
Appendix A 

Derivation of equations 

A.1 Equation 3.2  
Correction factor for horizontal strain at the centre of 
a pack measurement with LVDT's fixed at half of the 
original pack height 

Consider the parabola in Figure A.1. 
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Figure A.1 Definition sketch of the parabola for the derivation of the 

correction factor for the fixed LVDT measurement of the 

horizontal deformation of the centre of the pack. 

For the parabola shown in Figure A.1 it can be shown that: 
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Figure A.2 Definition sketch of deformed pack for the derivation of the 

correction factor for the fixed LVDT measurement of the 

horizontal deformation of the centre of the pack. 

Considering a deformed pack showed in the definition sketch in Figure A.2 and 

assuming the profile a-b-c for a pack to be a parabola, it can in similar vein be 

shown that: 
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Where: 

∆Wc = the horizontal deformation at the centre of the pack, 

∆Wm = the measured horizontal deformation at 
2

0H
, 

x1 = 
2

0 aH ε⋅
, 

h = 
( )

2
10 aH ε−

. 

Substitution and simplification leads to: 
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A.2 Equation 4.53 
The depth of the "dead zone" 

Consider the parabola in Figure A.3. 
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Figure A.3 Definition sketch of parabola for the derivation of the depth of the 

"dead zone". 

The parabola shown in the definition sketch (Figure A.3) can be written as: 
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for which the derivative to x is: 
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Evaluating the derivative at 
2
Dx =  and equalling to the tangent of the β-angle 

gives: 
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resulting in, 
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A.3 Equation 4.55 
The relationship between the mean axial strain in 
and the overall strain of a cylinder of soil 
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Figure A.4 Definition sketch for the derivation of the "mean" height and 

volume of the deformed soil cylinder. 

Define εag as the axial strain of the whole cylinder and alε  as the mean local 

axial strain of the soil in the cylinder: 

L
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'L
L
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=ε  (A.8) 

Where: 

εag  = the axial strain of the whole cylinder, 

alε  = the mean local axial strain of the soil in the cylinder, 

L = the length of the deformed cylinder, 

L' = the mean length of the soil cylinder outside of the "dead 

zone". 
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Consider the definition sketch of a deformed cylinder shown in Figure A.4. 

The volume of the paraboloid shown in Figure A.4 is: 
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 (A.9) 

Where: 

Vp = the volume of the paraboloid, 

d = the height of the paraboloid, 

D0 = the diameter of the base of the paraboloid. 

 

The "mean" height of the "dead zone" is therefore 
2
d  and the mean length of 

the soil cylinder outside of the "dead zone" is given by: 

dLL −='  (A.10) 

which, by virtue of Equation (A.7), can be written as: 
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Where: 

β = the angle between the boundary of the "dead zone" and 

the end of the cylinder. 

 

The length of the deformed cylinder can be written as: 

( )agLL ε−⋅= 10  (A.12) 

Substitution of Equation (A.8) and (A.12) into (A.11) results in the following 

relationship between the overall and mean local axial strain: 
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A.4 Equation 4.56 
The relationship between the mean volumetric strain 
in and the overall volumetric strain of a cylinder of 
soil 

Define εvg as the axial strain of the whole cylinder and vlε  as the mean local 

axial strain of the soil in the cylinder, that is: 

V
V
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∆

=ε   and  
'V

V
vl

∆
=ε  (A.14) 

Where: 

εvg  = the volumetric strain of the whole soil cylinder, 

vlε  = the mean local volumetric strain of the soil in the 

cylinder, 

V = the volume of the deformed cylinder, 

V' = the mean volume of the soil outside of the "dead zone". 
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Where: 

Vp = the volume of the paraboloid, 

d = the height of the paraboloid, 

D0 = the diameter of the base of the paraboloid. 

 

The "mean" volume of the soil outside of the "dead zone" is given by: 
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This equation can be written as: 
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Substitution of Equation (A.14) into Equation (A.17) results in the following 

relationship between the overall and mean local volumetric strain: 

( ) ( )








⋅

⋅−⋅
−⋅= β

ε
εε tan

41
1

0

0

vg
vlvg L

D
 (A.18) 

 A-6 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWeesssseelloooo,,  JJ    ((22000055)) 



 Appendix A.  Derivation of equations 

A.5 Equation 4.58 
The radius at the centre of the deformed cylinder in 
terms of its original dimensions and the axial and 
volumetric strain – high ambient confining stress 

Consider the definition sketch of a deformed cylinder shown in Figure A.5. 
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Figure A.5 Definition sketch of the deformed cylinder under conditions of 

high ambient confining stress. 

Assuming the deformation profile of a-b-c to be parabolic it can be shown that: 
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Where: 

R = the radius of the deformed cylinder at section y'-y', 

R0 = the original radius of the cylinder, 

Rc = the radius at the centre of the deformed cylinder, 

L = the length of the cylinder. 

 

The cross sectional area of the deformed cylinder at y'-y' can be written as: 

( )yRA 2⋅= π  (A.20) 
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Where: 

A = the cross sectional area of the deformed cylinder at 

section y'-y.' 

 

The volume of the deformed cylinder can be obtained by integrating the area 

over the height of the deformed cylinder: 
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Evaluating Equation (A.21) leads to the following expression for the volume: 

( 2
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0 843
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π ) (A.22) 

Where: 

V = the volume of the deformed cylinder. 

 

Solving for Rc results in the following expression: 
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The volume and the length of the deformed cylinder can be written in terms of 

its original undeformed values, as follows: 

( vVV )ε−⋅= 10    and, (A.24) 

( aLL )ε−⋅= 10  (A.25) 

Where: 

εv and εa = the volumetric and axial strain of the cylinder 

respectively. 

 

Substitution of Equation (A.24) and Equation (A.25) into Equation (A.23) leads 

to the following expression for the radius at the centre of the deformed cylinder 

in terms of its original dimensions and the axial and volumetric strain under 

conditions where the ambient confining stress is high compared to the confining 

stress caused by the membrane: 
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A.6 Equation 4.59 
The radius at the centre of the deformed cylinder in 
terms of its original dimensions and the axial and 
volumetric strain – low ambient confining stress 

Consider the definition sketch of a deformed cylinder shown in Figure A.6. 
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Figure A.6 Definition sketch of the deformed cylinder under conditions of low 

ambient confining stress. 

Approximate the shape of the deformed cylinder as a cylindrical section and two 

conical sections as shown in Figure A.6.  The volume of the deformed cylinder 

can then be approximated as: 
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2 22
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ππ  (A.27) 

Where: 

D0 = the original diameter of the cylinder, 

Dc = the diameter at the centre of the deformed cylinder, 

L = the length of the cylinder. 

