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Abstract
The responsiveness of South African fauna to climate change events is poorly documented
and not routinely incorporated into regional conservation planning exercises. The lack of
detailed distribution data for appreciable numbers of taxa demands a modeling solution. We
develop a climate envelope model to predict potential distribution range changes. The model
can be used to interpolate the distributions of poorly sampled taxa as well as predict
responses to a changing climate. It is predicted that species from the more arid western parts
of South Africa will be subject to severe range contraction and range shifts whereas the
species from the more mesic eastern parts will experience range contraction with limited
range shift. Species that could act as climate change indicator taxa are identified based on
their predicted extreme range change responses to climate change. Red-data and vulnerable
species were more likely to display range change than less threatened species. Without
mitigatory action, conservation areas are likely to lose species. The likelihood of successful
range shifts will be affected by the nature of novel communities, habitat suitability and the
degree of land transformation encountered. Given the extent of the predicted spatial
responses, conservation planners can no longer afford to ignore future climate impacts on
species distribution patterns. Disease risk profiles are also expected to change with climate;
currently, susceptible forestry plantations exist in areas which may be invaded by an
economically important pathogen. Resistant clones should be planted in these future high-
risk areas. A decrease in precipitation is an important feature of a future climate. This
decrease is expected to impact on the agricultural sector by reducing total employment as
producers switch to a more extensive production pattern. The total decline in welfare,
therefore, will fall disproportionately on the poor. Climate change presents a significant
threat to the South African biodiversity estate, and our ability to manage this transition in the
face of changing and competing land uses. Adaptation and mitigation options do exist but
they are hampered by a lack of definitive analyses, and ultimately, political will to prioritise

the threat of climate change.
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1. Introduction

Introduction

Over the past decade, biodiversity and anthropogenic climate change have seen intermittent
coverage in the popular media, having to depend on popularly reported links to
environmental disasters such as wild fires, droughts, tropical storms and floods to warrant
international news worthiness. Scientific interest in climate change issues has been more
consistent, if less spectacular from a media point of view. A consensus scientific opinion of
the global nature of climate change was first formalized in the First Assessment Report

(FAR) of the Intergovernmental Panel on Climate Change (http://www.ipce.ch) (IPCC

1990a,b,c). At that time, the report had a mandate to review the state of knowledge about
climate change, and to present an up-to-date consensus scientific opinion. The report, which
consisted of three volumes, placed considerable emphasis on the detection of climate change
signals amidst long-term natural climate variation and assessing the evidence for
anthropogenic sources for these changes. It is unclear if the 1990 report directly stimulated
climate change related investigations but the subsequent political controversy about who is
responsible for how much climate change raised the profile of climate change to a legitimate
global concern. Although a Second Assessment Report was scheduled for 1995, mounting
evidence prompted the IPCC to release Supplements to the Scientific Assessment and
Impacts Assessment of FAR in 1992 (IPCC 1992a,b) as well as Special Reports on radiative
forcing (IPCC 1994a), national greenhouse gas inventories (IPCC 1994b) and technical
guidelines for studying impacts and adaptations to climate change (IPCC 1994c). Further
momentum for the global awareness of climate change as a real threat was gained at the Earth
Summit in Rio de Janeiro in 1992. At this meeting the United Nations Framework
Convention on Climate Change (UNFCCC, http://unfece.int) was signed by about 170
countries, including the United States, who is responsible for approximately a third of global
carbon dioxide emissions. The UNFCCC called for a voluntary reduction of greenhouse gas
emissions to 1990 levels by the year 2000. By the time the 1995 Second Assessment Report
(SAR) (IPCC 1995a,b,c,d) was released, signatories to the UNFCCC realized that a more
binding commitment to the reduction of green house gas emission was needed if any real
progress was to be made. As a result, the Kyoto Protocol came into being in 1997, and will
become legally binding for signatories as soon as 55 Parties to the Convention ratify (or
approve, accept, or accede) the Protocol. These 55 parties have to include enough Annex I
Parties (developed countries, or countries transitioning to a market economy,

http://unfcce.int/resource/conv/annex 1 .html), to account for at least 55% of the carbon
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emissions of all Annex I Parties. As of 6 June 2003, 110 countries have ratified the Protocol,
accounting for 43% of 1990 global carbon emission levels

(http://unfcec.int/resource/convkp.html#kp).

