change

or no-change decision should be made [21], [22], [23]. The threshold value can be calculated in a

supervised or unsupervised manner. In supervised methods, training data are used to determine the

distribution of the change metric for both the change and no-change case and an appropriate decision

boundary is inferred. One of the main disadvantages of supervised change detection methods is the

requirement of a statistically significanta-priori database of change and no-change examples [8].

Unsupervised methods, on the other hand, do not require any training data, but this generally comes at

the cost of a loss in performance.

In many cases, Univariate Image Differencing (UID) is used [24] to determine the change metric

by subtracting two spatially-registered high resolution images, acquired at two different instances,

on a per-pixel basis. Each pixel is then classified as either belonging to the change or no-change

class by comparing the difference of two co-located pixels (change metric) to a threshold value. The

underlying idea is that no-change pixels would typically have a smaller difference than change pixels,

and a simple thresholding approach can be used to distinguish between the two possible classes. The

selection of this single threshold value is, however, not a trivial task [23, 25, 26], especially when
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considering an unsupervised approach. In most cases, the change metric Probability Density Function

(PDF) is assumed to be normally distributed [22,23] (See section 5.4 for details).

The specific sensor that was considered in this thesis is the MODIS sensor on-board the Terra and

Aqua satellites. In particular, the freely available and easily accessible MCD43A4 product was

used [27]. This product utilizes MODIS data from both satellites and provides high quality 500-meter

reflectance data. A bidirectional reflectance distribution function (BRDF) is used to model the

values as if they were taken from nadir view [28] which ensures a high level of consistency when

considering the hyper-temporal time-series (see section 2.5). Even though some MODIS products

are produced at 250 m resolution for the first two bands [27], these products are unfortunately not

BRDF corrected and also only use data from either the Terra or Aqua satellites, and do not capitalize

on both. Eight day composites are produced from daily data in an attempt to create the most cloud

free, high quality dataset. Using this 8-daily composited dataset, a seven-year hyper-temporal

time-series of surface reflectance was constructed (Jan. 2001 – Jan. 2008) and consequently used

to detect the formation of new human settlements in South Africa. The underlying idea is that one

or more hyper-temporal time-series be used as input to a change detection algorithm. The output

of the algorithm is a change alarm which produces a change or no-change decision on a per-pixel basis.

To achieve this goal, two change detection methods are proposed in this thesis. The first will

be referred to as the Extended Kalman Filter (EKF) change detection method and the second the

Temporal Autocorrelation Function (ACF) change detection method. These methods work on a change

metric thresholding principle, i.e. a pixel’s hyper-temporal time-series is used to calculate a change

metric. This change metric is then compared to a threshold value which yields a change or no-change

decision. As previously stated, determining a suitable threshold is not a trivial task. A logical

approach in selecting this threshold would be to calculate the change metric for a hyper-temporal

times-series dataset of change and no-change examples. A threshold value can then be chosen that best

discriminates between these two datasets. The problem with this approach is that real change examples

are very rare in a regional landscape [17], which makes the availability of a training dataset on change

problematic. This requires a new approach to the problem. The fact that real change examples are very

difficult to obtain implies that no-change examples are relatively easy to obtain. Land cover change

was therefore simulated [29]. This was done by linearly blending a natural vegetation time-series with

that of a settlement time-series (for details see section 5.2.2). This enabled the timing and rate of the

change to be controlled in order to estimate the necessary threshold parameters without the need for

real change examples.
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FIGURE 1.2: Off-line optimization phase.

Both the EKF and Temporal ACF change detection methods are supervised, however, the operator

only needs to provide examples of “no-change” natural vegetation and settlement pixels. No real or

actual change examples are required except for final performance evaluation. As previously stated,

the training database requirement for both methods is limited to only no-change examples, which are

numerous and can be obtained in large numbers. The no-change examples are then used to generate

a simulated change dataset. Both the no-change and simulated change datasets are then used to

determine a set of parameters in an off-line optimization phase after which the algorithm is run in an

operational and unsupervised manner for the entire study area.

Figure 1.2 shows a general overview of the off-line optimization phase, which is similar for both

methods. A set of settlement and natural vegetation time-series examples known not to have changed

during the study period is used to create a simulated change dataset. The change metric for each

time-series in the simulated change dataset, as well as the no-change dataset, is calculated. The change
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FIGURE 1.3: Operational phase.

metric is merely an index that indicates the amount of change that is associated with the time-series

under consideration, i.e. the larger the change metric value, the higher the probability that the specific

time-series had undergone a change. The distribution of the change metric, given that a change

occurred together with the distribution of the change metric, given that no change occurred, is then

used to calculate the optimal threshold.

Figure 1.3 shows a general overview of the operational phase, which is also similar for both methods.

The time-series for any arbitrary pixel is used as an input to the algorithm. The change metric is then

calculated and compared to the threshold that was calculated in the off-line optimization phase. After

thresholding, a change or no-change decision is made. Even though the change detection methodology

for both of the proposed change detection methods is similar, the change metric calculation is

considerably different; this will become more apparent in the chapters to follow (Sections 5.2 and

5.3)

1.4 OUTLINE OF THIS THESIS

The outline of the thesis is as follows: Chapter 2 gives an overview of some basic remote sensing

principles and describes the remotely sensed data that were used, together with an overview of some

of the most common change detection methods found in current literature. Chapter 3 gives an

introduction to non-linear filtering and in particular the Extended Kalman Filter (EKF), which is a

crucial component of one of the proposed change detection methods. Chapter 4 shows that land-cover
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class separation can be improved by modeling a normalized difference vegetation index (NDVI)

time-series using a triply modulated cosine function and EKF framework to track the model parameters.

Chapter 5 follows on the methodology discussed in chapter 2 and extends the EKF framework to the

change detection case. The temporal Autocorrelation Function (ACF) change detection method is also

introduced in chapter 5. The results obtained by using the EKF and temporal ACF methods are shown

in chapter 6. Chapter 7 gives concluding remarks as well as possible future research that could expand

on some of the concepts introduced in this thesis.
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CHAPTERTWO
REMOTE SENSING DATA FOR LAND-COVER

CHANGE DETECTION

Remote sensing is the science of obtaining information aboutan object or area without being in

contact with the object or area under investigation [11]. Using various sensors, data are acquired

remotely and analyzed to obtain information about the object that is measured by the sensor. In this

thesis, a sensor on board a satellite platform measures the reflection and emission of electromagnetic

radiation by the Earth’s surface at regular time intervals and these data are then used to infer changes

in surface reflectance caused by land cover change.

The objective of this chapter is to give the reader insight into some of the basic principles of satellite

remote sensing. A brief history of remote sensing is given in section 2.1 after which the fundamental

principles of electromagnetic radiation as well as the interaction of electromagnetic radiation with

the atmosphere and Earth’s surface is discussed in section 2.2. The concept of resolution in the

spectral, temporal, radiometric and spatial context is introduced in section 2.3. The factors considered

in choosing a remote sensing system is given in section 2.4 where-after the MODIS sensor is described

in section 2.5. Two vegetation indices are discussed in section 2.6 where-after a review of some of the

popular change detection methods is presented in section 2.7. Concluding remarks are given in section

2.8.
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FIGURE 2.1: The oldest surviving aerial photograph taken by James Wallace Black in 1860 over the
city of Boston [11].

2.1 EARLY HISTORY OF REMOTE SENSING

The invention of photography in 1839 was an important first step towards space-borne remote sensing

as we know it today. The first known aerial photograph was taken in France by Gaspard Felix

Tournament over Bievre, France, but unfortunately those photographs no longer exist [11]. The oldest

surviving aerial photograph is one of Boston, taken by James Wallace Black in 1860 (Figure 2.1).

The first platforms used for aerial photography were tethered balloons. It was only during the First

World War that aircraft were used as platforms for aerial photography to obtain information regarding

troop movements, supplies and the effects of bombardments [30]. The use of remote sensing for

environmental purposes only became more popular after the Second World War. The technological

advances made on airborne camera design during the war were put to civilian use for terrain mapping

and assessment. The use of aircraft for remote sensing purposes proved to be expensive and provided

data for relatively small areas. The space programs of the 1960s ushered in a new age of remote

sensing, using a satellite platform. Satellite technology advanced greatly during the 1960s mainly

because of the space race between the USA and former USSR [30]. This new phase of remote sensing

can be considered in four broad categories, namely military reconnaissance, manned space flight,

meteorological satellites and earth resource satellites. Each of these categories will be explained in

more detail in the following sections.
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2.1.1 Military reconnaissance satellites

Prior to 1960, aerial photography was mainly used by the United States and the former USSR to

monitor each other’s military capabilities. In 1958, the possibility of using satellite for military

reconnaissance was proposed at the Surprise Attack Conference in Geneva [30]. The first US space

observation satellites, which were used for military reconnaissance, were within the CORONA,

ARGON and LYNARD programs of the 1960s [30]. These missions were typically very short with

any one mission not being more than one or two weeks. These early systems were limited because

of the finite amount of film that could be carried. The film canister was ejected and intercepted as it

descended to Earth [30]. Later systems stored images in digital format and used telemetry to relay the

data to the Earth.

