
 

 

 

Chapter 5 
Verification and Validation  
 

 

 

 

 

Engineers develop mathematical models to emulate various physical systems. The model can 

be as simple as a linear spring or as complex as a full vehicle. However simple or complex the 

mathematical model may be, the engineer needs to evaluate the mathematical model and 

decide whether the mathematical model does indeed emulate the physical system accurately. 

This is generally done by comparing the data qualitatively and/or quantitatively. The data 

consists of two sets i.e. the data containing the experimental measurements obtained from the 

physical system and the data predicted by the model emulating the physical system. 

Generally, the measured data is considered to be true and the predicted data considered to be 

an approximation. Measurement uncertainties are dealt with in different ways but will not be 

covered in this study. Qualitative comparisons are usually done by graphically comparing the 

superimposed plots of the two data sets. This qualitative method was used in the previous 

chapters to compare the predictions of the models to the experimental data. The conclusion 

drawn from a qualitative comparison is very subjective. A quantitative comparison aims at 

obtaining a conclusion that is more objective. This chapter will investigate the use of 

quantitative methods in order to perform more objective comparisons during the validation 

process. Although this study will focus more on the validation process, an overview of the 

verification and validation (V&V) process will briefly be discussed in order to understand the 

purpose of validation. 

 

1. Introduction 

 

As already mentioned, mathematical and computer modelling have been playing an 

increasingly important role in the computer aided engineering (CAE) process in the last 60 

years. Simulation offers great advantages in the development and analysis phase of products 

and offers a faster, better and more cost effective way than using physical prototypes alone. 

Engineers develop mathematical models of varying complexity to emulate various physical 

systems. The engineer needs to evaluate the mathematical model and decide whether the 

model does indeed represent the physical system to an acceptable level of accuracy. 

Therefore, in order to obtain meaningful simulation models it is necessary to verify and 

validate them. The need for a formal validation method for quantifying the accuracy of 

simulation models emulating physical systems has become increasingly important with the 

greater reliance on the CAE process during product development. The drive for a formal 

validation method is fuelled by the need for obtaining simulation models which satisfy 

accuracy requirements, and can be used with confidence to base key engineering and business 

decisions on.  

 

The verification and validation process is an important part of any model that is created to 

emulate physical events and engineering systems. Oberkampf and Barone (2006) state that 
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“the terms verification and validation have a wide variety of meanings in the various technical 

disciplines”. Similarly Babuska and Oden (2004) state that “the broad interest in V&V in 

many different scientific areas has led to a diverse and often incompatible list of definitions 

and concepts as it pertains to different disciplines. Moreover, despite the fact that modern 

views of the subject have been under development for nearly a decade, much remains to be 

done toward developing concrete approaches for implementing V&V procedures for 

particular applications”. Oberkampf and Barone (2006) refer to work that played a major role 

in attempting to standardize the terminology within the engineering community. Similarly, a 

committee was formed known as the ASME Committee for Verification and Validation in 

Computational Solid Mechanics whose purpose is to develop standards for assessing the 

correctness and credibility of modelling and simulation in computational solid mechanics. 

This committee released a guide for the verification and validation in computational solid 

mechanics (ASME standards, 2006). They give the following definitions for verification and 

validation: 

 

Verification  - The process of determining that a computational (or simulation) model 

accurately represents the underlying mathematical model and its solution. 

 

Validation      - The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of 

the model. 

 

Figure 5.1 gives an overview of the V&V process and the tasks associated with the process. 

The two primary elements of a V&V process are 1) the physical system of interest and 2) the 

mathematical (or simulation) model that is created to emulate the physical system. An 

experimental setup of the physical system is constructed in task (a) from which the 

experimental data is obtained. In task (b) measurements or analysis (e.g. Computer Aided 

Design (CAD)) are made on the physical system in order to obtain the properties and 

parameters of the physical system, such as mass, mass moments of inertia, etc, which are 

required as inputs into the mathematical model. The path from the conceptual model to the 

simulation model is shown as well as the stages where the code and calculation verification is 

performed. With the simulation model verified it can be used to generate the simulation data. 

From the experimental data and the simulation data the system response quantity (SRQ) of 

interest can be obtained. The measured system response quantity (SRQ
m

) is obtained from the 

measurements on the physical system and the predicted system response quantity (SRQ
p
) is 

obtained from the predictions of the model. The measured and predicted SRQs are the 

required inputs into the validation process. 
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Figure 5.1. Overview of Verification and Validation process 

 

Various uncertainties exist that will affect both the measured and predicted SRQs. Roy and 

Oberkampf (2011) categorizes the sources of uncertainty in the simulation model broadly into 

uncertainty occurring in the model inputs, in the numerical approximations or in the model 

form. Similarly, uncertainty may exist in the measurements taken during the experiment due 

to measurement errors. These measurement errors may arise from various elements such as 

for example the individual measuring instruments. The characterization of the numerical 

approximation errors associated with a simulation is called verification (Roy and Oberkampf, 

2011). Verification is composed into two fundamental activities in the ASME standards 

(2006) i.e. code verification and calculation verification, and is indicated in Figure 5.1. Roy 

and Oberkampf (2011) state that the characterization of the model form uncertainty is 

estimated during the validation process. The uncertainty quantification in the experimental 

measurements and in the simulation model is outside the scope of this study. Therefore, both 

the measured and predicted SRQs considered in this study are deterministic. The reader is 

referred to Oberkampf and Barone (2006), Roy and Oberkampf (2011) and Figliola and 

Beasley (2006) for more detail on uncertainties. 
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With the SRQs from the experimental and simulation model obtained, the validation process 

can commence. The validation process can be divided into two steps (Oberkampf and Barone, 

2006). The first step is the quantitative comparison of the measured and predicted SRQs. The 

measured and predicted data can however also be compared qualitatively by superimposing 

them on graphs but the subjective conclusions on the correlation of bad, good or excellent 

makes quantifying the accuracy very difficult. Qualitative validation may be useful in certain 

scenarios, especially in identifying possible causes of errors in the model, but its inability to 

give a quantitative measure of the agreement/disagreement between the experimental and 

simulated data makes it difficult to use in determining whether the accuracy requirements are 

satisfied (2
nd

 step of the validation process). Quantitative comparisons attempt to circumvent 

the limitations of qualitative comparisons. Quantitative comparisons consist of comparing 

defined error measures or error metrics (validation metrics). Sarin et al. (2010) makes the 

following distinction between an error measure and an error metric: “An error measure 

provides a quantitative value associated with differences in a particular feature of time series. 

An error metric provides an overall quantitative value of the discrepancy between time series; 

it can be a single error measure or a combination of error measures”. The error measures to be 

used are chosen by the engineer and will vary depending on the data.  Examples of error 

measures are steady state gains, response times, peak response times, percent overshoot for 

time domain data and peak frequency, peak amplitude ratio and phase angle for frequency 

domain data (Heydinger et al., 1990). Heydinger et al (1990) states however that certain data 

will not lend itself to the identification of such error measures. Instead of defining error 

measures of certain features of the data, the measured and predicted data can be compared by 

using error metrics (or validation metrics) which do not require the extraction of specific 

features in the data. The validation metric (or measure of comparison) attempts to give an 

overall measure of the comparison between the data being compared. Validation metrics will 

be discussed in paragraph 2. It is the author’s opinion that both quantitative and qualitative 

comparisons of measured and predicted responses are useful to employ. During model 

refinement and fault-finding, qualitative comparisons can supply the modeller with valuable 

information and may give much more insight into the possible causes for the deviation than a 

validation metric. However, in determining whether the model is valid or not, the qualitative 

comparisons should be substituted with a quantitative comparison method. 

 

The second step of the validation process shown in Figure 5.1 is concerned with determining 

whether the results obtained from the quantitative validation metric satisfies the accuracy 

requirements. When the result of the validation metric satisfies the accuracy requirements the 

model can be considered to be valid. Alternatively, it may be that the validation metric gives 

results that do not satisfy the accuracy requirements. Depending on the reason for the 

accuracy requirements not being met one of the two dash-line paths shown in Figure 5.1 can 

be taken. Either better/more experimental data may be required or the model needs to be 

refined. 

 

Although validation is essential in assuring that the model is valid, validation does have some 

shortfalls and the engineer should be aware of them and should try to avoid them. Various 

studies (Ferry et al. (2002), Edara et al. (2005) and Cosme et al. (1999)) validated models 

against certain parameters and then used them to predict others. For example, a vehicle model 

is developed for durability analysis but is only validated against accelerations. This approach 

may have certain risks involved such as stated in Bernard and Clover (1994). They use the 

example of a vehicle doing a severe J-turn with the assumption that the measured yaw rate 

and lateral acceleration are available from vehicle tests, but measured normal loads on the 

tyres are not. They compare the simulated yaw rate and lateral acceleration of two models of 

the same vehicle with the difference being that the centre of gravity height of one of the 
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models is 10% higher. Comparing the yaw rate and lateral acceleration the models seem to 

give similar results, but comparing the lateral load transfer it becomes clear that there is some 

discrepancy between the two models. The importance of validating the model for the correct 

parameters is also shown in Kat and Els (2011). 

