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Synopsis

The control of flotation circuits is a complicated problem, since flotation circuits are

nonlinear multivariable processes with a significant degree of interaction between the

variables. Isolated PID controllers usually do not perform adequately. The application

of a nonlinear model predictive algorithm based on second order Volterra models was

investigated. Volterra series models are a higher order extension of linear impulse response

models. The nonlinear model predictive control algorithm can also be seen as a linear

model predictive controller with higher order correction terms.

A dynamic model of a flotation circuit based on the governing continuity equations

was developed. The responses obtained represented the qualitative relationships between

the model inputs and the controlled variables. This model exhibited strong nonlinearities,

including asymmetrical responses to symmetrical inputs and gain sign changes.

This dynamic model was treated as the plant to be identified and from which second

order Volterra models were obtained. Full Volterra models required excessively large data

sets, but significant reductions in the size of the required data set could be achieved if

some of the second order coefficients were constrained to zero. These “pruned” Volterra

models represented the plant dynamics significantly better than linear models. In par-

ticular, these second order Volterra models were able to model asymmetrical responses

including gain sign changes. A special case of “pruned” second order Volterra models

are diagonal second order models, where all the off-diagonal coefficients (hij where i 6= j)

are constrained to zero. These models required less data than pruned Volterra models

containing off-diagonal coefficients, but were less accurate.

The performance of nonlinear model predictive controllers based on a pruned second

order and diagonal second order Volterra models was evaluated. The performance of

these controllers was also compared to the performance obtained with a first order (lin-

ear) Volterra model. All three controllers gave equivalent results for large manipulated

variable weights. However, when the controllers were tuned more aggressively, results ob-
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tained from the three controllers differed considerably. The pruned nonlinear controller

performed well even when tuned aggressively while the performance of the linear con-

troller deteriorated. For the case of disturbance rejection, the linear controller performed

slightly better than the nonlinear controllers.

KEYWORDS: Volterra, nonlinear, model predictive, flotation, control
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Sinopsis

Die beheer van flotasiestelsels is ’n ingewikkelde probleem omdat flotasie stelsels ’n nie-

linieêre, multiveranderlike proses is met ’n noemenswaardige graad van interaksie tussen

die veranderlikes. Geisoleerde PID beheerders se werkverrigting is nie bevredigend nie.

Die toepassing van ’n nie-linieêre modelgebaseerde beheeralgoritme gebaseer op tweede-

orde Volterra modelle is ondersoek. Volterrareeks modelle is ’n hoër orde uitbreiding

van lineêre impulsresponsmodelle. Die beheeralgoritme kan ook gesien word as ’n lineêre

algoritme met hoër orde korreksieterme.

‘n Dinamiese model van ’n flotasiestelsel gebaseer op die fundamentele kontinüiteits

vergelykings is ontwikkel. Die model response verkry verteenwoordig die kwalitatiewe

verhoudings tussen die model insette en die beheerde veranderlikes. Die model het sterk

nie-lineariteite getoon, insluitende asimmetriese response op simmetriese insette. Die

teken van die versterking verander ook in sekere gevalle.

Hierdie dinamiese model is gebruik as die proses waarvan tweede orde Volterra mod-

elle verkry moes word. Volledige Volterramodelle vereis baie groot datastelle, maar noe-

menswaardige verkleinings in die grootte van die vereiste data stelle is verkry deur van

die koëffisiënte gelyk aan nul te stel. Hierdie beperkte Volterramodelle kan die proses di-

namika beter as linieêre modelle voorstel. Die beperkte Volterra modelle kan byvoorbeeld

asimmetriese prosesresponse asook veranderinge in die teken van die versterking voorspel.

’n Spesiale geval van beperkte Volterramodelle is diagonale tweede orde modelle, waar

al die nie-diagonalekoëffisiënte (hij waar i 6= j) beperk is tot nul. Hierde modelle vereis

minder data as gewone beperkte Volterramodelle, maar is minder akkuraat.

Die werkverrigting van nie-linieêre model gebaseerde beheerders gebaseer op beperkte

tweede-orde en diagonale tweede-orde Volterramodelle is geëvalueer. Hierde beheerders is

ook vergelyk met ’n lineêre beheerder gebaseer op eerste-orde Volterramodelle. Al drie die

beheerders presteer ewe goed wanneer groot gemanipuleerde veranderlike gewigte gebruik

word. As die beheerders egter meer aggresief ingestel is, verskil die resultate van die drie
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beheerders noemenswaardig. Die beperkte nie-lineêre beheerder presteer steeds goed vir

aggresiewe instellings, maar die beheer van die lineêre beheerder is swakker in die geval

van setpunt veranderings. Vir die geval van versteuringverwerping vaar die lineêre model

effens beter.

SLEUTELWOORDE: Volterra, nie-lineêr, modelgebaseer, flotasie, beheer
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CHAPTER 1

Introduction

1.1 Background

Flotation is a mineral processing operation that is used to obtain a mineral rich concen-

trate from finely ground ore. Flotation relies on the difference in physio-chemical surface

properties of particles to achieve separation. These surface properties are usually altered

by the addition of flotation reagents such as collectors, activators and depressants. The

desired particles are rendered hydrophobic and will tend to attach to air bubbles. These

air bubbles with attached mineral particles rise to the surface where they are removed as

a concentrate froth.

Flotation can either be carried out in columns or flotation cells. In flotation columns,

agitation is provided by the air which is sparged into the bottom of the column. Flotation

cells are mechanically agitated and the agitator is used to break the air flow into bubbles.

Flotation cells are more common than flotation columns. Cells are connected in series

to form flotation banks. Several banks are connected in various configurations to form a

flotation circuit.

1.2 Problem statement

The control of flotation circuits is a notoriously difficult control problem (Perez-Correa

et al., 1998), (Suichies et al., 2002), (Cubillos, 1998). Flotation circuits are nonlinear,

multivariable processes with a significant degree of interaction. The process also has a

large number of manipulated variables, but essentially two control objectives, namely

recovery and concentrate grade. Recovery refers to the fraction valuable mineral entering

the system that is recovered in the concentrate while grade is an indication of the purity

of the concentrate. The optimum grade and recovery depend on economic objectives.

1
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The performance of PID controllers are degraded by interaction between loops and non-

linearity. This suggests that ordinary PID control is not sufficient for the control of grade

and recovery.

The application of nonlinear model predictive control to flotation circuits will be

investigated. Nonlinear model predictive control require nonlinear process models. In

practice, it is too complex and time consuming to obtain fundamental process models.

Due to this, models are usually identified from plant data.

1.3 Method

A dynamic model of a flotation process will be developed. This model should be suffi-

ciently detailed to include the important dynamic relationships between the manipulated

and controlled variables. While it is not feasible to develop a fully fundamental model of

the flotation process, equations with physical significance (as opposed to purely statistical

relationships) will be used as far as possible. This model will then be treated as the plant,

and model identification techniques will be used to obtain second order Volterra series

models of the plant. The models obtained will be used in a nonlinear model predictive

algorithm based on Volterra series models (Maner et al., 1996).

This dissertation is structured as follows. A basic overview of flotation is given in

chapter 2 and the control of flotation circuits is reviewed in chapter 3. An overview of

the modelling of flotation circuits is given in chapter 4, while the approach and modelling

equations used to implement a flotation circuit model in Simulink is given in chapter 5.

An overview of model identification techniques, with emphasis on the identification of

second order Volterra models, is given in chapter 6. The results obtained during the

identification of second order Volterra models of the flotation circuit is given in chapter 7.

A background of model predictive control techniques is given in chapter 8 and the results

obtained with a nonlinear model predictive controller based on the models obtained in

chapter 7 is given in chapter 9. Conclusions are made in chapter 10.

2
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CHAPTER 2

Flotation process description

A general description of flotation is given in this chapter. Aspects such as

� the preparation of ore;

� the mechanism of particle bubble attachment;

� flotation cells and

� circuit configuration ;

will be discussed. The concepts of grade and recovery, which play a very important

role in the control of flotation circuits, are also introduced in this chapter.

2.1 Froth flotation

Flotation is a solid/solid separation method used to separate valuable mineral particles

from undesired particles called gangue. Flotation allows relatively poor ores to be mined

since the concentrate from the flotation circuit can be economically processed. The mined

ore is ground in a milling circuit before it can be floated. The operation of the milling

circuit usually affects the performance of the flotation circuit and acts as a major source

of disturbances.

2.2 Milling circuit

Ore is first crushed and then milled under water (Sutherland et al., 1955: 13). From

the grinding circuit the pulp is fed to the classifiers, where coarse and fine particles are

separated. The particles that are too coarse to be floated are returned to the grinding

circuit, while the fine particles are sent to the flotation circuit. The separation in the

3
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classifiers is usually based on the weight of the particles, which means that denser particles

are usually more finely ground (Sutherland et al., 1955: 13). Ore breakage often occurs

along mineral boundaries, yielding particles which contain single minerals. However, some

particles will contain more than one mineral (Lynch et al., 1981: 3). Composite particles

complicate flotation: if the particles are sent to the tailings, the valuable minerals will be

lost and if they are sent to the concentrate, the concentrate will be less pure (Lynch et al.,

1981: 3), (Sutherland et al., 1955: 14). Very fine particles also presents problems during

flotation, since the conditions for particle – bubble attachment deteriorates (Wills, 1997:

285).

2.3 Particle – bubble attachment

Flotation occurs if a mineral particle attaches to a bubble and is taken to the surface

by the buoyancy of the bubble. For particle – bubble attachment to take place, an air –

solid interface must be created and a water – air and a water – solid interface must be

destroyed. This requires that the sum of the surface tensions of the air – water and solid –

water interfaces must be greater than the surface tension of the air – solid interface. This

requirement is shown in equation 2.1 (Sutherland et al., 1955: 28). The surface tensions

also give an indication of the work required per unit area for the system to change, shown

in equation 2.2.

γas ≤ γwa + γsw (2.1)

Work = γwa + γsw − γas (2.2)

The air–solid and solid–water interface surface tensions cannot be measured. However,

these quantities can be eliminated from equation 2.2 by introducing the contact angle

(as indicated in figure 2.1) between the solid and the bubble. The forces in the plane of

the solid surface should sum to zero. This requires that γas = γwacosφ + γsw. Using this

relationship, the work done on the system becomes

Work = γwa (1− cosφ) (2.3)

Equation 2.3 is also a measure of the work required to break the air solid interface

and gives an indication of the strength of the adhesion between the mineral particle and

the bubble. If the contact angle is zero, there is no tendency for sticking and if the angle

is 90◦, the tendency of adhesion reaches the maximum. Both γwa and the contact angle

can be measured experimentally and has been used extensively in the theory of flotation

and is a parameter which describes the floatability of a mineral.

4
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Solids

Air

γas

γsw

Water

φ

γwa

Figure 2.1: The contact angle between the air bubble and the mineral particle and the forces
acting on the bubble (Sutherland et al., 1955)

A reagent called a collector is usually added to allow the particle – bubble attachment

to take place (Sutherland et al., 1955: 26). The use of flotation reagents is discussed in

section 2.4.

2.4 Flotation reagents

Most minerals will not float without some surface modification. Also, the bubbles formed

in an air – water – mineral system will usually not form a stable froth capable of sup-

porting mineral particles. Flotation reagents are usually added to modify the system.

Flotation reagents can be divided into the following groups.

2.4.1 Frothers

A frother is a substance which is added to water to allow a stable froth to be formed

(Sutherland et al., 1955: 9). Flotation cannot occur without a stable froth to carry the

valuable mineral particles from the cell.

2.4.2 Collectors

A collector is a substance which enables a mineral to be held at the air– water inter-

face (Sutherland et al., 1955: 9). Minerals can be classified into polar and non-polar

minerals. The surfaces of non-polar minerals do not readily attach to water dipoles and

are consequently hydrophobic. It is possible to float these minerals without the aid of

collectors, but collectors are usually added to improve performance (Wills, 1997: 260).

Polar minerals interact strongly with water and are hydrophilic. The surface of these

minerals have to be modified before they can be floated.

2.4.3 Regulators

Regulators are reagents that are added to regulate the flotation process (Wills, 1997:

259). These reagents can be subdivided into activators and depressants.

5
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Activator A collector makes a particular mineral floatable in the presence of a collector

which would not have had an effect in the absence of the activator (Sutherland et al.,

1955: 9).

Depressants A depressant prevents a collector from functioning for a particular min-

eral (Sutherland et al., 1955: 9).

2.5 Flotation circuits

Flotation is similar to fractional distillation in that the desired purity is not achieved in

one separation step (Sutherland et al., 1955: 19). Flotation cells are usually connected

in series to form flotation banks. These banks are connected in various configurations to

form flotation circuits.

2.5.1 Flotation cells

Figure 2.2 shows a basic flotation cell. Flotation cells are mechanically agitated. The

impeller breaks the air stream into bubbles and keeps the mineral particles suspended.

Flotation can also be carried out in flotation columns. a Flotation column is shown in

figure 2.3. Flotation columns are not mechanically agitated, but air is sparged into the

bottom of the column. Wash water is introduced at the top of the flotation column to

remove entrained material. Flotation cells are much more common than flotation columns

and flotation columns will not be discussed further.

2.5.2 Cell banks

Flotation cells are arranged in series to form cell banks. Pulp (milled ore and water) is

fed to the first cell in the bank. Some of the valuable mineral is removed as froth, and

the pulp is sent to the next cell, where more mineral is removed (Wills, 1997: 281). The

bank may consist of a tank partially separated to form cells, or the bank may consist of

individual cells. In some cases, the whole bank is a single tank with agitators in series.

Figure 2.4 shows the schematic representation commonly used for flotation banks.

2.5.3 Flotation circuits

Banks of flotation cells are connected to form flotation circuits. A simple flotation circuit

is shown in figure 2.5. Most of the valuable mineral is floated in the first few cells (the

roughers). The last few cells are called the scavengers. The aim of these cells are to

recover the more weakly floating material. This circuit configuration is only successful if

the gangue (waste) material is relatively unfloatable (Wills, 1997: 283). It is common to
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Froth phase
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Figure 2.2: Basic flotation cell design
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Pulp
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Water
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Figure 2.3: A flotation column (Persechini et al., 2000)

Tailings

Concentrate

Feed

Figure 2.4: Schematic representation of a flotation bank
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refloat the concentrate from the roughers to obtain a concentrate with a high grade. This

circuit configuration is shown in figure 2.6. Many other possible circuit configurations

exist.

Feed Tailings

Final concentrate

Rougher bank Scavenger bank

Figure 2.5: A simple flotation circuit with rougher and scavenger banks (Wills, 1997: 283)

TailingsFeed

Final concentrate

Cleaner bank

Scavenger bankRougher bank

Figure 2.6: A flotation circuit with rougher, cleaner and scavenger banks (Wills, 1997: 283)

2.6 Recovery and Grade

Recovery can be defined as the fraction of minerals present in the feed that is recovered in

the concentrate. Grade is an indication of the purity of the concentrate, usually expressed

as the concentration of valuable mineral in the concentrate (Sutherland et al., 1955: 20).

Flotation circuits are operated so that a concentrate of a sufficient grade is obtained

while the recovery of minerals is also acceptable. Some trade-off between recovery and

grade has to be made. Qualitative recovery–time and recovery–concentrate grade curves

are shown in figures 2.7 and 2.8. There is no unique separation efficiency for an ore and

the grade recovery curve will depend on the operating conditions in the circuit.
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Figure 2.7: The recovery of mineral versus time (Wills, 1997)
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Figure 2.8: The decrease in concentrate grade for higher recoveries (Wills, 1997)
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CHAPTER 3

Control of flotation circuits

This chapter discusses important concepts in the control of flotation circuits, with

the emphasis on the important variables in flotation. Typical control objectives

are discussed in section 3.1.1, while typical manipulated variables are discussed in

section 3.1.2. The application of advanced control to flotation circuits is discussed

in section 3.2.

3.1 Control Variables

3.1.1 Control objectives

The concentrate grade and the recovery of valuable mineral are the two variables that in-

dicate the actual circuit performance. Ideally, a flotation circuit would give a concentrate

containing all the valuable mineral that entered the circuit in the feed, but none of the

gangue. However, this separation in not attainable in practice and a trade-off between

grade and recovery has to be made.

For a given feed composition and flow, a band of possible operating points can be

defined on the grade–recovery plane (see figure 3.1) (Lynch et al., 1981: 15). The aim of

a control strategy for a flotation circuit should be to operate the plant on a particular

point on the upper bound of this area. The specific operating point is determined by

economic factors (Hodouin et al., 2001).

3.1.2 Manipulated variables

The most common manipulated variables that are available for control of recovery and

grade on flotation plants are (Perez-Correa et al., 1998), (Lynch et al., 1981: 17):
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Figure 3.1: The band of possible grade-recovery operating points (Lynch et al., 1981: 15)

� the addition rates of chemicals such as collectors and frothers;

� the air flow rate to the cells and

� the pulp level setpoints in the cells.

Both the recovery and grade are affected by the pulp levels in the cells. Higher pulp

levels lead to longer pulp residence times in the cell, which lead to increased mineral

recovery. However, higher pulp levels imply lower froth heights, since the froth height is

approximately equal to the difference between the cell height and the pulp level (Wills,

1997: 313). Lower froth heights reduce the froth residence time, which leads to poorer

gangue drainage. This reduces the concentrate grade (Jamsa-Jounela et al., 2003). The

pulp level setpoints are often used as manipulated variables by advanced control strate-

gies, but good control of the levels are sometimes difficult to achieve. The control of the

pulp levels is further discussed in section 3.1.4.

Increases in collector addition initially lead to increased valuable mineral recovery,

but tend to reach a point where further increases in collector addition no longer increase

the recovery, while the recovery of gangue is increased (Wills, 1997: 312). The use of

frother addition as a manipulated variable is complicated, since the action of the frother

is a complex function of factors such as the water chemistry. Excessive dosage at one

part of the circuit may also cause problems downstream (Wills, 1997: 313).

The air flow rate to the cells is a very important manipulated variable. The effects

of air flow rate tend to be faster than adjustments in pulp levels and has no residual

effects if used in excess (Wills, 1997: 313). Increases in air flow rate lead to reduced froth

residence times, which decreases the time gangue particles has to drain from the froth.

Higher air flow rates also lead to an increase in bubble surface area flux, which increase

the collection of particles in the pulp phase.
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3.1.3 Disturbances

Common disturbances in a flotation circuit include changes in the feed rate to the circuit

as well as the pulp density, particle size distribution and composition of the feed (Lynch

et al., 1981: 16).

3.1.4 Control of pulp levels

Level control of flotation cells can be a very complex task, especially in circuits with a

series of interacting levels (Stenlund & Medvedev, 2002) (Kampjarvi & Jamsa-Jounela,

2003). Flotation cells are often controlled with isolated PI controllers that do not handle

the interactions from other cells well (Kampjarvi & Jamsa-Jounela, 2003). Stabilisation

of the pulp levels in the cells can give improved recoveries (Stenlund & Medvedev, 2002).

Good level control is also very important if the pulp level setpoints are to be used in an

advanced control system.

Several strategies have been used to improve the control of pulp levels. Stenlund &

Medvedev (2002) used both PI controllers with decouplers as well as a linear quadratic

optimal controller to control the levels in a cascade coupled flotation circuit. A commer-

cial multivariable flotation control package has been implemented on several plants. This

controller controls the levels in the vessels based on the entire upstream inventory.