Although the United States refused to ratify the Kyoto Protocol after initially supporting the
UNECCC, the resultant media coverage catapulted climate change into the limelight and
raised global public awareness. This increase in global interest following the SAR in climate
change is reflected not only in the number of special reports (five) the IPCC commissioned
before the 2001 Third Assessment Report (TAR), but also in the scope covered by these
reports: regional impacts (IPCC 1997), aviation (IPCC 1999), technology transfer (IPCC
2000), emissions scenarios (IPCC 2000) and forestry and land use change (IPCC 2000).

The TAR 2001 (IPCC 2001 a,b,c,d) summarised a growing body of evidence that the global
climate was indeed changing at an unprecedented rate, most likely due to anthropogenic
activities, and that these changes in climate are causing severe, and possibly irreversible,
changes in physical and biological systems (IPCC 2001c). Given the severity of the situation,
there is a strong focus on assessment of vulnerabilities and an identification of adaptation and

mitigation strategies.

It is clear then, that the IPCC reports underwent a shift in focus from just detecting climate
change at a global scale, to attributing these changes to anthropogenic activities, to estimating
general effects at finer scales, to quantifying effects on specific systems and finally, to
adaptation and mitigation strategies. In the context of this thesis, the interest lies in climate
change effects on biodiversity. Biodiversity conservation lacks a global coordinating body
similar to the IPCC (see Mace et al. 2000) and subsequently, public and scientific awareness
of the biodiversity crisis (Pimm 2001) is slower to gain momentum. Seminal papers on
vulnerable hotspots (e.g. Myers et al. 2000), the value of biodiversity dependent-ecosystem
services (Costanza et al. 1997, Balmford et al. 2002) and specific case studies of the decline
of charismatic mammals (e.g. Walsh et al. 2003) all contribute to raising biodiversity
awareness. By virtue of its association with sustainable development, biodiversity received a
lot of coverage at the recent World Summit on Sustainable Development held in
Johannesburg, August 2002. Although this association between biodiversity and sustainable
development is not as clear-cut and definitive as publicized catastrophic impacts of climate

change, the net effect of raising public awareness was very similar. The IPCC responded to
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this increased awareness by publishing a Technical Paper on Climate Change and
Biodiversity in 2002 in response to a request from the United Nations Convention on

Biological Diversity (IPCC 2002).

It is against this backdrop of increased awareness of the immediacy of climate change and the
biodiversity crisis that this thesis on the interface between climate change and biodiversity for
South Africa is presented. Even without climate change, land-use change poses a serious
threat to biodiversity (Schlesinger et al. 2001). In-depth studies of the biodiversity responses
to climate change have been identified as a conservation research priority for the next decade
(Schlesinger et al. 2001). This thesis is intended as a starting point to address three major
shortcomings identified by the IPCC reports: climate change impacts at finer than regional
scales, climate change impacts on biodiversity, and finally, climate change impacts on
biodiversity at these finer scales. The existing reports on climate change effects at regional
scales and climate change effects on biodiversity primarily deal with Africa as a region, with
some isolated examples (IPCC 2002). However, conservation planning is usually done at the
scale of individual countries (Erasmus et al. 1999) (with the possible exception of

transfrontier conservation areas, (see http://www.peaceparks.org)) and therefore country

specific studies are critical for climate change-integrated conservation strategies (Hannah et

al. 2002).

At any scale, the interface between climate change and biodiversity is by no means a simple
one and therefore this study is not meant to be a comprehensive guide to potential climate
impacts on South African biodiversity. Instead this thesis has two main foci: first, to quantify
the potential responses of biodiversity to climate change and assess the resulting conservation
implications, and secondly, to investigate the robustness of the methodologies followed to
arrive at these assessments. As such it provides a point of departure for further, more focused

studies, as well as a methodological reference.

The first four chapters of this thesis make up the first focus. In chapter 1, a climate envelope
model to predict the potential responses of species distributions to climate change is
developed. Essentially, this model derives a typical climate envelope for a particular species,
and given a changed climate, identifies areas where the changed climate matches the climatic

conditions of the climate envelope that was derived from the species’ present range. Such
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areas are then identified as potential novel distribution ranges for the particular species. For

illustration purposes, the model is applied to antlion distribution data.