 

Solving for Dc results in the following expression: 
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Substitution of Equation (A.24) and Equation (A.25) into Equation (A.28) leads 

to the following expression for the diameter at the centre of the deformed 

cylinder in terms of its original dimensions and the axial and volumetric strain 

under conditions where the ambient confining stress is low compared to the 

confining stress caused by the membrane: 
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A.7 Equation 4.61 
The confining stress imposed onto a cylinder of soil 
by a membrane 

Consider a membrane encased soil cylinder as shown in Figure A.7. 
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Figure A.7 Section through a soil cylinder encased in a geocell. 

The force, F in the membrane per length, Lp, of the cylinder membrane can be 

written as: 

mpLtF σ⋅⋅=  (A.30) 

Where: 

t = the thickness of the membrane, 

Lp = the length of the membrane, 

σm = the membrane stress. 

 

Assuming horizontal equilibrium, the following equation can be written: 

smp LDLtF ⋅⋅=⋅⋅⋅=⋅ 322 σσ  (A.31) 

Where: 

F = the force in the membrane, 

D = the diameter of the cylinder, 

Ls = the length of the soil cylinder. 
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Reorganizing Equation (A.31) leads to the following equation: 
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Due to buckling of the membrane Lp is not equal to Ls.  An estimate of the ratio 

s

p

L
L

 can be obtained by writing the length of the membrane and the soil cylinder 

in terms of axial strain of the soil and the circumferential strain in the 

membrane: 
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Where: 

εm = the circumferential strain in the membrane, 

νm = the Poisson's ratio of the membrane, 

εa = the axial strain of the soil. 
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A.8 Equation 4.62 
The mean radius of the centre half of a deformed soil 
cylinder 

Refer to the definition sketch shown in Figure A.5.  The parabolic profile of the 

deformed cylinder can be written as (Cf. Equation (A.19)): 
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 (A.19) 

The mean radius over the centre half of the deformed cylinder can be obtained 

by integrating Equation (A.19) from y = 0 to y = L/4 and dividing by L/4: 
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0 )  (A.34) 

Where: 

R  = the mean radius of the centre half of the deformed 

cylinder, 

R0 = the original radius of the cylinder, 

Rc = the radius at the centre of the deformed cylinder, 

L = the length of the cylinder. 
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Appendix B 

Relationships between the limiting 

friction angles 

B.1 Introduction 

The values of the limiting friction angle for a clean sand φ'µ (the interparticle 

friction angle), and φ'cv (the friction angle at constant volume shearing), are 

important for the quantification of the stress-dilatancy behaviour of the sand.  

Due to the difficulties in obtaining these values, a relationship between these 

values will have great practical value.  Several relationships between the 

limiting angles have been presented in the past. 

B.2 The relationship between the limiting friction angles 

Caquot (1934) derived the following expression for plane strain conditions: 

( )
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
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2

atancv  (B.1) 

Bishop (1954) presented the following equations: 
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Horn (1969) presented the relationship shown with the others in Figure B.1.  

This relationship is not presented in a closed form and involves the 

simultaneous solution of the following equations: 
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be used to obtain the value of φ'cv from φ'µ. 

The author suggest that the relationship presented by Horn could be 

approximated by the following polynomial function: 

µµµ φφφφ ′+′−′=′ 965.1036.000036.0 23
cv  (B.7) 

Skinner (1969), however, presented data in complete disagreement with these 

theoretical curves and points out that in the derivation of the theoretical 

relationships, particle rolling as a permissible mechanism is excluded.  Skinner 

stated that there is no direct relationship between φ'cv and φ'µ, a sentiment 

shared by Green (1971) and Bishop (1971). Bishop (1971) pointed out that he 

could not fault Skinner's work on the basis either of technique or of 

interpretation.  Rowe (1971b) regarded Skinner's work with scepticism and 

stated that the data was insufficient to support the mentioned claim and that the 

reason for Skinner's observations needed further investigation. 

Skinner's claim that no relationship exist between the two limiting angles is 

contradicted by the results of Thornton (2000) who performed 3D Discrete 

Element Modelling1 on a polydisperse system of elastic spheres subject to 

axisymmetric compression.  He pointed out that a random assembly of 

frictionless spherical particles are unstable at all interparticle contacts, which 

prevents a force transition through the system.  A low φ'µ will therefore lead to a 

low φ'cv, as suggested by Horn (1969).  The results of Thornton (2000), 

                                                 
1   Thornton used the software "TRUBALL" developed by Peter Cundall (1988) which is the 
predecessor of the software PFC 3D.  (More information is available at http://www.hcitasca.com/) 
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however, deviates significantly from the relationship presented by Horn and for 

φ'µ >25° is closer to the data presented by Skinner (1969) than to Horn's 

theoretical relationship.  Thornton suggests that the difference between the 

numerical results and Horn's theory arises from the fact that the theory ignores 

the possibility of particle rotation.  Thornton states that when particle rotation 

was prevented in the analyses the shear strength was significantly increased.  

He believes that the data from the analyses may approach Horne's theoretical 

relationship if rotation is completely inhibited. 

Data of the value of the two limiting angles presented in literature is tabulated in 

Table B.1 and plotted in Figure B.1 with the theoretical relationships presented 

earlier.  It can be seen that, ignoring the data presented by Skinner, there 

seems to exist a strong relationship between the two limiting angles. 

Horn's theoretical relationship seems to slightly overestimate the value of φ'cv for 

a given value of φ'µ.  The following relationship provides a slightly better fit to the 

data: 

µµµ φφφφ ′+′−′=′ 67.1019.00001373.0 23
cv  (B.8) 

A possible explanation of the discrepancy between the work of Skinner and the 

other researchers is that Skinner aimed to measure the true inter-particle 

friction, while the other researchers were more interested in obtaining the 

parameter, φ'µ, applicable to Rowe's theory. It is quite possible that the 

parameter φ'µ, in Rowe's theory, might not be the true inter-particle friction angle 

but rather, a manifestation of the true friction angle and other variables 

associated with the microscopic inter-particle mechanical behaviour of the 

granular assembly. 

It is interesting to note that both Skinner's (1969) tests and Thornton's (2000) 

analyses were performed on assemblies of perfectly spherical particles.  Due to 

the higher degree of dilation that would be associated with the rotation of non-

spherical particles compared to interparticle sliding, one would expect therefore 

that sliding, rather than rolling of the particles would be favoured in assemblies 

of non-spherical particles, which may be a contributing factor to the discrepancy 

between the data presented by Skinner (1969) and the other researchers. 
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Table B.1 Data of the two limiting angles presented in literature. 