3.2 Application of advanced control to flotation cir-

cuits

Flotation circuits are usually difficult to control. The process tends to be highly nonlinear

and has strong interactions between variables (Perez-Correa et al., 1998). This limits the

performance attainable by SISO PID controllers and makes the application of advanced

control techniques attractive. Advanced control is also attractive from an economic point

of view. Due to the high throughput of circuits, even increases in recovery as small as 0.5

% can be economically significant (Ferreira & Loveday, 2000). Various advanced control

techniques have been applied to flotation circuits.

Thornton (1991) applied a self-tuning minimum variance adaptive controller to the

rougher bank of flotation circuit. The controlled variable was the composition of tailings

from the bank and the manipulated variable was the collector flowrate to the bank. The

control scheme included a cautiously tuned PID controller in parallel with the minimum

variance controller. The final control action is the weighted average of the PID loop and

the adaptive controller, with the weight determined by the model error at a particular

time. The block diagram for this scheme is shown in figure 3.2. This configuration has

the advantage that the controller can adapt to changes caused by factors such as changes
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in the composition of the ore to be processed.
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Figure 3.2: Block diagram for a cautious adaptive controller

Suichies et al. (2002) implemented a SISO Generalised predictive controller to control

the final grade of an industrial flotation circuit. The ratio of collector addition to feed

was used as the manipulated variable by this controller. An ARX model was identified

with pseudo random binary sequences. Eight to ten hours were typically required for the

tests, which were carried out with the process being controlled by detuned PID loops.

This identification procedure has to be repeated from time to time as the models become

inaccurate. This controller was able to reduce the variance of the grade significantly.

Both dynamic matrix control (DMC) and quadratic dynamic control (QDMC) (see

chapter 8) strategies have been tested on a simulated flotation circuit (Perez-Correa et al.,

1998), (Perez-Correa et al., 1995). The levels in the cell banks were used as manipulated

variables, and the controllers aimed to keep the concentrate grade above a minimum and

the tail grade above a maximum. The QDMC controller performed better than the DMC

controller. These control strategies use all the manipulated variables in unison to achieve

the control objectives.

The control strategies discussed above rely on linear process models obtained from

plant data. Due to the nonlinearity of the flotation process, the accuracy of these models

are limited which in turn limits the performance of the controller. Advanced control

strategies based on nonlinear process models have also been applied to flotation circuits.

A form of nonlinear predictive control has been applied to a rougher flotation unit

(Desbiens et al., 1998). The manipulated variables for this controller were the air flowrate

and the rate of collector addition and the controlled variables were the mineral recovery

and concentrate grade. Three linear local models were identified for the relationship

between the collector flowrate and the concentrate grade. The parameters of the nonlinear

model was found by interpolating between the parameters of the three local linear models.

This approach requires more plant data than a controller based on a single process model,

but gives improved control performance.
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Perez-Correa et al. (1998) also applied rule based control strategies to a simulated

circuit. These strategies tended to saturate the manipulated variables. The controller

constantly aimed to move the process to a better operating point by moving the controller

from one operating zone to another. In each operating zone, either recovery or grade was

optimised, but the other controlled variable was also affected. This led to the controller

causing and correcting deviations in grade and recovery until the manipulated variables

were saturated.

Cubillos (1998) applied model based control utilising a hybrid neural network model

to a flotation bank. Both the grade and recovery were controlled and the frother and

collector flowrates as well as the pulp levels were used as manipulated variables. The

model was based on fundamental mass and energy balances with a neural network used

to estimate the model parameters. This approach requires less data than a pure hybrid

neural network, but requires process knowledge. The model was also adapted on-line at

each sampling interval.

3.3 Evaluation of control strategies

Dynamic models of processes may be used to test new control strategies. The use of

dynamic models for this purpose has several advantages. New strategies can be tested in

a risk free environment and results can be obtained faster than real time. Disturbances

can also be introduced as desired. The modelling of flotation circuits will be discussed in

the following two chapters.
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CHAPTER 4

Modelling of flotation circuits

This chapter provides an overview of the literature of flotation circuit modelling.

The techniques used for modelling the important pulp and froth phase phenomena

are discussed. The emphasis is placed on two-phase models, where the processes

occurring in both the pulp and the froth phase are included in the model.

4.1 Flotation model classification

There are various approaches to modelling flotation circuits. A classification of the most

common types of flotation models is shown in figure 4.1. In micro-scale models, flotation

is modelled by identifying all the sub-processes and using chemical and physical relation-

ships to predict the process behaviour. This approach is difficult due to the complexity

of the system and the interactions between chemical and physical parameters (Polat &

Chander, 2000).

Macro-scale models relate the overall response to the operating parameters through

a set of mathematical equations. Macro-scale models can be divided into phenomeno-

logical models and statistical models. In statistical models, the flotation performance is

related to variables through mathematical equations without physical significance. Phe-

nomenological models consist of equations which describe the physics and chemistry of

the process. Phenomenological models can use either kinetic, probabilistic or population

balance models to describe the particle-bubble behaviour. Probabilistic models are based

on the relative occurrence of collision, adhesion and detachment and can link micro and

macro-scale models. Kinetic models are similar in form to those used to describe chemical

reactions. The rate of flotation is assumed to be related to the concentration of mineral

particles in the flotation cell. Population balance models attempt to describe the flotation

behaviour by predicting the number of bubbles in the cell as well as their sizes.
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Empirical

Kinetic

Phenomenological

Probabilistic

Flotation models

Micro scale modelling Macro scale modelling

Population balance

Figure 4.1: Classification of flotation models (Polat & Chander, 2000)

The flotation process can also be described with varying degrees of complexity. Some

flotation models only model the levels of pulp in flotation cells and banks. These models

are used to test level control strategies in flotation circuits. Other models also take the

recovery processes which occur in the cells into account. The pulp and froth can be

considered separately, or the system can be modelled as a single, well mixed phase.

4.2 Modelling of levels in the flotation circuit

On an industrial scale, flotation is performed in cells connected in series. Pulp is fed

to the first cell and froth (concentrate) is collected. The remaining pulp (tailings) flows

to the next cell. The magnitude of the flow to the next cell depends on the pressure

difference between cells, the position of the control valves and the viscosity and density

of the pulp (Kampjarvi & Jamsa-Jounela, 2003). The pressure difference between the

cells depends on the height difference between cells.

4.3 Single phase models

In this type of model, the pulp and froth are described by a single phase of pulp perfectly

mixed with froth (Casali et al., 2002). The mathematical complexity of the model is

significantly reduced by this assumption (Casali et al., 2002). However, as discussed in

section 4.4, these models are less accurate than two phase models.
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4.4 Two phase models

While single phase models assume one perfectly mixed phase, many authors (Hemphill

& Loveday, 2003), (Lynch et al., 1981), (Vera et al., 2002) claim that the froth phase

must also be considered to adequately model flotation. Two phase models include the

behaviour of both the froth and the pulp phases.

There are a number of transfer processes between the froth and pulp phases. The

transport paths of material in a flotation cell are shown in figure 4.2. The pulp phase

is often called the collection zone, since valuable particles are collected through selective

particle bubble attachment. Material (both gangue and valuable mineral) may also be-

come entrained between bubbles and enter the froth phase in this way (Savassi et al.,

1998) (Mathe et al., 1998).

Several things may happen to a particle attached to a bubble once it enters the

froth phase. It may detach from the bubble, through the bubble breaking, from being

washed away or being displaced by another particle. Once the particle has detached, the

particle may either re-attach to another bubble, or it may return to the pulp (Hemphill &

Loveday, 2003). A part of the froth may also collapse, returning the attached particles to

the pulp. Entrained particles (which are not attached to a bubble) may either be carried

into the concentrate, or may drain back into the pulp. All these processes contribute to

the complex behaviour of the flotation process and must be considered in the flotation

model.

Detachment

Attachment

Entrainment

Transport

TailingsFeedAir

Froth

PulpBubbles

by bubbles

Froth drainage

and collapse

Concentrate

Figure 4.2: Transport paths of material in a flotation cell (Subrahmanyam & Forssberg, 1988)

4.4.1 Froth zone recovery

As discussed above, only a fraction of the particles that enter the froth are collected

in the concentrate. The froth zone recovery factor is used to describe the metallurgical

performance of the froth phase (Vera et al., 2002). The transfer between the pulp and
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froth phase (excluding entrainment) is shown in figure 4.3. The effects of entrainment

will be discussed in section 4.4.9.

Feed = 1

Rc (1−Rf ) Rc

RcRf

1−Rc

Froth zone Concentrate

Collection zone

Tailings

Figure 4.3: The transfer of material between the pulp and froth phases (Vera et al., 2002)

The fraction of material that enters the froth attached to bubbles is the collection

zone recovery (Rc). A fraction of these particles returns to the pulp phase. This fraction

is called the drop-back and the remaining fraction is the froth zone recovery (Rf ) (Finch

& Dobby, 1990: 89). In other words, the froth zone recovery is the fraction of particles

entering the froth attached to the bubbles that is recovered in the concentrate.

The collection zone recovery usually varies between 60 % to 90 % while the froth zone

recovery varies from 10 % and 90 %. A low froth zone recovery can have a significant

detrimental effect on the performance of a cell (Vera et al., 2002).

Gorain et al. (1998a) investigated the relationship between froth residence time (τf )

and the overall rate constant (see section 4.4.7). An exponential relationship of the form

given in equation 4.1 was found.

Rf = e(−βτf) (4.1)

Essentially the same exponential relationship between the froth retention time and

the froth zone recovery has been observed by (Vera et al., 2002). Vera et al. (2002)

states that this relationship is essentially independent of cell size, cell mechanism, and

cell operating conditions. The exponential function (equation 4.1) describes the number

of particles which remain attached to bubbles in the froth phase. β is a parameter related

to the condition of the froth (Vera et al., 2002).

Particles that have become detached from bubbles may drain back into the pulp
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or be recovered in the concentrate in the water between bubbles. This mechanism is

similar to entrainment, except that only the particles which have initially entered the

froth attached to bubbles are considered here. The relationship given in equation 4.2

represents the fraction of particles recovered through entrainment (Vera et al., 2002).

fraction entrained =
1

1 + ωτf

(4.2)

A relationship for the total froth zone recovery can be obtained by combining equa-

tions 4.1 and 4.2. The fraction of particles that have detached from bubbles is given by

(1− e(−βτf )). The fraction of detached particles that are recovered through entrainment

is obtained by multiplying with equation 4.2. The resulting relationship is shown in

equation 4.3, which is an refinement of equation 4.1.

Rf = e(−βτf ) +
(
1− e(−βτf )

)( 1

1 + ωτf

)
(4.3)

The froth residence time in the cell affects the froth zone recovery. Various definitions

of froth residence time are discussed in section 4.4.8. The relationships given in this

section was defined for the froth residence time based on the flow of concentrate, but

since the concentrate flowrate cannot be predicted independently, the froth retention

time based on the air flowrate may be used (Vera et al., 2002). Hemphill & Loveday

(2003) used an effective froth residence time to describe the behaviour of the froth. This

parameter was obtained by regression and incorporated effects such as the froth residence

time, aeration rate and froth stability.

4.4.2 Hydrodynamic conditions

Flotation equipment factors, such as cell and impeller design, impeller speed and air flow

influence the performance of a flotation circuit through the hydrodynamic conditions

created by these factors. The hydrodynamic conditions in a flotation cell include factors

such as the flow regime, gas dispersion and particle bubble interaction (Finch et al., 2000).

Gas dispersion properties include the bubble size, gas flow rate, gas holdup and bubble

surface area flux.

As will be discussed in section 4.5.2, the rate at which particles are collected in the

pulp phase (collection zone) can be described by a first order rate equation. The pseudo

flotation rate constant (kr,c), which describes the rate at which particles leave the pulp

phase, depends on the hydrodynamic conditions in the cell.
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4.4.3 Bubble size

The bubble size in a flotation cell depends on aspects such as impeller type and speed,

frother dosage, pulp viscosity and solids concentration. The bubble size distribution

tends to vary throughout the cell, with the smallest bubbles closest to the impeller.

Bubble size distribution alone does not adequately describe the gas dispersion properties

in the flotation cell (Gorain et al., 1995).Gorain et al. (1997) plotted the the flotation

rate constant against the average Sauter bubble diameter for several systems. No good

correlation between the flotation rate constant and Sauter mean diameter was found.

This is not surprising, since bubble size on its own does not describe the volume of gas

in the cell.

4.4.4 Gas holdup

When a gas is introduced into a liquid or slurry, a volume of liquid is displaced. The

volumetric fraction displaced is the gas holdup (Finch & Dobby, 1990). Gas holdup

increases with increasing gas flowrate and decrease in bubble size. Gorain et al. (1997)

found no significant relationship between gas holdup and flotation rate constant. This is

also not unreasonable, since a system with few large bubbles and another system with

many small bubbles may have the same gas holdup, but the flotation behaviour of these

systems will be significantly different.

Bubble surface area flux and gas holdup is related, with the one property increasing

with the other. This is a consequence of their dependence on gas flowrate and bubble size.

Finch et al. (2000) found a linear relationship between gas holdup and bubble surface area

flux. This relationship did not hold for the data reported by (Gorain et al., 1997). This

discrepancy is likely to be caused by the usage of overall gas holdup measurements by

Finch et al. (2000), while Gorain et al. (1997) used the average of local holdup measure-

ments. This relationship is also not likely to hold for cells with a high pulp recirculation,

where the gas holdup may be high without the corresponding high bubble surface area

flux (see section 4.4.6). Gas holdup is, however, easier to measure than bubble surface

area flux.

4.4.5 Superficial gas velocity

The superficial gas velocity is defined as the volumetric flowrate of air to the cell divided

by the cell surface area, as shown in equation 4.4.

Jg =
Qg

A
(4.4)

The superficial gas velocity may also be measured. There is often a difference be-

tween the measured superficial gas velocity and the gas velocity that is calculated from
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equation 4.4. Gorain et al. (1996) defined a dispersion index (equation 4.5) based on the

difference between a calculated superficial gas velocity, as defined in equation 4.4 and

the measured superficial gas velocity. The superficial gas velocity was measured at six

points in the cell. Two of these measurements were close to the impeller. The values

of Jg,calculated and Jg,measured differ because the measured velocity at six points do not

describe the entire surface and the measurements close to the impellers contribute too

much compared to those further away from the impeller. Since the air tends to rise close

to the impeller when dispersion is poor, relatively large values of Jg,measured indicate poor

dispersion. Dispersion index values of close to 100 indicate good dispersion. This index

does not have a fundamental physical significance, but was used as an indication of the

relative performance of the impellers studied.

DI = 100− Jg,measured − Jg,calculated

Jg,measured

× 100 (4.5)

The relationship between the flotation rate constant (kr,c) and superficial gas velocity

is much stronger than the relationships between flotation rate constant and gas holdup

4.4.4 or bubble size 4.4.3 (Gorain et al., 1997). However, the kr,c − Jg relationship dete-

riorates at high superficial gas velocities.

4.4.6 Bubble surface area flux

The bubble surface area flux (Sb) is defined in equation 4.6. The Sauter mean diameter

used in this calculation is given in equation 4.7.

Sb =
6Jg

ds

(4.6)

ds =

∑i=n
i=1 d3

i∑i=n
i=1 d2

i

(4.7)

As discussed above, Gorain et al. (1997) conducted studies in which the effect of

bubble size, gas holdup and superficial gas velocity on the flotation rate constant was

investigated. None of these properties could individually be related to the flotation rate

constant. However, when these properties were combined in the bubble surface area flux

in the cell, it was found that a linear relationship between bubble surface area flux and

flotation rate exists. This relationship was derived for data obtained with several different

cell designs.

The kr,c vs Sb relationship can be expressed as shown in equation 4.8. P is the mineral

floatability which is dependent on the particle composition and surface conditions.

kr,c = PSb (4.8)
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As discussed in section 4.4.5, poorly dispersed systems tend to have high superfi-

cial velocities close to the impeller. The experimental method used by Gorain et al.

(1996)tended to give too high average superficial velocity measurements for poorly dis-

persed systems. Heiskanen (2000) observed that this effect leads to unrealistically high

bubble surface area fluxes for poorly dispersed systems. However, when Gorain et al.

(1997) evaluated the kr,c − Sb relationship, the superficial velocity measurements close

to the impeller were neglected if undispersed air flow conditions were observed near the

impeller. Heiskanen (2000) also observed that Gorain et al. (1997) obtained higher flota-

tion rates for systems with a low dispersion index. Industrial experience shows that poor

flotation performance is obtained if the system is poorly dispersed. However, the results

(shown in figure 4.4) are not unreasonable. The dispersion index tends to be lower for

higher gas flows through the cell. The bubble surface area flux was higher for these

systems, which makes higher flotation rates possible even if the system is less dispersed.

The dispersion index also does not describe the actual dispersion conditions in all cases.
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Figure 4.4: The flotation rate constant at various values of the dispersion index

Estimation of bubble surface area flux Bubble surface area flux is a more fun-

damental parameter to describe flotation than properties like gas holdup, but it is more

difficult to measure, since measurements of the bubble sizes in the cell are required (Finch

et al., 2000).

In a mechanically agitated flotation cell, the size of the bubbles depends on the im-
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peller design and the impeller speed as well as the air flowrate (Gorain et al., 1999). The

frother concentration in the cell also affects the bubble size, but in the range of frother

concentrations used in industrial cells, the effect of variations in frother concentration

has a minimal influence on bubble size. The mean bubble size tends to decrease with

increases in impeller speeds and increases with increases in air flow rate. While aspects

such as particle size and slurry density also influence the bubble size and so influence the

bubble surface area flux, Gorain et al. (1999) found that these effects were not significant

for the ranges of conditions found in industrial cells.

If impeller peripheral speed instead of impeller speed is used, and if air flow rate per

unit cell cross-sectional area is used, Sb can be represented independently of cell size and

impeller design (Gorain et al., 1999). The impeller can also be characterised with the

impeller aspect ratio (As), shown in equation 4.9. The impeller diameter is measured

from impeller tip to tip, and the impeller height is the vertical height of the impeller

blades Gorain et al. (1999).

As =
Impeller diameter

Impeller height
(4.9)

To summarise, the surface bubble flux can be assumed to be a function of the periph-

eral impeller speed, air flow rate per cross sectional area, the impeller aspect ratio and

the particle size in the cell. Gorain et al. (1999) used the 80% passing feed (d80) size to

represent the particle sizes in the cell. The model shown in equation 4.10 was presented.

a, b, c, d and e are the parameters for the model. Gorain et al. (1999) obtained param-

eters for equation 4.10 with data consisting of Sb values calculated from the superficial

gas velocity and measured bubble size. The data included data for a wide variety of ores

and cell designs. Data obtained from rougher, cleaner and scavenger circuits were used.

The units and parameter values used by Gorain et al. (1999) are shown in appendix A.

Sb = aN b
s

(
Qg

A

)c

Asdde
80 (4.10)

4.4.7 Overall rate constant

The previous paragraphs described the characterisation of the relationship between the

rate at which particles are collected in the pulp phase and enter the froth phase. The

rate at which particles are collected in the froth can also be described by a first order

kinetic relationship. In this case the rate constant in the rate equation is the overall rate

constant, which includes froth effects.

It was found (Gorain et al., 1998b) that the relationship between the overall rate

constant deviates from linearity as the froth depth increases. kr is greater for lower froth

depths, due to a higher froth zone recovery. For shallow froth depths, the overall rate
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constant is essentially equal to the collection zone rate constant kr,c. At intermediate froth

depths, the kr values are smaller than for lower froth depths with the same Sb. Further

increases in froth depth lead to further decreases in kr. This suggests that equation 4.8

can be modified to include the froth recovery factor as shown in equation 4.11. This is a

non-linear relationship due to the non-linearities contained in Rf . Gorain et al. (1998b)

originally proposed the relationship for the froth recovery factor shown in equation 4.12.