2.1.2 Manned space flight

The first person to orbit the Earth was Yuri Gagarin on 12 April 1961. Even though no photos were

taken during this flight, the potential for space-based earth observation became apparent. The USA

also commenced its manned space programs in the early 1960s which culminated in the first lunar

landing in 1969 [30]. The Mercury program (1961–1963) produced some of the first photographs

from a manned capsule and was obtained by the astronauts through the capsule window. The Gemini

program in later years (1965–1966) had a more systematic photograph acquisition strategy which

captured more than 2 500 photos of the Earth. The Skylab missions (1973–1974) obtained over 44

000 images of the Earth at a spatial resolution of 60–140 m. The space shuttle missions that began

in 1981 employed even more sophisticated remote sensing systems. The Russian space missions

paralleled those of the American missions, with the Vostok and Voskhod programs being analogous to

the Mercury and Gemini missions [30].

Using manned spacecraft as a remote sensing platform has both advantages as well as disadvantages.

One of the main advantages is that the manned mission can be used as a test bed for new systems.

By using feedback from the ground station, the on-board equipment setup can be modified and

optimized by the astronauts. This information can then be used when designing an unmanned satellite.

The astronauts could also rectify certain malfunctions with the sensors if and when required. The

disadvantage, however, is that manned space missions are more often than not of short duration, which

makes continuous and systematic coverage impossible. Another disadvantage is that the ramifications

of malfunctions during a manned space mission far outweigh that of an unmanned satellite mission due

to possible risk to human life.
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2.1.3 Meteorological satellites

Weather forecasting relies heavily on remote sensing satellites to provide readings on temperature,

wind speed and the location and movements of storms to name but a few. The movement of major

hurricanes can be tracked and predicted accurately by using remote sensing images and can be relayed

to the community effectively by means of radio and television broadcasting. Before the advent of

remote sensing for weather prediction purposes, major storms could strike unexpectedly, causing

massive damage to property and, quite possibly, loss of life. The Television and Infrared Observation

Satellite (TIROS-1) meteorological satellite was the first that was used for earth observation and was

launched by the United States on 1 April 1960 [30].

Since the initial TIROS-1 satellite, weather satellites have become increasing more advanced. Infrared

(IR) data are used to determine information on the temperature at the surface and cloud tops and

estimating wind direction and strength by monitoring individual clouds over time. Both polar orbiting

and geostationary satellites are utilized for weather prediction [30].

2.1.4 Earth resources satellites

The first earth observation satellite was the Earth Resource Technology Satellite (ERTS-1) launched

in July 1972. The ERTS-1 (commonly referred to as Landsat) was designed to acquire multi-spectral

medium resolution imagery of the Earth on a systematic and repetitive basis [30]. The data acquired

during this mission were made available globally. The underlying idea was that the global remote

sensing community would take part in evaluating the subsequent data. The mission was regarded

as being very successful and paved the way for continuation of the Landsat series of satellites. The

first radar satellite used for remote sensing purposes was the SEASAT satellite, which was launched

in 1978 but only provided data for three months. Prior to 1980, the majority of satellites were

deployed by the USA and USSR. During the 1980s and onwards, remote sensing systems were

developed and commissioned from various agencies around the world, including the French Satellite

Pour l’Observation de la Terre (SPOT) series of satellites, the range of Indian Remote Sensing (IRS)

satellites, the Japanese Earth Resource Satellite (JERS) and the European Remote Sensing (ERS)

satellites to name but a few.

Typically, these space agencies operate independently of one another but in in February 2005 the Group

on Earth Observations (GEO) was formally created by resolution of 60 national governments and 40

international organizations. The nations and international organizations involved in GEO resolved that

it would implement the Global Earth Observation System of Systems (GEOSS). The primary objective
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FIGURE 2.2: Time-line spanning from 1960 until 2000 for some of the satellite missions described
in the previous sections. Since the first artificial satellite, Sputnik 1, in 1957, a host of nations have
successfully launched more than 2 000 satellites into orbit. (Adapted form [30])

of GEOSS is that that timely, quality, long-term, global observations are exchanged in a full and open

manner with minimum time delay and minimum cost. They also intend to coordinate efforts to address

capacity-building needs related to earth observations [31].

Department of Electrical, Electronic and Computer Engineering 13

University of Pretoria

 
 
 



Chapter 2 Remote sensing data for land-cover change detection
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FIGURE 2.3: The electromagnetic spectrum [30].

2.2 ELECTROMAGNETIC RADIATION

Visible light is probably the most familiar form of electromagnetic radiation, but only occupies a

very small portion of the entire electromagnetic spectrum. Radio waves, X-rays and Ultra Violet

(UV) rays, to mention a few, all form part of the electromagnetic spectrum. In essence, all forms of

electromagnetic radiation radiates according to the same wave theory. These waves are characterized

by their wavelength and amplitude, all traveling at the speed of light in a vacuum. The electromagnetic

spectrum is depicted in Figure 2.3.

The two main approaches to remote sensing are active and passive systems. An active remote sensing

system uses its own electromagnetic radiation source. The amount of energy that is reflected back

to the sensor is used to infer information about the surface towards which the sensor is directed. A

typical example of an active remote sensing system is Synthetic Aperture Radar (SAR). These systems

operate in the wavelength range of between 2.4 and 107 cm.

A passive remote sensing system uses the Sun as the source of electromagnetic radiation and measures

the reflection from the Earth’s surface. The focus of this thesis will be on passive remote sensing

systems. The part of the spectrum that is particularly useful for passive remote sensing systems are the

visible and infrared (IR) ranges. Table 2.1 gives a further breakdown of these ranges. Multi-spectral

scanners often range between 0.4 and 12.0µm range [11], which ranges from the visible blue range to

the long-wave IR range (Table 2.1).

As previously stated, the Sun is the primary source of electromagnetic radiation in passive remote

sensing systems. It follows that the properties of the Sun’s electromagnetic radiation are of particular

importance. Although the Sun produces energy in a wide range of wavelengths, the energy across

all the wavelengths is not evenly distributed. Wien’s displacement law dictates that the wavelength

at which a black body radiates maximum energy is a function of the temperature of the object given
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TABLE 2.1: Breakdown of the visible and infrared spectrum.

Range Wavelength(µm)

Visible

Blue 0.4 – 0.5

Green 0.5 – 0.6

Red 0.6 – 0.7

Infrared

Near IR 0.7 – 1.0

Short-wave IR 1.0 – 3.0

Mid-wave IR 3.0 – 5.0

Long-wave IR 7.0 – 14.0

Far IR 15.0 – 1000

as [30]:

λm =
A

T
, (2.1)

whereλm is the wavelength at which the maximum energy is radiated,A is a constant (2898µm K)

andT is the temperature in Kelvin. The Sun’s temperature is between 5750 and 6000 K [30]. This

implies that the wavelength at which the Sun radiates maximum energy is roughly 0.5µm. The spectral

radiance of electromagnetic radiation as a function of the temperature and wavelength is described by

Planck’s law [32]:

I(λ, T ) =
2hc2

λ5(e
hc

λkT − 1)
, (2.2)

whereλ is the wavelength,T is the temperature,h is the Planck constant,k is the Boltzmann constant

andc is the speed of light. Figure 2.4 shows the spectral radiance of the electromagnetic radiation of

the Sun for wavelengths between 1 and 2000 nm. It can be seen that the Sun’s maximum energy is

radiated in the visible spectrum between 400 and 700 nm.

Because of the distance between the Earth and Sun, there is a considerable decrease in intensity

across all wavelengths when the electromagnetic radiation reaches the Earth’s atmosphere. This can be

attributed to the inverse-square law that states that flux density is inversely proportional to the square

of the distance from the flux source [32]. However, the spectral distribution across the wavelengths

remains nearly unchanged [30]. The atmosphere, on the other hand, has a dramatic effect on the solar

radiance that eventually reaches the surface of the Earth. This effect will be discussed in the following
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FIGURE 2.4: Solar spectral radiance of the Sun as a function of wavelength.

section.

2.2.1 Interaction of electromagnetic radiation with the atmosphere

The atmosphere has a significant effect on the intensity and spectral composition of electromagnetic

radiation that is available to remote sensing systems. The influence of the atmosphere can be

partitioned into scattering effects and absorption effects.

Scattering can either be selective or non-selective. Selective scattering depends on the specific

wavelength of the radiation. If the wavelength of the electromagnetic radiation is larger than the

dimensions of the scatterers (more than 10 times the size), the amount of scattering is inversely

proportional to the fourth power of the wavelength [30]. This is commonly referred to as Rayleigh

scattering. When the dimensions of the scatterers are approximately the same as the wavelength of

the electromagnetic radiation, scattering also occurs. This is commonly referred to as Mie scattering.