φ'µ (°) φ'cv (°) Material type Reference 

27.35 32.6 Ham River sand Bishop & Green 
(1965) 

38 42 Quartz sand Bromwell (1966) 
28 36 Quartz sand Bromwell (1966) 
27 33 Brasted River sand Cornforth (1964) 
37.6 41.5 Limestone sand Billam (1971) 
35 46 Granulated chalk Billam (1971) 
31.2 36.8 Crushed anthracite Billam (1971) 

29 34 Karlsruhe sand Hettler & Vardoulakis 
(1984) 

28.5 34 Quartz sand, well graded, angular Hanna (2001) 
27 33.5 Quartz sand, uniform, angular particles Hanna (2001) 
24.8 32 Quartz sand, uniform, rounded particles Hanna (2001) 
24 33.3 Sacramento river sand Lee & Seed (1967) 
24 30 Ottawa sand Lee & Seed (1967) 
36 41 Feldspar Lee (1966) 
39 43 Crushed glass Parikh (1967) 
28 35 Quartz sand Parikh (1967) 
20 27 Bronze spheres Parikh (1967) 
26 32 Mersey river quartz sand Rowe (1962) 
17 24 Glass ballotini Rowe (1962) 
27 32 Quartz sand Rowe (1965) 
23 29 Zircon Rowe (1969) 

29 34.4 Hostun sand Schanz & Vermeer 
(1996) 

29 34.375 Cycloned gold tailings (Quartzitic silty fine 
sand)  

9 13.8-17 Steel Horn (1969) 
1.7 - 5.1 22 - 28 Glass ballotini - dry (1mm) Skinner (1969) 
26.6 - 38.7 19 - 29 Glass ballotini - flooded (1mm) Skinner (1969) 
1.7 - 6.8 22 - 26 Glass ballotini - dry (3mm) Skinner (1969) 
38.3 - 41.7 23 - 29 Glass ballotini - flooded (3mm) Skinner (1969) 
16.2 - 33.4 17 - 27 Steel - dry (3.175mm) Skinner (1969) 
4 - 6.8 22 - 28 Lead shot - dry (3mm) Skinner (1969) 

 

This, however, has more academic than practical value and from a pragmatic 

point of view can be ignored.  It is therefore suggested that within the framework 

of the stress-dilatancy theory, the previously mentioned relationship between φ'µ 

and φ'cv can be assumed. 
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Figure B.1 The relationship between the two limiting angles. 
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Appendix C 

Formulation of a constitutive model 

for the fill material 

C.1 Introduction 

This section of the thesis aims at extending the stress-dilatancy theory 

discussed in Section 4.4 into a constitutive model.  Numerous constitutive 

models have been presented over the last couple of decades, which raises the 

question whether the need exists for another constitutive model, and what could 

be achieved by such a venture?  It, therefore, seems appropriate to first put this 

work into the proper perspective, before continuing. 

Soil can be described as a non-linear, inelastic, anisotropic and non-

homogenous material with stress, stress path and time dependent behaviour.  It 

is due to this complex behaviour of soil that the numerous constitutive models 

exist. 

Yong and Selig (1980), however, were of the opinion that none of the models 

available in 1980, when the ASCE Symposium on Limit Equilibrium, Plasticity 

and Generalized Stress-Strain Applications in Geotechnical Engineering was 

held, was able to completely represent the complex behaviour of soil.  A 

sentiment echoed by Christian (1980) who also states that there is inevitably 

some error in any model and that each model works best in an application for 

which it was developed and may not work at all in another application.  It is 

therefore important to determine which characteristics of the soil are relevant to 

the particular engineering problem, and try to model only those aspects of the 

behaviour (Christian, 1980; Baladi, 1980).  Baladi (1980) also warns against 

applying a specific constitutive model beyond its range of applicability. 
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Many of the constitutive models presented during the last couple of decades 

introduce new formulations of yield criteria, flow rules and hardening 

relationships, which necessitates several new parameters that cannot easily be 

obtained from commercially available laboratory tests. 

From a practical point of view, Baladi (1980) suggests that the number of 

parameters should be kept to a minimum and the numerical values of these 

parameter should be readily derivable from laboratory test data.  He also states 

that the parameters should not merely be a set of numbers generated through a 

trial-and-error "black box" routine to fit a given set of data, but that they have 

physical significance in terms of compressibility, shear strength, etc., so that 

when extrapolating to different materials, rational engineering judgements can 

be made as to their relative magnitudes based on geologic descriptions, 

mechanical properties and other conventional indices (Baladi, 1980). 

This is achievable by using the stress-dilatancy theory as a basis for the 

constitutive model. 

It is Duncan's (1980) experience that more than half of the time and effort 

involved in typical stress-strain applications in geotechnical engineering is 

devoted to considering the uncertainties that is invariably part of any 

geotechnical project.  To him, it seems more appropriate to employ fairly simple 

stress-strain relationships, as a high degree of precision in matching field 

behaviour is unlikely, even with the most sophisticated relationship. 

Yong and Selig (1980) states that: 

"some constitutive models are too complex or too difficult to 

use in solving geotechnical problems". 

A sentiment shared by Chan (1998) when he states that comprehensive models 

are difficult to understand.  It, therefore, is desirable to make use of models, 

which are just sufficiently complex for the intended application in order to 

minimize the burden of determination of soil parameters (Muir Wood, 1998). 

Chan (1998) end his discussion on the use of comprehensive soil models in 

geotechnical analysis with a reference to the following quotation which has 

been attributed to Albert Einstein: 

"As simple as possible, but no simpler". 
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In light of these comments and suggestions it is desirable to use the simplest 

possible constitutive model, for which the necessary parameters can be 

obtained from standard laboratory tests and takes into account the 

characteristics of the soil behaviour, most relevant to the particular problem it is 

being applied to. 

The simple and robust constitutive models provided as standard options in 

commercially available geotechnical numerical analysis software are normally, 

the Elasto-plastic Mohr-Coulomb model (Shield, 1955), the Duncan-Chang 

model (Duncan and Chang, 1970) and the Cam-clay or Modified Cam-clay 

models (Roscoe et al., 1958; 1963).  None of these models, however, takes the 

work hardening and the non-associated flow of the material into account.  The 

stress-dilatancy behaviour of the soil is, therefore, not accounted for in these 

models. 

Most of the commercially available software have incorporated non-associated 

flow into the Mohr-Coulomb models and some, like the finite difference codes 

FLAC and FLAC3D, provides a model with user specified hardening/softening 

behaviour for both the strength and dilational parameters.  Such models form 

platforms with which the constitutive model presented in this section can be 

incorporated into numerical analyses. 