S∗b is the threshold bubble surface area flux, defined as the minimum bubble surface

area flux where concentrate overflows into the launder. Vera et al. (2002) subsequently

investigated the froth zone recovery and formulated a relationship for Rf by describing

the particle bubble detachment and drainage in the froth (see section 4.4.1).

kr = PSbRf (4.11)

Rf =
σ(Sb − S∗b )

1 + σ(Sb − S∗b )
(4.12)

Deglon et al. (1999) investigated the kr − Sb relationship by combining a bubble

population model and an attachment-detachment model in simulations. These models

predict a near-linear region up to about 50 s−1, after which the kr−Sb curve goes through

a maximum. The shape of the simulated curves are shown in figure 4.5. This effect

was described in terms of an attachment-detachment model (discussed in section 4.6.1).

Larger bubble surface area fluxes lead to a larger rate of particle bubble detachment,

leading to a reduced overall flotation constant. The region of approximate linearity is

larger for smaller cell sizes. This is due to the longer retention time in larger flotation

cells, which leads to a greater extent of particle-bubble detachment.

A graph of the kr − Sb relationship for various froth heights was obtained with the

empirical relationship for bubble surface area flux given by Gorain et al. (1999) and the

froth zone recovery relationship given by Vera et al. (2002). These results differ from those

obtained by Deglon et al. (1999), but are similar to the experimental results obtained by

Gorain et al. (1998b). Deglon et al. (1999) neglected froth effects and modelled the cells

as a single, well mixed phase. This assumption accounts for the deviations from non-

linearity at low bubble surface area fluxes. The non-linearity in the kr−Sb curves shown

in figure 4.6 is due to low froth zone recoveries at low froth retention times. This effect is

not present in figure 4.5 because the froth zone was not modelled. The data presented by

Gorain et al. (1998b) was for Sb values up to about 100 s−1. It is possible that the type of

deviations from non-linearity shown in figure 4.5 may occur at high bubble surface area

fluxes.
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Figure 4.5: The observed deviation from linearity in the k-Sb relationship at high bubble
surface area fluxes (Deglon et al., 1999)
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Figure 4.6: The deviation from linearity in the kr − Sb relationship as predicted by the froth
recovery factor

25

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDeellppoorrtt,,  RR    ((22000055))  



4.4.8 Froth residence time

Froth residence time can be defined in a number of ways. Gorain et al. (1998a) defined

the froth residence time based on the residence time of the gas in the froth. The froth

residence time can also be defined on the basis of the flowrate of the froth slurry (Lynch

et al., 1981: 86) or as the residence time of particles in the froth. These definitions are

shown in equations 4.13 to 4.15.

τf,gas =
Qg

Vf

(4.13)

τf,slurry =
Qc

Vf

(4.14)

τf,particles =
Qf

Vf

(4.15)

4.4.9 Entrainment

The attachment of valuable mineral particles to air bubbles is the most important flotation

mechanism, with the majority of particles in the concentrate entering the froth through

this selective attachment. However, both valuable mineral and gangue particles may

enter the froth through entrainment (Savassi et al., 1998).

The net flow of entrained particles depends on the upward velocity of the froth and

on the rate of drainage of particles from the froth (Savassi et al., 1998). Particles may

drain from the froth via the lamella between bubbles, or the froth may collapse. The

particle size and specific gravity of the gangue particles has an important effect on the

degree of entrainment (Kirjavainen, 1996), since this determines the drainage rate of the

particles. The froth structure and stability also influences entrainment.

There is a strong relationship between the recovery of water and the recovery of

material through entrainment. Most of the correlations that have been proposed are

based on the recovery of water. Subrahmanyam & Forssberg (1988) suggested that the

recovery rate of gangue is proportional to the recovery rate of water.

Entrainment can also be described with a classification function shown in equa-

tion 4.16 (Lynch et al., 1981). This factor may be defined for each particle size fraction.

CFi =
Mass particles of ith size interval per unit water in concentrate

Mass particles of ith size interval per unit water in the pulp
(4.16)

The rate of recovery of entrained particles can then be calculated from equation 4.17.

It can be assumed that the recovery of water can be described by a first order rate

equation, as given in equation 4.18. Using this assumption, the recovery of particles by
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entrainment can be described by 4.19.

RRg =
RRw

MWP
× CF ×MGP (4.17)

RRw = kwMWP (4.18)

RRg = kw × CF ×MGP (4.19)

The classification function is also dependent on froth residence time. The form of

equation shown in equation 4.20 has been proposed to describe this effect (Kirjavainen,

1996). α is a transfer coefficient for water drainage from froth and ω is a transfer coef-

ficient for the drainage of solids from the froth (Kirjavainen, 1996) and τf is the froth

residence time. α is usually essentially zero and can be neglected. In this case, equa-

tion 4.20 becomes 4.21.

CFi =
1 + αiτf

1 + ωτf

(4.20)

CFi =
1

1 + ωτf

(4.21)

4.5 Flotation kinetics

The application of kinetics to flotation was originally based on the analogy between

chemical reactions (where molecules collide and react) and flotation (where hydrophobic

particles collide with bubbles and attach to the bubbles) (Lynch et al., 1981). Like

chemical reaction kinetics, the flotation kinetics of an ore are often determined in a semi-

batch setup before it is applied to a continuous process.

4.5.1 Batch flotation tests

In batch flotation, a batch of feed is treated with the required chemicals and then aerated.

The froth is more or less continuously removed. The composition of the pulp and froth

varies continually. At the start of the batch test, the composition of the material in the

pulp is that of the feed, while at the end of the test, the pulp is essentially tailings. Water

is often added during the tests to keep the volume constant (Gaudin, 1957).
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4.5.2 Rate equation

The general rate equation for flotation is shown in equation 4.22 (Polat & Chander, 2000).

The pseudo rate constant, kr, depends on the conditions in the flotation cell and may

vary with time.

r = −krC
m
particle (t) Cn

bubble (t) (4.22)

There has been some discussion of the actual order of the flotation process, but first

order equations (shown in equation 4.23) are most common. First order models assume

that the rate of particle-bubble collisions is first order with respect to the number of

particles and that the bubble concentration remains constant. Batch flotation test data

support first order data under most operating conditions (Polat & Chander, 2000).

r = −krCparticle (4.23)

The first order rate equation can be modified so that data over a wide range of condi-

tions can be described. The value of kr can be varied to describe the behaviour of different

mineral species. kr can either be described by a continuous or discrete distribution.

4.5.3 Continuous model

This model assumes that the particles to be floated have a continuous distribution of rate

constants (Lynch et al., 1981) given by a frequency function f(k) (Ferreira & Loveday,

2000).

The frequency function is usually a well known statistical density function such as

gamma and rectangular distributions. The application of these distributions to the feed

is often not realistic (Kapur et al., 1991).

The feed can also be divided into a number of classes with all the particles in a class

having the same rate constant. This is the approach used in discrete models.

4.5.4 Discrete models

The discrete model form is shown in equation 4.24. Discrete models are often used

because calculations are much simpler and these models often give a good fit of batch

data (Lynch et al., 1981: 65).

r =
n∑

i=1

kr,iCparticle (4.24)

The simplest models divide the mineral into a fast floating and a slow floating class,

shown in equation 4.25 (Lynch et al., 1981). A third class of non-floatible material,
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represented by the recovery at infinite time (Rinf) is sometimes added (Villeneuve et al.,

1995).

r = kslowCparticle + kfastCparticle (4.25)

4.5.5 The effect of particle size on flotation rate

Particle size has a marked effect on flotation performance, but this effect is often difficult

to predict. Particle size plays an important role in the probability of particles colliding

with bubbles, attachment to bubbles as well as the probability of the particle staying

attached to the bubble. Fine particles have less particle– bubble collisions and tend to

become entrained. Small particles may have an excessive absorption of chemicals (Feng &

Aldrich, 1999) or some surface oxidation may occur (Wills, 1997: 285). Larger particles

are more likely to detach from the bubbles or may be too heavy for particle bubble

attachment. The minerals in large particles are also often not sufficiently liberated to

float. A qualitative graph of the flotation rate as a function of average particle size is

given in figure 4.7.
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Figure 4.7: The flotation rate as a function of particle size (Wills, 1997)

This effect can be modelled by dividing the feed into classes based on mineral content

and particle size and determining a rate constant for each class.

4.6 Population balance models

Population balance models aim to predict the bubble size and number of bubbles in

flotation cells. The bubble population is predicted in terms of sub-processes such as

bubble break up and coalescence. The flotation cell is usually modelled as two separate

zones:
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� the impeller zone and

� the bulk zone.

Bubble breakage occurs primarily in the impeller zone, while bubble coalescence occurs

mainly in the bulk zone. Air enters the cell near the impeller, where bubble breakage

occurs. The bubbles are pumped to the bulk zone, where they can either be recirculated

to the impeller zone, or rise to form froth (Deglon et al., 1999).

In the impeller zone, it can be assumed that bubble breakage occurs through colli-

sions between bubbles and in turbulent eddies. The bubble breakage frequency can be

defined as the product of the bubble-eddy collision frequency and the breakage efficiency.

Calculating the breakage rate requires knowledge of the spectral energy density of the

eddies. This makes this calculation infeasible for industrial applications (Deglon et al.,

1999).

However, studies into the breakage rate has shown that the bubble breakage rate

reduces with decreasing bubble size and drops to zero at the maximum stable bubble size

(db,max). The bubble breakage rate also reduces with increasing gas holdup (ε).

The bubble population in the bulk zone can be calculated by considering

� the number of bubbles entering the bulk zone from the impeller zone;

� the bubble loss through coalescence;

� the number of bubbles formed from bubble coalescence;

� the number of bubbles leaving the zone through recirculation and

� the number of bubbles leaving the phase as froth.

4.6.1 Particle – bubble attachment and detachment

In flotation kinetics, the sub-processes such as particle – bubble collision, attachment and

detachment are usually lumped into a single flotation rate constant (Deglon et al., 1999).

However, particle – bubble attachment and detachment rates can also be considered

separately. The form of this type of equation is given in 4.26. Since this equation requires

the bubble concentration, this model is often combined with a bubble population model

to predict the flotation performance.

r = −kattachmentCfree particlesCavailable bubbles︸ ︷︷ ︸
attachment rate

+ kdetachmentCloaded bubbles︸ ︷︷ ︸
detachment rate

(4.26)

The rate of attachment is the product of the attachment rate constant and the con-

centration of available bubbles and free particles in the pulp. The detachment rate is the
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product of the detachment rate constant and the concentration of bubbles with attached

particles (Bloom & Heindel, 2002).

The “available” bubble concentration has been interpreted as either the total bubble

concentration, the concentration of bubbles without attached particles or the concen-

trations of bubbles which carry less particles than the maximum number of particles a

bubble can support (Bloom & Heindel, 2002).

4.7 Probability models

The rate constant of a mineral particle may be expressed as the probability of success

of a series of events. The flotation rate depends on the probability that a particle and

bubble will collide (Prcollision) and the probability that the particle will attach to the

bubble (Prattachment). The effect of the froth phase can be included with a froth stability

factor, FS. These terms can be combined to calculate the rate constant, as shown in

equation 4.27.

k = PrcollisionPrattachmentFS (4.27)

The froth stability factor can be divided into Prnot detached, the probability that a

particle reaches the froth column without detaching from the bubble and Prdrainage, the

probability of drainage from the froth (Lynch et al., 1981: 62).

FS = Prnot detachedPrdrainage (4.28)

There are several factors which complicate the use of probability models for the cal-

culation of flotation rates. Assumptions which may not be valid are required to calculate

the probabilities from fundamental equations. The equations obtained with this approach

also contain parameters which cannot be measured (Lynch et al., 1981: 63).

4.8 Modelling the effect of reagent additions

4.8.1 Modelling the effect of collector addition rates

There are two main approaches to modelling the effect of the addition of collector addition:

� modification of rate constants and

� modification of the fraction of slow-floating particles.

The physical interpretation of the second approach is that the purpose of a collector

is to transform valuable mineral particles into fast floating particles (Lynch et al., 1981:
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134). This approach requires that the assumption that the mineral can be divided into

slow and fast floating fractions is reasonable.

The effect of collector addition rates can also be modelled by modifying the flotation

rate constant. Perez-Correa et al. (1998) modified the rate constant as shown in equa-

tion 4.29. This empirical equation reproduced experimental behaviour. a, b, c an d are

empirical constants.

kr = aQ3
collector + bQ2

collector + cQcollector + d (4.29)

4.8.2 Modelling the effect of frother addition rates

The stability of the froth in the cells depends on the frother addition in the cell. At low

frother addition rates, the froth is unstable and collapses easily. At higher froth addition

rates, the froth becomes more stable and the rate of transfer from the froth to the launder

is increased. This should increase the froth zone recovery, as well as the recovery through

entrainment. It is usually possible to develop a model for the effect of the addition of

frother on water recovery rate. The water recovery rate is then used to calculate the

recovery of mineral through entrainment.
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CHAPTER 5

Model implementation

In chapter 4, literature on flotation modelling was reviewed. This chapter focuses

on the formulation of a model from fundamental equations as well as empirical

relationships. The implementation of this model in Simulink will also be discussed

and the model responses to inputs will be given.

5.1 Model equations

5.1.1 Mass balances

Pulp phase balance

Material enters the cell in the pulp phase as feed and pulp flows out of the cell as

tailings. Valuable mineral particles can leave the pulp phase through true flotation (par-

ticle/bubble attachment), and both gangue and valuable mineral particles can leave the

pulp through entrainment. Mineral and gangue can also re-enter the pulp through froth

drainage, bubble breakage and similar mechanisms. The component balances for the

minerals in the cell (gangue and valuable mineral) are shown in equation 5.1.

dMi,p

dt
= mi,feed −mi,tailings −mflotation −mentrainment + mdrop back. (5.1)

The mass flow rate of each component out of the cell in the tailings is calculated from

the concentration of each component in the pulp and the total volumetric flowrate.

mi,tailings = Ci,pQtailings (5.2)

For cells connected in a bank, the volumetric flow rate from one cell to the next can be

estimated from equation 5.3, where L2 is the pulp level in the next cell and L1 is the pulp
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level in the current cell. The total volume of pulp in the cell is the sum of all mineral and

water volumes. The pulp level in the cell will be higher than the level calculated from the

volume given in equation 5.5 due to air holdup. The total pulp phase volume (pulp and

air) is calculated from equation 5.6 and the pulp level in the cell is given by equation 5.7.

The pulp phase concentrations in the cell can be calculated from equation 5.4

Qtailings = Kflowρg
√

(L2 − L1) (5.3)

Ci,p =
Mi,p

Vp

(5.4)

Vp =
n∑

i=1

Mi,p

ρi

+
Mw,p

ρw

(5.5)

Vp,t =
Vp

(1− εg)
(5.6)

Lp =
Vp,t

Ac

(5.7)

For purposes of equation 5.3, a constant density is assumed, since the densities in two

adjacent cells are approximately the same. The contribution of the mass of air in the

pulp phase to the mixture density is also neglected.

The pulp flow from the last cell can be manipulated with a control valve in the line

leaving the bank. The flow through a control valve is given by equation 5.8 (Luyben,

1990: 214).

Qtailings = Kvalvef(x)

√
∆P

ρ
(5.8)

If it is assumed that the outlet is at atmospheric pressure, the pressure difference

across the control valve is equal to the pressure in the final cell in the bank. This leads

to equation 5.9.

Qtailings = Kvalvef(x)
√

gL (5.9)

The mass flow from the cell in the concentrate is discussed in sections 5.1.2 and

4.4.9. A mass balance can also be calculated for water as shown in equation 5.10. The

mass flow of water in the tailings is given by equation 5.11. Water also leaves the cell

in the concentrate. Lynch et al. (1981: 76) modelled the rate of water recovery by

assuming that the recovery rate is proportional to the concentration of water in the cell

(see equation 5.12). The effect of froth height on the proportionality constant may also
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be included, but in this case it was assumed that kw is not a function of froth level.

dMw

dt
= mw,feed −mw,tailings −mw,entrainment (5.10)

mw,tailings = Cw,pQtailings (5.11)

rw,entrainment = kwMw,p (5.12)

mwentrainment = rw,entrainmentVp (5.13)

Cw,p =
Mw,p

Vp

(5.14)

5.1.2 Overall flotation rate

The pulp phase mass balance given above included terms for material leaving the pulp

phase through flotation as well as for material re-entering the pulp phase through drop

back. It is possible to combine these terms and model the nett rate at which material

leaves the pulp phase. This rate is given by equation 5.16.

The collection zone constant (used to model the rate at which particles attach to

bubbles in the pulp phase) is the product of the mineral floatibility, P and the bubble

surface area flux Sb. Not all of the particles that leave the collection zone (pulp phase)

are collected in the concentrate. The fraction of attached particles in the pulp phase

that leaves the cell in the concentrate is given by the froth recovery factor. The mineral

floatibility, the bubble surface area flux and the froth recovery factor are combined in

the overall flotation rate constant, given in equation 5.15, and the overall flotation rate

is given by equation 5.16. The mass flow from the cell due to true flotation is then given

by equation 5.17

koverall = PSbRf (5.15)

roverall = koverallCi,p (5.16)

mi,flotation = Vproverall (5.17)

Mineral floatibility This parameter is a function of mineral type as well as particle

size. Vera et al. (2002) measured values of mineral floatibility (P ) in the range 1×10−3 to
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2,7× 10−3 for the floatibility of the valuable mineral. It was assumed that the floatibility

of gangue was zero.

Bubble surface area flux The following empirical relationship given by Gorain et al.

(1999) was used to calculate the bubble surface area flux.

Sb = aN b
s

(
Q

A

)c

AsdP e
80 (5.18)

The values for the constants a to e, were reported by Gorain et al. (1999). They also

reported the impeller peripheral speed (Ns) and aspect ratio (As) for several cell designs

as well as the 80% passing feed size for several plants. Typical values were selected and

are given in Appendix A.

Froth recovery factor The relationship given by Vera et al. (2002) was used to predict

the froth recovery factor. This correlation requires the froth retention time, which was

calculated from the volumetric air flow rate and the volume taken up by froth in the cell.

The froth level is given by the difference between the cell height and the pulp level. The

drainage rate parameter, ω, ranges between 7 1/min and 75 1/min while the froth parameter

β has a value of 4 1/min (Vera et al., 2002).

Rf,i = e(−βτf ) +
(
1− e(−βτf )

)( 1

1 + ωiτf

)
(5.19)

τf =
ALf

Q
(5.20)

Lf = Lt − Lp (5.21)

5.1.3 Entrainment

The entrainment term in the mass balance describes the nett rate at which particles leave

the pulp phase through entrainment, which depends on the rate at which the particles

enter the froth phase and the rate at which the particles drain back into the pulp.

The rate of recovery of both valuable mineral and gangue particles due to entrainment

can be given by equation 5.23, with mentrainment the water flowrate from the cell expressed

as mass per unit time. The rate of recovery of water can be assumed to be proportional

to the mass of water in the pulp phase (Lynch et al., 1981: 74). Equation 5.23 can be

written in terms of the proportionality constant, Krw. The classification function, CF is

given by equation 5.22

CF =
1

1 + ωτf

(5.22)
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mentrainment = mw,entrainmentCF
Mi,p

Mw,p

(5.23)

mentrainment = kwCFMi,p (5.24)

5.1.4 Air addition rate

Many of the equations given in the above sections depend on variables related to the

flowrate of air. These variables include the froth retention time as well as the air holdup.