 

The focus in this study will be on the validation process and more specifically on the first step 

of the validation process concerned with the validation metric. The reader is referred to 

Babuska and Oden (2004), Oberkampf and Trucano (2002) and ASME standards (2006) for 

further details on the complete V&V process. The rest of this chapter will be concerned with 

the development and evaluation of a quantitative validation metric based on relative error for 

use in the first step of the validation process. Of primary interest will be quantifying the 

agreement/disagreement between SRQs that are periodic in nature with a combination of 

many frequencies that may or may not oscillate around zero. An example of a SRQ that 

exhibits behaviour as described above is an acceleration measurement on a vehicle driving 

over a discrete bump or the accelerometer measurements on a vibrating beam. In this study 

deterministic SRQs with time as the independent variable will be compared. 

 

2. Quantitative validation metrics 
 

A quantitative validation metric should be able to provide a measure that quantifies the 

overall error (or agreement/disagreement) between two sets of data, for example between 

measured and predicted data. In the context of the validation process we would like the 

validation metric to quantify the level of agreement/disagreement of the model with respect to 

the physical system in order to conclude whether the model satisfies the accuracy 

requirements and can be considered valid for the intended use. The validation metric’s result 

should be an easily interpretable value that can be used to determine whether the agreement 

between the physical system and model satisfies the accuracy requirements. 

 

Although many different error measures and validation metrics can be found in the literature 

for quantitatively comparing SRQs with time as the independent variable, not many studies 

concerning validation of simulation models make use of them. Rather the validation is done 

qualitatively with subjective conclusions such as the correlation is good, excellent or fair. This 

begs the question: Why are these measures not used? Do they give engineers physically 

meaningful and interpretable results? In an attempt to answer these questions, a literature 

survey was conducted in order to form an idea of the measures and metrics available, their 

capabilities, limitations and whether they give physically meaningful and easily interpretable 

results in order to determine whether or not the model satisfies the accuracy requirements. 

 

2.1. Literature survey 
 

Oberkampf and Barone (2006) divide traditional quantitative comparison approaches into 

three categories: 

 i) Techniques developed by structural dynamists for assessing agreement between 

computational and experimental results as well as techniques for improving agreement. 

These techniques are known as parameter estimation, model parameter updating or system 

identification.  

ii) Hypothesis testing or significance testing.  

iii) Bayesian analysis or Bayesian statistical inference.  
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Oberkampf and Barone (2006) mentions the following on the approaches used in the three 

categories: 

i) “Although these techniques are used to compare computational and experimental results, 

their primary goal is to improve agreement based on newly obtained experimental data”.  

ii) “A validation metric is not specifically computed as a stand-alone measure that indicates 

the level of agreement or disagreement between computational and experimental results. 

The results of a hypothesis test is focused, instead, on obtaining a yes-no statement of 

computational-experimental consistency for a pre-specified level of significance”   

iii) “Much of the theoretical development in Bayesian estimation has been directed toward 

optimum methods for updating statistical models of uncertain parameters in the 

computational model. In validation metrics, however, the emphasis is on methods for 

assessing the fidelity of the physics of the existing computational model”. 

 

They state that the primary goal of both parameter estimation and Bayesian inference is model 

updating and model calibration. This may be the goal in many situations but is different from 

the aim of the validation metric in the validation process. The purpose of a validation metric is 

to be able to assess the predictive capability of the mathematical model and not to optimize 

the agreement between the mathematical model and the experimental measurements. The 

functionality of the parameter estimation and Bayesian inference to optimize the agreement 

between the mathematical model and the physical system can be useful in the model 

refinement stage shown in Figure 5.1.  

 

Oberkampf and Barone (2006) presents an approach that evaluates the accuracy of the model 

based on comparing deterministic computational results with the estimated mean of the 

experimental measurements. The primary difference between their approach from the three 

traditional quantitative comparison approaches they mention are that: (a) “a stand-alone 

validation metric is constructed to provide a compact, statistical measure of quantitative 

disagreement between computational and experimental results”, and (b) “a statistical 

confidence interval is computed that reflects the confidence in the accuracy of the 

experimental data“. They state however that their validation metric is applicable to SRQs that 

do not have a periodic character and do not have a complex mixture of many frequencies. 

They state that these types of SRQs require sophisticated time-series analysis and/or 

transformation into the frequency domain. They suggest using validation metrics constructed 

by Geers (Geers, 1984), Russell (Russell (1997a)) and Sprague and Geers (Sprague and 

Geers, 2003) for periodic systems or system responses with many frequencies.  

 

Among the three validation metrics (Geers, Russell and Sprague and Geers) many other error 

measures and error metrics exist that can be used to quantify the agreement between two time 

histories. Table 5.1 attempts to summarize the various error measures and error metrics found 

in literature. For a detailed discussion on each error measure/metric the reader is referred to 

the study that treats them in detail.   
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Table 5.1. Summary of Error Measures and Metrics 

Error measure/ 

Metric 

Advantages Disadvantages 

Discussed in Sarin et al. (2010)
1
 

Vector norms  Norm choice lead to different conclusions.  

Not capable of distinguishing error due to 

phase from error due to magnitude. 

Average Residual 

and its standard 

deviation 

 Positive and negative differences at 

various points may cancel out.  

Results of Average Residual and its 

standard deviation are conflicting. 

Coefficient of 

correlation  

 Sensitive to phase difference and cannot 

distinguish between error due to phase 

and error due to magnitude. 

Cross-correlation  Can only measure difference in phase 

Sprague & Geers 

Metric  

Gives error due to magnitude and phase 

separately which is useful when more 

detailed investigation of the error source is 

necessary. 

Not symmetric. 

Cannot consider shape of the time 

histories. 

Russell’s Error 

Measure  

Symmetric Same problem with respect to magnitude 

error as Sprague & Geers Metric.  

Normalized Integral 

Square Error (NISE) 

 Magnitude error can be negative, which 

can decrease the combined error 

erroneously.  

Dynamic Time 

Warping (DTW) 

Effect of phase deviation on magnitude 

error can be minimized by using DTW. 

 

Discussed in Schwer (2007) 

Sprague & Geers 

Metric 

Magnitude error – Insensitive to phase 

discrepancies 

Phase error – Uses error proposed by 

Russell. Insensitive to magnitude 

differences. 

Defines a Comprehensive error 

 

Discussed in Russell (1997b) 

Russell’s Error 

Measure 

Magnitude error is unbiased and signed.  

Geers’  May only be an appropriate choice when a 

high level of confidence exists in the test 

data 

Whang’s Inequality  No means for evaluating phase and 

magnitude errors 

Theil’s Inequality  No means for evaluating phase and 

magnitude errors 

Zilliacus error  Incorrectly identifies the degree of error 

RSS error factor  Incorrectly identifies the degree of error 

Regression 

Coefficient 

 Incorrectly identifies the degree of error 

Johansen’s 

Magnitude 

 Should not be used in current state. 

Johansen’s Energy  Should not be used in current state. 

 

                                                 
1
 The comments made in Sarin et al. (2010) regarding the advantages and disadvantages are made in respect to 

their application to vehicle safety applications. 
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Russell (1997b) evaluated various measures in Table 5.1 and concluded that some error 

measures are very similar and other incorrectly identifies the error. He recommends using 

Geers’, Whang’s or Russell’s error measure (Russell, 1997a), but state that Geers’ error may 

only be an appropriate choice when a high level of confidence exists in the test data, and that 

Whang’s Inequality is very sensitive to phase errors. Russell (1997a) developed a set of 

magnitude, phase and comprehensive error measures that can be used to evaluate the 

deviation between two general functions or test and analytical data. Russell’s error measures 

address some of the issues associated with some of the existing measures given in Table 5.1. 

He states the following five deficiencies with existing error measures, which he claims that 

his proposed error measure resolves: 

1) The value may not be well bounded and therefore may make it difficult to evaluate 

and compare results, 

2) the physical interpretation of the results may not be intuitive, 

3) the degree of error may not be correctly identified, 

4) the results can not be used to identify the cause of the error 

5) the basis of the error factor may not be understood, which can lead to false 

interpretations of the results. 