C.2 The constitutive model 

In its simplest form, elasto-plastic constitutive models consist of elastic material 

behaviour, a yield criterion and a flow rule.  The yield criterion defines the stress 

state at which the material start deforming plastically while the flow rule defines 

a relationship between the yield surface and the plastic strain increment vector 

used to calculate the plastic strain component. 

For failure problems, the use of elasto-plastic Mohr-Coulomb material models 

will often suffice.  Such models are, however, not suitable for studying the 

behaviour of the soil under working loads, conditions with large variations in σ'3, 

or under conditions of large strains, as it overestimates the elastic range. 

For these conditions, a work-hardening/softening model will be necessary.  The 

cycloned tailings material, and sands in general, exhibit a work-hardening 

plastic behaviour up to a peak strength after which strain softening occurs.  The 

difference between elastic-perfectly plastic models and isotropic work-hardening 

models are shown in Figure C.1. 
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The elastic behaviour, yield criterion, flow rule and hardening law will be 

discussed in the following paragraphs. 

C.2.1 The elastic range 

The elastic component of the material model was discussed in Section (4.3.1).  

The stiffness referred to, is applicable to higher intermediate and large strains.  

The presented model is not applicable to the small strain ranges and therefore 

suffers the same limitations as the most common constitutive models (e.g. the 

Cam-clay model and the Hyperbolic model presented by Duncan and Chang 

(1970) (Lo Presti et al., 1998)). 

C.2.2 The yield surface 

Over the years, many researchers have advanced the knowledge of the yield 

surface applicable to sand or other granular material.  Amongst others, such 

advances have been made by Green and Bishop (1969), Shibata and Karube 

(1965), Preace (1971), Matsuoka and Nakai (1982), Goldscheider (1984).  The 

work of the mentioned researchers are shown in Figure C.2 as measured data 

plotted on the deviatoric stress plane, along with the applicable Mohr-Coulomb 

yield surface.  Vermeer and de Borst (1984) suggest that, for most engineering 

purposes, the deviation from the Mohr-Coulomb surface is not large enough to 

warrant the use of another more complicated surface.  For this reason, a yield 

surface of the Mohr-Coulomb type is assumed.  The yield surface can therefore 

be formulated as: 

( )
( )mob

mobR
φ
φ

σ
σ

′−

′+
=

′
′

=
sin1
sin1

3

1  (C.1) 

Where: 

φ'mob = the mobilized internal angle of friction. 

 

From Rowe's stress-dilatancy theory, the following relationships relating the 

Mohr-Coulomb friction angle, φ'f, to the dilation angle, ψ, and the Rowe friction 

angle can be obtained: 

( ) ( ) ( )
( ) ( )ψφ

ψφ
φ

sinsin1
sinsin

sin
⋅′+

+′
=′

f

f
mob  (C.2) 

Where: 

φ'mob = the mobilized internal angel of friction, 

φ'f = the Rowe friction angle, 
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ψ = the dilation angle. 

 

Rowe's stress-dilatancy theory can therefore easily be implemented into 

numerical analysis software by assuming a Mohr-Coulomb material for which 

the Mohr-Coulomb friction angle is given by the relationship in Equation (C.2). 

C.2.3 The hardening behaviour and flow rule 

In the hardening model the elastic range is a function of the plastic strain.  The 

simplest form of work-hardening models is isotropic hardening, which assumes 

that the centre of the yield surface does not change during loading, that is, the 

yield surface in σ'1 - σ'2 - σ'3 space remains symmetrical around the space 

diagonal σ'1 = σ'2 = σ'3.  Test data normally available to practicing engineers 

does not warrant the use of a more complicated assumption. 

In order to quantify the hardening behaviour of the material, a parameter called 

the hardening parameter, needs to be specified which are a measure of the 

plastic strain in the material. 

Vermeer and De Borst (1984) state that for granular material the effective 

plastic shear strain is suitable for use as a hardening parameter.  In this regard 

they refer to the work of Stroud (1971) and Tatsuoka and Ishihara (1975) who 

report evidence for quantities that resemble the effective strain very closely. 

The hardening parameter employed by Vermeer (1978) can be written as: 

( ) ( ) ( ) ppppppp
p S

εεεεεεεκ ⋅=−+−+−⋅=
2
3

2
1 2

13
2

32
2

21  (C.3) 

Where: 

κp = the hardening parameter used by 

Vermeer (1978), 

ε1
p, ε2

p, ε3
p = the plastic components of the major, 

intermediate and minor principal strain, 

εs
p = the plastic shear strain. 

 

The plastic shear strain, εs
p, will be used as the hardening parameter in this 

document and has proven adequate for the tested material. 

A common approach for modelling the work-hardening/softening behaviour of 

soil is to apply a hardening function to the Mohr-Coulomb friction angle, which 
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results in an increase (decrease in the case of softening) in the size of the yield 

surface with an increased plastic shear strain.  This is also the approach 

suggested by Vermeer and De Borst (1984). 

Rowe's stress-dilatancy theory, however, provides some insight into the 

mechanism by which the work-hardening in the granular material takes place.  

According to the theory, the increase in the size of the Mohr-Coulomb yield 

surface with plastic shear strain is mainly due to an increase in the dilational 

behaviour of the material with an increase in the plastic shear strain.  Similarly, 

work softening takes place as a result of a decrease in the dilational behaviour 

of the material. 

The approach presented here is to apply a work-hardening/softening function to 

the dilational behaviour of the material and with the use of Rowe's stress-

dilatancy theory (using Equation (C.2)), obtain the strength of the material.  

Equation (C.2) therefore provides the flow rule for the model. 

This approach is equivalent to applying Rowe's stress-dilatancy theory as a flow 

rule.  The normal use of the flow rule is to calculate the plastic shear strain 

increment from the yield surface.  The suggested approach, however, uses the 

flow rule to calculate the yield surface from the plastic shear strain increment. 

Using Rowe's stress-dilatancy theory as a flow rule implicitly assumes non-

associated flow according to the stress-dilatancy theory.  Normality is, however, 

assumed in the deviatoric stress plane.  The plastic potential therefore will have 

the same shape as the Mohr-Coulomb yield surface in the deviatoric stress 

plane, that is, the plastic potential function, g, is given by: 

( )
( )








−
+

⋅′+′=
ψ
ψσσ

sin1
sin1

31g  (C.4) 

An assumption proven to be acceptable by Goldscheider (1984). 