It is not realistic to assume that a change to the air flowrate to the cell will lead to an

instantaneous change in the air holdup or froth retention time. It is more realistic to

assume that these properties will change gradually over a few seconds. This effect was

introduced by adding a first order lag to describe the effective change in the air flow to

the cell.

5.2 Degrees of freedom analysis

The variables used in the flotation model for a system with i mineral components is

shown in table 5.1 and the modelling equations for the system are shown in table 5.2. It

is assumed that the feed flowrate to the system is specified by upstream conditions. This

leaves two variables free to be used for control. The selection of manipulated variables

will be discussed in section 5.5.1.

5.3 Feed

The feed to an actual flotation circuit consists of a spectrum of particle sizes and com-

positions. If the aim is to quantitatively predict the recovery of valuable mineral or the

grade of the final concentrate, the feed should be divided into several classes depending

on particle size and composition, with each class having its own floatibility. However, the

aim of this model is not to make quantitative predictions, but to investigate the dynam-

ics of the flotation process. The feed was divided into two classes: valuable mineral and

gangue. The valuable mineral has a relatively high floatibility, while the gangue mineral

has zero floatibilty and is only recovered in the concentrate through entrainment. The

feed is also only represented by a single particle size.

The feed ore typically contain very low concentrations of valuable mineral. For ex-

ample, the typical grade of one of the major platinum group metal reefs in the Bushveld

Complex is about 4.5 ppm, while other (less valuable) mineral ores contains higher con-

centrations. The feed to the circuit is in the form of a mineral and water pulp mixture.
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Table 5.1: Model variables

Variable Symbol Units Number

Feed flowrate mi,feed
kg/s i

Feed water flowrate mi,w
kg/s 1

Air flow to cell Q m3/s 1
Control valve fraction x 1
Mass of component i in cell Mi kg i
Mass water in cell Mw kg 1
Mass flow mineral out in tailings mi,tailings

kg/s i
Mass flow water out in tailings mi,tailings

kg/s 1
Volumetric tailings flowrate Qtailings

m3/s 1
Volume pulp in cell Vp

m3/s 1
Pulp phase volume (voidage included) Vp,t m3 1
Pulp phase mineral concentrations Ci,p

kg/m3 i
Pulp phase water concentrations Cw,p

kg/m3 1
Pulp level Lp m 1
Froth level Lf m 1
Mass flow out in concentrate (particle bubble attachment) mi,flotation

kg/s i
Mass flow out in concentrate (entrainment) mi,entrainment

kg/s i
Overall flotation rate roverall

kg/m3s i
Overall flotation rate constant koverall s−1 i
Froth recovery factor Rf 1
Bubble surface area flux Sb

m2/m2s 1
Froth residence time τf s 1
Classification factor CF 1

Total 15+ 8i
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Table 5.2: Modelling equations

Relationship Equation Number of equations

Mineral mass balance 5.1 i
Water mass balance 5.10 1
Flow relationship 5.3 or 5.9 1
Mineral mass flow from cell in tailings 5.2 i
Water mass flow from cell in tailings 5.11 1
Volume pulp in cell 5.6 1
Total pulp phase volume (voidage included) 5.6 1
Pulp phase mineral concentrations 5.4 i
Pulp phase water concentration 5.14 1
Pulp level 5.7 1
Mass out in concentrate (true flotation) 5.17 i
Mass out in concentrate (entrainment) 5.24 i
Overall flotation rate 5.16 i
Overall rate constant 5.15 i
Froth recovery factor 5.19 1
Froth residence time 5.20 1
Froth level 5.21 1
Bubble surface area flux 5.18 1
Classification function (5.22) 1

Total 7i + 12

Table 5.3: Degrees of freedom summary

number of variables 15 + 8i
number of equations -(12 + 7i)
number of variables specified externally (feed) -(1 + i)

Degrees of freedom for control 2

Table 5.4: Model parameters

Parameter Symbol Units

Parameter in relationship for flow between cells Kflow
m4.5s/kg

Water recovery rate constant kw
1/m3s

Mineral floatibility P dimensionless
Bubble surface area flux correlation constants a to e in equation (5.18)
Cell cross sectional area A m2

Cell height Lt m
Impeller peripheral speed Ns

m/s

Impeller aspect ratio As dimensionless
Drainage parameter ω 1/s

Froth parameter β 1/s

water drainage parameter α 1/s
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An initial pulp density of 1300 kg/m3 was used. The mineral feed rate is based on a gangue

mineral flow rate of 45 kg/s. For a mixture density of approximately 1300 kg/m3, a water

flow rate of 90 kg/s was used.

5.4 Development environment

The flotation model was developed in Matlab’s Simulink. This environment is ideal for

modular model design. User interfaces can also be created easily.

While it is possible to use Matlab m-files in the Simulink environment (through the

m-file block), this was not done since this slows down the model considerably. The model

consists exclusively of native Simulink blocks, such as the sum, product and integrator

block. Differential equations can be solved with the integrator block.

The system that was used to integrate the mass balance differential equations is shown

in figure 5.1. The difference between the inflow and outflow is integrated. The output of

the integrator is then the mass in the cell. The initial condition is provided by the user.

Since it is more intuitive to specify initial conditions in terms of the cell level and the

concentration of each component in the cell, this input is requested from the user and

then converted to a total mass in the cell.

1
integrated

1
sxo

Integrator

3
Initial condition

2
out

1
In

Figure 5.1: Solving differential equations in Simulink

Other equations can also be implemented in a similar way. For example, the Simulink

implementation of the froth recovery factor is shown in figure 5.2.

The modelling equations were programmed as subsystems, and these subsystems were

combined to form a model of a flotation cell. Several of these cell models were combined

to form a flotation bank, and these banks were combined to form a circuit.

5.5 Circuit configuration

A very simple circuit configuration was used to investigate the control. The circuit

consists of a six cell rougher bank and a six cell cleaner bank. The tailings from the

rougher bank is the final tailings, while the concentrate from this bank is sent to the

cleaning bank. The concentrate from this bank is the final product, while the tailings

from this bank (which may still contain significant valuable mineral) is recycled to the

first bank. a schematic representation of the circuit is shown in figure 5.3.
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Figure 5.2: The Simulink implementation of equation (5.19)
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Air

Air
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Figure 5.3: The circuit configuration used for identification and control
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The cell banks consist of a series of cell models connected in series. The tailings from

each cell is sent to the next cell, with the flowrate a function of the relative levels in the

cells (see equation (5.3)). The flow from the final cell is manipulated with a control valve.

This flow is a function of the level in the cell, as well as the valve fraction.

5.5.1 Manipulated variables

Each cell bank has two manipulated variables. The air flow and the level in the cell bank

influence the controlled variables, namely recovery and grade. The air flow to each cell

is directly specified by the advanced controller. This is equivalent to assuming that the

dynamics of the air flow control base layer loop is negligible.

Most applications of advanced control on flotation circuits use the pulp level set-

points as manipulated variables. The performance of the advanced controller relies on

the performance of the PI level control loops. For this system, the two level control loops

interact, which will deteriorate the control performance.

The flows from the cell banks may also be used as manipulated variables, which will

allow the advanced controller to handle the interactions between the variables. Since the

tuning parameters of a PI level controller will not be valid for the entire operating region

covered by the nonlinear advanced controller, the flows from the cell banks will be used

as manipulated variables.

5.5.2 Controlled variables

The primary controlled variables for this system are the final grade and recovery. For the

system where the level setpoints are used as manipulated variables, the level in the final

cell of each bank are secondary controlled variables.

5.5.3 Operating point

Like linear step response models, Volterra models are also obtained around an operating

point. During identification, the model is initially at steady state at this operating

point. The values of the model inputs and outputs at the operating point are given in

Appendix A.

5.5.4 Scaling

All the inputs, as well as the outputs, were converted to deviations from the operating

point given above scaled to be in the range -1 to 1 by dividing the variables with the

maximum expected or allowed changes.
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5.6 Process responses

The process responses to various step inputs are shown in figures 5.4 to 5.11. The system

is clearly nonlinear, with asymmetrical responses to symmetric inputs. The gain of the

system is also dependent on the magnitude of the input. All these factors make linear step

responses unsuitable for the modelling of this system and motivates the use of nonlinear

modelling techniques such as Volterra series.

0 5 10 15 20 25 30 35
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (min)

S
ca

le
d 

gr
ad

e

Step: −1
Step: −0.5
Step: 0.5
Step 1

Figure 5.4: The effect of step changes in the air flow rate to the rougher bank on the concen-
trate grade
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Figure 5.5: The effect of the air flow rate to the rougher bank on the recovery of valuable
mineral
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Figure 5.6: The effect of changes in the air flow to the cleaner bank on the concentrate grade
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Figure 5.7: The effect of step changes in the air flow to the cleaner bank on the recovery of
valuable mineral
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Figure 5.8: The effect of step changes in the setpoint for the flow from the rougher bank on
the concentrate grade
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Figure 5.9: The effect of step changes in the setpoint for the flow from the rougher bank on
the recovery of valuable mineral
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Figure 5.10: The effect of step changes in the setpoint for the flow from the cleaner bank on
the concentrate grade
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Figure 5.11: The effect of step changes in the setpoint for the flow from the cleaner bank on
the recovery of valuable mineral
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CHAPTER 6

Model Identification

This chapter describes model identification techniques, with emphasis on the

identification of nonlinear models from plant input-output data. The identified

nonlinear models are intended for use in nonlinear model predictive control al-

gorithms. Linear models are also discussed, since many of the nonlinear model

identification techniques are extensions of linear identification techniques.

The input sequence that is used to generate the input–output data is an important

aspect of model identification and an overview of commonly used input sequences

is included.

Volterra series is an attractive nonlinear model type, since it is a higher order

extension of the linear impulse response model. Later chapters will show that

nonlinear model predictive schemes based on second order Volterra models consist

of a linear MPC scheme with nonlinear add-on terms. This means that Volterra

model predictive controllers can be seen as an enhancement of generally accepted

linear model predictive controllers.

6.1 Models for predictive control

Both linear and nonlinear model predictive control require some form of plant model to

predict the process behaviour. Linear model predictive control schemes almost exclusively

use step or impulse response models (Qin & Badgwell, 2003). These models are obtainable

from plant input – output data and require no fundamental process knowledge. The

ease with which a model can be obtained contributes to the popularity of linear model

predictive controllers.

Nonlinear model predictive control (NMPC) schemes require nonlinear process mod-
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els. Both fundamental and empirical models have been used for nonlinear model predic-

tive control (Henson, 1998). However, since models obtainable from plant input-output

data are desirable from an industrial perspective, this chapter will focus on the identifi-

cation of models from plant data.

6.2 System properties

6.2.1 Nonlinearity

A system H is linear if the following properties hold for the system:

Additive property H [u1 + u2] = H [u1] + H [u2] (6.1)

Homogenous property H [cu] = cH [u] (6.2)

A system is nonlinear if it does not satisfy the properties given in equations 6.1 and

equation 6.2 (Bendat, 1991: 2).

For a linear system, the system output to a random Gaussian input sequence will also

have a Gaussian probability density function while nonlinear systems will tend to have

non-Gaussian outputs in response to a Gaussian input (Bendat, 1991: 3).

Most industrial processes are nonlinear to some extent, so the properties given in

equations 6.1 and 6.2 will not apply exactly. Some processes are sufficiently linear

around a given operating point so that the process can be approximated by a linear

model. However, in some cases a process cannot be satisfactorily approximated by a

linear model, such as:

� highly nonlinear processes and

� mildly nonlinear processes operated over a wide range.

In these cases, a nonlinear model is required to accurately describe the behaviour of

the process.

6.2.2 System memory

The memory of a system refers to the effect that past inputs have on the present outputs

of the system. Systems can be classified as: (Bendat, 1991: 3)

� infinite memory;

� finite memory and
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� zero memory.

The output of a zero memory system is not affected by past inputs. A system at

steady state can be modelled as a zero memory system, since the system output can be

predicted from the current input alone.

A system with infinite memory is influenced by all past inputs. However, for most

systems, an input has negligible effect a certain time after the input has been applied.

Such a system has a finite or fading memory. Most chemical processes are fading memory

systems.

6.3 Signal characteristics

Some model identification methods, especially methods which make use of stochastic

input signals, are based on statistical analysis of the input and output signals. Some

concepts which will be used later in this chapter are discussed in this section.

Random signals may be either stationary or non stationary. For stationary data series,

the statistical properties of a data set does not change with time, while the statistical

properties of non stationary data does change with translations in time (Bendat, 1991:

8). Most of the properties defined in this section assume that the sequence is stationary.

6.3.1 Mean

For a stationary stochastic process, the mean can be defined as shown in equation 6.3

(Soderstrom & Stoica, 1989: 100), where E is the expectation operator.

u , E [u(t)] (6.3)

For a deterministic signal the mean is defined by replacing the expectation operator

with the limit of a normalised sum (Soderstrom & Stoica, 1989: 102). The mean can be

calculated by evaluating the sum for large N .

u , lim
N→∞

1

N

N∑
t=1

u(t) (6.4)

6.3.2 Central moments

The nth central moment of a random variable u is the moment taken about the mean

and is defined in equation 6.5. The first central moment is zero, while the second order

central moment of a sample is the variance (see equation 6.6).

nth central moment = E [u− E [u]n] (6.5)
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σ2 = E
[
u− E [u]2

]
(6.6)

6.3.3 Skewness

The skewness of a distribution can be defined as in equation 6.7 (Weisstein, 2004b) where

µi is the ith central moment. The skewness is a degree of the asymmetry of a distribution.

Equation 6.7 can be written in terms of the mean and standard deviation of a random

sequence u, shown in equation 6.8.

ζ =
µ3

µ
3/2
2

(6.7)

ζ =
E [u− u]

σ3
(6.8)

6.3.4 Kurtosis

The kurtosis is a measure of the degree of peakedness of a distribution, and can be defined

as the normalised fourth central moment (Weisstein, 2004a). This can be written in terms

of the mean and standard deviation of a random sequence, as shown in equation 6.10.

With this definition, the kurtosis of a normal distribution is equal to 3. If it is required

that the kurtosis of a normal distribution should be equal to zero, the alternative definition

shown in equation 6.11 is used.

κ =
µ2

µ2
2

(6.9)

κ =
E [u− u]

σ4
(6.10)

κ =
E [u− u]

σ4
− 3 (6.11)

6.3.5 Covariance, cross covariance and cross bi-corellations

The covariance of a stationary random sequence u is defined in equation 6.12 (Soderstrom

& Stoica, 1989: 100) and the cross covariance between the input u and the output y can

be defined as shown in equation 6.13. For a deterministic signal, the expectation operator

is replaced by the limit of the normalised sum (see equation 6.14.

ruu(τ) , E [u(t + τ)− u] [u(t)− u]T (6.12)
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ruy = E
[
y(t + τ)u(t)T

]
(6.13)

r(τ) , lim
N→∞

1

N

N∑
t=1

[u(t + τ)− u] [u(t)− u]T (6.14)

The cross bi-correlation between input u and output y is defined by equation 6.15 and

may be estimated from data from equation 6.16 (Koh & Powers, 1985), (Pearson et al.,

1996).

tuuy = E [u(k)u(k − i)y(k − j)] (6.15)

tuuy(τ1, τ2) =
1

N

N−τ1∑
t=1

u(t)u(t + τ1 − τ2)y(t + τ1) (6.16)

6.4 Input signals

Plant input–output data is required for the identification of empirical models. The model

that is identified is usually dependent on the input signal that is used to obtain the data

(Sung & Lee, 2003). Some identification procedures require a signal that is persistently

exciting.

6.4.1 Persistent excitation

The concept of persistent excitation will be illustrated with the identification of an impulse

response model from plant data with the least squares technique, which will be discussed

in section 6.7.1. The model coefficients are given by equation 6.21 (Sung & Lee, 2003).

The symbols are defined in equations 6.17 to 6.20. U is a N by np matrix, where N

is the number of measurements and np is the number of parameters to be estimated. In

this case the number of parameters is equal to MH, the model horizon.

u(k) = [u(k) u(k − 1) · · · u(k −MH + 1)] (6.17)

U =


u(1)

...

u(N)

 (6.18)

h1 = [h(1) h(2) · · · h(M)] (6.19)
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Y =


y(1)

...

y(N)

 (6.20)

h =
[
UT U

]−1
UT Y (6.21)

For equation 6.21 to have a solution, the matrix UT U must be invertible. This re-

quirement of non-singularity leads to the concept of persistent excitation. Persistent

excitation will now be defined for both stochastic and deterministic input signals.

For a stochastic input signal {u(k)}, the correlation matrix shown in equation 6.22

can be defined. If this matrix is nonsingular, the signal is persistently exciting of order

n. (Nowak & Veen, 1994), (Soderstrom & Stoica, 1989: 120).

Ruu(n) = E
[
UT U

]
(6.22)

Ruu(n) =


ruu(0) ruu(1) · · · ruu(n− 1)

ruu(−1) ruu(0) ruu(n− 2)
...

. . .
...

ruu(1− n) · · · · · · ruu(0)

 (6.23)

with

ruu(τ) = E [u(t + τ)u(t)] (6.24)

If the input sequence is deterministic, the expectation operator can be replaced by

the limit of the normalised sum. The sample correlation matrix is then constructed as

shown in equations 6.25 and 6.26 (Soderstrom & Stoica, 1989: 120). The input signal is

persistently exciting if the sample correlation matrix is nonsingular and the limit given

in equation 6.25 exists.

ruu(τ) = lim
N→∞

N∑
k=1

1

N
u(k + τ)u(k) (6.25)

Ruu(n) =


ruu(0) ruu(1) · · · ruu(n− 1)

ruu(−1) ruu(0) ruu(n− 2)
...

. . .
...

ruu(1− n) · · · · · · ruu(0)

 (6.26)

To summarise, in order to identify a model with np parameters with the least squares

technique, the input signal must be persistently exciting of order n = np. This observation
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applies to the consistent estimation of parameters in noisy systems.

Nowak & Veen (1994) investigated the excitement requirements for extended Volterra

series. The extended Volterra series is formulated in terms of the input vector defined in

equation 6.27. ⊗ indicates the Kronecker product. The extended Volterra filters include

input interaction terms not included in ordinary Volterra filters. A data matrix (6.28)

can then be constructed from these vectors.

u(k) =



1

u(k)

u(k)2

...

u(k)N


⊗



1

u(k − 1)

u2(k − 1)
...

uN(k − 1)


⊗ · · · ⊗



1

u(k −MH + 1)

u2(k −MH + 1)
...

uN(k −MH + 1)


(6.27)

V (k) = [u(k) · · ·u(k + τ)]T (6.28)

Y = V θ (6.29)

The parameters for this extended Volterra series can then also be estimated from

the least squares method (equation 6.30). This means that the matrix
(
V T V

)
must be

invertible for the input signal to be persistently exciting. Nowak & Veen (1994) proved

that this matrix is invertible if the input sequence takes on at least n + 1 discrete values,

where n is the order of the Volterra series to be identified. This result is related to the

2nth central moment of an independent identically distributed (IID, see section 6.4.2)

sequence. The same result applies to ordinary Volterra filters.

θ =
(
V T V

)−1
V T Y (6.30)

6.4.2 Independent identically distributed sequences

If the random variables in a sequence are independent from each other and all have the

same distribution, then the sequence is independent and identically distributed (IID).

The covariance matrix for IID sequences is given by equation 6.31. I is a identity matrix.

Ruu = σ2I (6.31)
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6.4.3 Step function

A step input is a common input used in the identification of linear models. A step

function is defined as shown in equation 6.32 (Soderstrom & Stoica, 1989).

u(t) =

{
0 t < 0

ζ t ≥ 0
(6.32)

A step input does give valuable information about the process, including the gain,

dead time and dominant time constant. Unfortunately, for nonlinear processes the results

obtained depend on the size of the input (Sung & Lee, 2003).