 

Sarin et al. (2010) propose three error measures describing the error in magnitude, the error in 

phase and the error in slope by combining existing measures. The three measures are then 

combined into a single validation metric based on linear regression using Subject Matter 

Expert (SME) ratings. Much of the objectivity of the proposed validation metric is lost as the 

metric is based on the subjective opinions of SMEs. Before the validation metric can be used 

to validate a model, the validation metric has to be created by training it in order for it to be 

able to evaluate the model. This training is done by fitting the regression model to the SME 

ratings of the comparison between different data. This makes it highly dependent on the 

SMEs and it will therefore not be possible to compare the quantitative results of comparisons 

between two different models to a single set of “true” data (or test data) made using two 

different sets of SMEs, unless the SMEs’ assessment is the same and given that the SME 

exists. The error measure proposed by Sarin et al. (2010) is not used further in this study as 

the metric is heavily dependent on SMEs. This causes it to lose a lot of the required 

objectivity of a quantitative validation metric. This metric may however be useful in certain 

applications. 

 

From the above mentioned studies (Sarin et al. (2010), Russell (1997b)) in which various 

error measures/metrics were evaluated it would seem that the two most likely error 

measures/metrics to give the most reliable validation results are Russell’s error measure and 

Sprague & Geers’ metric. These two metrics will now be discussed in more detail. 

 

2.1.1. Russell’s error measure  

 

The following equations are used to calculate the magnitude, phase and comprehensive error 

measures as presented in Russell (1997a).  

 

For the magnitude error the following equation is used: 

|)|1()( 10 rmeLogrmesignM R +=  

 

With the relative magnitude error (rme) computed by, 
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p and m represent the two signals that are being compared. p represents the predicted data 

obtained from the simulation model and m is the measured data obtained from the experiment. 

N equals the number of data points in the measured (m) and predicted (p) data. The length of p 

and m should be the same. 

 

For the phase error the following equation is used: 
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The magnitude and phase error are combined into a comprehensive error, RC : 
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4
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2.1.2. Sprague & Geers’ metric 

 

The most recent version of Geers’ error measure (Geers, 1984), presented in Sprague and 

Geers (2006), will be used. In this version the equation of the phase error has been updated.  

 

The Sprague & Geers’ (S&G) magnitude error is calculated by: 
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The phase error is calculated by: 
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The Sprague and Geers’ comprehensive error measure is given by:  

          2

&

2

&& GSGSGS PMC +=  

 

From the above equations it can be observed that the phase error of both metrics is calculated 

in the same way. The calculation of the magnitude and comprehensive error differs between 

S&G’s metric and Russell’s error measure. Whether these two validation metrics are able to 

1) give results for which the physical interpretation is intuitive and 2) identify the degree of 
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error correctly is not clear. A validation metric will be proposed in the next paragraph that 

will address these two aspects directly. This proposed validation metric will then be compared 

to Russell’s error measure and to the Sprague & Geers (S&G) metric in paragraph 3.  

 

2.2. Validation metric based on relative error 
 

The validation metric that is proposed will use the simple and commonly used relative error to 

quantify the agreement/disagreement between two data sets. The data sets may be SRQs 

obtained from a physical system and a model. The use of the relative error as a validation 

metric has been employed in previous studies (Oberkampf and Trucano (2002) and 

Oberkampf and Barone (2006)). Oberkampf and Barone (2006) state that, as long as the 

measured data is not near zero, the relative error metric is a useful quantity. A similar remark 

is made by Schwer (2007) stating that “a simple metric such as relative error works well for 

point-to-point comparisons, e.g. maximum deflection of a cantilever beam. However when 

comparisons involve time or spatial variations, e.g. velocity history at a point or deflection 

along a beam, then the application of a simple metric like relative error becomes sensitive to 

inaccuracies in time and space dimensions as well as the system response quantity (SRQ)”. As 

mentioned, this study will consider the comparison of SRQs with a periodic nature and which 

may have values at or near zero, which according to Oberkampf and Barone (2006) and 

Schwer (2007) will cause difficulties in using the relative error as a validation metric. Before 

discarding the use of the relative error as a validation metric on periodic systems where the 

measured data might be near or equal to zero, we’ll investigate the characteristics of the 

relative error, its various challenges and suggest ways to circumvent them. 

 

2.2.1. Relative error (RE) 

 

The equation for the relative error between two values is given in Eq.{5.1}. Consider the two 

values as one being the measured (m) and the other the predicted (p) value, with the measured 

value taken as the true (or reference) value. 

m

mp
RE

−
=                 {5.1} 

 

The calculation of the relative error between a measured (m) and predicted (p) value is simple 

and when expressed as a percentage (see Eq.{5.2}) easy to interpret.  

100% ×
−

=

m

mp
RE                 {5.2} 

 

The relationship between the RE and the ratio p/m, which represents the respective over or 

under prediction of the measured value, is shown in Figure 5.2.  
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Figure 5.2. Relationship between the RE and the ratio p/m 
 

From Figure 5.2 the following observations can be made: 

i. The first obvious observation is that in the limit of p approaching m, RE goes to zero 

( 0lim =
→

RE
mp

).  

ii. When 1>>

m

p  the relative error goes to positive infinity (along the line in section 1), 

iii. Similarly, when 1<<

m

p  the relative error goes to negative infinity. However, because we 

plot the absolute values of the ratio p/m these large negative values instead goes to 

positive infinity (along the line in section 2)  

 

The ratio of p/m indicates whether the predicted value p is an over or under prediction of the 

measured value m. The predicted value p is said to be an over prediction of m if p is a larger 

positive value when m is positive, or when p is a larger negative value when m is negative. 

Similarly, p is classified as an under prediction when p is a smaller positive value (or any 

negative value) when m is positive, or when p is a larger negative value (or any positive 

value) when m is negative. With this convention relative errors that fall in section 1 are over 

predictions and relative errors in either section 2 or 3 are under predictions. 

 

From Figure 5.2 and Eq.{5.1} it is obvious that the relative error may result in infinite values 

and NaNs (Not-aNumber) due to the operations of 0/0 and 1/0, which may make further 

calculations on the relative error difficult. These challenges are discussed in the following 

paragraph. 

 

2.2.2. Challenges in using the %RE as validation metric 

 

The challenges concerning the use of the percentage relative error as a validation metric 

mainly arise when data has to be compared that have been obtained from a periodic system 

and the measured and/or predicted data has values equal to, or near, zero. Figure 5.3 shows an 

example of measured and predicted data obtained from a periodic system.  
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Figure 5.3. SRQs from experimental measurements and model simulations of a periodic system 

 

The challenges associated with the %RE when periodic data, as shown in Figure 5.3, is 

compared are: 

i. Non-constant %RE over the independent variable (time in the case of Figure 5.3), 

ii. NaNs (Not-a-Number) present in the %REs, 

iii. Inf (infinite) values present in the %REs.   

 

The first challenge faced when using the %RE in comparing two periodic SRQs, is that the 

%RE at each data point may not be the same. This makes it difficult to report a single 

representative result indicating the overall agreement/disagreement. Further challenges that 

are associated with using the %RE arise from comparing periodic SRQs that are near zero. 

When calculating the %RE of periodic SRQs near zero, NaNs and Inf values may be present 

in the %RE. These values result from the operations 0/0 and 1/0, respectively, and make 

further calculations on the %RE difficult. These challenges are discussed in further detail in 

the following paragraphs and methods to overcome them are proposed.  

 

Non-constant %RE over the independent variable 

 

The %RE may not have a constant value over the entire range of the data. In other words the 

%RE may have different values for each data point. This makes it difficult to report on the 

agreement between the measured and predicted data using the %RE. When the %RE does not 

have a constant value one of the following two methods can be used to report a single 

representative value for the %RE. In the two methods the non-constant %RE will be 

represented by a modified %RE defined either by the mean of the %REs or by a specific 

%RE. In both methods a probability will be given that represents the percentage of %REs that 

are below, or equal to, either the mean of the %REs or the specific %RE that was chosen. 

When the mean of the %REs is used to define the modified %RE, it will be denoted as 

m%RE
m
 and by m%RE

s
 when it is defined by a specific %RE. 

 

In order to define the m%RE
m
 the mean and cumulative histogram of the %REs are calculated. 

Using the cumulative histogram and the mean, the probability is calculated that the %REs are 

at or below the mean %RE. Figure 5.4(a) shows the histogram and the mean of the %REs and 

Figure 5.4(b) the cumulative histogram and the mean of the %REs for an arbitrary set of 

%REs. Figure 5.4 illustrates that when we take the y-intercept (representing the frequency of a 
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specific %RE) of the cumulative histogram where the mean value intersects the cumulative 

histogram, we can obtain the probability that the data is at, or below the mean value. 

Therefore, for the data in Figure 5.4 the result will be that 55% of the %REs are at or below 

the mean %RE of 15% (m%RE
m
 = 15% P(55%)). 