The use of Rowe's stress-dilatancy theory as a flow rule has been suggested by 

other researchers as well (Vermeer, 1978; Wan and Guo, 1998). 

In order to model the work hardening behaviour of the soil a hardening function 

was applied to the dilational parameter, D.  Rowe (1971a) suggested a complex 

function for D as a function of the major principal shear strain.  His function is 

applicable over the total range of εs
p and needs to be fitted to the stress strain 

data in the pre- and post-peak range via a non-linear curve fitting technique.  It 

was found that this equation does not provide a good fit for the pre-peak data of 
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the cycloned tailings.  In general, practicing engineers seldom have enough 

good quality data in the post-peak range to justify using this approach. 

Several useful work-hardening functions were presented by Brinch Hansen 

(1965).  Vermeer and De Borst (1984) state that the following function applied 

as a work-hardening function to the Mohr-Coulomb friction angle yielded 

satisfactory results for most sands: 

( )
( )peak

p
s

p
s

peak
p
s

p
s

1f
εε

εε

+

⋅⋅
=

2
 (C.5) 

Where: 

f1 = the hardening function applicable to the pre-peak 

plastic strain, 

εs
p = the hardening parameter, plastic shear strain, 

(εs
p)peak = the plastic shear strain at peak strength. 

 

This hardening function proved useful when applied to D up to the shear strain 

at peak dilation.  After the plastic shear strain at peak is reached, strain 

softening of the dilational parameter, D, occurs so that D approaches a value 

of 1, which corresponds to a dilation angle of ψ = 0°.  When this state is 

reached, the material exhibits a constant volume behaviour and an internal 

angle of friction equal to φ'cv is applicable. 

For the post-peak softening of the dilation behaviour of the material the 

following empirical equation is suggested: 

( AAf ⋅−⋅−= 231 2
2 ) (C.6) 

With: 

( ) ( )( )
( )( ) ( )( )
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εε

εε
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Where: 

f2 = the hardening function applicable to the post-peak 

plastic strain, 

εs
p = the hardening parameter, plastic shear strain, 

(εs
p)peak = the plastic shear strain at peak, 

(εs
p)cv = the plastic shear strain at which the dilation 

parameter can be assumed to be 1. 
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The value of (εs
p)cv governs the rate of the post-peak strain softening.  For the 

tested cycloned tailings, the value of (εs
p)cv seems to be constant at about 0.47. 

In order to complete the strain hardening function, the value of D at the start of 

plastic shearing needs to be estimated. 

From Rowe's stress-dilatancy theory the following relationship can be derived: 

( )
( )0

0
0D

ψ
ψ

sin1
sin1

−
+

=  (C.7) 

With: 

( ) ( ) ( )
( ) ( )initial0

initial0
0 φφ

φφ
ψ

′⋅′−

′−′
=

sinsin1
sinsin

sin  

Where: 

φ'initial = φ'cv for plain strain conditions, 

φ'initial = φ'µ for triaxial strain conditions, 

φ'0 = the internal angle of friction before the onset of work 

hardening. 

 

The value of φ'0 is a measure of the size of the initial Mohr-Coulomb yield 

surface and can be obtained from triaxial testing data with: 

( )
0

0
0 R

R
+
−

=′
1
1

sin φ  (C.8) 

Where: 

R0 = the stress ratio at the start of plastic behaviour. 

 

For the tested material over the range of densities and confining stresses 

tested, the value of R0 was found to be approximately 1.3.  A constant value of 

1.3 was used, which corresponds to a D0 = 0.446.  This relates to an initial 

dilation angle ψ = -22.5°, which relates to plastic collapse at the initial stages of 

the plastic deformation.  The phenomenon of an initial plastic collapse for sands 

has also been noted by other researchers (e.g. Rowe, 1971a; Papamichos and 

Vardoulakis, 1995). 

The full strain hardening equation for D can be written as: 
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 (C.9) 
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Where: 

D = Rowe's dilatancy parameter, 

Dmax = the maximum value of D, 

D0 = the initial value of D at the start of plastic deformation, 

f1 = the hardening function applicable to the pre-peak 

plastic strain, 

f2 = the hardening function applicable to the post-peak 

plastic strain. 

Data presented by Rowe (1971a) for a dense sand tested at a confining stress 

of 70 kPa is shown in Figure C.3 fitted with the function presented in 

Equation (C.9).  The value of (εs
p)cv in this case was 0.45.  It is interesting in this 

regard to note that Thornton (2000) performing 3D Discrete Element modelling 

has found that for his analyses, the critical voids ratio was attained at an axial 

strain of about 50% which would correspond to a (εs
p)cv of slightly less than 0.5. 

Figure C.3 indicates that the work-hardening/softening function presented here 

may be applied to other granular soils.  The similarity of the value of (εs
p)cv for 

the soil tested by Rowe and the soil tested in this study seem to suggest that for 

the post-peak softening behaviour of the sand may not be sensitive to the value 

of (εs
p)cv. 

Wan and Guo (1998) presented a model for sand in which they used a modified 

version of Rowe's stress-dilatancy theory as a flow rule.  They modified the 

stress-dilatancy theory by making it dependent on a state parameter related to 

the current critical voids ratio.  Wan and Guo (1998) claimed that the 

modification to the flow rule was necessary in order to provide a realistic stress-

dilatancy response in R-D space. 

Wan and Guo however failed to recognize the fact that in general the Rowe 

friction angle, φ'f, varies between φ'µ and φ'cv during shearing of the material and 

is not a constant as assumed by them.  This results from the fact that sliding of 

particles occurs throughout deformation at a number of directions 

simultaneously, which deviates from the mean direction.  More energy is 

therefore absorbed than for the case where all particles slide in the mean 

direction (Rowe, 1971a).  The deviation of the sliding direction of the particles 

from the mean sliding direction manifests itself in a friction angle, φ'f, greater 

than φ'µ.  During the shearing process, the value of φ'f changes between φ'µ and 

φ'cv, where the deviation of the particle sliding direction from the mean is a 

maximum.  It has been stated earlier that the largest part of the hardening in the 
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yield behaviour of the material results from the increase in the dilatancy 

behaviour of the material.  The increase in the Rowe friction angle constitutes 

another small portion of the hardening behaviour of the material.  This is 

illustrated in Figure C.4.  It is interesting to note that the material exhibits a work 

softening behaviour after the peak strength has been reached, in spite of the 

fact that the φ'f component continues to increase until the constant volume state 

is reached. 

This is also illustrated by the relationships presented in Figure C.5.  The 

maximum dilation rate is reached at point a.  The material undergo a further 

strength increase due to the increase in φ'f while the dilation rate decrease 

slightly.  This is shown by the stress path a-b in Figure C.5.  Non-uniform 

deformation in conventional triaxial testing often masks the distinction between 

point a and b in the test results. 