The covariance function, ruu, for a step of size ζ is equal to ζ2 for all τ . This means

that the correlation matrix Ruu(n) is nonsingular if and only if n = 1. This means that a

step input is only persistently exciting of order 1 (Soderstrom & Stoica, 1989: 121) and

that consistent estimation of more than one parameter in a noisy environment cannot be

obtained with a single step input.

6.4.4 White noise

White noise signals are uncorrelated in time. The autocorrelation function for white noise

is given by equation 6.33.

E [u(k)u(k + τ)] =

{
0 for τ 6= 0

σ2 for τ = 0
(6.33)

Gaussian white noise is a white noise with a Gaussian probability distribution. An

important disadvantage of Gaussian white noise for the identification of nonlinear systems

is that the amplitude distribution of the input signal is concentrated about the origin.

To accurately identify a nonlinear process the full normal operating range of the input

signal should be used (Nowak & Veen, 1994).

Another type of white noise is a random binary sequence (RBS). This signal consists of

binary values of a specified amplitude. The signal switches from one level to another with

a probability of 0.5. A long sequence is required for the relationship given in equation 6.33

to hold (Sung & Lee, 2003).

The covariance matrix for a Gaussian white noise of variance σ2 is Ruu(n) = σ2In

where In is the identity matrix of size n. This matrix is invertible for all n, so Gaus-

sian white noise is persistently exciting of all orders (Soderstrom & Stoica, 1989: 121).

Similarly, for a random binary sequence taking on levels ±ζ, the variance is ζ2 and the

covariance matrix Ruu = ζ2In and the matrix is invertible for all n.
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6.4.5 Pseudo random input sequences

Pseudo random sequences are deterministic signals that are designed to have the same

covariance function as white noise and this property is independent of signal length. This

makes pseudo random signals more practical than random binary signals (Sung & Lee,

2003).

Pseudo random binary input sequences

Pseudo random binary sequences (PRBS) are efficient signals for linear system identifica-

tion. These input sequences have similar spectral characteristics to white noise (Nowak

& Veen, 1994).

A pseudo random binary sequence is usually created by creating a basic pseudo ran-

dom sequence of length Ps and repeating this sequence as many times as required (Soder-

strom & Stoica, 1989: 138). It can be shown that the covariance function for a pseudo

random sequence of period P is given by equation 6.34.

ruu(τ) =

{
ζ2 for τ = 0,±Ps,±2Ps . . .

− ζ2

Ps
elsewhere

(6.34)

Since ruu(τ) = ruu(1) for all τ 6= 0,±P,±2Ps . . ., the covariance matrix for a pseudo

random binary sequence is given by equation 6.35.

Ruu =


ζ2 − ζ2

Ps
· · · − ζ2

Ps
−ζ2

Ps
ζ2 · · · − ζ2

Ps
...

...
. . .

...

− ζ2

Ps
− ζ2

Ps
· · · ζ2

 (6.35)

For large Ps, the off-diagonal elements tend to zero and the covariance matrix for

the pseudo random binary signal tends toward the covariance matrix of a random binary

sequence. If the total required signal length is fixed, the best pseudo random binary

sequence has a period Ps = N (Sung & Lee, 2003).

Pseudo random multilevel input sequences

Pseudo random binary sequences are not persistently exciting for Volterra series of order

2 and higher. This means that pseudo random multilevel sequences are required.
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6.5 Linear models

6.5.1 ARMAX

A popular linear model representation is the AutoRegressive Moving Average with eX-

ogenous outputs model (ARMAX) (Pearson, 1995). The disturbance sequence or noise

sequence {e(k)} represents the effect of noise, modelling errors and unmeasured distur-

bances.

y(k) =

p∑
j=1

ajy(k − j) +

q∑
j=0

bju(k − j) +
r∑

j=0

cje(k − j) (6.36)

This model can be extended directly to multiple inputs by adding terms corresponding

to additional inputs to the second term. This extension can also be applied to nonlinear

systems. For the case where p = 0 and q = ∞, corresponds to the convolution model

with {bj} representing the impulse response of the system. The case where p = ∞ and

q = 0 represents and infinite order autoregressive model (Pearson & Pottmann, 2000).

6.5.2 Linear convolution models

Step response models

The original dynamic matrix control (DMC) used a step response model. The model

consists of a series of step response coefficients ai taken at a sample rate ∆t. These coeffi-

cients represent the response of the process to an unit input change. The definition of the

unit input is arbitrary and is chosen as a scaling factor to obtain the response coefficients

in a desired range. The process response to a series of changes in the manipulated variable

is the sum of the process responses due to the individual manipulated variable changes.

This leads to the step response formulation given in equation 6.37 (Cutler, 1982). y0 is

the process initial condition. If the process is in terms of deviation variables and initially

at steady state, y0 will be 0.

y(k) = y0 +
M∑
i=1

ai∆u(k − i) (6.37)

Impulse response model

The impulse response model, shown in equation 6.38, is similar to the step response

model. In this case the model coefficients represent process response to an impulse input,

although other input signals such as random binary sequences (RBS) and pseudo random

binary sequences (PRBS) may be used to obtain the model coefficients. The impulse

response coefficients may also be derived from the step response coefficients by taking
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the backward difference of the step response coefficients (Seborg et al., 1989: 652).

y(k) = y0 +
MH∑
i=1

hiu(k − i) (6.38)

hi = ai − ai−1 (6.39)

h0 = 0 (6.40)

The relationship between step and impulse response models is shown in figure 6.1.

Time

O
ut

pu
t

h1

h2

h3

h4

h5

h6

a1

a2

a3

a4

a5
a6

0 t∆ t∆2 t∆3 t∆4 t∆5 t∆6

Figure 6.1: The relationship between step and impulse response models

6.6 Nonlinear models

6.6.1 Fundamental models

Fundamental dynamic models can be derived by applying transient mass, energy and

momentum balances to the system. The process model will consist of a set of differential

and algebraic equations.
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dx

dt
= f (x, u) (6.41)

0 = g (x, u) (6.42)

y = h (x, u) (6.43)

These equations must be discretized since NMPC models are usually formulated in

discrete time (Henson, 1998).

Fundamental models have some advantages. These models require less process data

than empirical models and plant tests are usually not required. These models are often

valid for a very wide range of conditions (Henson, 1998).

Fundamental models are complicated and time consuming to develop and may be too

complex for use in NMPC algorithms and will not be discussed further.

6.6.2 Volterra Series

Volterra series can be seen as an higher order extension of the linear impulse response

model. The predicted output of a Volterra series at time k is the sum of terms up to the

nth order terms (Bendat, 1991: 75).

y (k) = y0 + y1 (k) + y2 (k) + y3 (k) + · · ·+ yN (6.44)

The first, second and third order terms are given in equations 6.45 to 6.47

y1 (k) =
MH∑
i=1

h1 (i) u (k − i) (6.45)

y2(k) =
MH∑
i=1

MH∑
j=1

h2(i, j)u(k − i)u(k − j) (6.46)

y3(k) =
MH∑
i=1

MH∑
j=1

MH∑
l=1

h3(i, j, l)u(k − i)u(k − j)u(k − l) (6.47)

This work will focus on second order Volterra series. Higher order Volterra series

require a large number of parameters. The number of required parameters for a second

order Volterra series is shown in Table 6.1 (Pearson et al., 1996). In some cases, even

a second order Volterra series require an impractically large data set to identify all the

parameters. This leads to the idea of “pruned” Volterra series. In pruned Volterra series,

some of the second order coefficients are constrained to zero. This decreases the number

of parameters which must be identified (Pearson et al., 1996).

Second order Volterra models can be represented diagrammatically by a linear block
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Table 6.1: The number of required parameters for a second order Volterra series

Parameter Type Number

y0 Constant 1
{h1(i)} Linear MH
{h2(i, j) Quadratic MH2

and a nonlinear block in parallel. This is shown in figure 6.2.

-
u q

- L
yl

+h -
y

- NL
ynl

+

Figure 6.2: A block diagram representation of Volterra series Koh & Powers (1985)

Volterra models can be obtained from a number of sources, including (Doyle et al.,

1995)

� nonlinear first principle models;

� NARMAX models;

� neural networks and

� input – output data.

The most attractive method is identification directly from input – output data and

this option will be investigated further in section 6.7.2.

6.6.3 Block-oriented models

Block-oriented models can be represented by a combination of static nonlinearities and

linear dynamic components. The nonlinear block is static in the sense that it does not

depend on past values of the input - i.e. a memoryless block (Rivera, 2001).

Hammerstein models

The general structure of the Hammerstein model is shown in figure 6.3. N is a zero

memory non-linear block, while H is a linear dynamic element with a steady state gain of

1 (Pearson & Pottmann, 2000). The steady state behaviour of the process is determined

by the static nonlinearity, while the dynamics of the system is a combination of the

nonlinear and linear components (Pearson & Pottmann, 2000).

60

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDeellppoorrtt,,  RR    ((22000055))  



The linear and nonlinear parts of the model may take various forms. For example,

the nonlinear part of the model may be a neural network Al-Duwaish & Karim (1997) or

a polynomial while the linear part of the model may be an ARMAX or a step response

model Al-Duwaish & Karim (1997).

A second order Volterra series with a diagonal second order coefficient matrix is equiv-

alent to a Hammerstein model. The first order term of the Volterra series contains the

linear dynamics and the second order term with diagonal coefficients is essentially a static

nonlinearity (Rivera, 2001). The Hammerstein reduction of a Volterra series has the form

given in equation 6.48 (Koukoulas & Kalouptsidis, 2003).

y(k) =
MH∑
i=1

h1(i)u(k − i) +
MH∑
i=1

h2(i, i)u
2(k − i) (6.48)

-
u

N -
ū

H -
y

Figure 6.3: The general block diagram representation of Hammerstein models

Wiener models

The structure of a Wiener model is shown in figure 6.4. Like Hammerstein models,

Wiener models also consist of a zero memory nonlinear block and a linear dynamic model

but with the order of these elements reversed. Hammerstein and Wiener models show

the same steady state behaviour, but different dynamic behaviour. For Hammerstein

models, the qualitative shape of the curve (for example, damped or underdamped) is

independent of the model input magnitude. This is not the case for Wiener models

(Pearson & Pottmann, 2000).

-
u

H -
ū

N -
y

Figure 6.4: The general block diagram format of Wiener models

.

6.7 Model identification from plant data

The aim is to identify the model parameters which minimise the squared prediction error

as defined in equation 6.49. The parameters for which the prediction error is a minimum

is found by setting the derivative of Jf with respect to the parameter θ equal to zero
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(Pearson, 1995).

Jf = E
{
[ŷ(k)− y(k)]2

}
(6.49)

∂Jf

∂θ
= 0 (6.50)

If the model is linear in terms of its parameters, the linear least squares technique can

be applied.

6.7.1 Identification of impulse response model

The vectors which have been used in this section were defined in equations 6.18 to 6.21.

Jf = [Y − Uh]T [Y − Uh] (6.51)

=
[
Y T − hT UT

]
[Y − Uh] (6.52)

=
[
Y T Y − hT UT Y − Y T Uh− hT UT Uh

]
(6.53)

The optimal parameter values can be found by setting the derivative of the objective

function to zero, as shown in equation 6.54. Equation 6.54 can be written as equation 6.55,

from which the parameter values can be found.

∂Jf

∂h
= −Y T U + h

(
UT U

)
= 0 (6.54)

(
UT U

)
h = UT Y (6.55)

h =
(
UT U

)−1
UT Y (6.56)

If u is a random input sequence, equation 6.51 can be written in terms of the expected

error (equation 6.57). The parameter vector h is then given by equation 6.58, where Ruu

is the N ×N autocorrelation matrix defined in equation 6.26, and ruy is the N vector of

cross correlation coefficients defined in equation 6.13.

Jf = E [Y − Uh]T [Y − Uh] (6.57)

h = R−1
uu ruy (6.58)
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6.7.2 Identification of Volterra series

This section considers the identification of second order Volterra models, of the form

shown in equation 6.59, with ŷ being the predicted output of y.

ŷ(k) = y0 +
MH∑
i=1

h1(i)u(k − i) +
MH∑
i=1

MH∑
j=1

b(i, j)u(k − i)u(k − j) (6.59)

There are several approaches to obtaining Volterra models from plant data. One of

the main differences between the various approaches is the type of input sequence that is

used. The input sequence must excite the process sufficiently so that the coefficients can

be identified.

Identification with random and pseudorandom inputs

The constant term y0 is chosen so that the the prediction is unbiased. An estimator is

biased if the the expected value deviates from the predicted value (Soderstrom & Stoica,

1989: 18).

E [ŷ] 6= y (6.60)

The expectation of equation 6.59 is given in equation 6.61 (Pearson et al., 1996). y0

must be chosen so that E [ŷ(k)] = E [y(k)] = y. This leads to equation 6.62, which can

be substituted into equation 6.59 to give equation 6.63.

E [ŷ] = y0 + u
MH∑
i=1

a(i) +
MH∑
i=1

MH∑
j=1

b(i, j)ru(i) (6.61)

y0 = y − u

MH∑
i=1

a(i)−
MH∑
i=1

MH∑
j=1

b(i, j)ru(i) (6.62)

ŷ = y − u

MH∑
i=1

a(i)−
MH∑
i=1

MH∑
j=1

b(i, j)ru(i)

+
MH∑
i=1

h1(i)u(k − i) +
MH∑
i=1

MH∑
j=1

b(i, j)u(k − i)u(k − j)

(6.63)

The following analysis will be done in terms of deviation variables, since the input,

output and prediction sequences have zero mean in terms of deviation variables, defined

below (Pearson et al., 1996).
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v(k) = u(k)− ū (6.64)

w(k) = y(k)− ȳ (6.65)

z(k) = ŷ(k)− ȳ (6.66)

Equation 6.63 can be written in terms of deviation variables and rearranged to give

equation 6.67

z(k) =
MH∑
i=1

a(i)v(k − i) + 2ū
MH∑
i=1

MH∑
j=1

h2(i, j)v(k − i)+

MH∑
i=1

MH∑
j=1

h2(i, j) [v(k − i)v(k − j)− ruu(i− j)]

(6.67)

We seek the parameters h1(i) and h2(i, j) so that the following objective function is

minimised (Pearson et al., 1996).

Jf = E{[ŷ(k)− y(k)]2} (6.68)

= E{[z(k)− w(k)]} (6.69)

= σ2
w +

MH∑
i=1

a(i)g(i) +
MH∑
i=1

MH∑
j=1

h2(i, j)d(i, j) (6.70)

σ2
w is the variance of the zero mean output fluctuation sequence {w(k)}. g(i) and

d(i, j) are defined in equations 6.71 and equations 6.72.

g(i) =
MH∑
j=1

a(j)rvv(i− j)− 2rwv(i)+

MH∑
m=1

MH∑
n=1

h2(m,n) [4ūRvv(i−m) + 2E{v(k − i)v(k −m)v(k − n)}]

(6.71)

d(i, j) =
MH∑
m=1

MH∑
n=1

h2(m, n)D(i, j,m, n)− 4ūE{v(k − i)v(k −m)v(k − n)} (6.72)

D(i, j,m, n) = B(i, j,m, n) + 4ū2Rvv(i−m) + 4ūE{v(k − i)v(k −m)v(k − n)} (6.73)
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B(i, j,m, n) = E{v(k − i)v(k − j)v(k −m)v(k − n)} −Rvv(i− j)Rvv(m− n) (6.74)

The identification problem can be simplified considerably by using an input sequence

with specific statistical properties (Pearson et al., 1996). In particular, if the input

sequence has the properties shown in equations 6.75 and 6.76, equation 6.70 simplifies

to equation 6.77. For this case, the identification of the first and second order coefficients

decouple and these coefficients can then be identified separately. This is the same results

obtained in equation 6.58. The requirement shown in equation 6.76 is valid for any

symmetrically distributed input sequence (Pearson et al., 1996).

u = 0 (6.75)

E [v(k − i)v(k −m)v(k − j)] = 0 for all i, m, n (6.76)

Jf =
MH∑
i=1

h1(i)

(
MH∑
j=1

h1(j)Rvv(i− j)− 2rwv(i)

)

+
MH∑
i=1

MH∑
j=1

h2(i, j)(
MH∑
m=1

MH∑
n=1

h2(i, j)E [v(k − i)v(k − j)v(k −m)v(k − n)]−Rvv(i− j)Rvv(m− n)

)
(6.77)

The optimal model parameters can be obtained from equation 6.77 by setting the

partial derivatives of the objective function to zero. The linear (first order) coefficients

can be found from equation 6.78 (Pearson et al., 1996). This is the same results found

in equation 6.58. The second order coefficients can be found from equation 6.79, which

represents a set of simultaneous linear equations.

h1 = R−1
vv rwv (6.78)

M∑
m=1

M∑
n=1

h(m, n)B(i, j,m, n) = tuuy(i, j) (6.79)

Koh & Powers (1985)obtained a solution for the above equation under the assumption

that the input sequence is Gaussian. The second order Volterra coefficients are then given

by equation 6.80, with the matrix Tuuy defined in equation 6.81 and h2 the second order
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coefficient matrix given in equation 6.82.

h2 =
1

2
R−1

uuTuuyR
−1
uu (6.80)

T uuy =



tuuy(1, 1) tuuy(1, 2) tuuy(1, 3) · · · tuuy(1, MH)

tuuy(2, 1) tuuy(2, 2)
...

tuuy(3, 1)
. . .

...

tuuy(MH, 1) · · · tuuy(MH, MH)


(6.81)

h2 =



h2(1, 1) h2(1, 2) h2(1, 3) · · · h(1, MH)

h2(2, 1) h2(2, 2)
...

h2(3, 1)
. . .

...

h2(MH, 1) · · · h2(MH, MH)


(6.82)

For an independent, identically distributed input sequence, B(i, j,m, n) is given by

equation 6.83, where kurtosis is defined as in equation 6.11. Note that, under this defi-

nition, the kurtosis of a Gaussian sequence is 0.

It then follows from equation 6.79 that the second order parameters are given by

equation 6.84. No finite solution exists for the diagonal parameters (i = j) for a sequence

with a kurtosis of −2, which is the kurtosis of a pseudo random binary sequence (Pearson

et al., 1996). This means that pseudo random binary sequences cannot be used to identify

the diagonal second order coefficients of Volterra series. This confirms the persistent

excitation requirement given by Nowak & Veen (1994).

B(i, j,m, n) =


(κ + 2)σ4 i = j = m = n

σ4 i = m, j = n, m 6= n

σ4 i = n, j = m, m 6= n

0 otherwise

(6.83)

h2(i, j) =

{
twvv(i,j)
(κ+2)σ4 i = j
twvv(i,j)

2σ4 i 6= j
(6.84)

Identification with deterministic inputs

As discussed in section 6.7.2, the diagonal (i = j) parameters cannot be identified from

a pseudo random binary sequence, while it is possible to identify the off-diagonal (i 6= j).

Parker et al. (2001) developed an identification method based on this property.
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A second order Volterra series can be decomposed into constant, linear, diagonal and

off-diagonal terms. Equation 6.88 exploits the property h2(i, j) = h2(j, i) (Parker et al.,

2001).

y(k) = h0 + L(k) + D(k) + O(k) (6.85)

where

L(K) =
MH∑
i=1

h(i)u(k − 1) (6.86)

D(k) =
MH∑
i=1

h2(i, i)u
2(k − i) (6.87)

O(k) = 2
MH∑
i=1

i−1∑
j=1

h2(i, j)u(k − i)u(k − j) (6.88)

While the diagonal parameters do not contribute to the identification under pseudo

random binary sequences, the off-diagonal parameters do not contribute to the process

response for an impulse response, since u(k−i)u(k−j) = 0 for i 6= j (Parker et al., 2001).