Non-selective scattering is not wavelength dependent and occurs in aerosols that are approximately

10 times the size of the wavelength. For the visible wavelengths, pollen grains, raindrops and cloud

droplets are typical sources of non-selective scattering [30].

Absorption in the atmosphere occurs because gaseous components in the atmosphere act as selective
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Table 2.2: Order of magnitude of atmospheric effects for Advanced Very High Resolution Radiometer
(AVHRR) band 1 and 2 as well as NDVI. The proportional effect is given as percentage (%) of increase
(+) or decrease (-) of the signal. All the other effects as well as effect on NDVI are given in absolute
units [33].

Ozone Water vapor Rayleigh Aerosol

Band 1 4.24% to 12% (-) 0.7% to 4.4% (-) 0.02 to 0.06 (+) 0.005 to 0.12 (+)

Band 2 – 7.7% to 25% (-) 0.006 to 0.02 (+) 0.003 to 0.083 (+)

NDVI (Bare Soil) 0.02 to 0.06 (+) 0.011 to 0.12 (-) 0.036 to 0.094 (-) 0.006 to 0.085 (-)

NDVI (Forest) 0.006 to 0.017 (+) 0.036 to 0.038 (-) 0.086 to 0.23 (-) 0.022 to 0.35 (-)

absorbers [30]. Molecules selectively absorb energy at different wavelengths. The most efficient

absorbers in the atmosphere are water vapor, carbon dioxide and ozone [11]. Figure 2.5 shows

the atmospheric electromagnetic opacity for different wavelengths. Table 2.2 shows the effect for

AVHRR band one and two as well as NDVI as a result of Ozone, water Vapor, Rayleigh scattering

and stratospheric aerosol effects. Both AVHRR band one and two are affected by these atmospheric

effects and in particular, water vapor and aerosol has a detrimental affect on band 2 and 1 respectively

which causes an artificial decrease in NDVI [33] (Table 2.2).

From the aforementioned it can be concluded that, because of the effects of atmospheric absorption

and scattering, the observation radiance recorded at the satellite is not a true reflection (NPI) of the

radiance from the ground but rather “Top-of-Atmosphere”. It follows that atmospheric correction for

Rayleigh scattering, gaseous absorption, and aerosol scattering should be a critical pre-processing

step when considering land surface studies [34, 35]. For three cases in particular, the omission

of atmospheric correction could prove to be detrimental [36]. Firstly, if one were to compute the

ratio between two bands of a multispectral image. This is because scattering increases inversely

with wavelength which implies that shorter-wavelength measurements are more susceptible than

longer-wavelengths and could possibly distort the true ratio. Second, when relating the radiance of

a surface in terms of a physically based model, the atmospheric component must be estimated and

removed as failure to do so could adversely affect the physically based model if the physically based

model does not assume an atmospheric component. Thirdly, when comparing the radiance made at

one time (time 1) with the radiance at a different time (time 2), atmospheric correction is crucial

as the radiance values recorded by the sensor will most likely vary from time 1 to time 2 because

of atmospheric variability [36]. Atmospheric correction is also applicable to time-series analysis
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FIGURE 2.5: Atmospheric electromagnetic opacity (modified from [37]).

(considering multiple observations of the same area) as changes in the time-series should only be

affected by changes in the surface radiance as opposed to changes in atmospheric conditions.

Atmospheric correction can either be relative or absolute. Relative atmospheric correction uses

histogram matching to reference images. This approach requires good reference images for the same or

adjoining areas. Absolute correction on the other hand can either be empirical or physical. Empirical

methods have the danger of over simplification and are often of limited use. Physical models model

the effect of various gas concentrations and compensates for these accordingly. These physical modes

are called Radiative Transfer Models (RTM’s). Radiative transfer models rely on information from the

image itself in order to estimate the path radiance for each spectral band and are limited by the need

for data relating to the condition of the atmosphere at the time of imaging. A popular RTM is the 6S

code developed by E Vermoteet al. [38] and is freely available (ftp://loa.univ-lille1.fr/6S/).

2.2.2 Interaction of electromagnetic radiation with a surface

When electromagnetic energy strikes a surface, a certain measure of absorption, reflection and/or

transmission can occur. The amount of energy reflected, absorbed and transmitted is a function

of the Earth feature (material composition, surface roughness, etc.) and the wavelength of the

electromagnetic energy concerned. In remote sensing, the energy that is reflected from the surface is

of particular importance as this is the energy that is detected by the sensor. Reflection is primarily a

function of the surface roughness. If the surface is very flat, and the angle of reflection (θr) equals the

angle of incidence (θi), most of the energy will be reflected in the direction of the reflection angle.

This type of reflection is referred to asspecularreflection. If the surface is rough compared to the

wavelength of the incident electromagnetic radiation, i.e. the ratio between the roughness of the

surface and the wavelength is greater than one, the energy is scattered and effectively reflected in all
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O O

Specular reflection Diffuse reflection

FIGURE 2.6: Specular and diffuse reflection [30].

directions. This type of reflection is referred to asdiffusereflection [11]. The broad range of surface

types on Earth implies that perfect specular or diffuse reflection would not occur in nature and would

lie somewhere between these two extremes [11]. Figure 2.6 illustrated the principle of specular and

diffuse reflection.

For remote sensing purposes, diffuse reflection is considered to be more favorable as the reflection

is coherent for all viewing angles. Specular reflection, on the other hand, would have a bright

reflectance for a specific viewing angle, and relatively little reflection for all other viewing angles.

The reflection for most surfaces in nature tend to be more diffuse than specular for the visible and

infrared wavelengths with the exception of water [30]. Because surfaces cannot be assumed to be

perfectly Lambertian (diffuse reflection), the viewing and solar angles should be considered. All the

reflected energy from a ground target over an entire hemisphere is not detected by the satellite sensor,

but rather, only the reflected energy returned at a particular angle is recorded [36]. In addition, the

reflected energy also depends on the the orientation of the Sun (Figure 2.7 and 2.8). These effects are

particularly detrimental for wide-swath sensors [39] as the viewing angle of these sensors can vary

considerably between days. The MODIS sensor, for example, has a swath width of approximately

2300 km, which yields a maximum viewing zenith angle of up to 65◦ [28]. It follows that the

distribution of radiance as a function of the observation and illumination angles must be taken into

consideration. The Bidirectional Reflection Distribution Function (BRDF) is a mathematical function

that describes the variability in surface reflection based on the illumination and viewing angles for

a specific wavelength. Using the BRDF function to correct for Sun and viewing angle effects is

discussed in further detail in section 2.5 when considering the BRDF corrected MODIS product that

was used in this study.
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FIGURE 2.7: Solar orientation [36].

The spectral reflection is the ratio between the energy reflected from a surface and the total

electromagnetic energy incident on the surface. The spectral reflectance (ρλ) is a function of the

wavelength and can be written as

ρλ =
ER(λ)

EI(λ)
× 100, (2.3)

whereER is the reflected electromagnetic energy andEI is the electromagnetic energy incident on the

surface [11].

The spectral reflectance curve of an object is a graph that shows the spectral reflection for a range of

wavelengths. This is sometimes also referred to as the spectral signature of an object. Figure 2.9 shows

an example of the spectral reflectance curve for vegetation. The typical valleys in the visible spectrum

are due to the absorption characteristics at different wavelengths by the pigments in plant leaves. The

strong absorption of chlorophyll in the blue and red band gives rise to the typical green color that is

usually associated with healthy vegetation. Water absorption in the 1400, 1800 and 2700 nm band

gives rise to the characteristic valleys in the short-wave IR region. As explained in section 2.2.1, water

vapor in the atmosphere is an important consideration for atmospheric correction and has also been a

limitation of previous land remote sensing instruments, in more recent sensors (for example MODIS),

bands are chosen to minimize the impact of absorption by atmospheric gases and in particular water

vapor [41].
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FIGURE 2.8: Effect of Solar illumination angle variation on reflection [40]. Both photographs taken
from the same field but from different directions.
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FIGURE 2.9: Typical spectral reflectance curve for vegetation [11].

2.2.2.1 Phenology reflection variation

Even though the spectral reflection curve is broadly similar for specific land-cover types, it is by no

means unique. In nature, the spectral signature of similar land-cover types could be highly variable

[11, 30]. Even the same land cover type can appear significantly different during certain periods of
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FIGURE 2.10: QuickBird image showing a vegetation area taken in February (courtesy of
GoogleTMEarth). The area corresponding to a 500 m MODIS pixel together with the the spectral
reflection for all seven MODIS land bands is also shown.

the natural growth cycle. An example of this is shown in the Limpopo province of South Africa. A

natural vegetation area corresponding to a 500 m MODIS pixel is shown together with the the spectral

reflection of all seven land-bands for February and September respectively (Figures 2.10 and 2.11). It is

clear that the spectral signature of a pixel having an unchanged land cover type could vary considerably

over time due to seasonal variations. The Near IR band (band 2) in February is high and the red band

(band 1) is low due to green vegetation whereas the opposite is true for September.
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FIGURE 2.11: QuickBird image showing a vegetation area taken in September (courtesy of
GoogleTMEarth). The area corresponding to a 500 m MODIS pixel together with the the spectral
reflection for all seven MODIS land bands is also shown.