The change in the φ'f between φ'µ and φ'cv can be modelled as a work hardening 

process using the following equation: 

( ) µ
ε

µ φφφφ ′+




 −⋅′−′=′ ⋅− p

sb
cvf e1  (C.10) 

Where: 

b = a parameter governing the rate of change of Rowe's 

friction angle between the two limiting angles. 

 

This equation is equivalent to Equation (4.22) presented in Section 4.3.3 for φ'f 

at peak, and the b parameter is the same. 

The model parameters to adequately model the pre-peak and early stages of 

post-peak strain softening can be obtained from conventional triaxial tests.  With 

conventional triaxial testing, reliable post-peak data is seldom available as 

strain localization just after the peak dilation causes a non-uniform deformation 

and shear band failure.  It is, however, seldom necessary to accurately model 

the post-peak behaviour of the material. 

With the equations presented in this section the mobilized dilation and friction 

angles can be obtained as a function of the plastic shear strain.  The model can 

therefore easily be implemented into analytical calculation procedures and 

numerical analysis codes. 
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Figure C.1 Diagrammatic illustration of the difference between elastic-perfectly 

plastic and elastic isotropic hardening/softening models. 
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Figure C.2 Comparison between measured and yield surfaces and the Mohr-

Coulomb yield surface on the deviatoric stress plane for data presented 

in literature. 
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Figure C.3 Comparison between the proposed equation and data presented by 

Rowe (1971a) for test on dense sand. 
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Figure C.4 The change in φ'f with plastic shear strain (Rowe, 1963). 
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Figure C.5 Typical results of triaxial tests on loose and dense sands shown in R-D 

space (Based on Horn, 1965). 
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Appendix D 

Formulation of mathematical models 

for the membrane behaviour 

D.1 Introduction 

The lack of a simple mathematical model to describe the stress-strain curves of 

geomembranes was recognised by both Giroud (1994) and Merry and Bray 

(1997). 

The work of Giroud (1994) focussed on providing a simple and accurate 

function for the stress-strain curve between the origin and the yield peak in a 

uniaxial tensile test.  All his tests were performed according to ASTM D-638 

(1994) at a nominal strain rate of 100%/min.  He showed that, under these 

conditions, the stress-strain curve of the geomembrane could satisfactorily be 

approximated by an n-order polynomial of which the parameters can easily be 

obtained from the uniaxial test results. 

Merry and Bray (1997), on the other hand, were interested in the stress-strain 

behaviour of HDPE geomembranes under bi-axial loading at different strain 

rates.  They proposed the use of the following empirical equation of a hyperbolic 

form: 

max

f

s

R
E σ

εβ
εεσ

⋅
+

=)(  (D.1) 

Where: 

σ(ε) = the strain rate dependent stress, 

ε  = the strain, 

Es = the secant modulus at a particular strain as a function 

of strain rate, 

β = the ratio of the secant modulus, Es, to the initial 
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modulus, 

Rf  = the ratio of the maximum stress to a fictitious ultimate 

stress that is higher than the maximum stress, 

σmax = the maximum stress as a function of the strain rate. 

 

The study by Merry and Bray included the use of hyperbolic tangent functions 

(after Prager) and the n-order polynomial functions (after Giroud, 1994).  The 

Prager model was found not to produce acceptable representation of the strain-

rate-dependent response of the HDPE geomembranes.  Merry (1995) 

suggested modification to the variable n-order polynomial approach of Giroud 

(1994) and states that it compares favourably to the suggested hyperbolic 

model.  The hyperbolic model, however, is favoured as it is more efficient in 

terms of the number of parameters needed. 

D.2 A hyperbolic model for uniaxial membrane loading 

Equation (D.1) can be used to describe the stress-strain behaviour of the 

geomembrane up to the transition point defined in Section 4.5.2.  For this 

purpose σmax can be substituted by the transition stress, σt.  Using the secant 

modulus at the transition point, Est, Equation (D.1) can be written as: 

t

f

st

R
E σ

εβ
εεσ

⋅
+

=)(  (D.2) 

Evaluating Equation (D.2) at the transition point, yields the following 

relationship: 

1=+ βfR  (D.3) 

This reduces Equation (D.2) to: 

t
t

σ
εβεβ

εεσ ⋅
⋅−+⋅

=
)1(

)(  (D.4) 

Where  

σt = the transition stress and, 

εt = the strain at the transition point, 

β = the ratio of the secant modulus at the transition point, 

Est, to the initial modulus. 
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In Section (4.5.2) it was shown that the relationship between the transition 

stress and the logarithm of the strain rate take the form of an "S"-curve.  This 

part of the plastic behaviour can be modelled with Equation (D.5): 

( ) tmined
tmintmax

t
e

σ
σσ

εσ
σσ ε

+
+

−
=

−⋅− &
&

ln1
)(  (D.5) 

Where: 

dσ and eσ = the parameters obtained from fitting the 

equation to the data, 

σtmax and σtmin = the maximum and minimum asymptote 

value of the transition stress, 

ε&  = the strain rate. 

 

Generally, however, the geotechnical engineer would only be interested in the 

material behaviour at low strain rates.  For this purpose the change in the 

transition stress with a change in the strain rates at low strain rates may be 

more easily approximated by another relationship of the following form: 

( ) σεσεσ σ
b

tmint a && log)( ⋅+=  (D.6) 

Where: 

aσ and bσ = the parameters obtained from fitting the equation 

to the data, 

σtmin = the minimum asymptote value of the transition 

stress, 

ε&  = the strain rate. 

 

The β parameter can be obtained by fitting Equation (D.4) to the section of the 

data before the transition point.  The values of β for the tested membranes are 

shown against the strain rate in Figure D.1.  The β parameter is also dependent 

on the strain rate.  Due to the scatter in the results the relationship between β 

and the strain rate is not clearly distinguishable.  It would be reasonable, 

however, to expect that the value of β, like σt, would also approach asymptotic 

values at very low and very high strain rates.  An "S"-curve similar to 

Equation (D.5) was used to approximate the data: 

( ) mined
minmax

e
β

ββ
εβ

ββ ε
+

+

−
=

−⋅− &
&

ln1
)(  (D.7) 

Where: 

dβ  and eβ = parameters obtained from fitting the 
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equation to the data, 

β max and β min = the maximum and minimum asymptote 

value of β, 

ε&  = the strain rate. 