The constant, linear and diagonal parameters can be identified from the input sequence

given in equation 6.89. The model response for this input sequence is given in equation

6.90.

u(k) =


ξ k = 0

0 1 ≤ k ≤ MH

−ξ k = MH + 1

0 MH + 2 ≤ k ≤ 2MH + 1

(6.89)

y(k) =


h0 k = 0

h0 + h1(k)ζ + h2(k, k)ζ2 1 ≤ k ≤ MH

h0 k = MH + 1

h0 − h1(k −MH − 1)ζ + h2(k −MH − 1, k −MH − 1)ζ2 MH + 2 ≤ k ≤ 2MH + 1

(6.90)

The aim is to find model parameters which minimise the squared prediction error. To

minimise the this error, it is required that
∂Jf

∂h1(i)
= 0. This gives equation 6.92 (Parker

et al., 2001) Similarly, the requirement that
∂Jf

∂h2(i,j)
leads to equation 6.93 (Parker et al.,

2001).

Jf =
2MH+1∑

k=0

[y(k)− ŷ(k)]2 (6.91)
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h1 =
y(k)− y(k + MH + 1)

2ζ
(6.92)

h0 + ζ2ĥ2(k, k) =
y(k)− y(k + M + 1)

2
(6.93)

h0 +
ζ2

M + 1

M∑
k+1

ĥ2(k, k) =
1

2M + 2

2M+1∑
k=0

y(k) (6.94)

Equations 6.93 and 6.94 can be solved simultaneously to obtain explicit expressions

for h0 and h2(k, k) given in equations 6.95 and 6.96.

h0 =
y(0) + y(M + 1)

2
(6.95)

h2(k, k) =
y(k)− y(0) + y(k + M + 1)− y(M + 1)

2ζ2
(6.96)

These equations estimate 2MH + 1 model parameters from 2MH + 2 observations.

This approach should be reasonable in absence of noise and measurement errors. However,

it is usually better to repeat the input sequence defined in 6.89 and take an average of

the parameters (Parker et al., 2001).

It is possible to estimate the off diagonal parameters by selecting deterministic input

sequences designed to excite the plant so that the responses are determined primarily by

the off-diagonal parameters (Parker et al., 2001). However, as was seen in section 6.7.2,

the off-diagonal parameters can easily be identified from a pseudorandom binary sequence.
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CHAPTER 7

Model identification results

The results obtained during the identification of second order Volterra models of

the flotation circuit described in chapter 5 are presented in this chapter. The

identification of the first order and diagonal second order Volterra coefficients are

discussed in section 7.1.3. The identification of the second order off diagonal

elements are discussed in section 7.1.4, while the use of pruned Volterra models

are discussed in section 7.1.5.

7.1 Volterra models

The identification methods proposed by Parker et al. (2001), described in sections 6.7.2

were applied to the flotation circuit model. In this procedure, the linear and diagonal

coefficients of the Volterra model is identified, after which the off-diagonal coefficients are

identified.

7.1.1 Sampling interval

The sampling interval for the model must be small enough to model the process dynamics,

but smaller sampling intervals require more parameters for a fixed model horizon. A

sampling interval of 25 s was selected. This sampling interval was sufficiently small to

include the inverse response observed in some of the model responses.

7.1.2 Model horizon

The model horizon should be sufficiently large to include all the relevant dynamics as

well as the steady state gain. For this system, the process has reached steady state after

2000 s. With a sampling time of 25 s, this gives a model horizon of 80 intervals.
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7.1.3 Identification of the linear and diagonal coefficients

The linear and off-diagonal coefficients are identified with the input sequence shown in

equation 7.1 (see section 6.7.2). The value of gamma should be chosen so that the

operating region of interest is excited (Parker et al., 2001). For the scaled system, the

value of ξ is equal to one.

u(k) =


ξ k = 0

0 1 ≤ k ≤ MH

−ξ k = MH + 1

0 M + 2 ≤ k ≤ 2MH + 1

(7.1)

For a model horizon MH, MH first order (linear) Volterra coefficients will be iden-

tified, and MH second order diagonal coefficients will be identified. This means that

2MH parameters are identified from 2MH + 1 data points. This is a valid approach in

the absence of noise and measurement errors (Parker et al., 2001).

The results obtained for the model consisting of only the first order model coefficients

are shown in figures 7.1 to 7.8. The responses shown are for input steps of -1 and 1.

Since the first order Volterra models are linear, the models cannot adequately describe

the nonlinear behaviour of the process.
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Figure 7.1: Comparison between the actual and response of the product grade to steps in the
air flow to the rougher bank and the predicted response for a first order Volterra
series

The results obtained for a model consisting of a combination of the first order Volterra

coefficients as well as the diagonal second order Volterra coefficients are shown in fig-
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Figure 7.2: Comparison between the actual response of the recovery to steps in the air flow
to the rougher bank and the predicted response for a first order Volterra series
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Figure 7.3: Comparison between the actual response of the product grade to steps in the air
flow to the cleaner bank and the predicted response for a first order Volterra series
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Figure 7.4: Comparison between the actual response of the recovery to steps in the air flow
to the cleaner bank and the predicted response for a first order Volterra series
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Figure 7.5: Comparison between the actual response of the product grade to steps in the pulp
flow from the rougher bank and the predicted response for a first order Volterra
series
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Figure 7.6: Comparison between the actual response of the recovery to steps in the pulp flow
from the rougher bank and the predicted response for a first order Volterra series
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Figure 7.7: Comparison between the actual response of the product grade to steps in the pulp
flow from the cleaner bank and the predicted response for a first order Volterra
series
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Figure 7.8: Comparison between the actual response of the recovery to steps in the pulp flow
from the cleaner bank and the predicted response for a first order Volterra series

ures 7.9 to 7.16. These models contain nonlinear terms and are able to describe some of

the system nonlinearity. The performance of the linear and diagonal second order models

will be compared in section 7.2.
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Figure 7.9: Comparison between the actual and response of the product grade to steps in the
air flow to the rougher bank and the predicted response for a diagonal second
order Volterra series

7.1.4 Identification of the off-diagonal coefficients

The second order off-diagonal coefficients (h2(i, j) with i 6= j) can be calculated with the

methods described in section 6.7.2. In this method, the plant is excited with a pseudo

random binary input sequence. For this sequence, the contribution of the diagonal and

first order coefficients to the process response are minimal (Parker et al., 2001), (Pearson

et al., 1996).

The off-diagonal coefficients are calculated from equation 7.2, with the cross bi-

correlation tyuu given by equation 7.3 (Koh & Powers, 1985). This correlation requires

large data sets to be accurate.

h2(i, j) =
{

tyuu(i,j)

2σ4 i 6= j (7.2)

tyuu(τ1, τ2) =
1

N

N−τ1∑
t=1

u(t)u(t + τ1 − τ2)y(t + τ1) (7.3)

The off-diagonal second order Volterra coefficients were identified from a data set

consisting of 45000 data points. The results are shown in figures 7.17 to 7.24. Despite

the large data set used, not all the model has not fully converged. In particular, the steady

state behaviour is not described correctly. The number of data points is equivalent to

313 hours of identification per input. These excessive data requirements make the full
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Figure 7.10: Comparison between the actual response of the recovery to steps in the air flow to
the rougher bank and the predicted response for a diagonal second order Volterra
series
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Figure 7.11: Comparison between the actual response of the product grade to steps in the air
flow to the cleaner bank and the predicted response for a diagonal second order
Volterra series

76

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDeellppoorrtt,,  RR    ((22000055))  



0 5 10 15 20 25 30 35
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (min)

S
ca

le
d 

ou
tp

ut

First order coefficient and diagonal second order coefficient model
Actual process response

Figure 7.12: Comparison between the actual response of the recovery to steps in the air flow to
the cleaner bank and the predicted response for a diagonal second order Volterra
series
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Figure 7.13: Comparison between the actual response of the product grade to steps in the
pulp flow from the rougher bank and the predicted response for a diagonal second
order Volterra series
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Figure 7.14: Comparison between the actual response of the recovery to steps in the pulp flow
from the rougher bank and the predicted response for a diagonal second order
Volterra series
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Figure 7.15: Comparison between the actual response of the product grade to steps in the pulp
flow from the cleaner bank and the predicted response for a diagonal second order
Volterra series
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Figure 7.16: Comparison between the actual response of the recovery to steps in the pulp flow
from the cleaner bank and the predicted response for a diagonal second order
Volterra series

Volterra model impractical. This leads to interest in pruned Volterra models, where some

of the second order coefficients are constrained to zero.
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Figure 7.17: Comparison between the actual and response of the product grade to steps in
the air flow to the rougher bank and the predicted response for second order
Volterra series

7.1.5 Pruned Volterra models

Pearson et al. (1996) gave the following formal definition of a pruned Volterra model.

Let M be the set of integers M = {1, 2, · · ·M} and let S be a subset of M. A model is

pruned with respect to S if:

h2(i, j) = 0 if (i, j) ∈ S (7.4)

Pearson et al. (1996) proved that, for IID input sequences, constraining some param-

eters to zero has no influence on the values of the remaining unconstrained parameter

estimates. This property was used to prune the second order Volterra models.

The following procedure was used to obtain a pruned Volterra model. Initially, a full

Volterra model was identified. One second order coefficient was considered at a time. The

predicted response with the coefficient constrained to zero was calculated, and the sum

of squared errors and the steady state error was compared to the error values with the

coefficient at its calculated value. If the errors are larger for the case where the coefficient

is constrained to zero, the coefficient is retained.

The results obtained with pruned models obtained with the procedure described above

is shown in figures 7.25 to 7.32. The full second order model used as a starting point

was the second order model obtained above.
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Figure 7.18: Comparison between the actual response of the recovery to steps in the air flow
to the rougher bank and the predicted response for a second order Volterra series
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Figure 7.19: Comparison between the actual response of the product grade to steps in the air
flow to the cleaner bank and the predicted response for a second order Volterra
series
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Figure 7.20: Comparison between the actual response of the recovery to steps in the air flow
to the cleaner bank and the predicted response for a second order Volterra series
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Figure 7.21: Comparison between the actual response of the product grade to steps in the
pulp flow from the rougher bank and the predicted response for a second order
Volterra series
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Figure 7.22: Comparison between the actual response of the recovery to steps in the pulp flow
from the rougher bank and the predicted response for a second order Volterra
series
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Figure 7.23: Comparison between the actual response of the product grade to steps in the
pulp flow from the cleaner bank and the predicted response for a second order
Volterra series
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Figure 7.24: Comparison between the actual response of the recovery to steps in the pulp flow
from the cleaner bank and the predicted response for a second order Volterra
series
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Figure 7.25: Comparison between the actual and response of the product grade to steps in
the air flow to the rougher bank and the predicted response for a pruned second
order Volterra series obtained from a large data set
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Figure 7.26: Comparison between the actual response of the recovery to steps in the air flow to
the rougher bank and the predicted response for a pruned second order Volterra
series obtained from a large data set
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Figure 7.27: Comparison between the actual response of the product grade to steps in the air
flow to the cleaner bank and the predicted response for a pruned second order
Volterra series obtained from a large data set
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Figure 7.28: Comparison between the actual response of the recovery to steps in the air flow to
the cleaner bank and the predicted response for a pruned second order Volterra
series obtained from a large data set
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Figure 7.29: Comparison between the actual response of the product grade to steps in the
pulp flow from the rougher bank and the predicted response for a pruned second
order Volterra series obtained from a large data set
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Figure 7.30: Comparison between the actual response of the recovery to steps in the pulp
flow from the rougher bank and the predicted response for a pruned second
order Volterra series obtained from a large data set
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Figure 7.31: Comparison between the actual response of the product grade to steps in the
pulp flow from the cleaner bank and the predicted response for a pruned second
order Volterra series
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Figure 7.32: Comparison between the actual response of the recovery to steps in the pulp
flow from the cleaner bank and the predicted response for a pruned second order
Volterra series

7.2 Comparison of results

The sum of squared errors and steady state errors for the first order, diagonal second

order and pruned second order Volterra series are shown in figures 7.33 and 7.34. These

error values are the average values obtained for steps of -1, -0.5, 0.5 and 1.

The largest improvement in model fit obtained with nonlinear models is for the first

input– ouput pair (air flow to the first (rougher) bank and concentrate grade). This

response is severely nonlinear, in that the sign of the gain changes. The linear model is

unable to describe this phenomenon. The diagonal model is able to describe the gain sign

inversion, but exhibits a large steady state offset. The pruned Volterra model reduces

this offset as well as the sum of squared errors.

The second largest improvement is for the response between the flow setpoint from

the second (rougher) bank and the concentrate grade. This response also exhibits a gain

sign change. Both the pruned second order model and the model containing only diagonal

second order coefficients were able to predict the sign of the gain correctly.

The differences in the model predictions are less dramatic for the other input– output

pairs, but the pruned Volterra model performs better in terms of both steady state offset

and sum of squared errors in all cases. The second order diagonal model performs worse

than the linear model for the response of both outputs to the air flow to the second

(cleaner) bank. For both the outputs the diagonal model is able to predict the size of the

peak, but does not settle to the correct steady state value.
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Figure 7.33: The sum of squared errors for the first order, diagonal second order and pruned
second order models for all system input output pairs
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Figure 7.34: The steady state errors for the first order, diagonal second order and pruned
second order models for all system input output pairs
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While the results shown above were obtained with a large data set, pruned Volterra

models make it possible to use less data and still obtain a reasonable improvement in the

fit obtained. The data set used for the identification of the full Volterra model used as

a starting point was reduced by 25%, 50% and 75% respectively. Figure 7.35 compares

the results model obtained from the larger data set with the pruned model obtained from

the reduced data sets as well as the second order diagonal model. Even with a data set

reduced by 75%, the pruned second models performed better than a second order model

containing only diagonal coefficients. The performance obtained with the reduced data

sets are comparable to that obtained with the full data set. This shows that pruned

Volterra models can be obtained from data sets that are significantly smaller than those

required by full Volterra models.

A 1 − G A 1 − R A 2 −G A 2 − R F 1 − G F 1 − R F 2 − G F 2 −R
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Linear and Diagonal model

Figure 7.35: Comparison between the sum of squared errors for pruned models obtained with
a full data set, a 75%, 50% and 25% reduced data set and the diagonal second
order model

Even with a 75 % reduction in the required data points, the data set is still large.

For some of the input ouput pairs, the improvement in model predictions is not sufficient

to justify such a long testing period, and the linear or diagonal model may be used. For

other input – ouput pairs, such as the the air flow to bank 1 – concentrate grade, the

improvement in model fit is significant enough to justify the identification of off-diagonal

elements.
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7.3 Output superposition

For linear systems, the process response to two or more simultaneous inputs is equal to

the sum of the responses of the system to the individual inputs (see section 6.2.1). This

property does not hold for nonlinear systems.

To model these effects with Volterra series, additional terms will have to be added

which will lead to further complications during identification. For this reason, it was

assumed that the process response due to two simultaneous inputs can be approximated

as the sum of the responses to the inputs acting individually.
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CHAPTER 8

Model predictive control

This chapter provides background on model predictive control. Linear model pre-

dictive control is discussed first, after which a nonlinear model predictive algorithm

based on Volterra models is shown. A matrix formulation for the calculation of

the second order terms is presented in section 8.2.4.

8.1 Linear model predictive control

Model predictive control can be defined as “.. a class of control algorithms that utilize

an explicit process model to predict the future response of the plant..” (Qin & Badg-

well, 2003). Linear model predictive control uses a linear process model to make these

predictions. Model predictive control became popular with the publication of papers

on dynamic matrix control (DMC) (Cutler et al., 1983) and model predictive heuristic

control (Richalet et al., 1978).

8.1.1 Dynamic matrix control

This control algorithm predicts the process response with a step response model, as

discussed in section 6.5.2. The predicted process response one step ahead in time is given

by equation 8.1 (Cutler et al., 1983).

y(k + 1) = y0 +
k∑

i=1

a(k − i + 1)∆u(i) (8.1)

This equation can now be applied to predict the process response, starting at time k, to

CH manipulated variable moves PH intervals into the future, where CH and PH are the

control horizon and prediction horizon respectively. The result is given in equation 8.2.
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If i ≥ M , a(i) = a(MH), where MH is the number of step response coefficients (model

horizon) (Cutler et al., 1983).

y(k + PH) = y0 +
k+CH−1∑

i=0

a(k + PH − i)∆u(i) (8.2)

The prediction includes contributions from past inputs as well as the effect of the

predicted inputs. The past and future terms can be separated as shown in equation 8.3

(Cutler et al., 1983).

y(k + PH) = y0 +
k−1∑
i=0

a(k + PH − i)∆u(i) +
k+CH−1∑

i=k

a(k + PH − i)∆u(i) (8.3)

= y0 + ypast +
k+N−1∑

i=k

∆u(i) (8.4)

This series sum can be used to calculate the predicted process output, as illustrated

below. This leads to the matrix equation shown in 8.6.

y(k + 1) = ypast(k + 1) + a(1)∆u(k)

y(k + 2) = ypast(k + 2) + a(2)∆u(k) + a(1)∆u(k + 1)

... =
...

y(k + CH) = ypast(k + CH) + a(CH)∆u(k) + a(CH − 1)∆u(k + 1) + · · ·+ a(1)∆u(k + CH − 1)

y(k + MH) = ypast(k + MH) + a(MH)∆u(k) + a(MH − 1)∆u(k + 1) + · · ·

+ a(MH − CH + 1)∆u(k + CH − 1)

(8.5)


y(k + 1)

y(k + 2)
...

y(k + MH)

 =


ypast(k + 1)

ypast(k + 2)
...

ypast(k + MH)

+ A


∆u(k)

∆u(k + 1)
...

∆u(k + CH − 1)

 (8.6)

A =



a(1) 0 0 . . . 0

a(2) a(1) 0 . . . 0

a(3) a(2) a(1) . . . 0
...

. . .
...

a(PH) a(PH − 1) · · · a(PH − CH)


(8.7)

The matrix A is called the Dynamic Matrix of the process. The contribution of
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unmeasured disturbances as well as model inaccuracies can be estimated based on the

difference between the actual and predicted process output. It is usually assumed that

the modelling error is equal to the present value of the error.

d(k) = y(k)measured − (y0 + y(k)past) (8.8)

Equation 8.6 can be rearranged into equation 8.9. The difference between the set-

point and the predicted output due to manipulated variable moves is written as Ef in

equation 8.10. Ef is the error that would occur if no future adjustments are made to the

manipulated variable. An objective function for the model predictive controller is given

in equation 8.11. The deviations from set point can be weighed by introducing weighing

factors into the objective function, shown in equation 8.13. The manipulated variable

moves can also be penalised by introducing manipulated variable weights (WMV ).

A


∆u(k)

∆u(k + 1)
...

∆u(k + U − 1)

 =


yset − ypast(k + 1)

yset − ypast(k + 2)
...

...

yset − ypast(k + M)

 (8.9)

A∆u = Ef (8.10)

Jf =
V∑

i=1

[yset − ypast − A∆u]2 (8.11)

Jf =
V∑

i=1

[
Ef − A∆u

]
(8.12)

Jf =
V∑

i=1

[
WCV (Ef − A∆u)2

]
+

M∑
i=1

WMV (∆u) (8.13)

Equation 8.13 can be written in terms of matrix operations, as shown in equation 8.14.