2.3 RESOLUTION

In remote sensing, there are four types of resolution that are of interest. These are spectral, temporal,

radiometric and spatial resolution. Each of these will be discussed in more detail in the sections that

follow.

2.3.1 Spatial

The spatial resolution of an imaging system can be measured in a number of different ways,

depending on the user’s goals. The pixel size is determined by the altitude, viewing angle and

sensor characteristics of the remote sensing system. The most commonly used measure, based on the
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FIGURE 2.12: Illustration of the point spread function, the pixel that is imaged is centered at (0,0) and
stretches from -0.5 and 0.5 in both the x and y direction [36].

geometric properties of the imaging system, is the instantaneous field of view (IFOV) which is defined

as the area on the ground that is viewed by the instrument at a given altitude and time instance [36]. It

should however be noted that no satellite has a perfectly stable orbit and the satellite’s height above the

Earth could vary by tens of kilometers which in turn influences the IFOV. Another factor to consider

is that due to the properties of the optics involved in imaging, a reflective point on the ground does

not produce a single bright point on the image but rather a diffused circular region. This phenomenon

is characterized by the point spread function (PSF). Figure 2.12 illustrates the concept of the PSF,

here, the area of the pixel being imaged is centered around (0,0) and stretches 0.5 in both the x and

y direction. It is clear that the signal energy is non-zero outside this range. The ideal point spread

function would be a square box centred at (0,0) with a side length of 1.0 [36]. When relatively bright

or dark objects are within the IFOV of the sensor, the PSF has the effect of blending or spreading

the areas having significantly higher or lower reflectance. This leads to the phenomenon where

high-contrast features such as narrow rivers and roads are discernible on some satellite images, even

though their width is less than the sensor’s spatial resolution. It also has the effect that often, targets

with dimensions larger than the satellites IFOV may not be discernible if they do not contrast with

their surroundings. The value recorded at the sensor which corresponds with a particular pixel position

on the ground is thus not just a average of the radiance from that pixel but there is a high probability

that there is a contribution from areas outside the IFOV. A digital image is a set of values being related
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SPOT-2 panchromatic image (10m resolution)

LANDSAT-7 panchromatic image (15m resolution)

FIGURE 2.13: Landsat-7 and SPOT-2 panchromatic resolution comparison.

to the radiance from a ground area represented by a single cell or pixel. The IFOV is not the same as

the pixel size as pixel values can be interpolated to represent any desired ground spacing [36].

When considering the same geographical area, a higher resolution image of the same area will have

an increased data size when compared to a lower resolution image. An informal settlement in the

Limpopo province of South Africa is shown in Figure 2.13, which was taken from the Landsat-7 and

SPOT platforms respectively. The Enhanced Thematic Mapper (ETM+) sensor on board the Landsat-7

mission has a panchromatic channel with spatial resolution of 15 m, whereas the High-Resolution

Visible (HRV) sensor on board the SPOT-2 mission has a panchromatic channel with a spatial

resolution of 10 m. The distinct difference in clarity between the two images can be seen clearly

when considering these two images of the same area.
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2.3.2 Spectral

Remote sensing systems usually employ multi-spectral sensors. As the name suggests, multi-spectral

sensors acquire data for multiple spectral bands. The effective bandwidth of the measured bands is

directly related to the spectral resolution. For example, in the visible range between 400 and 700 nm,

if only one band is used to sense the reflection for the entire band, a single reflectance value would

be produced. If the one single band was divided into three sub-bands, namely 400–500, 500–600

and 600–700 nm respectively, three reflectance values corresponding to the blue, green and red

band would be produced. One of the advantages of having a higher spectral resolution is that the

variations in the spectral signatures of land surfaces can be identified much more easily as the spectral

resolution increases. To identify particular targets on a remotely-sensed image, the spectral resolution

of the sensor must be as closely matched as possible to the spectral reflectance curve of the intended

target [36].

There are also a few drawbacks when increasing the spectral resolution. As the number of spectral

channels increases, the data size increases linearly. Another disadvantage is that the Signal-to-Noise

Ratio (SNR) is adversely affected when increasing the spectral resolution. The reason for this is that

all signals contain some form of noise that is caused by electronic noise from the sensor. The effective

signal radiance is less for narrow channels than for wider channels while the additive noise component

remains the same, which in turn reduces the SNR. Some airborne sensors have more that 100 spectral

bands. These sensors are referred to as hyper-spectral sensors. The sensors that were considered in this

thesis typically had fewer than 10 land observation bands [36].

2.3.3 Temporal

Temporal resolution in remote sensing refers to the rate at which the same area is measured. The

pre-determined orbit, altitude and swath-width of the satellite means that the rate at which an area is

imaged can be determined. The orbital period of a satellite in a circular orbit increases with increasing

altitude. Low earth orbit (LEO) satellites typically range between 160 and 2000 km above the Earth’s

surface and travel at a speed of nearly 8 km per second. Geostationary orbit ranges between 35488 to

36088 km, being centered on 35788 km and satellites in this orbit travel at speeds of around 3 km per

second. The advantage of geostationary orbit is that the receiving antenna remains in a fixed position

whereas the receiving antenna used to receive data from LEO satellites requires a tracking antenna.

Many remote sensing satellites are in a sun-synchronous orbit (600 – 800 km) where the ground

observation is always illuminated by the Sun at the same angle when viewed from the satellite [42].

The temporal resolution can vary from hours to weeks depending on the configuration of the remote
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FIGURE 2.14: Relationship between image spatial resolution and satellite imaging revisit period.
Instrument swath width is given in brackets and arrows show range of satellite imaging revisit period
using sensor off-nadir pointing capability [43].

sensing system [30]. Fixed temporal resolution systems have a fixed viewing angle whereas the variable

(off-nadir) viewing capabilities of later systems have the ability to alter the temporal resolution. The

advantage of utilizing off-nadir viewing capability is that by changing the viewing angle slightly, the

same area could be imaged on consecutive orbits. The disadvantage of this approach, however, is that

while some areas can be imaged more frequently, other locations that may have been imaged from the

same point are omitted which increases the revisit time for these areas [43]. In essence, fixed temporal

acquisitions are not possible using variable viewing capabilities. The Ikonos sensor, for example, has

a satellite repeat cycle of 140 days which can be increased to 3 – 4 days by making use of the pointing

capability of the instrument. Crucially, imagery are thus only recorded based on user demand which

implies that there is no regular repeated coverage for any part of the Earth’s surface [43]. It should

also be noted that there is a trade-off between spatial and temporal resolution of satellite data. The

underlying idea is that the data from narrow swath instruments, having a finer spatial resolution, is

less frequently available than wide swath sensors, having coarser spatial resolution data (Figure 2.14).

The advantage of having equally spaced, frequently sampled acquisitions of the same area will become

apparent in sections and chapters to follow.
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2.3.4 Radiometric

Radiometric resolution refers to the number of digital quantization levels used to represent the data

observed by the sensor. A higher quantization level usually implies a greater level of detail in the

information that is collected by the sensor. If one were to consider a digital image composed of

only two levels (black and white), each pixel could either be represented using a single bit with 0

representing black and 1 representing white. If we were to increase the number of bits to 6-bits,

there would be 64 unique levels (0000002 to 1111112 in binary notation). It should be noted that

the number associated with each quantization level is not a direct measurement of ground-leaving

radiance but rather the steps into which a range of physical values is divided. Consider, for example,

that the sensor is able to measure radiance in the range 0 to 10 Wm−2sr−1 µm−1 and each pixel

could be represented as an 8-bit value (i.e. 28=256 unique levels). The entire radiance range could be

quantized in 256 levels with the difference between each level being (10 – 0)/255=0.00392 Wm−2sr−1

µm−1. In an effort to distribute the incoming radiance more evenly over radiance range, some sensors

can dynamically change their gain to maximize the resolution by taking into account the expected

brightness conditions without saturating the detectors. The idea is that the gain can be lowered when

surface brightness is expected to be high and increased when surface brightness is expected to be low.

The step size from one level to the next has to be more than the noise level of the sensor to ensure that

the change in a level was caused by a real change in the radiance rather than a fluctuation in radiance

caused by the noise. It follows that the SNR directly influences the quantization level. Low quality

sensors having a high noise level would thus have a lower radiometric resolution compared with low

noise sensors [36]. The disadvantage of increased radiometric resolution is an increase in the data size.

Most remote sensing systems have 6 or more bits of radiometric resolution [30].

2.4 CHOOSING A REMOTE SENSING SYSTEM

Since the beginning of the remote sensing era, remote sensing satellite data have provided researchers

with an effective way to monitor and evaluate land-cover changes [8, 14, 44]. A wide spectrum of

sensors can be utilized for change detection and the focus is typically on the application requirement

when selecting the most appropriate sensor.