 

It should be noted that the accuracy of the stress-strain curves are not sensitive 

to the value of β (Cf. Figure 4.41).  As a result the accuracy of β is therefore of 

less importance to the design engineer.  For most applications, a constant value 

could be assumed for β  without significant error. 

The stress-strain curve shown in Figure 4.37 is essentially linear after the 

transition point and can be approximated with a line.  Assuming a smooth 

transition between the hyperbolic and linear parts of the stress-strain curve, the 

gradient of the linear section of the curve should equal the gradient of the 

hyperbolic section of the curve at the transition point.  The gradient is: 

ββ
ε
σεσ

ε
⋅=⋅= st

t

t
t E

d
d )(  (D.8) 

Where: 

Est = the secant modulus at the transition point. 

 

Combining all the components of the membrane behaviour discussed above, 

the following mathematical model consisting of a form function (B( ε& )) and a 

magnitude function (σt( ε& )) is obtained. 

)(),(),( εσεεεεσ &&& tB ⋅=  (D.9) 

Where: 










>−⋅+

≤
⋅−+⋅=

tt
t

t
tB

εεεε
ε

εβ

εε
εεβεεβ

ε

εε
  if)()(1

  if
))(1()(),(

&
&&

&  (D.10) 

With 

ε&  = the strain rate, 

β( ε& ) and σt( ε& ) = the strain rate dependent functions 

presented earlier. 

 

The parameters for the above mentioned model obtained from the data are 

presented in Table D.1. 
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Table D.1 Parameters for the hyperbolic model obtained from data. 

β  σt 
βmax βmin dβ eβ  σt max σt min dσ eσ 

εt 

0.304 0.187 0.6 0.35  15 7.45 0.737 -0.345 0.16 

 

Figure D.2 shows the original data with the model curve using the parameters in 

Table D.1.  The assumption that the gradient of the linear section of the curve is 

equal to the gradient of the hyperbolic section of the curve at the transition point 

seems to be adequate.  It would therefore be possible to obtain an estimate of β 

from the gradient of the linear section of the curve, that is: 

stt

t

E
aa =⋅=

σ
εβ  (D.11) 

Where: 

a = the gradient of the linear section of the curve in stress 

units, 

Est  = the secant modulus at the transition point. 

 

Figure D.3 shows the comparison between the values of β obtained through a 

curve fitting procedure through the hyperbolic section of the curve and the 

values obtained from the gradient of the linear section. 

The initial stiffness of a geomembrane is often of interest to the engineer but is 

difficult to measure (Giroud, 1994).  From the derivative of Equation (D.4), it can 

be shown that the ratio of the tangent modulus at zero strain to the secant 

modulus at the transition point is equal to the inverse of β: 

β
10 =

st

t

E
E  (D.12) 

The ratio of tangent modulus at zero strain to the secant modulus at the 

transition point for the tested geomembrane vary from 3.5 at 0.04%/min to 4.9 

at 100%/min.  A value of about 4, for the ratio of the tangent modulus at zero 

strain to the secant modulus at the "yield"-point has been suggested by 

Giroud (1994). 

The hyperbolic model, although adequate for describing the geomembrane 

behaviour, has two important drawbacks: the necessity for choosing a transition 

point and the fact that the model consists of two separate equations for the 
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regions before and after the transition point.  Another model that does not suffer 

these drawbacks is presented in the following section. 

D.3 An exponential model for uniaxial membrane loading 

The following empirical equation (Equation (D.13)) can also be used to model 

the geomembrane behaviour under uniaxial loading conditions: 

)1()()( εεεσ ⋅−−⋅+⋅= beca  (D.13) 

Where 

a, b and c = strain rate dependent parameters that can be 

obtained from simple laboratory tests, 

ε  = the strain. 

 

A non-linear "curve-fitting" technique was applied to the available data to obtain 

the parameters for the test performed at different strain rates.  Statistical tests 

on the calculated b parameter indicated that it could be assumed to be 

independent of strain rate.  The relationship of a and c with strain rate are 

shown in Figure D.4 and Figure D.5. 

The c parameter is similar to the transition stress and seems to behave similar 

to changes in strain rate and can also be approximated with an "S"-curve of the 

form shown in Equation (D.14): 

( ) mined
minmax c

e

cc
c

cc
+

+

−
=

−⋅− ε
ε

&
&

ln1
)(  (D.14) 

Where: 

dc and ec  = parameters obtained from fitting the equation 

to the data, 

cmax and cmin = the maximum and minimum asymptote value 

of the c parameter, 

ε&  = the strain rate. 

 

As geotechnical engineers are more interested in the behaviour of the 

geomembrane at lower strain rates, the value of c may be more easily 

approximated by the following equation: 

( ) cb
cmin acc εε && log)( ⋅+=  (D.15) 

Where: 
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ac and bc = parameters obtained from fitting the equation to 

the data, 

cmin  = the minimum asymptote value of the c 

parameter,  

ε&  = the strain rate. 

 

As with β it is reasonable to expect a to approach asymptotic values at very low 

and very high strain rates.  The line shown in (Figure D.4) was obtained by 

fitting the following "S"-curve to the data: 

( ) mined
minmax a

e

aa
a

aa
+

+

−
=

−⋅− ε
ε

&
&

ln1
)(  (D.16) 

Where: 

da  and ea  = parameters obtained from fitting the equation 

to the data, 

amax and amin = the maximum and minimum asymptote value 

of a, 

ε&  = the strain rate. 

 

As with β the accuracy of the stress-strain curves are not sensitive to the value 

of a and for most applications a constant value could be assumed for a without 

significant error. 

The parameters obtained from the data are shown in Table D.2.  Figure D.6 

compares the exponential model and the original data, using the parameters 

from Table D.2.  The exponential model compares favourably with the 

hyperbolic model. 

Table D.2 Parameters for the exponential model obtained from data. 

a  c 

amax amin da ea  c max c min dc ec 
b 

17.54 14.12 1.931 1.172  12.45 4.79 0.651 -0.287 32.517 

 

Figure D.7 illustrates the mathematical meaning of the parameters in the 

equation.  It is possible to estimate the parameters from the data by obtaining 

the slope and intercept of the section of the curve after the transition point and 

the slope at zero strain.  The b parameter can also be estimated from a and c 
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and an arbitrarily chosen point k located on the section of the experimentally 

obtained curve before the transition point by using the following equation 

derived from Equation (D.13). 

ak

k

ca
b

εε
σ 11ln ⋅








+⋅

−−=  (D.17) 

Where: 

a, b and c  = parameters, 

σk and εk  = the measured stress and strain at an arbitrarily 

chosen point on the stress-strain curve before 

the transition point. 