 

 
Figure 5.4. (a) Superimposed mean and histogram, and (b) superimposed mean and cumulative histogram of 

%RE with a normal distribution 
 

Even if the %RE does not have a normal distribution (see Figure 5.5(a)) the mean %RE can 

still be used to define the m%RE
m
. Figure 5.5(a) shows the non-normal distribution of the 

%RE and Figure 5.5(b) presents the cumulative histogram with the mean %RE superimposed 

on it. For the example in Figure 5.5 we obtain that 57.6% of the %REs are at or below the 

mean %RE of 48.5% (m%RE
m
 = 48.5% P(57.6%)). 

  

 
Figure 5.5. (a) Superimposed mean and histogram, and (b) superimposed mean and cumulative histogram of 

%RE with a non-normal distribution 
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In the second method, instead of defining the modified %RE by using the mean %RE, a 

specific %RE can be chosen and the probability that the %REs are below, or equal to, this 

specific %RE can be calculated.  However it may be that there is no %REs below this chosen 

%RE and the result will be that there is zero probability that the %REs are below this chosen 

%RE (m%RE
s
 = x% P(0%)). This result will make comparing and selecting the best model 

from a group of models impossible if this is the result for all the models. In this situation it 

may be better to use the mean %RE to define the modified %RE. However, in the situation 

where accuracy requirements are set for the model the result from the m%RE
s
 can easily be 

used to check whether the requirements are satisfied or not. It will therefore depend on the 

intended use of the validation metric whether the modified %RE is defined by a specific %RE
s
 

or the mean %RE
m
. 

 

NaNs present in the %REs 

 

The calculation of the %RE is subject to the operation 0/0. This is one of the major problems 

encountered when using the relative error to quantify the agreement/disagreement between the 

measured and predicted SRQs obtained from periodic systems near zero. This occurs when 

the %RE is calculated at a point where the measured and predicted value equals zero. The 

IEEE floating point representation of 0/0 is NaN (Not-a-Number). The presence of NaNs in 

the %RE makes it difficult to perform further calculations on it. It is proposed that any NaN is 

set equal to 0 as the operation 0/0 implies that the %RE is equal to zero. The next step is now 

to use either the m%RE
m
 or the m%RE

s
 to report a single value for the %REs in order to 

quantify the overall agreement between two SRQs. 

 

The following considerations should be kept in mind when using the m%RE
m
. Zeros in the 

%RE result in problems with the representation of the m%RE
m
. Consider the %RE between 

measured and predicted data having 10 data points. Nine of them are equal to 8% and one is a 

NaN. Assigning a zero to the NaN the mean of the %RE is 7.2%. Using the mean of 7.2% we 

will obtain a probability that 0.1% of the %REs are lower than 7.2% (m%RE
m
 = 7.2% 

P(0.1%)). If we calculate the mean of the %RE but now ignoring any zero value we will 

obtain a mean of 8%. This will give us the result that 100% of the %REs are at, or below, 8% 

(m%RE
m
 = 8% P(100%)). Ignoring the zeros gives a result that represents the agreement 

better. Consider the example shown in Figure 5.6 that reiterates this. We have a true time 

response and an approximation to the true response. We know that the amplitude of the 

approximate response deviates from the true response by 10%. If we calculate the modified 

%RE defined by the mean %RE, including the zero values, the result is that there is a 0.2% 

probability that the %REs are smaller or equal to 9.98% (m%RE
m
 = 9.98% P(0.2%)). Even 

though this is true, the results without including the zeros in the calculation of the mean %RE, 

are considered more meaningful. Excluding the zeros when the mean of the %RE is 

calculated, the result is obtained that a 100% of the %REs are equal to, or below 10% 

(m%RE
m
 = 10% P(100%)), which we know to be true. Therefore the mean of the %REs, 

defining the m%RE
m
, will be calculated neglecting all the zero values in the %REs. Zeros in 

the %REs do not have the same effect on the m%RE
s
 and does not need any special 

consideration. 
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Figure 5.6. Example of time response histories of SRQs for the physical system (true) and computation model 

(approximation) 
 

Inf values present in the %REs 

 

We already looked at how to handle operations involving 0/0 which the IEEE represents as 

NaNs. Another problem with using the relative error in comparing periodic signals is 

introduced by operations involving 1/0. This occurs when the measured value is zero and the 

predicted value has a non-zero value. The IEEE uses Inf to represent these operations The 

effects of operations involving 1/0 on the modified %RE are discussed at the hand of an 

example. 

 

In Figure 5.7, two mathematical models (approximation 1 and 2) are compared to the physical 

system (true). Approximation 1 has a 10% deviation and approximation 2 a 30% deviation 

from the true value. In Figure 5.7(a) the data of both approximations are perfectly in-phase 

with the true data, whereas in Figure 5.7(b) the approximations and true data have some phase 

difference. Table 5.2 shows the results for the modified %RE. For the in-phase case we obtain 

the expected m%RE
m
 of 10% P(100%) and 30% P(100%) respectively, however for the out-

of-phase case we obtain the result that there is a 100% probability that the %REs are smaller 

than infinity (m%RE
m
 = � P(100%)), which has no meaning even though it is correct. The 

m%RE
s
 gives meaningful results for both the in-phase and out-of phase example. 
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Figure 5.7. (a) Approximation 1 and 2 in-phase with true data. (b) Approximation 1 and 2 out-of-phase with true 

data  

 
Table 5.2. Effect of %RE not being bounded on the results of the m%RE (Not bounded) 

 (a) 

In-phase 

(b) 

Out-of-phase 

 Approximation  

1 

Approximation  

2 

Approximation  

1 

Approximation 

 2 

m%RE
m
 

10%  

P(100%) 

30%  

P(100%) 

Inf 

P(100%) 

Inf 

P(100%) 

m%RE
s
 

15%  

P(100%) 

15%  

P(0.2%) 

15%  

P(21.6%) 

15%  

P(13.6%) 

 

From the results in Table 5.2 it is clear that the presence of Inf values do not affect the results 

of m%RE
s
. However, the presence of Inf values in the %REs makes it difficult to compare the 

models using the m%RE
m
. There is one of two ways to deal with Inf values in the %REs when 

the m%RE
m
 is used namely: 

i. If %REi > Inf,    then remove Inf value from %RE data, or 

ii. Bound the %REs.  

 

Completely removing the Inf values, as proposed in method (i), will imply that the %REs at 

these points are ignored. The implication of this is that when the m%RE
m
 is used, the mean of 

the %RE will be lower than it really is. In the case where both models have the same amount 

of values above the specified %RE threshold method (i) will not influence the results 

negatively. However, if only one model has values above the threshold that is removed this 

may lead to the incorrect model being chosen as the more accurate model. Bounding the %RE 

as proposed in method (ii) will be less likely to make an erroneous model choice. Oberkampf 

and Trucano (2001) presents a validation metric that uses the relative error combined with the 

hyperbolic tangent function which results in the relative error being bounded. Their equation 

is changed and presented here as Equation {5.3}. V is the bounded RE. 

m

mp
V

−
= tanh               {5.3} 

  

Plotting this equation on Figure 5.8 shows that the implementation of tanh bounds the RE, for 

all ratios of p/m, to 1. However, using tanh the “true” relative error is distorted. As can be 

seen from Figure 5.8, Eq.{5.3} deviates from the true relative error as it moves away from 
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p/m = 1. Therefore, for a ratio of p/m = 2 Equation {5.3} results in a relative error of 0.7616 

instead of 1. This results in a 24% lower error than which truly exists. The use of tanh in 

combination with the RE bounds the RE to 1, but has the implication that the true relative 

error is lost. 

 

 
Figure 5.8. Relationship between the RE and the ratio p/m (relative error bounded) 

 

The relative error can be bounded without distorting the true relative error by setting any RE 

that is greater than a chosen RE threshold equal to the RE threshold. This implies that the RE 

is now bounded but unlike Eq.{5.3} all the REs below the RE threshold value are the true 

relative errors. The implementation of this and its effect on the relationship between the RE 

and the ratio p/m is also shown on Figure 5.8 as the graph Relative error bounded (RE 

threshold). From the figure it can be observed that the true relative error is obtained until the 

RE threshold is reached. Above the RE threshold the true relative error is set equal to the RE 

threshold. In figure 5.8 the RE threshold was set equal to 2.  

 

We again calculate the %RE between the measured and predicted data in Figure 5.7 but now 

using the bounded %RE. The %RE threshold is set equal to a 100%. Using the bounded %RE 

we obtain results for the m%RE
m
 that can actually be interpreted (see Table 5.3). It is now 

possible to evaluate approximation 1 and approximation 2, using the m%RE
m
, in order to 

conclude that approximation 1 is more accurate than approximation 2. This is similar to the 

results obtained from the m%RE
s
 which also indicates that approximation 1 is better than 

approximation 2.  