The fact that this approach ignores several other factors that might be critical in determining
the final distribution range does not render the approach useless as suggested by Davis et al.
(1998), and to a lesser extent by Petchey et al. (1999). Huntley (1998) has shown that climate
is an important determinant of species distributions, and that species have responded to
climate change in the paleontological past by range shifts. Several studies (Pounds et al.
1999, Parmesan 1996, 1999) and reviews (Hughes 2000, Stenseth et al. 2002, Walther et al.
2002, Parmesan & Yohe 2003, Root et al. 2003) have shown that individual species have
already responded to climate change by shifting distributions. Midgley et al. (2002) provides
further support for modeling individual species instead of an entire biome. The climate-
dependent individual species-based modeling approach that was followed is a hybrid
approach between what the IPCC (IPCC 2002) calls an ecosystem movement approach and
an ecosystem modification approach. Due to species’ differential responses to a changing
climate, ecosystems will not move as units, but rather disassemble and form new assemblages
(IPCC 2002). By modeling individual species, the ecosystem modification approach was
followed, but due to a lack of knowledge on species interactions for any large number of
species, only climate was used as a determinant for the new assemblage. The validity of this
approach has sparked an ongoing debate in the literature (see critique on Samways et al. 1999
by Sutherst 2003, and the response in Samways 2003), and it will be further elucidated where

relevant in each chapter.

Chapter 2 sees the application of the model developed in chapter 1 to a selection of
representative South African biodiversity elements. The analysis proceeds on a taxon by
taxon basis, and the potential distribution changes for the country as a whole as well as for a
flagship conservation area are quantified. A subset of species regarded as vulnerable and/or
endangered is also analysed separately. Finally, these potential distribution shifts are put into
context by looking at the availability of suitable habitat corridors between current and

predicted distribution ranges.

Chapters 3 and 4 have more indirect links to conservation. Conservation is a legitimate land-
use that has to compete with other forms of land-use, such as intensive agriculture and

forestry, for a limited resource pool. The viability of conservation as an alternative form of
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land-use will change with a changing climate as conservation goals change with shifting
distribution patterns. However, competing land-uses will experience similar climatic
constraints, and their response to climate change might be beneficial to conservation, i.e.
currently marginal agricultural lands might become too marginal for crop production but still
be sufficient for more biodiversity-friendly rangeland farming. Therefore, it is of interest to
conservation planners to also have a measure of the potential response of competing land-
uses to climate change. Two case studies are presented; chapter 3 predicts the future
distribution of two economically important forestry pathogens and chapter 4 investigates the
effects of reduced precipitation on the agricultural sector in the Western Cape. Chapter 4 also
touches on the social dimension by looking at potential consequences for the labour force as

production patterns shift in response to decreased precipitation.

The last two chapters form the second, more methodological, focus area of this thesis.
During the analyses in chapters 1 to 4, limitations of the modeling approach were identified
and two of these shortcomings were addressed in the last two chapters. Once again, the
analyses are not meant to be exhaustive in their description of unwanted model behaviours,
but they rather serve as solution oriented case studies. Chapter 5 quantifies the variation
associated with any particular probability of occurrence value by using a resampling
jackknife procedure. This enables the modeller to use variation in the predicted probabilities

of occurrence as an additional constraint to refine predicted distributions.

Finally, chapter 6 compares 3 different kinds of predictive distribution models. The
comparisons are done in a spatially explicit manner, and it was found that disagreement
between models occurred in an area of ecological transition. Identifying such transition areas

prior to a predictive modeling exercise can significantly improve model performance.

I present this work as a point of departure for further, more focused studies of climate
change-biodiversity interactions in South Africa. It is not intended as a complete handbook
of potential impacts or methods; instead, I hope to elucidate commonalities with IPCC
regional assessments and hope that the results will be useful to feed into policymaking
processes. As a final product, I summarize lessons learnt from this entire thesis into

recommendations for a national study on climate change effects on biodiversity.




University of Pretoria etd — Erasmus, B F N (2006)

1. Introduction

References

Balmford A, Bruner A, Cooper P, Costanza R, Farber S, Green RE, Jenkins M, Jefferiss P,
Jessamy V, Madden J, Munro K, Myers N, Nacem S, Paavola J, Rayment M,
Rosendo S, Roughgarden J, Trumper K & Turner RK (2002) Economic reasons for

conserving wild nature. Science 297: 950-953.

Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S,
O’Neill RV, Paruelo J, Raskin RG, Sutton P & van den Belt M (1997) The value of

the world’s ecosystem services and natural capital. Nature 387:253-260.

Davis AJ, Lawton JH, Shorrocks B & Jenkinson LS (1998) Individualistic species responses
invalidate simple physiological models of community dynamics under global

environmental change. Journal of Animal Ecology 67: 600-612.