 

Figure D.8 compares the values of the model parameters obtained with non-

linear curve fitting techniques and the simplified method described above.  As 

would be expected, for the parameters a and c, a one to one relationship exists 

between the parameter values obtained with the two methods, albeit with a fair 

amount of scatter.  For most practical applications, the simplified method for 

obtaining the model parameters will suffice.  The value of b obtained from 

Equation (D.17) is less accurate as only a single measurement is used.  The 

obtained value of b varies with different chosen k-points.  A value of 30.6 ± 2.5 

was obtained when point, k, was chosen at a strain of 0.05 and a value of 

32.2 ± 6.7 was obtained at a strain of 0.03.  The value for b obtained through 

the non-linear curve fitting technique was 32.52 ± 1.3. 

From the derivative of Equation (D.13) the tangent modulus at zero strain can 

be estimated, that is: 

cbEt ⋅=0  (D.18) 

The values of the tangent modulus at zero strain estimated in this manner vary 

from about 3.5 times the secant modulus at the transition point at a strain rate of 

0.04%/min to about 4.25 times the secant modulus at the transition point at a 

strain rate of 100%/min. 
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Figure D.1 The relationship between the β parameter and strain rate. 
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Figure D.2 Comparison between the hyperbolic model and the original data. 
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Figure D.3 Comparison between the β parameter obtained from different parts of the 

stress-strain curve. 
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Figure D.4 The relationship between the parameter, a, and strain rate. 
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Figure D.5 The relationship between c and strain rate. 
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Figure D.6 Comparison between the exponential model and the original data. 
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Figure D.7 Illustration of the mathematical meaning of the parameters of the 

exponential model. 
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Figure D.8 Comparison between the  values of a and c obtained by different 

methods. 
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Appendix E 

The mean shearing direction of a soil 

element 

E.1 The mean shearing direction after the development 
of a shear band 

When a rupture surface (shear band) develops in the soil, the direction of the 

shear band, θ, will be equal to χ.  Consider therefore, the angle at which a shear 

band will develop in a granular material. 

Zitóuni (1988) stated that the direction of the dominant shear band could be 

arrived at, either by considering the stress state, or the state of deformation.  

The approach based on the consideration of the stress state, assumes that the 

shear band will form along the plane of maximum stress obliquity and leads to 

the following equation for θ: 

°+
′

= 45
2
φθ  (E.1) 

Where: 

φ' = the Mohr-Coulomb friction angle. 

 

Equation (E.1) has traditionally been viewed as the angle between the minor 

compressive stress and the shear band or rupture surface. 

Considering the state of deformation, Roscoe (1970) suggested that rupture 

surfaces forms along zero extension lines which leads to the following 

relationship for θ: 

°+= 45
2
ψθ  (E.2) 
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Where: 

ψ = the dilation angle. 

 

It has been demonstrated experimentally and theoretically (Arthur, et al., 1977a; 

Arthur, et al., 1977b, Vardoulakis 1980) that both the "Coulomb" and "Roscoe" 

solutions are possible.  Both Arthur et al. (1977b) and Vardoulakis (1980) 

concluded that θ would fall between the "Coulomb" and "Roscoe" solutions and 

suggested the following equation for θ: 

°+
+′

= 45
4

mobmob ψφ
θ  (E.3) 

Where: 

φ'mob = the mobilized Mohr-Coulomb friction angle at the 

strain where the shear band develops, 

ψmob = the mobilized dilation angle at the strain where the 

shear band develops. 

 

Vermeer (1982) has shown that Equation (E.3) corresponds to the lowest 

bifurcation point in the stress-strain curve and suggests that, due to small 

imperfections in the soil samples, it is likely that such samples would bifurcate 

at the lowest bifurcation point.  Saada et al. (1999) reported that the best 

correlation between the measured and calculated inclination angle of the shear 

band was obtained by using Equation (E.3) with the maximum dilation angle 

and the peak friction angle obtained from torsion tests. 

Recently Lade (2003) presented a model for the analysis and prediction of 

shear banding in granular materials.  He performed true triaxial tests with a 

b-value varying between 0 and 1.  The b-value being defined as follows: 

31

32

σσ
σσ

′−′
′−′

=b  (E.4) 

Where: 

σ'1, σ'2, σ'3  = the major, minor and intermediate principal 

stress. 

 

The b-value is 0 for triaxial compression tests, 1 for triaxial extension tests and 

approximately 0.23 for plane strain conditions.  It is interesting to note that for 

dense Santa Monica Beach sand, the predictions made by the model proposed 

by Lade (2003) varies around the values predicted by Equation (E.3).  The 
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value of θ, predicted by Lade's model increases monotonically form b = 0 to 

b = 1 and is equal to the values given by Equation (E.3) at b ≈ 0.5.  The data 

presented by Lade, however, seems to suggest that θ is equal to the value 

predicted by Equation (E.3), increasing to a asymptote value predicted by 

Equation (E.1) as the b-value increases to 1 (Figure E.1). 

Although there is some disagreement between researchers of the bifurcation 

phenomenon, from the above-mentioned literature, it seems that there is 

general consensus that the shear band inclination is bounded by the limits given 

by the "Coulomb" and "Roscoe" solutions (Equation (E.1) and (E.2)), and that 

Equation (E.3) provides a good estimation of the inclination of the shear band. 

E.2 The mean shearing direction in a soil element before 
the development of a shear band 

Rowe (1971a) describes the plastic deformation of granular material as 

interlocked groups of particles sliding instantaneous against each other before 

reforming into new groups.  This mechanism is described by Arthur et al. 

(1977b) as a random distribution of local simple shears.  As the strain in the soil 

increases the local zones of simple shear combine to form rupture surfaces with 

an inclination between the "Coulomb" and "Roscoe" solution.  An inclination 

given by Equation (E.2) will result from a combination of simple shears at 

different locations, half of which are in a no-extension direction of the total strain 

increment (Equation (E.2)) while the other half are on a maximum stress 

obliquity plane (Equation (E.1)) (Arthur et al. 1977b).  It is reasonable to believe 

that the random distribution of local simple shears in the two directions would be 

the same before and after shear bands develop.  The author therefore, 

suggests that the mean shearing direction of elements of granular soil in a 

sample, χ, could be estimated by Equation (E.2), assuming χ to be equal to θ 

throughout the strain hardening regime: 

°+
+′

== 45
4

mobmob ψφχβ  (E.5) 

Where: 

φ'mob = the mobilized Mohr-Coulomb friction angle, 

ψmob = the mobilized dilation angle. 
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Figure E.1 Experimental shear band inclinations for dense Santa Monica Beach 

sand (based on Lade 2003). 
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