 
Table 5.3. Effect of %RE being bounded on the results of the m%RE (Bounded) 

 (a) 

In-phase 

(b) 

Out-of-phase 

 Approximation  

1 

Approximation  

2 

Approximation  

1 

Approximation 

 2 

m%RE
m
 

10%  

P(100%) 

30%  

P(100%) 

48.5% 

P(57.6%) 

51.3% 

P(56.8%) 

m%RE
s
 

15%  

P(100%) 

15%  

P(0.2%) 

15%  

P(21.6%) 

15%  

P(13.6%) 
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From the results in Table 5.2 and Table 5.3 it is clear that whether the %RE is bounded or not 

the m%RE
s
 is unaffected. Therefore unlike the m%RE

m
, the m%RE

s
 will not be affected by the 

choice of the %RE threshold. It is important that when the m%RE
s
 is used, that the specific 

%RE that is chosen to define the modified %RE, is never above the %RE threshold. The 

effect of the choice of the %RE threshold on the m%RE
m
 will be discussed by considering 

three scenarios: 

i.) All %REs < %RE threshold, 

ii.) Some %REs > %RE threshold, and 

iii.) All %REs > %RE threshold. 

 

It is obvious that for scenario 1 the choice of the %RE threshold is irrelevant. With scenario 2 

having some %RE greater than the %RE threshold the choice of the %RE threshold will affect 

the result of the m%RE
m
. Consider the example given in Table 5.4. We have a set of true 

values and their associated %RE between the true and approximate data. Table 5.5 presents 

the results for the m%RE
m
 for two %RE threshold values. 

 
Table 5.4. Known %RE between true and approximate data 

Data point True %RE 

1 0 0 

2 0.5 90 

3 0.8 80 

4 1 60 

5 1.2 50 

6 0.8 4 

7 0.7 6 

8 0.6 8 

9 0.5 10 

10 0 1 

11 -0.5 -20 

12 -0.8 -30 

13 -1 -55 

14 -1.2 -35 

15 -0.8 -25 

16 -0.7 -20 

17 -0.6 -15 

18 -0.5 -10 

19 1 200 

20 1 200 

21 1 200 

 
Table 5.5. Results for the m%RE

m
 using different %RE threshold values 

%RE threshold 110% 250% 

m%RE
m
 

44.6% 

P(61.9%) 

58.8%  

P(71.4%) 

 

Figure 5.9 shows the histogram, cumulative histogram and the mean of the %RE for both the 

%RE threshold equal to 110% and 250%. From this figure it can be observed that the %REs 

smaller than the %RE threshold is not affected by the choice of the %RE threshold. Therefore 

the histogram and cumulative histograms will be identical up until the %RE threshold after 
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which they will differ. This implies that both results in Table 5.5 are correct and it can be 

concluded that it does not matter what value is chosen for the %RE threshold, as long as the 

same %RE threshold is used when two models are compared.   

 

 
Figure 5.9. Superimposed histograms, cumulative histograms and means of %RE using different %RE threshold 

values 

 

This brings us to the third scenario. If all the %REs are above the %RE threshold, all the 

%REs will be set equal to the %RE threshold. This implies that if the %RE threshold = 100% 

the results for both model 1 with a constant %RE = 200% and model 2 with a constant %RE = 

150% will be that 100% of the %REs are below a 100% (m%RE
m
 = 100% P(100%)). This 

result is obtained because the percentage relative errors that are above the %RE threshold are 

bounded by the %RE threshold. Having two models with an accuracy worse than 100% may 

already make them invalid models, however if they need to be analysed the threshold value 

for the %RE can be adjusted. By adjusting the %RE threshold to 200% we get that 100% of 

the %REs are below 200% for model 1 and that 100% of the %REs are below 150% for model 

2. Therefore model 2, although bad, is a better approximation to the measurements than model 

1.  
 

It is important to remember that because the %REs greater than the %RE threshold is bounded 

to the %RE threshold, the %REs above the %RE threshold are not the true %REs. This is 

important especially when a specific %RE is chosen to define the modified %RE. The specific 

%RE should always be below the %RE threshold. When the specific %RE is chosen below 

the %RE threshold both the m%RE
s
 and the m%RE

m
 will give the true relative error. 

 

2.2.3. Summary of the modified %RE validation metric 

 

The modified percentage relative error validation metric and its two formulations (m%RE
m
 

and m%RE
s
) were presented. It should be realized that both formulations can be used to either 

compare (and rank) a set of models or to evaluate the model against accuracy requirements 

using either formulation of the modified %RE. It is however suggested that the m%RE
m
 

should be used for comparing a set of models and the m%RE
s
 used to evaluate the model 

against the accuracy requirements. Table 5.6 summarizes the two formulations of the 

modified percentage relative error validation metric. 
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Table 5.6. Summary of the two formulations of the modified %RE validation metric 

 m%RE
m

 m%RE
s
 

Defined by  The percentage of %REs (given as a 

probability) that are equal to, or below, the 

mean of the %REs: 

m%RE
m
 = mean(%REs) P(%) 

 

Note: the mean of the %REs is calculated 

neglecting all zero values in the %REs 

The percentage of %REs (given as a 

probability) that are equal to, or below, the 

specified %RE (for example x%): 

m%RE
s
 = x% P(%) 

 

Note: The specified %RE must always be 

below the %RE threshold 

Preprocessing 

of the %REs 

NaNs (Not-a-Number) 

Set NaNs = 0 Set NaNs = 0 

Inf (infinite) values 

Bound %REs with %RE threshold 
 

Note: Choice of %RE threshold influence 

result of the m%RE
m
. %RE threshold 

must be the same when comparing 

m%RE
m
 results 

None required 
 

Note: If the %REs were bounded, x% must 

be below the %RE threshold 

Suggested 

uses 

Primary use 

Comparing and selecting the best 

model from a group of models 

Evaluation of model against 

accuracy requirements 

Secondary use 

Evaluation of model against accuracy 

requirements 

Comparing and selecting the best 

model from a group of models 

 

In the previous paragraph the use of the relative error as basis for a validation metric between 

two data sets was investigated. The relative error gives intuitive results, but has certain 

challenges. How these challenges can be overcome to still get useful intuitive results from the 

%RE when it is presented in the modified form (either m%RE
m 

or m%RE
s
) were discussed. 

Because the modified %RE includes both the error due to a magnitude difference, as well as 

the error due to a phase difference, it is considered to be a comprehensive error. The modified 

%RE validation metric will now be compared to the validation metrics of Russell (Russell, 

1997a) and Sprague & Geers (Sprague and Geers, 2006).   

 

3. Comparison of validation metrics 

 

The modified %RE validation metric will now be compared to the Sprague & Geers metric 

(Sprague and Geers, 2006) and Russell’s metric (Russell, 1997a) that were presented in 

paragraph 2.1 of this chapter. It should be noted that the magnitude, phase and comprehensive 

error measures of both S&G and Russell’s metric is multiplied by a hundred in order to 

present them as a percentage. This is done to compare it directly to the modified %RE metric. 

The %RE threshold value that is used throughout this chapter is 100%.   

 

From the comparison of the validation metrics we would like to conclude two things. Firstly, 

and most importantly, we would like to establish whether the validation metrics give a useful 

and reliable measure that quantifies the agreement between the experimental and simulated 

data. It is important that the validation metrics give a reliable and easily interpretable metric 

which can be used to determine whether the model satisfies the accuracy requirements. 

Secondly we would like to evaluate the ability of the validation metrics to rank models and 

select the best model from a group of models. Analytical functions will firstly be used to 

compare the capabilities of the validation metrics to rank models. The analytical functions 

will also aid in determining whether the validation metrics can indeed quantify the agreement 
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of the model and give a useful and reliable metric which will aid the engineer in deciding 

whether the model is valid or not. Case studies will then be used to further show the 

advantages and limitations of the different metrics.  

 

3.1. Analytical functions 
 

The analytical functions that we will use include the functions used in previous studies by 

Russell (1997b) and Schwer (2007) which are based on, and extensions of, the functions 

given in Geers (1984). The analytical functions that are used are given in Table 5.7.    
 

The analytical functions 1 to 15, listed in Table 5.7, were used in Russell (1997b). Functions 1 

to 8 represent the predicted data and are compared to the measured data given 

by )2sin()( tetm t
π

−

= . Similarly, functions 9 to 15 represent the predicted data that uses the 

measured data given by )200sin(01.0)5sin(6.01)( 4.0/1.0/ tteetm tt
ππ +−−=

−− . Functions 21(a), 

22(a) and 22(b) are three additional functions used by Schwer (2007) that were not considered 

by either Russell (1997b) or Geers (1984). The reference function for function 21(a), 21(b), 

22(a) and 22(b) is given by )14.0(2sin)( )14.0(
−=

−− tetm t
π .  