Jf =
1

2

(
A∆u− Ef

)T
W T W

(
A∆u− Ef

)
(8.14)

The solution to the least squares problem in the absence of constraints is then given

by differentiation of equation 8.14, leading to equation 8.15. If constraints are added, the

solution must be found with nonlinear programming techniques.

∆u =
(
AT W T

CV WCV A + WMV

)−1
AT W T

CV WCV Ef (8.15)
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8.1.2 QDMC

Quadratic dynamic matrix control uses the basic formulation of the dynamic matrix

controller (DMC) combined with quadratic programming to solve a constrained multi-

variable control problem. In other words, the controller finds the least squares solution

to equation 8.11 subject to a set of linear constraints (Cutler et al., 1983).

8.1.3 Model predictive heuristic control

Model predictive heuristic control (Richalet et al., 1978) was another one of the earliest

applications of model predictive control. In this algorithm, the difference between a

reference trajectory and the predicted process response is minimized. An example of

a simple first order reference trajectory is shown in equation 8.16 and illustrated in

figure 8.1.

yreference(n + i) = λyreference(n + i− 1) + (1− λ)yset (8.16)

yreference(n) = y(0) (8.17)

FuturePast

∆T

Measured output

yset

Calculated input

yreference

ypredicted

Figure 8.1: The use of a reference trajectory in model predictive heuristic control
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8.2 Nonlinear model predictive control

Nonlinear model predictive control uses a nonlinear dynamic model for the prediction

and optimisation where linear predictive control uses a linear model. Model predictive

control is usually applied either to highly nonlinear processes that operate around a fixed

operating point or to moderately nonlinear processes that operate over a wide operating

range (Henson, 1998).

A wide variety of models have been used for nonlinear model predictive algorithms.

These include:

� fundamental nonlinear differential equations; (Sistu et al., 1993)

� Hammerstein and Wiener models;

� Volterra models; Kashiwagi & Li (2004), (Maner et al., 1996)

� polynomial ARMAX models and

� neural networks.

While fundamental models are valid over a very wide operating region, these models

tend to be impractical for application in an industrial environment. The other model

types can be obtained from plant data, which is more practical in an industrial environ-

ment.

8.2.1 Volterra series nonlinear model predictive control

Maner et al. (1996) proposed a nonlinear model predictive control scheme based on second

order Volterra series. This control scheme is attractive since it can be composed into

a linear model predictive controller with additional nonlinear terms. This formulation

retains the essence of the widely accepted MPC algorithm while promising improved

control for nonlinear systems.

The block diagram for the Volterra series nonlinear model predictive controller is

shown in figure 8.2. Fsp is a setpoint filter used to implement the setpoint trajectory. P̃1

indicates the linear part of the model, while P̃2 indicates the nonlinear part of the model.

The open loop model prediction for the SISO case is shown in equation 8.18. The term

c is expanded in equation 8.19.
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Figure 8.2: Block diagram for a second order Volterra Model predictive controller Maner et al.
(1996)


y(k)

y(k + 2)
...

y(k + PH)

 =


h1(1) 0 · · · 0

h1(2) h1(1)
. . . 0

...
. . .

...

h1(PH) h2(PH − 1) · · · h1(PH − CH)




u(k)

u(k + 1)
...

u(k + PH − 1)



+


c(k + 1)

c(k + 2)
...

c(k + PH)

+


f(k + 1)

f(k + 2)
...

f(k + PH)


(8.18)


c(k + 1)

c(k + 2)
...

c(k + PH)

 =



h1(2) h1(3) · · · · · · h1(MH) 0

h1(3) h1(4) · · · h1(MH − 1) 0 0
...

. . .
...

h1(PH − 1) h1(PH) 0
. . .

...

h1(PH) 0 0 0
. . .

...

0 0 0 0 0 0




u(k − 1)

u(k − 2)
...

u(k − CH)



+


d(k + 1)

d(k + 1)
...

d(k + 1)

+


g(k + 1)

g(k + 2)
...

g(k + PH)


(8.19)

Equations 8.18 and 8.19 may also be written as 8.20 and 8.21. The terms f and

g represent the contribution of the second order Volterra coefficients. The calculation

of these terms will be discussed in section 8.2.4. d(k + 1) is the difference between

the measured controlled variable value and the predicted value. This term introduces
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feedback into the prediction, and compensates for modelling inaccuracies. This SISO

formulation can easily be extended to MIMO systems, as shown in equations 8.22 and

8.23.

y = Gu + c + f (8.20)

c = Hupast + d + g (8.21)


y1

y2

· · ·
ynCV

 =


G11 G12 · · · G1nMV

G21 G22 · · · G2nMV

...
...

. . .
...

GnCV1
GnCV2

· · · GnCVnMV




u1

u2

...

unMV

+


c1

c2

...

cnCV

+


f 1

f 2
...

fnCV


(8.22)


c1

c2

...

cnCV

 =


H11 H12 · · · H1nMV

H21 H22 · · · H2nMV

...
...

. . .
...

HnCV1
HnCV2

· · · HnCV
nMV




upast,1

upast,2

...

upast,nMV



+


d1

d2

...

dnMV

+


g1

g2
...

gnMV


(8.23)

8.2.2 Control algorithm

The objective function for the controller is given by equation 8.24. This equation can be

differentiated with respect to the manipulated variable u to find the manipulated variable

values that will minimize the sum of the squared error over the prediction horizon. The

calculation is complicated by the fact that f is also a function of u. Maner et al. (1996)

assumed that f was independent of u for the differentiation of 8.24. The controller moves

are then calculated from the following iterative procedure.

Jf = (s− y)T (s− y) (8.24)

= (s− (Gu + c + f))T (s− (Gu + c + f)) (8.25)

The manipulated variable values are calculated from equation 8.26, which was ob-
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tained from equation 8.24 with the assumption that f is not a function of the manipu-

lated variables. For the first iteration, f is calculated from assumed manipulated variable

values.

u =
(
GT G

)−1
(
(s− c− f)T G

)T

(8.26)

The difference between the manipulated variable values at the previous iteration and

the current iteration is calculated, and if the error is below a specified tolerance, the

manipulated variable values are implemented. If the error is too large, new values of f

are calculated with the calculated u values and the procedure are repeated.

This formulation will lead to an unstable controller if GT G is singular or near singu-

lar. In the DMC controller algorithm, this situation can be handled by penalising the

manipulated variable changes. In this case, the controller is formulated in terms of the

manipulated variable values, and penalising the manipulated variable values leads to a

steady state offset. If the manipulated variable changes are penalised in the objective

function, an analytic solution is no longer possible.

8.2.3 Nonlinear programming

It is also possible to minimize equation 8.27 subject to the constraints given in equa-

tions 8.29 and 8.30 to obtain the manipulated variables (Maner et al., 1996).

Jf = (s− y)T W CV (s− y) + WMV∆u (8.27)

= (s− (Gu + c + f))T WCV (s− (Gu + c + f)) + WMV∆u (8.28)

ulow ≤ u ≤ uhigh (8.29)

∆ulow ≤ ∆u ≤ ∆uhigh (8.30)

8.2.4 Calculation of the second order contributions

For the SISO case, the contribution of the second order coefficients can be calculated as

follows (Maner et al., 1996). For each input – output pair, the matrix Boi is defined,

where o is the output and i is the input. The matrix contains the second order Volterra

coefficients. The calculation procedure is illustrated for the case where the model horizon
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MH is 4, the prediction horizon PH is 3 and the control horizon CH is 2.

Boi =


h2(1, 1) h2(1, 2) h2(1, 3) h2(1, 4)

0 h2(2, 2) h(2, 3) h2(2, 4)

0 0 h2(3, 3) h2(3, 4)

0 0 0 h2(4, 4)

 (8.31)

f(k + 1) =
[

u(k) 0 0 0
]
B
[

u(k) u(k − 1) u(k − 2) u(k − 3)
]T

(8.32)

f(k + 2) =
[

u(k + 1) u(k) 0 0
]
B
[

u(k + 1) u(k) u(k − 1) u(k − 2)
]T

(8.33)

f(k + 3) =
[

u(k + 2) u(k + 1) u(k) 0
]
B
[

u(k + 2) u(k + 1) u(k) u(k − 1)
]T

(8.34)

Similarly, the contribution of the second order coefficients due to past manipulated

variable moves is given below.

g(k + 1) =
[

0 u(k − 1) u(k − 2) u(k − 3)
]
B
[

0 0 u(k − 1) u(k − 2)
]T
(8.35)

g(k + 2) =
[

0 0 u(k − 1) u(k − 2)
]
B
[

0 0 u(k − 1) u(k − 2)
]

(8.36)

g(k + 3) =
[

0 0 0 u(k − 1)
]
B
[

0 0 0 u(k − 1)
]T

(8.37)

A more compact matrix formulation of the above calculation was developed. The

calculation procedure described below makes use of matrix manipulations as far as pos-

sible. The use of this calculation method was developed for implementation in Matlab,

since the environment is optimised for matrix manipulations. An implementation of this

matrix-based formulation is executes significantly faster than an implementation based

on the formulation described above.

The following matrices of manipulated variables may be defined. The matrices in

equation 8.38 to 8.40 are all PH ×MH matrices.

Ufuture =


u(k) 0 · · · 0

u(k + 1) u(k) · · · 0
...

...
. . .

...

u(k + PH − 1) u(k + PH − 2) · · · 0

 (8.38)
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Ufuture,past =


u(k) u(k − 1) u(k − 2) u(k − 3) · · · u(k −MH − 1)

u(k + 1) u(k) u(k − 1) u(k − 2) · · · u(k −MH − 2)
...

...
...

...
. . .

...

u(k + PH − 1) u(k + PH − 2) · · · · · · · · · (k −MH − PH)


(8.39)

Upast =


0 u(k − 1) u(k − 2) · · · u(k −MH − 1)

0 0 u(k − 1) · · · u(k −MH − 2)
...

...
...

. . .
...

0 · · · · · · · · · u(k − 1)

 (8.40)

The second order contribution of future manipulated variable moves (f) can be cal-

culated by adding the columns of the PH ×MH matrix F (equation 8.41). The result

should be a column matrix of length PH. The second order contribution of the past ma-

nipulated variable moves can be calculated by summing the columns of G, which should

also lead to a colum matrix of length PH.

F = Ufuture ×B · Ufuture,past (8.41)

G = Upast ×B · Upast (8.42)

This formulation can be extended to MIMO systems. The following matrices may be

defined. The matrix shown in equation 8.43 consists of the Ufuture matrices (as defined

above) for each input. 0 is a PH×MH matrix of zeros. The matrix given in equation 8.44

is a nMVPH × nCVMH matrix. B is a nMVMH × nCVMH matrix.

U future =


U1,future 0 · · · 0

0 U2,future · · · 0
...

...
. . .

...

0 0 · · · UnMV,future

 (8.43)

U future,past =


U1,future,past U1,future,past · · · U1,future,past

U2,future,past U2,future,past · · · U2,future,past

...
...

. . .
...

UnMV,future,past UnMV,future,past UnMV,future,past UnMV,future,past

 (8.44)

101

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDeellppoorrtt,,  RR    ((22000055))  



B =


B11 B21 · · · BnCV1

B12 B22 · · · BnCV2

...
...

. . .
...

B1nMV
· · · · · · BnCVnMV

 (8.45)

F = U future ×B ·U future,past (8.46)

=


Ufuture,1B11Ufuture,past,1 · · · · · · Ufuture,1BnCV1Ufuture,past,1

Uf,2B21Ufp,2 · · · · · · Ufuture,2BnCV 2Ufuture,past,2

...
...

. . .
...

Ufuture,nMV
BnMV1Ufuture,past,nMV

· · · Ufuture,nCVnMV
BnCVnMV

Ufuture,past,nMV


(8.47)

F , obtained from equation 8.46, is a nMVPH × nCVMH matrix. This matrix can

be subdivided into nMV nCV sub matrices, corresponding to each input output pair. For

example, for a two by two system, the matrix F can be written as shown in equation 8.48.

f can be obtained by adding the submatrices corresponding to each output, and then

adding the columns of the matrices to obtain a column vector of nCVPH .

F =

[
F11 F12

F21 F22

]
(8.48)

The column vector g can be calculated in a similar manner by defining the matrices

Upast and Utextrmpast,alt and perform the multiplication shown in equation 8.51. The

column vector is then obtained by adding the columns of the sum of the submatrices as

described above.

Upast =


U1,past 0 · · · 0

0 U2,past · · · 0
...

...
. . .

...

0 0 · · · UnMV,past

 (8.49)

U future,past =


U1,past U1,past · · · U1,past

U2,past U2,past · · · U2,past

...
...

. . .
...

UnMV,past UnMV,past UnMV,past UnMV,past

 (8.50)

G = Upast ×B ·Upast,alt (8.51)
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CHAPTER 9

Control results

The results obtained with controllers based on the models obtained in chapter 7

are presented in this chapter. Controllers based on a pruned Volterra model, a

diagonal second order and a first order (linear) Volterra model are investigated.

The effects of tuning parameters such as the control and prediction horizons as

well as manipulated variable weights on the performance of the controllers are

also shown.

9.1 Control strategy

The controlled variables for this system are the final concentrate grade and the recovery

of valuable mineral in the final concentrate. Typical control strategies would aim to

maximise the recovery while keeping the grade above a minimum value, or maximise the

grade while maintaining an acceptable recovery. It would be beneficial to incorporate such

strategies directly into the controller. Unfortunately, this approach will require solving

a nonlinear programming problem with output constraints. This optimisation problem

is considerably more complex that a nonlinear optimisation with input constraints, since

this will involve nonlinear constrains as well as a nonlinear optimisation objective function

(Maner et al., 1996).

Due to the above mentioned complexities, this investigation was limited to nonlin-

ear programming problems with input constraints. The controller is given setpoints for

both grade and recovery. However, since grade and recovery are not independent, not all

combinations of these setpoints are valid. The steady state attainable region is shown in

figure 9.1. These steady state values can be obtained with all the inputs in the range −1

and 1. This figure shows that the maximum scaled recovery for these inputs is approxi-

mately 0.125, which translates to an actual recovery of about 90%. The boundaries on
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grade are less well defined. Setpoints that are clearly within the plane defined by these

points were selected for the evaluation of control performance.
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Figure 9.1: The steady state attainable region for the system

9.2 Simulink implementation

The controller was implemented in Simulink as a s-function. This implementation allows

the controller and plant model to be combined in a single Simulink simulation. The

plant model can be run continuously, while the controller obtains new measurements and

implements control moves at each sampling interval. The Simulink model containing the

controller and plant is shown in figure 9.2.

9.2.1 Least squares solution

The unconstrained objective function for the controller can be solved using the least

squares technique. Unfortunately, for this system, the matrix GT G is near singular, and

leads to an unstable controller. As discussed in section 8.2.1, the manipulated variable

moves, as opposed to the actual manipulated variable values, must be weighted by manip-

ulated variable weights. Due to this, an analytic least squares solution cannot be found

if manipulated variable weights are required. However, a solution may be obtained with

nonlinear programming methods.
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Figure 9.2: The Simulink model containing the controller and plant model

9.3 Nonlinear programming

The Matlab nonlinear programming function fmincon was used to minimise the objective

function given shown in equation 9.1.

Jf = (s− y)T W CV (s− y) + WMV ∆u (9.1)

= (s− (Gu + c + f))T WCV (s− (Gu + c + f)) + WMV ∆u (9.2)

−1 ≤ u ≤ 1 (9.3)

9.4 Controller tuning

The controller has the following tuning parameters:

� move suppression factor (WMV );

� controlled variable weights (WCV ) and

� setpoint filter (γ).

� control horizon (U);

� prediction horizon (V );

9.4.1 Move suppression factor and controlled variable weights

Move suppression factors are used to penalise manipulated variable changes in the objec-

tive function. Move suppression factors slow down the response of the feedback control
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but increases the robustness of the system to model inaccuracies (Marlin, 2000: 749).

The controlled variable weights can be used to weight the deviations from setpoint of

each controlled variable. The setpoint deviations for a weighted controlled variable will

decrease at the expense of the performance for the other controlled variables (Marlin,

2000: 749)

Manipulated variable weights were used since the controller was unstable without

manipulated variable weights. The magnitude of the manipulated variable weights used

will be discussed in section 9.5.

9.4.2 Setpoint filter

A setpoint filter can also be used to prevent large manipulated variable moves by intro-

ducing a new setpoint gradually. In this implementation, a setpoint filter was not used

since the manipulated variable weights were used and the setpoint filter in not required.

9.4.3 Prediction and control horizon

The controller required large prediction and control horizons to perform well. Both the

first order (linear) and second order (nonlinear) Volterra controllers exhibited undesir-

able behaviour for short prediction and control horizons. Figure 9.3 shows the controlled

variables for a setpoint change of 0.8 for grade and figures 9.4 and 9.5 show the manip-

ulated variables for the linear and nonlinear controller. The controlled responses were

underdamped. Similar behaviour was observed with a variety of manipulated variable

weights. Both the linear and nonlinear controllers performed significantly better for long

prediction and control horizons.

9.5 Controller performance

The performance of the first order Volterra and second order (nonlinear) Volterra con-

trollers are compared in this section. Two nonlinear controllers are investigated: a non-

linear controller based on a pruned Volterra model and a controller based on a diagonal

second order Voltera model.

In practise, recovery and concentrate grade values higher than the setpoints are not

undesirable. However, to be able to compare the relative performance of the nonlinear

and linear controllers, positive and negative deviations from setpoint are regarded as

equally undesirable.

All the results shown below were generated with a controller with a model horizon of

80, a prediction horizon of 75 and a control horizon of 65.
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Figure 9.3: The setpoint tracking of the linear and nonlinear controllers for a 0.8 change in
concentrate grade setpoint with short prediction and control horizons
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Figure 9.4: The manipulated variable behaviour of the nonlinear controller for a grade setpoint
change of 0.8 with short prediction and control horizons
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Figure 9.5: The manipulated variable behaviour for a grade setpoint change of 0.8 with short
prediction and control horizons

9.5.1 Setpoint changes

The responses for the following setpoint changes are shown below:

� no change in recovery setpoint and a 0.4 step in concentrate grade setpoint

� 0.1 step change in recovery setpoint and -0.3 change in concentrate grade setpoint

These setpoints represent typical behaviour of the system. The 0.1 recovery setpoint

change may appear small, but this setpoint is close the boundary of the steady state at-

tainable region shown in figure 9.1.The setpoint tracking obtained by a cautiously tuned

nonlinear controller are shown in figures 9.6 and 9.7. The manipulated variable weights

used to obtain these responses are shown in table 9.1. For these large manipulated

variable weights, the linear, nonlinear and diagonal nonlinear controllers gave similar

performances. However, for smaller manipulated variable weights, the controller perfor-

mances differ significantly. The controlled responses for more aggressively tuned linear

and nonlinear controllers for a grade setpoint change of 0.4 are shown in figure 9.8. The

pruned Volterra nonlinear controller reached the setpoint faster than the same cautiously

tuned controller and had no overshoot. The diagonal nonlinear controller had a slight

overshoot, but the linear controller had an considerable overshoot. This shows that the

nonlinear controller can be tuned more aggressively than the linear controller and still
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perform well. The manipulated variable behaviour for the three controllers also differ

significantly, as can be seen in figures 9.9 to 9.11. For the pruned Volterra nonlinear

controller, the manipulated variables reach their final values after approximately an hour.

The diagonal nonlinear controller takes longer, while the linear controller’s manipulated

variables did not reach their final values during the period shown in the graph.
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Figure 9.6: The setpoint tracking obtained with a cautiously tuned nonlinear controller for a
grade setpoint change of 0.4

9.5.2 Disturbance rejection

The disturbance that was considered is a change in the water flowrate to the circuit. This

disturbance alters the residence time of pulp in the cell banks and also affects entrainment.