When selecting the right sensor for detecting land cover conversion, the most important consideration

is the spatial and temporal resolution. High resolution sensors have the advantage of identifying much

smaller objects than coarse resolution sensors, but at a much lower temporal resolution. Change
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TABLE 2.3: Comparison of remote sensing satellite sensors.

Sensor
Revisit

time

Swath

Width

Spatial

Resolution

Wavelength

range

No.

of

bands

Advanced Space borne

Thermal Emission and

Reflection Radiometer

(ASTER)

16 Days 60 km 15 – 90 m 0.52 – 11.65µm 14

Enhanced Thematic

Mapper Plus (ETM+)
16 days 185 km 15 – 60 m 0.45 – 12.5µm 8

MODerate-Resolution

Imaging

Spectroradiometer

(MODIS)

1–2 days 2330 km 250 – 1000 m 0.4 – 14.4µm 36

Advanced Very High

Resolution Radiometer

(AVHRR)

Daily 3000 km 1100 m 0.58 – 12.5µm 5

detection is possible by comparing two high resolution images taken at different dates, but this can,

however, be problematic, because similar land cover types can appear significantly different at various

stages of the natural growth seasonal cycle [17]. To mitigate this problem it was shown by R.S Lunetta

et al. in [45] and [46] that the temporal frequency of the remote sensing data acquisitions should

be high enough to distinguish change events from phenological cycles [45, 46]. The high temporal

frequency makes the use of coarse spatial resolution imagery very attractive for change detection [16].

To illustrate this, two narrow-swath and two wide-swath sensors typically used in land-monitoring

remote sensing applications are shown (Table 2.3). The first two examples, Advanced Space-borne

Thermal Emission and Reflection Radiometer (ASTER) and ETM+ each have a maximum

panchromatic spatial resolution of 15 m with a swath width of 60 and 185 km respectively. The

pair of examples, MODerate-Resolution Imaging Spectroradiometer (MODIS) and Advanced Very

High Resolution Radiometer (AVHRR) have a much lower spatial resolution (250 m–1100 m) but with

a much wider swath width of 2330 and 3000 km respectively. The wide swath width enables the

same pixels to be sampled nearly every day and as such provides a very high temporal resolution.
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The MODIS sensor was chosen for this thesis because of its wideswath-width and medium spatial

resolution capabilities. The following section describes the MODIS sensor in more detail.

2.5 MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER

MODIS was developed by NASA for scientific purposes and is the principal sensor on board the Terra

and Aqua satellites. Terra, also commonly referred to as EOS-AM-1, was launched on December

18, 1999 from the Vandenberg Air force base. Development of the Terra satellite was a joint mission

between the USA, Canada and Japan [47]. Apart from MODIS, Terra carries the Advanced Space

borne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth’s Radiant

Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR) and Measurements of

Pollution in the Troposphere (MOPITT) sensors. Aqua, also commonly referred to as EOS-PM-1, was

launched from the Vandenberg Air Force Base on May 4, 2002. Apart from the MODIS instrument,

Aqua carries the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), Advanced Microwave

Sounding Unit (AMSU-A), Atmospheric Infrared Sounder (AIRS), Humidity Sounder for Brazil

(HSB) and Clouds and the Earth’s Radiant Energy System (CERES) sensors.

The MODIS design team put particular emphasis on instrument calibration as this is critical in

generating accurate long-term time-series data for global change studies [48]. The Terra and Aqua

satellites orbit the globe in a sun-synchronous orbit at an altitude of 705 km. The MODIS sensor has

36 spectral bands between 0.405 and 14.385µm with on-board calibration systems [48]. The first two

bands have a spatial resolution of 250 m with bands three to seven having a spatial resolution of 500 m.

Bands eight through 36 have a spatial resolution of 1 km. The MODIS instrument makes use of a

cross-track scan mirror, collecting optics and individual detector elements [49]. The swath dimensions

of MODIS are 2330 km (across track) by 10 km (along track at nadir) which, at a resolution of 500 m,

produces 20 lines in a single scan [49]. It should be noted however that the 500 m resolution is at

nadir and that the pixels size increases slightly in the scan direction which causes pixels to be partially

overlapping at off-nadir angles [50]. This is commonly known as the bow-tie effect and is a source of

variability over the revisit cycle.

The MODIS instrument data are converted systematically into terrestrial, atmospheric and oceanic

products. The first seven bands are typically used for land applications and are often referred to as

the MODIS land bands. The bands were chosen to minimize the impact of absorption by atmospheric

gases and in particular water vapor, which has been a limitation of the previous instruments for land

remote sensing [41] (see section 2.2.1). Table 2.4 gives a description of the specific wavelength and
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bandwidth of each of the land bands [51].

TABLE 2.4: MODIS spectral band properties and characteristics.

Band
Wavelength

[nm]

Resolution

[m]
Primary Use Spectral range

Band 1 620–670 250 Land/Cloud/Aerosols Boundaries Visible (Red)

Band 2 841–876 250 Land/Cloud/Aerosols Boundaries Near IR

Band 3 459–479 500 Land/Cloud/Aerosols Properties Visible (Blue)

Band 4 545–565 500 Land/Cloud/Aerosols Properties Visible (Green)

Band 5 1230–1250 500 Land/Cloud/Aerosols Properties Short Wave IR

Band 6 1628–1652 500 Land/Cloud/Aerosols Properties Short Wave IR

Band 7 2105–2155 500 Land/Cloud/Aerosols Properties Short Wave IR

Band 8 405–420 1000 Ocean Color/Phytoplankton/Biogeochemistry Visible (Blue)

Band 9 438–448 1000 Ocean Color/Phytoplankton/Biogeochemistry Visible (Blue)

Band 10 483–493 1000 Ocean Color/Phytoplankton/Biogeochemistry Visible (Blue)

Band 11 526–536 1000 Ocean Color/Phytoplankton/Biogeochemistry Visible (Green)

Band 12 546–556 1000 Ocean Color/Phytoplankton/Biogeochemistry Visible (Green)

Band 13 662–672 1000 Ocean Color/Phytoplankton/Biogeochemistry Visible (Red)

Band 14 673–683 1000 Ocean Color/Phytoplankton/Biogeochemistry Visible (Red)

Band 15 743–753 1000 Ocean Color/Phytoplankton/Biogeochemistry Near IR

Band 16 862–877 1000 Ocean Color/Phytoplankton/Biogeochemistry Near IR

Band 17 890–920 1000 Atmospheric Water Vapor Near IR

Band 18 931–941 1000 Atmospheric Water Vapor Near IR

Band 19 915–965 1000 Atmospheric Water Vapor Near IR

Band 20 3660–3840 1000 Surface/Cloud Temperature Mid Wave IR

Band 21 3929–3989 1000 Surface/Cloud Temperature Mid Wave IR

Band 22 3929–3989 1000 Surface/Cloud Temperature Mid Wave IR

Band 23 4020–4080 1000 Surface/Cloud Temperature Mid Wave IR

Band 24 4433–4498 1000 Atmospheric Temperature Mid Wave IR

Band 25 4482–4549 1000 Atmospheric Temperature Mid Wave IR

Band 26 1360–1390 1000 Cirrus Clouds Water Vapor Near IR

Band 27 6535–6895 1000 Cirrus Clouds Water Vapor Mid Wave IR

Band 28 7175–7475 1000 Cirrus Clouds Water Vapor Long Wave IR

Band 29 8400–8700 1000 Cloud Properties Long Wave IR

Band 30 9580–9880 1000 Ozone Long Wave IR

Band 31 10780–11280 1000 Surface/Cloud Temperature Long Wave IR

Band 32 11770–12270 1000 Surface/Cloud Temperature Long Wave IR

Band 33 13185–13485 1000 Cloud Top Long Wave IR

Band 34 13485–13785 1000 Cloud Top Long Wave IR

Band 35 13785–14085 1000 Cloud Top Long Wave IR

Band 36 14085–14385 1000 Cloud Top Long Wave IR
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FIGURE 2.15: MODIS mosaic of the Earth [52].

TABLE 2.5: MODIS land products.

Code Platform Description

Radiation balance product suite

MOD09 / MYD09 Aqua / Terra Surface Reflectance

MOD11 / MYD11 Aqua / Terra Surface Temperature and Emissivity

MOD43 / MYD43 / MCD43 Aqua / Terra / Combined BRDF/Albedo

MOD43 / MYD43 / MCD43 Aqua / Terra / Combined BRDF/Albedo

Vegetation Product Suite

MOD13 / MYD13 Aqua / Terra Vegetation Indices

MOD15 / MYD15 / MCD15 Aqua / Terra / Combined Leaf Area Index - FPAR

MOD17 / MYD17 Aqua / Terra Gross Primary Productivity

Land-Cover Product Suite

MOD12 / MCD12 Aqua / Combined Land-Cover Type

MOD14 / MYD14 Aqua / Terra Thermal Anomalies and Fire

MOD44 Aqua Vegetation Continuous Fields

Because of the large swath size, the same location can be observed every one to two days. It should

be noted that that the viewing angle of these daily observations differ from one another in a repeating
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FIGURE 2.16: MODIS sinusoidal projection [27].

pattern of 16 days. The reason for this is that the MODIS instrument repeat cycle of nadir overpasses

is 16 days which implies that every 16 days the MODIS instrument will be traveling on nearly the

exact same path [49]. The radiometric resolution of the sensor is 12 bits, which results in 4096 unique

levels (212). A color composite image using the MODIS instrument is shown in Figure 2.15. Table 2.5

shows some of the most common MODIS products.