 

Table 5.7. Equation for the various analytical functions 

Function Equation 

Reference function for 1 to 8 )2sin()( tetm t
π

−

=  

1 )2sin(8.0)( 8.0/ tetp t
π

−

=  

2 )6.1sin()( tetp t
π

−

=  

3 )6.1sin(2.1)( 2.1/ tetp t
π

−

=  

4 )6.1sin(4.0)( 2.1/ tetp t
π

−

=  

5 )6.1sin(5.0)( tetp t
π

−

=  

6 )6.1sin(6.0)( 2.1/ tetp t
π

−

=  

7 )30sin(1.0)2sin()( tetetp tt
ππ

−−

+=  

8 )30sin(3.0)2sin()( tetetp tt
ππ

−−

+=  

Reference function for 9 to 15 )200sin(01.0)5sin(6.01)( 4.0/1.0/ tteetm tt
ππ +−−=

−−  

9 )5sin(6.01)( 3.0/1.0/ teetp tt
π

−−

−−=  

10 )4sin(6.01)( 4.0/1.0/ teetp tt
π

−−

−−=  

11 ).4sin(8.06.06.0)( 3.0/1.0/ teetp tt
π

−−

−−=  

12 ).3sin(3.06.06.0)( 5.0/3.0/ teetp tt
π

−−

−−=  

13 ).3sin(2.03.03.0)( 5.0/3.0/ teetp tt
π

−−

−−=  

14 tteetp tt 25.0).5sin(5.01)( 4.0/1.0/
−−−=

−−

π  

15 tteetp tt 5.0).4sin(6.01)( 4.0/1.0/
−−−=

−−

π  

Reference function for 21 to 22  )14.0(2sin)( )14.0(
−=

−− tetm t
π  

21(a) )14.0(2sin2.1)( )14.0(
−=

−− tetp t
π  

21(b) )14.0(2sin8.0)( )14.0(
−=

−− tetp t
π  

22(a) )24.0(2sin)( )24.0(
−=

−− tetp t
π  

22(b) )04.0(2sin)( )04.0(
−=

−− tetp t
π  

 
 
 



� � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � � 
 � � � � � � � � � � 
 � � � � � � � � � �

 

�

����

 

3.1.1. Ability to rank models and identify the best model 

 

We start by comparing the validation metrics using functions 1 to 8 given in Table 5.7. The 

analytical functions 1 to 8 are compared to the same reference function. Table 5.8 shows how 

each validation metric ranks the 8 examples. All the functions are ranked the same by the 

three validation metrics except for Function 1 and 2. This gives an average agreement of 

91.7%. The m%RE
m
 ranks Function 8 in 2

nd
 and Function 1 as 3

rd
. The m%RE

m
 gives a lower 

mean for Function 1 than for Function 8 but Function 8 has a higher amount of %REs below 

the mean %RE and therefore Function 8 is ranked higher than Function 1. The ranking of the 

functions in this order is confirmed when the results for the m%RE
s
 is considered. The 

m%RE
s
 for Function 8 is 37% P(63.85) and Function 8 therefore has a higher amount of 

%REs below the same %RE than Function 1. The same functions were given to subject matter 

experts (SMEs) and asked to rank the comparisons of the eight functions to the reference 

function. The SMEs ranked all the functions the same as the three validation metrics except 

for Function 2 and 3 (see Table 5.9). The overall average agreement between the seven SMEs 

is 64.3%, which is a lot lower than between the three validation metrics. 

 
Table 5.8. Ranking of comparisons by different validation metrics (Functions 1 to 8)  

Function S&G 

Rank 

Russell 

Rank 

m%RE
m

 

Rank 

Overall Rank  
(%) 

1 28.68 4 20.2 3 
37 

P(47.9) 
3 

3  

(66.6) 

2 23.4 3 20.7 4 
68.9 

P(40.1) 
4 

4  

(66.6) 

3 38.6 5 27.3 5 
71.5 

P(36.9) 
5 

5  

(100) 

4 61.9 8 46.2 8 
76.8 

P(44.2) 
8 

8  

(100) 

5 55.6 7 41.2 7 
75 

P(43.6) 
7 

7  

(100) 

6 42.9 6 32.9 6 
72.4 

P(43) 
6 

6  

(100) 

7 3.3 1 2.87 1 
18.8 

P(76.8) 
1 

1  

(100) 

8 10.4 2 8.9 2 
39.2 

P(66.2) 
2 

2  

(100) 

 
Table 5.9.  Ranking of comparisons by SME’s (Functions 1 to 8) 

Function SME 

#1 

SME 

#2 

SME 

#3 

SME 

#4 

SME 

#5 

SME 

#6 

SME 

#7 

Overall 
rank (%) 

1 2 3 5 3 3 3 3 3 (71.4) 

2 3 5 3 2 5 5 4 5 (42.8) 

3 4 6 4 4 4 4 5 4 (71.4) 

4 8 8 7 6 8 8 8 8 (71.4) 

5 6 4 8 7 7 6 7 7 (42.8) 

6 7 7 6 8 6 7 6 6 (42.8) 

7 1 1 1 1 1 1 1 1 (100) 

8 5 2 2 5 2 2 2 2 (71.4) 
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The validation metrics were compared using another seven functions (Functions 9 to 15 given 

in Table 5.7). The results for the validation metrics and the SMEs are given in Table 5.10 and 

Table 5.11, respectively. The ranking by the three validation metrics and the seven SMEs are 

again the same for all but two Functions. For Function 13 and 15 the SMEs rank these two 

functions as either 6
th

 or 7
th

. The three validation metrics again have a higher average 

agreement of 90.5% against the 71.4% of the SMEs.  

 
Table 5.10. Ranking of comparisons by different validation metrics (Functions 9 to 15) 

Example S&G 

Rank 

Russell 

Rank 

m%RE 

Rank 

Overall rank 
(%) 

9 0.91 1 0.8 1 
5 

P(85.5) 
1 

1  

(100) 

10 3.37 2 2.98 2 
11.3 

P(67.7) 
2 

2  

(100) 

11 40.1 4 28.2 4 
45 

P(77.6) 
4 

4 

(100) 

12 45.7 5 32.3 6 
49.9 

P(73.1) 
5 

5 

(66.6) 

13 72.89 7 57 7 
75 

P(72.5) 
7 

7 

(100) 

14 26.4 3 18.91 3 
29.52 

P(54.2) 
3 

3 

(100) 

15 50.1 6 36.4 5 
54.6 

P(48.5) 
6 

6 

(66.6) 

 
Table 5.11. Ranking of comparisons by SMEs (Functions 9 to 15) 

Function SME 

#1 

SME 

#2 

SME 

#3 

SME 

#4 

SME 

#5 

SME 

#6 

SME 

#7 

Over all 
rank (%) 

9 1 1 1 1 1 1 1 1 (100) 

10 2 2 2 2 2 2 2 2 (100) 

11 4 4 4 3 4 4 3 4 (71.4) 

12 5 6 5 5 5 5 4 5 (71.4) 

13 6 7 6 6 7 7 5 6 (42.8) 

7 (42.8) 

14 3 3 3 4 3 3 6 3 (71.4) 

15 7 5 7 7 6 6 7 6 (42.8) 

7 (42.8) 

 

From the above results it was observed that the three validation metrics and the SMEs tend to 

rank models similarly. The ranking of the functions by the validation metrics were done with 

more coherence than the ranking by the SMEs. The results may be influenced having more 

SMEs or using different groups of SMEs. Having additional validation metrics may also 

influence the results of the overall ranking of the models. These effects are outside the scope 

of this study. The results obtained seem to indicate that the validation metrics are able to rank 

the models and indicate which model is the best model from a group of models.  The question 

is now whether all the metrics are able to give a reliable and useful measure of the level of 

agreement between the experimental and the simulated data.  
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3.1.2. Reliability and usefulness of validation metrics 

 

The following two examples, indicated in Figure 5.10 and Figure 5.11, discuss the reliability 

and usefulness of the quantitative measure of the agreement/disagreement between two SRQs 

given by the various validation metrics. The example we consider in Figure 5.10 uses function 

21(a) and 21(b) given in Table 5.7. There is no phase difference between the function 

representing the measured data and the two sets of predicted data represented by Function 

21(a) and 21(b). The magnitude of Function 21(a) is 20% larger than the magnitude of the 

measured response and Function 21(b) is 20% smaller. We therefore know the error in 

magnitude between the measured response and the two models. This makes it possible to 

evaluate which of the metrics can indeed give the agreement between the two data sets 

correctly. Table 5.12 shows the results for the various metrics. Only S&G and the m%RE
m
 

give the correct percentage relative error between the two signals. S&G is also capable of 

stating whether the magnitude is smaller or larger than the measured magnitude.  