The controlled responses for disturbances of -0.25 and 0.25 in the water flowrate are shown

in figures 9.12 and 9.13. The responses obtained with linear and diagonal nonlinear

controllers were essentially the same for these cautious tunings. The disturbance rejection

of more aggressively tuned linear and nonlinear controllers are shown in figures 9.14 and

9.15. For these disturbances, the linear controller performed slightly better than the

nonlinear controllers.

aggressively
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Figure 9.7: The setpoint tracking obtained with a cautiously tuned nonlinear controller for a
recovery setpoint change of 0.1 and a grade setpoint change of -0.3

Table 9.1: The manipulated variable weights used to obtain the controlled responses

Response Air flow to bank 1 Air flow to bank 2 Flow from bank 1 Flow from bank 2

figure 9.3 0.5 0 3 1
figure 9.4
figure 9.5
figure 9.6 4 3 8 7
figure 9.7
figure 9.12
figure 9.13
figure 9.8 0.5 0 3 2
figure 9.9
figure 9.10
figure 9.11
figure 9.14 1 0.5 4 3
figure 9.15
figure 9.16
figure 9.17
figure 9.18
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Figure 9.8: The setpoint tracking obtained with aggressively tuned nonlinear and linear con-
trollers for a grade setpoint change of 0.4
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Figure 9.9: The manipulated variable behaviour of an aggressively tuned nonlinear controller
for a grade setpoint change of 0.4
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Figure 9.10: The manipulated variable behaviour of an aggressively tuned diagonal nonlinear
controller
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Figure 9.11: The manipulated variable behaviour of an aggressively tuned linear controller for
a setpoint change of 0.4
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Figure 9.12: The disturbance rejection of a cautiously tuned nonlinear controller for a 0.25
change in water feed rate
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Figure 9.13: The disturbance rejection of cautiously tuned linear and nonlinear controllers for
a -0.25 change in the water feed rate
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Figure 9.14: The disturbance rejection of aggressively tuned linear and nonlinear controllers
for a 0.25 change in water feed rate
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Figure 9.15: The disturbance rejection of aggressively tuned linear and nonlinear controllers
for a -0.25 change in water feed rate
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Figure 9.16: The manipulated variable behaviour for a aggressively tuned nonlinear controller
for a water feedrate disturbance of 0.25
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Figure 9.17: The manipulated variable behaviour for a aggressively tuned diagonal nonlinear
controller for a water feedrate disturbance of 0.25
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Figure 9.18: The manipulated variable behaviour for a aggressively tuned linear controller for
a water feedrate disturbance of 0.25

9.6 Discussion

As described above, three controllers were evaluated in this chapter:

� a nonlinear controller based on a pruned second order Volterra model;

� a nonlinear controller based on a second order Volterra model containing only di-

agonal coefficients and

� a linear controller based on a first order Volterra model.

All three controllers were able to achieve setpoint tracking as well as disturbance

rejection when using sufficiently large prediction and control horizons.

For setpoint tracking as well as disturbance rejection, all three controllers gave es-

sentially the same results when using large manipulated variable weights. Although the

control with these settings was acceptable, the responses tended to be sluggish. To obtain

faster setpoint tracking, the manipulated variable weights may be reduced. When using

the more aggressive tunings, the performance of the linear controller deteriorates, while

good performance is obtained with the nonlinear controller based on a pruned second

order model. The nonlinear controller based on a diagonal second order model performed

better than the linear model, but worse than the controller based on the pruned second
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order model. For the aggressive manipulated variable tunings, the manipulated variables

of the linear controller took much longer to settle at their final values than the nonlinear

controllers. This means that the nonlinear controller is able to stabilise the plant faster

after a setpoint change.

The nonlinear controller based on the pruned second order model can be tuned more

aggressively because the predicted process responses are more accurate, as was seen in

chapter 7. The diagonal second order models are not more accurate than the linear

model for all input–output pairs, but the improvement in model fit for the input–output

pairs exhibiting gain sign changes is significant enough to improve the overall process

prediction.

For the case of disturbance rejection, the linear controller performed better than the

nonlinear controllers. However, the deviations from setpoint are very small. It is possible

that the disturbance excites the plant in a small region where the linear models are more

accurate than the nonlinear models.

As discussed in section 7, while pruned Volterra models require less data than full

Voltera models, the data sets are still large. This means that long plant tests are required.

For some of the input – output pairs, the improvements obtained cannot justify the plant

upsets caused by the identification routines. However, it is possible to identify nonlinear

models only for those input – output pairs known to be highly nonlinear and to use linear

models for the mildly nonlinear input – output pairs.

The nonlinear controller also requires that a nonlinear programming problem must

be solved at each sampling interval. For this to occur in real time, significant compu-

tational power is required. However, the computational power of commercially available

computers is increasing rapidly and a large computational load may be handled easily.
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CHAPTER 10

Conclusions

10.1 Flotation modelling

A model of a simple flotation circuit was constructed from semi-empirical relationships

as well as fundamental equations. This model describes the qualitative dynamic relation-

ships between the model inputs and the model outputs. The process responses obtained

from this model exhibits significantly nonlinear process responses, including asymmet-

rical responses to symmetric inputs and gain sign changes. Such behaviour cannot be

described with linear models.

10.2 Model identification

Full (unconstrained) second order Volterra models require excessively large data sets.

Even for a data set of 45000 points, the models did not provide a satisfactory fit. This

motivates the use of “pruned” Volterra models, where some of the model coefficients are

constrained to zero.

Pruned Volterra models were obtained by evaluating the sum of squared prediction

errors and the steady state error for with a coefficient at its calculated value and with

the coefficient constrained to zero. Pruned models were obtained from data sets reduced

by up to 75%. The models obtained from the smaller data sets gave sum of squared

prediction error values comparable to those obtained with a full data set. This shows

that pruned Volterra models can be obtained from significantly less data than full Volterra

models. It is also possible to use second order Volterra models containing only diagonal

coefficients. These diagonal models require even less data than pruned Volterra models

containing off-diagonal coefficients but tend to be less accurate.

The pruned models obtained in this way provided significantly better predictions
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than linear models. The pruned second order model also performed better than the

controller based on a diagonal second order model. Both the pruned second order Volterra

models and the diagonal second order Volterra models are able to represent asymmetrical

responses including gain sign changes. The diagonal second order models performed

better than the linear models for responses containing severe nonlinearities, but performed

slightly worse than the linear models for mildly nonlinear responses.

10.3 Nonlinear Volterra model predictive control

Volterra model predictive control is an intuitive nonlinear control algorithm, since it is

a higher order extension of the familiar linear model predictive algorithm. Models of

varying complexity may be used as basis for the controller.

Model predictive controllers based on first order, pruned second order and diagonal

second order Volterra models were implemented. For large manipulated variable weights,

the performance of the three controllers were essentially the same for both setpoint track-

ing and disturbance rejection. These tunings resulted in adequate but sluggish responses.

If the controllers are tuned more aggressively, the performance of the respective con-

trollers differ significantly. The nonlinear controller based on a pruned Volterra model

gave good performance even when tuned aggressively. For the same tunings, the con-

troller based on a first order Volterra model had an overshoot. The controller based on

a diagonal second order model performed slightly worse than the controller based on a

pruned Volterra model, but better than the linear model. The nonlinear models may be

tuned more aggressively, since the model predictions are more accurate.

The linear controller performed slightly better than the nonlinear controllers for the

case of disturbance rejection. The maximum deviation was essentially the same for all

three controllers, but the linear controller returned to the steady state value faster than

the other two. The deviation from setpoint is very small. It is possible that the distur-

bances excites the plant in a region where the linear models are more accurate than the

nonlinear models.

It is possible to combine linear, nonlinear and diagonal models in the controller formu-

lation. This can be advantageous, since the nonlinear terms give a drastic improvement

in model fit if the input – output response is highly nonlinear but a smaller improvement

for more mildly nonlinear responses. This approach will reduce the data requirements.

A disadvantage of the nonlinear control algorithm is that a nonlinear programming

problem must be solved at each sampling time. This is more computationally intensive

than solving a linear program. However, due to the rapidly increasing computational

power of commercially available computers, this is not a major issue.
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10.4 Recommendations

The following recommendations are made:

10.4.1 Modelling of flotation circuits

Expansion of process model The model of the flotation circuit has not been validated

with plant data. The accuracy of the model can be increased if plant data is used to obtain

values for the model parameters. The model can also be expanded to include the effects

of the addition rates of flotation reagents such as collectors and frothers, since these

flows are often used as manipulated variables. Including these inputs will allow control

strategies using these manipulated variables to be evaluated.

10.4.2 Model identification

Superposition of outputs In the present work, it was assumed that the response of

the system due to two (or more) simultaneous inputs can be approximated with the sum

of the responses due to the inputs acting individually. This assumption is valid for linear

systems, but is only approximate for nonlinear systems. It is possible that improved

performance may be obtained if terms describing the response to simultaneous inputs are

added.

Third order Volterra series Third order Volterra series are able to describe higher

order nonlinearities that second order Volterra series are not able to describe. However,

these models require even more data than second order Volterra models. These models

will only be viable for input–output pairs exhibiting severe nonlinearity. However, the

it is possible that the improvement in model may justify the added complexity. These

issues should be investigated.

10.4.3 Volterra nonlinear control

Nonlinear programming solution with output constraints The current inves-

tigation was limited to controllers using nonlinear programming techniques with input

constraints. The inclusion of output constraints lead to a more complex nonlinear pro-

gramming problem. However, the inclusion of output constraints allows one output to

be minimised while keeping another output above or below a specified value. For exam-

ple, the recovery of valuable mineral may be maximised while keeping the grade above

a specified level. This allows the controller to optimise the circuit performance. It is

recommended that the inclusion of output constraints should be included.
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APPENDIX A

Model parameter values

The values for the model parameters are given in table A.1. The value of the floatibility

for the valuable mineral is in the range reported by Vera et al. (2002) and it was assumed

that the floatibility for the gangue was zero. The parameters a to e for the bubble surface

are flux correlations are taken from Gorain et al. (1999). The drainage parameter used

in the classification function CF and the froth recovery factor correlation was taken from

Vera et al. (2002).

Gorain et al. (1999) reported cell characteristics such as cell and impeller dimensions

as well as air flowrates and particle sizes. Typical values were selected and are reported

in Table A.2.

The steady state values and maximum deviations that were used in scaling of the

circuit are shown in table A.3. The maximum deviations were the maximum values

attainable dynamically. For example, the recovery may reach values higher than 100 %

for short periods. For example, when the air flow to the cells are increases, more valuable

mineral particles are collected. If the concentration of valuable mineral in the cell is high

at that moment, the recovery will be high. As the concentration of valuable mineral in

the cell is decreases, the recovery will lessen again.
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Table A.1: Model parameters

Parameter Symbol Value Units

Mineral floatibility P 0.0025 dimensionless
Gangue floatibility P 0
Sb correltation parameter a 137.5

b 0.2905
c 0.7278
d 0.0685
e 0.3551

Drainage parameter ω 1 1/min

Froth parameter β 4 1/min

Constant describing flow between cells Kflow 0.05
Control valve coefficient for rougher bank Kvalve 0.12
Control valve coefficient for cleaner bank 0.175

Table A.2: Cell geometry and hydrodynamic characteristics

Quantity Symbol Value Units

Impeller aspect ratio As 0.75
Impeller peripheral speed Ns 0.75 m/s

80% passing feed size P80 80 µm
Cell cross sectional area A 1.875 m2

Cell height h 1.75 m

Table A.3: Steady state values and maximum deviations for model inputs and outputs

Variable Steady state value Maximum deviation (+ and -)

Air flow 0.03 m3/s

Tailings flow from rougher bank 0.1 m3/s 0.005 m3/s

Tailings flow from cleaner bank 0.031 m3/s 0.006 m3/s

Ore feed flow 45 kg/s

Water feed flow 90 kg/s 5 kg/s

Recovery 84.5 150
Concentrate grade 172.6 150
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APPENDIX B

Program structure and contents

This Appendix discusses the implementation of a flotation circuit model in Simulink,

the program used for model identification as well as the implementation of the

model predictive controller. The files used are listed and discussed and the struc-

ture of the programs are illustrated.

B.1 Flotation model

The model of a flotation circuit was implemented in Simulink. A model of a flotation cell

was created as a collection of Simulink subsystem blocks. The flotation cell block can

be connected to form a model of a flotation bank and the banks are connected to form

a flotation circuit. The structure of the flotation model is shown in figure B.1 and the

blocks used to create the model is described below.

Bubble surface area flux The bubble surface area flux for the cell design and the

current the gas flowrate into the cell is calculated.

Cell connection This block calculates the flow from the cell based on the level in

the current cell and the following cell, as well as the type of cell connection. Available

options for the type of cell connections that may be selected are “ Valve” and “Partially

connected”. If “Valve” is selected, the flow from the cell is regulated with a control valve.

If the “Partially separated” option is selected, it is assumed that the cells are separated

with a flange.

Entrainment The recovery of valuable mineral and gangue through entrainment is

calculated. The inputs for this block are the mass of mineral in the cell and the froth
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Figure B.1: The structure of the flotation circuit model
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residence time.

Froth recovery factor The froth recovery factor (Rf ) for the current froth residence

time is calculated in this block.

Froth residence time This block calculates the froth residence time based on the

flowrate of air into the cell as well as the froth level.

Initial mass in cell This block calculates the initial mass pulp in the cell from quan-

tities supplied by the user through the user interface. The initial mass pulp in the cell is

required as an initial condition.

Initial mass water in cell The initial mass water in the cell is calculated from the

initial pulp level and water concentration. This quantity is required as an initial condition

for solving the differential equations.

Level cell This block calculates the pulp level in the flotation cell.

Mineral balance This block calculates the mineral balance for the cell. The block

contains several subsystems.

Mixture density The density of a mixture is calculated from the mass fractions in the

cell and the densities of the components.

Partially connected This block calculates the flow between cells connected with a

flange.

Tank shape This block calculates the level in the tank for a given volume pulp in the

cell.

Valve This block calculates the flow through a control valve.

Water mass balance Calculates the mass balance for water.

B.2 Model identification

The structure of the identification program is shown in figure B.2. The structure of the

file “parameterEstimation” is shown in detail in figure B.3. The program consists of .m

files (scripts or functions), Simulink models, and .mat files. The following files were used.
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Figure B.2: The structure of the model identification program
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EstimatedOpenloopVolterra.m This file calculates the response as predicted by a

Volterra series model and is called by the user. A new Volterra model may be calculated,

or a model that has been calculated previously may be loaded. If a new model is to be

calculated, new data may be obtained from simulations or existing data (stored in the

form of .mat files) may be used.

The function has the following input arguments:

� Tfin, the sampling interval;

� T, the sampling interval;

� calculateNewModel, specifying whether new model coefficients should be calculated,

or if a model should be loaded;

� numIn, the number of model inputs;

� numOut, the number of model outputs;

� datareductionfrac, specifying whether the full PRBS system response should be

used to calculate a new model;

� simulatenewmodel, specifying whether new data should be obtained and

� pruned, specifying whether a full or pruned Volterra model should be used.

createInputsequence.m The impulse input sequence used for the identification of the

first order and diagonal second order coefficients is created in this function. The resulting

input sequence is saved in the file “inputsequence.mat”.

createRandomInput.m The pseudo random binary input sequence used for the iden-

tification of the off-diagonal Volterra coefficients is created in this file.

inputsequence.m This .mat file contains the input sequence used to identify the linear

and diagonal second order Volterra coefficients.

lin diag resp.mat The data used to identify the first order and diagonal second order

coefficients are stored in this file. This is the file that is loaded if new data are not

simulated.

linearDiagonal.m The first order (linear) and diagonal second order coefficients are

calculated in this function.

makeBmatrix.m The “B” matrix of second order coefficients (see section 8.2.4) is

created in this function.
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makeGmatrix.m The “G” matrix of first order coefficients (see section 8.2.1) is created

in this function.

makeHmatrix.m The “H” matrix of first order coefficients (see section 8.2.1) is cre-

ated in this function.

off diag.mdl This Simulink model contains the basic flotation circuit model. The

process response to a PRBS is obtained from this model.

offDiagonalElements.m The off-diagonal second order Volterra coefficients are cal-

culated in this function.

offIDStruct.mat This .mat file contains the data required to identify the off-diagonal

Volterra coefficients. This structure is loaded if a Volterra model is to be obtained from

existing data.

parameterEstimation.m This function is called by “EstimatedOpenloopVolterra”

and calculates the Volterra model coefficients. This function creates .mat files contain-

ing the required input sequences, runs simulations and obtains the simulation results in

the form of .mat files. This function also calls the functions which calculates the model

coefficients.

prunemodel.m This function obtains a pruned Volterra model from a full Volterra

model. One coefficient is considered at a time. The model fit with a coefficient at its

calculated value is compared with the model fit with the coefficient constrained to zero.

The actual process response may be simulated, or obtained from a .mat file.

randomInput.mat This file contains the pseudo random binary input sequence that

is used to identify the off-diagonal second order Volterra coefficients.

secondOrderPart.m The contributions of the second order terms are calculated in

this function.

simulateresponse.m The open loop response as predicted by a second order Volterra

model is calculated with this function.

sumsquareerror.m The sum of the squared differences between the predicted model

response and actual open loop response is calculated with this function.

129

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDeellppoorrtt,,  RR    ((22000055))  



ubinary.mat This .mat file contains the pseudo random binary input sequence used

to identify the off-diagonal Volterra coefficients sampled at the same sampling rate as

“ybinary.mat”.

volterraModel.mat This file contains a structure with the Volterra model coefficients

stored in the fields.

volterraModel pruned.mat This file contains a structure with the pruned Volterra

model coefficients stored in the fields.

ybinary.mat This file contains the process response (as obtained in Simulink) to a

pseudo random binary sequence.

yvals.mat “yvals” contains the process response (as obtained from the Simulink sim-

ulation) to the input sequence stored in “inputsequence”. This data is used to identify

the first order and diagonal second order coefficients.

B.3 Model predictive controller

The model predictive controller was implemented as an s-function in Simulink. Imple-

menting the controller in Simulink is advantageous, since the controller can easily inter-

face with the process model and issues such a discrete sampling rates are handled easily.

The nonlinear programming solution was obtained with the function “fmincon”, which

can be found in Matlab’s Optimisation Toolbox.

The structure of the controller program is shown in figure B.4 and the files used are

discussed below.

attainable region The steady state attainable region is obtained in this function. Each

manipulated variable is varied between -1 and 1 in a specified step size. The steady state

gain for all possible combinations of manipulated variables is obtained and plotted.

makeBmatrix, makeGmatrix and makeHmatrix . As described above.

mimoSecondOrderPart This function calculates the f term according to the matrix

formulation developed in section 8.2.4.

mimoSecondOrderPast This function calculates the g term according to the matrix

formulation described in section 8.2.4.
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Figure B.4: The structure of the model predictive controller program
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MVcalculation This function calculates the manipulated variable moves. Either non-

linear programming or a least squares solution may be used.

NMPCgoal This is the objective function required by “fmincon”. The predicted re-

sponse is calculated in this function and the errors between the predicted response and the

required response is calculated. The squared sum of these errors as well as the weighted

manipulated variable moves are minimised.

ratechangelimit Constraints on the rate at which manipulated variables may be changes

are implemented in this function.

volterranmpc.m This is the main controller function. It is implemented according the

the standard Simulink s-function template.
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