The data product that was chosen in this thesis was MCD43A4 For a complete list of MODIS products

see [27]., which is based on the MCD43 BRDF/Albedo radiance product (Table 2.5). The prefix

“MOD” and “MYD” of the product code refers to data acquired using the Aqua and Terra satellites

respectively. The “MCD” prefix is used to indicate that data from both satellites were used. The

MCD43A4 product is derived using a surface reflectance product which is defined as being the

measured reflectance from the land surface in the absence of the atmosphere and performs corrections

for the effect of gaseous absorption, molecules and aerosol scattering [33,51]. The MCD43A4 product

also takes into account the BRDF (See section 2.2.2) to adjust the reflectance values as if they were

taken from nadir view. It does this by utilizing 16 days’ worth of multi-date data of both the Terra

and Aqua satellites together with a semi-empirical kernel-driven bidirectional reflectance model to

determine a global set of parameters describing the BRDF of the land surface. This is then used to

determine the hemispherical reflectance as well as the bi-hemispherical reflectance at the solar zenith

angle corresponding to local solar noon to produce a coarse resolution (500 m for all bands) composite

image every 8 days [28].
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TABLE 2.6: Coefficients for equations 2.5 and 2.6.

Term
Isotropic

(iso)

RossThick

(vol)

LiSparseR

(geo)

g0 1.0 -0.007574 -1.284909

g1 0.0 -0.070987 -0.166314

g2 0.0 0.307588 0.041840

g 1.0 0.189184 -1.377622

The algorithm used for BRDF correction uses a kernel-driven,linear BRDF model having a weighted

sum of an isotropic parameter and two functions of viewing and illumination geometry used to

determine reflectance [28]

R(θ, v, φ, λ) = fiso(λ) + fvol(λ)Kvol(θ, v, φ, λ) + fgeo(λ)Kgeo(θ, v, φ, λ), (2.4)

where θ is the solar zenith angle,v is the view zenith,φ is the relative azimuth angle andλ is

the wavelength. Kvol(θ, v, φ, λ) is derived from volume scattering radiative transfer models and

Kgeo(θ, v, φ, λ) is derived from geometric shadow casting theory. The RossThick kernel expression for

Kvol and the LiSparce kernel expression forKgeo have been identified as the best suited combination

for the operational MODIS BRDF/Albedo algorithm [28].

BRDF model parameters are provided in the MOD43B1 product and can be used to compute the

albedos with the solar illumination geometry by making use of the following polynomial used to model

black-sky and white sky albedos respectively

αbs(θ, λ) = fiso(λ)(g0iso + g1isoλ
2 + g2isoλ

3) +

fvol(λ)(g0vol + g1volλ
2 + g2volλ

3) +

fgeo(λ)(g0geo + g1geoλ
2 + g2geoλ

3), (2.5)

and

αws(θ, λ) = fisogiso + fvolgvol + fgeoggeo. (2.6)

The coefficients used in equations 2.5 and 2.6 are given in table 2.5. In the MCD43A4 product, the

solar zenith angle is transformed to the angle at local solar noon [49], which results in a high degree
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of reflection consistency when using multiple images to construct a pixel time-series. The composite

image is in the form of a sinusoidal projected tile. Figure 2.16 shows the sinusoidal projection tiles of

10◦ × 10◦. Each tile is in the HDF-EOS file format having 2400×2400 pixels. This thesis focuses on

the h20v11 tile (Figure 2.16). Figure 2.17 shows the outline of a 500 m×500 m MODIS pixel in the

Gauteng province of South Africa, together with its corresponding seven-year time-series for all seven

land bands spanning from 2001/01 to 2008/01.

When considering optical measures of vegetation canopy greenness, Vegetation Indices (VIs) are often

considered [53]. VIs uses band combinations that provide consistent spatial and temporal comparisons

for monitoring photosynthetic activities [48]. Two of the most common VIs will be discussed in the

following section.

2.6 VEGETATION INDICES

The study of terrestrial vegetation in large-scale global processes is one of the primary interests in

earth observation. This requires an understanding of the biophysical and structural properties as

well as temporal variations of vegetation. Vegetation indices (VIs) are spectral transformations of

two or more spectral bands designed to enhance the contribution of vegetation properties and allow

comparison of terrestrial photosynthetic activity variations. VIs are widely used in the estimation

of leaf area index, fraction of absorbed photosynthetically-active radiation, chlorophyll content,

vegetation fraction, photosynthesis, transpiration and net primary production [54].

VI measurements combine the chlorophyll-absorbing visible red spectral region with the near-infrared

(NIR) spectral region (which has a high reflection in the case of green vegetation) to provide a

consistent and robust measure of area-averaged canopy photosynthetic capacity [55]. This simple

transformation of spectral bands enables monitoring of seasonal, inter-annual, and long-term variations

of vegetation parameters [53]. Two VIs, the normalized difference vegetation index (NDVI) and

enhanced vegetation index (EVI), will be considered in this section.

2.6.1 Normalized difference vegetation index

Normalized Difference Vegetation Index (NDVI) is a vegetation index that has been successfully used

in many studies related to vegetation [53]. NDVI is a normalized ratio of the Near IR and red bands,

NDVI =
ρNIR − ρred
ρNIR + ρred

, (2.7)

Department of Electrical, Electronic and Computer Engineering 35

University of Pretoria

 
 
 



Chapter 2 Remote sensing data for land-cover change detection

2001 2002 2003 2004 2005 2006 2007
0

1000

2000

3000

4000

5000

6000

Time

R
ef

le
ct

an
ce

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

FIGURE 2.17: MODIS pixel and corresponding seven year time-series spanning from 2001/01 to
2008/01 (courtesy of GoogleTMEarth).

whereρNIR andρred is the surface reflectance of the Near IR and red bands respectively. These bands

correspond to MODIS band two and one respectively (Table 2.4). The rationale behind the index is

that Photosynthetically Active Radiation (PAR), which is in the 400–700 nm wave band, is used in the

process of photosynthesis. This results in a strong absorption of these wavebands as was shown in

Figure 2.9. Wavelengths longer than 700 nm are not used for photosynthesis and are reflected due to
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FIGURE 2.18: QuickBird image of an area in northern South Africa (courtesy of GoogleTMEarth).
A polygon representing the area covered by a 500 m MODIS pixel together with the corresponding
seven-year NDVI time-series spanning from 2001/01 to 2008/01 is also shown.

the internal cell structure of green vegetation [55]. This results in the characteristic low percentage of

reflection in the visible region relative to the near IR region of green vegetation (Figure 2.9).

NDVI is a good vegetation measure in the sense that its stability enables meaningful comparisons of

seasonal and inter-annual changes in vegetation greenness, growth and activity [53]. NDVI time-series
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data have been used in various operational applications including image segmentation methods,

land-cover classification, climate studies and change detection [17, 56–58]. The NDVI time-series

for the pixel shown in Figure 2.17 is shown in Figure 2.18.

2.6.2 Enhanced vegetation index

The enhanced vegetation index (EVI) optimizes the vegetation signal with improved sensitivity in high

biomass regions because of an increased dynamic range, which in the case of NDVI, has a tendency to

saturate in high biomass regions [53]. Vegetation monitoring is also improved through de-coupling of

the canopy background signal. EVI is calculated as:

EV I = G
ρNIR − ρred

ρNIR + C1 × ρred − C2 × ρblue + L
, (2.8)

whereρNIR, ρred andρblue is the surface reflectance of the Near IR, red and blue bands respectively, L

is the canopy background adjustment term,C1, C2 are the coefficients of the aerosol resistance term

andG is the gain term. The rationale behind the the scaled blue band and red band term is based on

the wavelength dependency of the aerosol effects. The blue band is more atmosphere-sensitive and is

used to correct the red band for aerosol influences. The canopy background correction term (L) is used

since 70% of the terrestrial surface has open canopies with canopy background signals having some

effect on the canopy reflectance properties. The coefficients adopted in the MODIS EVI algorithm are,

L = 1,C1 = 6,C2 = 7.5, andG (gain factor) = 2.5 [53].

2.6.3 Using vegetation indices for land cover change detection

NDVI is the most widely used VI when considering land cover change detection [12, 20, 57, 59–61].