 

 
Figure 5.10. Comparison of function 21(a) and 21(b) to the reference function 

 
Table 5.12. Comparison between the error measures’ ability to quantify the accuracy (Function 21(a) and 21(b)) 

 Function 21(a) Function 21(b) 

 S&G Russell m%RE
m

 S&G Russell m%RE
m

 

Magnitude 20 13.57  -20 -16.14  

Phase 0 0  0 0  

Comprehensive 20 12 20 

P(100) 

20 14.3 20 

P(100) 

 

The comprehensive error of S&G and m%RE
m
, in the example where function 21(a) and 21(b) 

were used, is easy to interpret and captures the agreement of the two models. The magnitude 

and phase error of S&G provide additional information indicating that the error is due to a 

difference in the magnitude. However, when we consider two models with only a phase 

difference and no magnitude difference, as in Figure 5.11 for Function 22(a) and 22(b), the 

results of the validation metrics need more consideration to understand what they actually 

mean. Considering the magnitude and phase error obtained from S&G for Function 22(a) and 

22(b), it is clear that there is little difference in the magnitude compared to the reference 

function and that there exist a phase difference of almost 20% (see Table 5.13). However, the 

meaning of the comprehensive errors is not as clear. The comprehensive error of S&G in the 
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comparisons of Functions 21(a) and (b) and Functions 22(a) and (b) are effectively equal. 

However, at time 0.4s the value that Function 21(a) had to predict is 20% higher than the 

reference function’s value. At the same time (0.4s) the value that Function 22(a) had to 

predict is 30% lower than the reference function’s value.  

 

The m%RE
m
 gives a comprehensive error that is easier to interpret. In comparing Function 

21(a) to the reference function the m%RE indicates that all the predicted values deviate less 

than 20% from the measured value. In comparing Function 22(a) to the reference function the 

m%RE
m
 indicates that 53.1% of the errors between the responses are smaller than 60.3%. The 

magnitude and phase error of S&G for Function 21(a) and (b) and 22(a) and (b) is easily 

interpretable, whereas its comprehensive error is not, as discussed above. Combining the 

magnitude and phase errors of S&G with the comprehensive error of the m%RE
m
, we obtain a 

validation metric that has a meaningful comprehensive error. Furthermore, this combination 

of S&G and the m%RE
m
 makes it possible to determine whether the error is in the magnitude 

and/or in the phase.  

 

 
Figure 5.11. Comparison of functions 22(a) and 22(b) to the reference function 

 
Table 5.13. Comparison between the error measures ability to quantify the accuracy (Function 22(a) and 22(b)) 

 Function 22(a) Function 22(b) 

 S&G Russell m%RE
m

 S&G Russell m%RE
m

 

Magnitude -0.48 -0.41  0.14 0.122  

Phase 19.5 19.5  19.5 19.5  

Comprehensive 19.5 17.3 60.3 

P(53.1) 

19.5 17.3 59.4 

P(51.9) 
 

3.1.3. Combination of S&G and the modified %RE 

 

Figure 5.12 shows two approximations obtained from Model 1 and Model 2 both having the 

same deviation in phase from the true value. The amplitude of Model 1 is 10% higher than the 

measured value and Model 2 is 10% lower. The results for the different validation metrics are 

shown in Table 5.14. Analyzing the results of the different validation metrics on their own are 

not as insightful as combining them. When we combine the magnitude and phase error of 

S&G with the comprehensive error of the m%RE
m
 we can form the following conclusion. The 

agreement of both Model 1 and Model 2 is approximately similar with roughly 58% of the 
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%RE being below 51%. The deviation of both Model 1 and Model 2 is due to a difference in 

both phase and magnitude. Model 1 and Model 2 have the same difference in phase with the 

amplitude of model 1 being 10 % higher than the true signals amplitude and Model 2 10% 

lower. In the context of the validation procedure the magnitude error measure does not mean 

that Model 1 over predicts the true (measured) values and that Model 2 will under predict the 

values. If the phase difference between the two signals were zero then the magnitude error 

measured of S&G would have indicated that Model 1 over predicts the true data and Model 2 

under predicts the data. In order to comment on Model 1 and Model 2 over or under 

predicting the values, the relationship between the relative error and the ratio of p/m, as 

discussed in paragraph 2.2.1, should be used to calculate whether the model is under or over 

predicting.  

 

 
Figure 5.12. Model 1 and Model 2 with same phase shift but different magnitudes  

 

Table 5.14. Comparison between error measures for models with same phase shift but different magnitudes  

 Model 1 Model 2 

 S&G Russell m%RE
m

 S&G Russell m%RE
m

 

Magnitude 10 7.6  -10 -8.3  

Phase 12.7 12.7  12.7 12.8  

Comprehensive 16.2 13.2 51.3 

P(55.6) 

16.2 13.5 48.5 

P(57.6) 
 

3.2. Case studies 
 

Three case studies will now be used to further compare the validation metrics. The reliability 

and usefulness of the validation metric’s results in quantifying the measure of agreement 

between the experimental and simulated data is investigated using these case studies.  

 

The first case study will consider the comparison of two arbitrary models’ predictions to 

measured data. The percentage relative error between the two models and the measured data 

is known. The second case study will compare both formulations of the elasto-plastic leaf 

spring model from Chapter 3 to the experimental data from Chapter 2. The final case study 

will use the validation metrics to compare the accuracies of the elasto-plastic leaf spring 

model and the neural network model of the multi-leaf spring. The two models’ computational 

efficiencies will also be compared.  
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3.2.1. Case study 1: Known error between signals 

 

Consider the two predicted SRQs obtained from Model 1 and Model 2 shown in Figure 5.13. 

The %RE between the two predicted SRQs and the measured SRQ are known and shown in 

Table 5.15. The results for the different metrics are shown in Table 5.16. Looking at the 

comprehensive errors of S&G and Russell, Model 1 seems to be a closer fit to the measured 

data than Model 2. However, when we consider the %RE between the models and the 

measured data, shown in Table 5.15, it is clear that Model 2 has the smaller %RE and is 

therefore closer to the measured data. The m%RE
m
 metric correctly shows that Model 2 is 

closer to the measured data stating that 60% of the errors are smaller than 35.2%. When the 

magnitude and phase errors of S&G are considered along with the results from the m%RE
m
 

metric for Model 2 it can be seen that the difference in magnitude is the major contributor to 

the errors as the error in phase is small. For Model 1 the magnitude and phase errors of S&G 

give similar results and it is difficult to conclude whether the deviation is due to an error in 

the magnitude or an error in the phase. From Figure 5.13 it seems as if the deviation is largely 

due to an error in the magnitude.  

 

 
Figure 5.13. Two models with known %RE relative to the measured data  

 
Table 5.15. Relative error between Model 1, Model 2 and the measured data 

Data point Model 1 Model 2 

1 0 0 

2 90 60 

3 90 60 

4 80 60 

5 70 60 

6 50 35 

7 4 4 

8 10 10 

9 10 10 

10 10 10 

11 0 0 

12 -60 60 

13 -60 60 

14 -60 60 

15 -60 60 

16 -60 35 

17 -35 20 
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Data point Model 1 Model 2 

18 -20 10 

19 -15 10 

20 -10 10 

mean(|%RE|) 39.7 31.7 

mean(|%RE|) (without zero) 44.1 35.2 

 
Table 5.16. Comparison between error measures for known %RE 

 Model 1 Model 2 

 S&G Russell m%RE
m

 S&G Russell m%RE
m

 

Magnitude 16.28 11.3  41.8 23.3  

Phase 16.27 16.2  4.75 4.8  

Comprehensive 23 17.5 44.1 

P(50) 

42.1 21.1 35.2 

P(60) 

 

3.2.2. Case study 2: Elasto-plastic leaf spring model 

 

In this case study the two formulations of the elasto-plastic leaf spring model, presented in 

Chapter 3, will be compared to the measured data taken on the physical multi-leaf spring 

using the quantitative validation metrics. Two models of the multi-leaf spring are created; 

Model 1 uses the elastic-linear formulation of the elasto-plastic leaf spring model and Model 

2 the elastic-nonlinear formulation. Both models are given the same displacement input as 

was given to the physical spring during the experimental characterisation. Figure 5.14 shows 

the qualitative comparison of the two models against the measured data.  

 

 
Figure 5.14. Qualitative comparison of predictions by leaf spring models and measured data  

 

Both models give similar results except for the transition region were the two models’ 

prediction deviate. Model 2, which uses the elastic-nonlinear formulation, gives better 

predictions in this transition region and should result in more accurate predictions than the 

elastic-linear model. Table 5.17 shows the quantitative results for the different validation 

metrics when comparing the prediction of Model 1 and Model 2 with the measured data. All 

the metrics indicate that Model 1 gives better predictions. The metrics of S&G and Russell 

gives very similar results for the two models. The result from the quantitative validation 

metrics seem to be in contradiction to the conclusion drawn from the qualitative comparison 
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in Figure 5.14. However, after closer inspection of the measured signal we see that there 

exists noise around zero which is shown in Figure 5.15. The actuators controller was such that 

the actuator was not very stable at zero load and resulted in the noise shown. Therefore, all the 

measurements below 25N were set equal to zero.  

 
Table 5.17. Results with noise on measured data around zero 

 Model 1 Model 2 

 S&G Russell m%RE
m

 m%RE
s
 S&G Russell m%RE

m
 m%RE

s
 

Magnitude 2.46 2.06   2.6 2.17   

Phase 1.64 1.64   1.5 1.5   

Comprehensive 2.96 2.33 26.39 

P(68) 

10 

P(39.07) 

3.0 2.34 54.01 

P(49.64) 

10 

P(31.43) 

 

 

 
Figure 5.15. Noise on measurement signal around zero  
 

 

Removing the noise on the measurement error around zero by reassigning all measurements 

lower than 25N to 0N, gave the results shown in Table 5.18. The results for S&G and Russell 

stay the same whereas the results from the modified %RE (for both the m%RE
m 

and the 

m%RE
s
) changes and show that Model 2 is significantly better than Model 1. When Figure 

5.14 is viewed it would be expected that Model 2 would be more accurate than Model 1 but 

that the results would be very similar. After closer inspection of the prediction of Model 1, it 

was found that Model 1 had an error in predicting the zero values correctly (see Figure 5.15). 

The figure shows that Model 1 predicts a value of -10N instead of zero. After the cause for the 

error in the prediction of Model 1 had been identified and the model refined the results are 

obtained shown in Table 5.19. S&G and Russell still gives the same results, with the results 

from all the metrics now showing similar results with the modified percentage relative error 

indicating that Model 2 is slightly better than Model 1.  
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Table 5.18. Results with noise on measured data around zero removed 

 Model 1 Model 2 

 S&G Russell m%RE
m

 m%RE
s
 S&G Russell m%RE

m
 m%RE

s
 

Magnitude 2.46 2.06   2.6 2.17   

Phase 1.64 1.64   1.5 1.5   

Comprehensive 2.96 2.33 53.52 

P(49.61) 

10 

P(31.13) 

3.0 2.34 16.98 

P(89.38) 

10 

P(76.04) 

 
Table 5.19. Results with noise on measured data around zero removed and Model 1 refined 

 Model 1 Model 2 

 S&G Russell m%RE
m

 m%RE
s
 S&G Russell m%RE

m
 m%RE

s
 

Magnitude 2.46 2.06   2.6 2.17   

Phase 1.64 1.64   1.5 1.5   

Comprehensive 2.96 2.33 17.26 

P(88.83) 

10 

P(75.72) 

3.0 2.34 17.01 

P(89.37) 

10 

P(76.01) 

 

S&G and Russell indicated from the start that the difference between the models should not 

be far from each other but the use of the modified %RE metric showed that there were large 

errors between the SRQs and helped with identifying the error in Model 1. Both metrics from 

S&G and Russell stayed the same throughout the analysis. The removal of the noise around 

zero on the measurement signal and the error in the predictions of the zero values of Model 1 

did not influence the metrics of S&G and Russell. This is due to these two metrics being 

insensitive to small absolute errors between the signals. This is as a result of the formulations 

of the magnitude errors. Both formulations of the modified %RE continually gave an accurate 

representation of the accuracy between the models. This example also shows that the 

modified %RE and especially the m%RE
s 

can easily be used to compare the validation 

measure’s results to predefined accuracy requirements. An accuracy requirement of 10% or 

closer could have been defined and Model 2 having 76.01% of the model’s predictions below 

10% may indeed satisfy the requirements.    

 

3.2.3. Case study 3: Comparison of accuracy and efficiency of leaf spring modelling methods  

 

The two formulations of the elasto-plastic leaf spring model were compared to the measured 

data in paragraph 3.2.2. The two showed similar results with the elastic-nonlinear formulation 

giving slightly better predictions for the behaviour of the multi-leaf spring. The elastic-

nonlinear formulation of the elasto-plastic leaf spring model will now be compared to the 

neural network model of the multi-leaf spring. Details of the two models used here to model 

the multi-leaf spring were given in Chapter 3.  

 

The two main aspects of interest in this comparison are the accuracy and efficiency of each 

model. The same displacement input signal is given to both models. Figure 5.16 shows the 

force-displacement characteristics from the two models compared to the measured data. Table 

5.20 shows the results for the various validation metrics. The validation metrics of S&G and 

Russell indicate that the neural network gives more accurate predictions. However, the 

modified %RE indicate that the accuracy of the neural network is not as good as the elastic-

nonlinear model. From Figure 5.16 it can be seen that the neural network gives better 

predictions overall, however, the predictions of the neural network is not that good near zero. 

This can be seen more clearly on Figure 5.17 which shows the time history of the measured 

force as well as the forces predicted by the two models. Figure 5.17(a) and (b) shows the error 

the neural network makes in predicting the force around zero. The validation metrics of S&G 

and Russell is able to show that the neural network model give overall better predictions with 
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the modified %RE indicating that the accuracy is not that good due to the error the neural 

network makes in the force predictions near zero. This again shows that the metrics from 

S&G and Russell are not sensitive to the small absolute errors and that the modified 

percentage relative error gives the true agreement/disagreement between the two signals.  

  

 
Figure 5.16. Comparison of force-displacement characteristics between the measured data and the elastic-

nonlinear and neural network model 

 
Table 5.20. Accuracy of elastic-nonlinear and neural network model 

 Elastic-nonlinear model Neural network model 

 S&G Russell m%RE
m

 m%RE
s
 S&G Russell m%RE

m
 m%RE

s
 

Magnitude 2.6 2.17   -0.025 -0.021   

Phase 1.5 1.5   0.5 0.5   

Comprehensive 3.0 2.34 17.01 

P(89.37) 

10 

P(76.01) 

0.5 0.44 49.27 

P(51.52) 

10 

P(49.67) 

 

 
Figure 5.17. Error that neural network makes in predicting zero force 
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The results in Table 5.20 were for the evaluation of the entire force signal shown in Figure 

5.18. It was shown that the neural network has an error in the forces it predicts near zero. 

When evaluating the section of the force signal which is not near zero, and therefore does not 

include these errors, the accuracy of the neural network model can be seen to be better than 

the elastic-nonlinear model. The results of the various validation metrics applied only to the 

inner loop, as shown in Figure 5.18, are given in Table 5.21. The results from Table 5.21 

show that the predictions from the neural network are better than the elastic-nonlinear model.   

 

 
Figure 5.18. Time histories of the measured force and predicted force from the elastic-nonlinear and neural 

network model 

 
Table 5.21. Accuracy of elastic-nonlinear and neural network model for the inner loop only 

 Elastic-nonlinear model Neural network model 

 S&G Russell m%RE
m

 m%RE
s
 S&G Russell m%RE

m
 m%RE

s
 

Magnitude 3.42 2.82   -0.035 -0.03   

Phase 1.32 1.32   0.59 0.59   

Comprehensive 3.66 2.76 5.62 

P(55.69) 

10 

P(72.85) 

0.59 0.53 1.2 

P(67.16) 

10 

P(99.3) 

 

The results from Table 5.20 and Table 5.21 seem to indicate that when the predictions of the 

neural network around zero are improved it will be the more accurate model to use. It will 

also be the most computationally efficient. The elastic-nonlinear model took 0.2429s to solve 

for the spring force for the given displacement input whereas the neural network model took 

0.0792s. The neural network is three times faster than the elastic-plastic leaf spring model.  

 

4. Conclusion 
 

An overview of the V&V process was presented and briefly discussed. From literature two 

validation metrics were identified and compared to the validation metric that is based on 

relative error. The challenges associated with using the %RE as a validation metric was 

discussed and techniques were presented to circumvent these challenges. From the 

comparisons of the three validation metrics it was found that the validation metrics give 

similar results when ranking models and in selecting the best model. It was shown that the 
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comprehensive error of the modified %RE validation metric is the most reliable in providing a 

representative measure of the agreement/disagreement between two SRQs. Furthermore, 

when used in combination with the magnitude and phase errors of other measures such as 

S&G it gives information that enables the ranking of models, selecting the best model, fault 

finding and refinement, and ultimately validation of  the model.  

 

The modified %RE validation metric gives a comprehensive error and can not distinguish 

between an error in phase or an error in magnitude. It is suggested that when comparing 

analytical functions that the modified %RE be used together with the magnitude and phase 

error measures such as presented by S&G. When SRQs are compared that are obtained from a 

simulation model and a physical system, the modified %RE should rather be used with 

qualitative comparisons methods as this might give the analyst a holistic view and make the 

identification of the possible causes for the deviation more likely.  

 

It was shown that the modified %RE validation metric gives a reliable and easily interpretable 

metric that will enable the quantification of the agreement of the simulation model’s 

predictions against the measurements on the physical system and comparison to the accuracy 

requirements. The modified %RE can also be used on analytical functions and on 

deterministic SRQs with an independent variable other than time. 
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