This could be attributed to the simplicity of calculating the NDVI metric as well as the ability to be

calculated for sensors that do not have a blue band. Our preliminary results shows that the performance

of the methods presented in this study was not influenced considerably by the choice of vegetation

index (NDVI vs. EVI). It was consequently decided to use NDVI time-series data as input to the change

detection method presented here in order to maximize comparability with previous studies so that the

change detection ability could be attributed to the method rather than the choice of index. Although

only NDVI data were used, it should be noted that all the change detection methods presented in this

thesis could be adapted to other vegetation indices.
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2.7 CHANGE DETECTION METHODS

There is no single solution to change detection for all applications. Different change detection

methods have their own merits with no single approach being optimal for all change scenarios [15].

Monitoring changes on the surface of the Earth is a dynamic topic with new techniques being

continuously developed [14, 15]. There are three major steps involved when developing a change

detection framework. The first step is to perform image pre-processing which includes geo-location

and image registration, radiometric and atmospheric correction. The goal of this step is to ensure that

the data are consistently processed through time and that changes in surface reflectance are not caused

by processing artifacts. For example, if two images are not properly co-registered, the location of a

pixel in the first image will not correspond with the co-located pixel in the second image, resulting

in an erroneous change detection for that pixel. Various studies have shown the adverse effect on

change detection accuracy in the event of mis-registration [62–64]. The second step is to implement

a suitable change detection method that produces information on where and in some cases when

changes occurred in the area in question. In the the third step, an accuracy assessment is performed to

quantify the performance of the algorithm using a ground truth dataset.

A distinction can be made between multi-temporal and hyper-temporal change detection methods.

Multi-temporal change detection methods usually takes as input a few images (in the order of

2–5) [14,15] whereas hyper-temporal change detection methods make use of a series of images (up to

hundreds) taken at regular, constant intervals, usually a few (8 – 30) days apart. The vast majority of

change detection algorithms in the literature are based on medium to high resolution multi-temporal

change detection with only a limited number of hyper-temporal change detection methods [14,15].

Most multitemporal change detection methods found in the literature can broadly be classified into

two categories. In the first, two pixels are used as input to a mathematical function to produce a

change metric. The second step is then to classify the change metric value as having changed or not.

The second category is often referred to as post-classification change detection where a labeled map is

compared at two instances and corresponding areas having different labels are then flagged as change

areas [14].

When considering land cover change detection, previous studies have shown that multi-temporal

change detection methods that infer change based on differences in the surface reflectance at two

instances tend to be performance limited due to differences in vegetation [45,46]. Phenology-induced

errors occur when a change map is generated using two images acquired at different stages of the
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intra-annual growth cycle [17]. The spectral signature of the same vegetation can vary significantly

through the year (Figures 2.10 and 2.11) which could lead to an elevated false alarm rate as the

difference in ground reflection between the two acquisitions is not only caused by changes in land

cover, but also by a natural seasonal variation in the spectral signature of vegetation. The temporal

frequency of the satellite should thus be high enough to distinguish change events from natural

seasonal changes in vegetation. Apart from these natural seasonal variations, changes in ecosystems

can broadly be classified as being gradual (trend) or abrupt. As the name suggests, gradual change

refers to a slow deviation of the time-series caused by, for example, land degradation. Abrupt

change refers to an abrupt change in the time-series caused by, for example, deforestation [29].

Therefore, hyper-temporal change detection methods should be able to distinguish phenological

cycles from trends or abrupt change in land cover [20, 29, 65]. Another important motivation for

using hyper-temporal change detection methods is the need for automated change detection over

large areas [66]. While the majority of change detection methods are focused on changes between

satellite images from two dates [14, 15], the increasing availability of large archives of historical

images makes it possible to develop richer algorithms that fully exploit the temporal dimension of

the data. Rather than only focusing on high resolution image to image change detection, it can

be complemented by hyper-temporal time-series data. In line with GEOSS philosophy [31], these

datasets can be aggregated as a multi-sensor monitoring system and change information obtained using

hyper-temporal data could be used to guide high-resolution sensors in acquiring imagery of areas of

interest identified using the medium resolution time-series data. Another advantage of hyper-temporal

time-series data is that continuous monitoring is possible as the data is not limited to the availability

of costly sets of high-resolution images.

Post classification change detection is also not without its challenges. In concept, identifying areas

where the class labels are different for two land cover maps is intuitive, but this process relies heavily

on the classification accuracy of each of the two land cover maps. The selection of optimal image

dates, for example, is crucial since differences in reflectance can be caused by seasonal vegetation

fluxes and Sun angle differences which could cause a difference in the the land cover classification for

areas that have similar land cover types in both images [14]. For South Africa, two major land cover

mapping efforts were made to produce a land cover database in 1994 and 2000, referred to as the South

African National Land-Cover (NLC) 94 and NLC 2000 datasets respectively [67]. These datasets

were used to determine a change map by comparing the class labels for each pixel. Unfortunately, the

1994 and 2000 versions of the NLC were compiled using very different methods. The NLC 94 had a

a minimum mapping unit of 25 ha, and contained 31 land-cover classes whereas the NLC 2000 had a
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minimum mapping unit of 2 ha, and contained 45 land-cover classes [67]. Converting these classes into

comparable pixel sizes and land cover classes was not a trivial task and taking into consideration that

the original classification accuracy of the land cover datasets where 79.4% and 65.8% respectively, the

production of a highly accurate land cover change map using this post-classification change detection

approach proved challenging [67].

Some of the typical methods used in classical multitemporal change detection, for example image

differencing [68–71] , image regression [72], image rationing, vegetation index differencing [73],

Principle Component Analysis (PCA) [59, 61] and Change Vector Analysis (CVA) [74], can be

adapted to the hyper-temporal case by considering a multitemporal subset of the time-series. For

example, in CVA a change vector can be described by an angle of change and a magnitude of change

between the reflectance values of multiple bands between two dates. This concept was extended to

the hyper-temporal case in [74] by constructing a vector containing a series of biophysical parameter

observations within a single year and comparing this vector with the corresponding vector for the

following year. The consequent change vector is then analyzed to infer a change or no-change decision.

For example, if an NDVI time-series sampled every month is available, a vector containing 12 NDVI

values (representing one year) are compared with the corresponding vector for the following year. The

idea is that the magnitude and angle of the consequent change vector gives an indication of the change

occurring over these consecutive years. The potential problem with this approach, however, is that the

change detection is essentially a comparison across multiple instances, comparing two at a time, and

does not fully utilize the temporal dimension of the signal.

2.7.1 Hyper-temporal time-series analysis

Time-series analysis comprises of methods that attempt to understand the underlying force structuring

the data, identifying patterns and trends, detecting changes, clustering, modeling and forecasting [75].

Because of the high revisit frequency that is required in constructing a hyper-temporal time-series, the

data from coarse and medium resolution wide-swath sensors is primarily applicable (section 2.4). In

the following section, emphasis will be placed on methods that can be classified as hyper-temporal

change detection methods. These methods can be broadly classified into 3 classes namely, regression

analysis, Fourier analysis and temporal metrics.

2.7.1.1 Regression Analysis

A fairly common method for change detection using hyper-temporal data is regression analysis. Here,

a basic assumption of the underlying form of the data is made, for example a linear trend, and
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the parameters of the assumed function is estimated using theobserved data. R.E. Kennedyet al.

considered a set of hypothesized temporal trajectories associated with forest disturbance dynamics

[66]. If the time-series fits the idealized trajectory according to a least-squares measure of goodness

of fit, it is inferred that the time-series in question experienced the phenomenon described by that

trajectory. A similar approach for estimating proportional forest cover change was proposed by D.J.

Hayeset al. by making use of a regression model and subsequent comparison to reference change data

sets derived from Landsat data for a study site in Central America [76]. The advantage of these type of

methods is that there is no threshold requirement as a direct classification is made based on the best fit

in a finite set of hypothesized temporal trajectories. The disadvantage however is that the performance

of methods based on regression analysis depends on the assumption that is made on the form of the

hypothesized temporal trajectories. For example, if it is assumed that the temporal trajectory of a

hypothesized disturbance will follow the form of a downward step function (i.e. instantaneous drop in

reflectance) and the actual temporal trajectory is better described by an exponential decay function, the

disturbance in question would not be well represented by the idealized step function. It follows that

if the temporal trajectory in question is not well represented by any of the hypothesized trajectories,

the change detection method will not perform well. For the method to work in a more general context,

a very large dataset of hypothesized trajectories associated with change events will be required as all

types of possible changes would have to be characterized, making the approach somewhat impractical

for monitoring large heterogeneous areas.

2.7.1.2 Fourier Analysis

Another approach often used when considering hyper-temporal time-series data is Fourier analysis.

Fourier analysis expresses a time-series as the sum of a series of cosine waves with varying frequency,

amplitude and phase [77]. The frequency of each cosine component is related to the number of

completed cycles over the defined interval. The Fast Fourier Transform (FFT) is an effective and

computationally efficient algorithm to compute the Discrete Fourier Transform (DFT) [77] and is

often used when evaluating satellite time-series data [56–58, 78]. In many applications where the

FFT transformation of time-series data is used for classification and segmentation, only the first few

FFT components are considered as they tend to dominate the spectrum [56–58]. The reason for this

is because of the strong seasonal component and slow variation relative to the sampling interval of

the time-series. It has been found that even when considering only the mean and seasonal FFT

components [56], reliable class separation can be achieved. A drawback of using FFT-based methods

is that the underlying process is assumed to be stationary. This assumption is often invalid in the case

of NDVI time-series data, especially if a land cover change is present. Although this method is mostly
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used for classification, there has been some recent research interest to use the FFT to perform change

detection. For example, B.P. Salmonet al. proposed that a sliding window FFT method be used to

perform change detection [79]. J. Verbeseltet.al.used Fourier analysis as a major step in modeling the

seasonal component used in the BFAST (Breaks For Additive Seasonal and Trend) approach [29]. The

model used 3 harmonic terms and was found to be more suitable and robust for phenological change

detection than the piecewise linear seasonal model using seasonal dummy variables that was employed

by the same author in [65].

2.7.1.3 Temporal Metrics

Most of the change detection methods using coarse or medium resolution hyper-temporal time-series

are used to detect climate-driven change, phenological modifications and net-primary production on a

large scale [16, 17, 19, 80]. J. Borak used temporal change metrics as a land-cover change detection

method [16]. These metrics were computed by considering the inter-annual difference of five temporal

metrics (annual maximum, annual minimum, annual range, annual mean and temporal vector) as

well as two spatial metrics (spatial mean and spatial standard deviation), i.e. year2− year1, for all

combinations of the aforementioned spatial and temporal metrics [16]. The underlying idea is that

these metrics are compared to a threshold value to determine whether a change or no-change decision

should be made. C. Potter used the moving average of the time-series to label pixels as as having

changed when the time-series deviated significantly (greater than 1.7 standard deviations) from the

18-year average of the time-series for at least 12 consecutive time-steps [81].

D.J. Mildrexler and N.C Coops used a disturbance index (DI) to detect large-scale ecosystem

disturbances [18,19]. The disturbance index is calculated as:

DILST/EVI =
LSTmax/EV Imax

LSTXmax/EV IXmax

, (2.9)

whereDILST/EVI is the disturbance index,LSTmax is the annual maximum land surface temperature,

EV Imax is the annual maximum Enhanced Vegetation Index (EVI),LSTXmax is the multi-year mean

of LSTmax andEV IXmax is the multi-year mean ofEV Imax. From (2.9) it is clear that the disturbance

index is calculated on an annual basis. The DI can then be compared to a pre-defined threshold to infer

a change or no-change decision.

R.S Lunetta derived a change metric by computing the difference in total annual NDVI for a range of

pixels in the given study area and isolating the pixels having an abnormal (relative to the other pixels

in the study area) reduction in annual NDVI [17]. The threshold is selected by using standard normal
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statistical analysis.

The methods described in [16–18,81] all work on the principle that when a pixel departs from a normal

temporal profile, a change event is detected by comparing the change metric to a threshold value. The

change metric that is calculated by the majority of hyper-temporal change detection methods mostly

uses an annual composite of the hyper-temporal time-series, for example, the annual NDVI maximum

[16], annual maximum land surface temperature [18] or total annual NDVI [17]. Thus, when only the

total annual NDVI of a seven-year time-series (sampled every eight days) is used when calculating a

change metric, the original time-series, which contains more than 300 samples, is effectively reduced

to only 7 samples which decreases the information content of the original time-series considerably.

The second consideration is the selection of suitable thresholds. In most of the current hyper-temporal

change detection methods in the literature,a-priori knowledge of the probability of land-cover change

is required when selecting a suitable threshold and more often than not a trial-and-error approach is

used in determining these thresholds. In this thesis it is proposed that simulated land cover change be

used to determine a suitable threshold. The change metric is calculated for each pixel in a no-change

and simulated change dataset and the threshold that best separates the aforementioned datasets is then

used. The operator thus only needs to provide examples of no-change time-series, which, unlike change

examples is very easy to obtain.

2.7.2 MODIS land cover change products

Although some MODIS change detection products do exist (such as MODIS burn-scar detection

[82]), there are currently no operational MODIS products available specifically for land cover change

detection. There were however two previous attempts to implement an automated MODIS land cover

change product, as an operational system. The first was the MODIS Vegetative Cover Conversion

(VCC) product, which uses MODIS 250 m surface reflectance data, and was designed to serve as a

global alarm for land cover change caused by anthropogenic activities and extreme natural events [12].

The product was to serve as an alarm which could be augmented by higher resolution sensors such as

Landsat 7, Ikonos, and QuickBird once detected. Five change detection methods where proposed [12]:

1. The Red-NIR space partitioning method : Uses a two-dimensional representation of the

brightness (mean of band one and two) and greenness (difference between band two and one) at

different times to identify change pixels.

2. Red-NIR space change vector: By considering a pixels location in the Red-NIR space at two

different dates, the starting and ending positions, direction, and magnitude of the change vector
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are used to identify a change event.

3. Modified delta space thresholding: Uses a space defined by differences in pixel values for times

1 and 2 for the red and NIR values of each pixel (no change occurs at the origin). Type of

conversion is defined by the angle and distance from the origin and the initial state of the pixel.

4. Texture: Uses the coefficient of variation of the NDVI within a 3×3 kernel at times 1 and 2.

When the coefficient of variation exceeds a pre-defined threshold value, a change is flagged.

5. Linear feature: Compute the mean of the absolute difference of the pixel value for each

neighboring pixel in a 3×3 kernel. A threshold determines whether a linear feature is present.

The second MODIS land cover change detection product that was proposed was the MODIS Land

Cover and Land-Cover Change Algorithm Theoretical Basis Document (ATBD) [83]. The ATBD

suggested that the primary change detection technique for the 1 km Land-Cover Change Parameter

is change vector analysis [84]. In this technique, a change vector is used to connect two points in

multitemporal space. These two points represents an annual multitemporal set of indicator values.

The underlying idea is that the change vector is compared to a threshold value, and, when exceeded,

a change decision is made. The ATBD also suggested that neural network classifiers be used on

a pixel-by-pixel basis to track the probability that a specific pixel changes classes over time. The

artificial neural network is used in a supervised manner to develop the Land Cover Parameter. New data

that are presented to the neural network is either classified as matching an existing category, or a new

category must be created. By monitoring the classification on a per-pixel basis, change can be detected.

When considering the proposed VCC product [12], as well as the change vector analysis method

described in the ATBD [84], none of these methods fully utilize the temporal dimension as only two

instances are compared rather than considering the complete temporal profile (As discussed in section

2.7.1) and effectively disregards a large suite of time-series methods used in other disciplines e.g.

signal processing, telecommunications, etc. The neural network method proposed in the ATBD does

show promising results but it should be noted that if a new data presentation does not match an existing

category, then it will be necessary to determine whether the new data represent a fundamentally new

condition or whether the vigilance parameter needs to be relaxed so that an existing category can

now accommodate the new input. This implies that the approach is very sensitive to selection of the

vigilance parameter, making the practicality of this approach questionable.

Regardless of the concerns with the proposed MODIS change detection methods, none of these

proposed methods were implemented operationally, despite the fact that land cover change detection
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was one of the primary objectives of the MODIS sensor [48]. Automated land cover change detection

using MODIS data is therefore an ongoing endeavor.

2.8 SUMMARY

In this chapter, the basic principles of electromagnetic radiation were shown together with a description

of the properties of the electromagnetic source, which, in the case of optical remote sensing, is the Sun.

The interaction of electromagnetic radiation with the atmosphere and land surface was discussed. A

brief comparison of sensors showed that there is a trade-off between spatial and temporal resolution.

In general, medium-resolution sensors have a much wider swath width compared to high resolution

sensors. This implies that when considering a global systematic acquisition strategy, a high resolution

image of the same area will be available every couple of months as opposed to the near-daily acquisition

of wide swath sensors. This point is crucial as the same area can differ in appearance at different stages

of the natural growth seasonal cycle [17]. For this reason, the high temporal frequency provided

by medium resolution sensors was opted for. The MODIS sensor was chosen for this thesis, a list of

available MODIS products as well the band specifications were given. The MCD43A4 BRDF corrected

product was chosen because of the high degree of consistency between images which, in turn, provided

accurate surface reflectance time-series information despite large variations in viewing angles. Most

change detection methods use multi-temporal data as input and numerous solutions to this class of

problem have been presented in the literature. The use of hyper-temporal time-series data for change

detection is not as well documented in the literature and most methods that make use of hyper-temporal

time-series data for change detection focused on large scale phenological and climate driven changes

instead of anthropogenic land cover changes. A novel change detection formulation is thus required

when considering change detection for smaller areas that are typically affected by human activities

such as new informal settlement developments.
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