Erasmus BFN, Freitag S, Gaston KJ, Erasmus BH, & Van Jaarsveld AS (1999) Scale and
conservation planning in the real world. Proceedings of the Royal Society of London
Series B 266:315-319.

Hannah L, Midgley GF & Millar D (2002) Climate change-integrated conservation strategies.
Global Ecology & Biogeography 11:485-495.

Hughes L (2000) Biological consequences of global warming: is the signal already
apparent? Trends in Ecology and Evolution 15: 56-61.

Huntley B (1998) The dynamic response of plants to environmental change and the resulting
risks of extinction. In: Conservation in a changing world, Mace GM, Balmford A &

Ginsberg JR (Eds). Cambridge University Press, UK, pp 69-88.

IPCC (1990a) IPCC First Assessment Report: Scientific Assessment of Climate change —
Report of Working Group I. (Eds) Houghton JT, Jenkins GJ & Ephraums JJ.
Cambridge University Press, UK, pp 365.

IPCC (1990b) IPCC First Assessment Report: Impacts Assessment of Climate Change —
Report of Working Group II. (Eds) McG Tegart WJ, Sheldon GW & Griffiths DC.

Australian Government Publishing Service, Australia.



University of Pretoria etd — Erasmus, B F N (2006)

1. Introduction

IPCC (1990c) The IPCC Response Strategies — Report of Working Group IIL
Island Press, USA, pp 270.

IPCC (1992a) Climate Change 1992 - The Supplementary Report to The IPCC Scientific
Assessment. (Eds)  Houghton JT, Callander BA &  Vamey SK.
Cambridge University Press, UK, pp 205.

IPCC (1992b) Climate Change 1992 - The Supplementary Report to The IPCC Impacts
Assessment. (Eds) McG Tegart WJ & Sheldon GW. Australian Government
Publishing Service, pp 112.

IPCC (1994a) IPCC Special report: Radiative Forcing of Climate Change and An Evaluation
of the IPCC IS92 Emissions Scenarios. (Eds) Houghton JT, Meira Filho LG, Bruce J,
Hoesung Lee, Callander BA, Haites E, Hartis N & Maskell K.
Cambridge University Press, UK, pp 339.

IPCC (1994b) IPCC Guidelines for National Greenhouse Gas Inventories. IPCC Secretariat,

Geneva.

IPCC (1994c) IPCC Technical Guidelines for Assessing Climate Change Impacts and
Adaptations with a Summary for Policy Makers and a Technical Summary.
Carter TR, Parry ML Harasawa H & Nishioka S. Department of Geography,
University College London, UK and the Center for Global Environmental Research,
National Institute for Environmental Studies, Japan, pp 59.

IPCC (1995a) IPCC Second Assessment Synthesis of Scientific-Technical Information
Relevant to Interpreting Article 2 of the UNFCCC. IPCC, Geneva, Switzerland, pp
64.

IPCC (1995b) Climate Change 1995: The Science of Climate Change. Contribution of
Working Group I to the Second Assessment of the Intergovernmental Panel on
Climate Change. (Eds) Houghton JT, Meira Filho LG, Callender BA, Harris N,
Kattenberg A & Maskell K. Cambridge University Press, UK, pp 572.

IPCC (1995¢) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate
Change: Scientific-Technical Analyses. Contribution of Working Group II to the




University of Pretoria etd — Erasmus, B F N (2006)

1. Introduction

Second Assessment of the Intergovernmental Panel on Climate Change. (Eds) Watson

RT, Zinyowera MC & Moss RH. Cambridge University Press, UK, pp 878.

IPCC (1995d) Climate Change 1995: Economic and Social Dimensions of Climate Change.
Contribution of Working Group III to the Second Assessment of the
Intergovernmental Panel on Climate Change. (Eds) Bruce JP, Lee H, Haites EF.
Cambridge University Press, UK, pp 448.

IPCC (1997) The Regional Impacts of Climate Change: An Assessment of Vulnerability.
(Eds) Watson RT, Zinyowera MC & Moss RH. Cambridge University Press, UK, pp
517.

IPCC (1999) Aviation and the Global Atmosphere. (Eds) Penner JE, Lister DH, Griggs DI,
Dokken DJ & McFarland M. Cambridge University Press, UK, pp 373.

IPCC (2000a) Land Use, Land-Use Change, and Forestry. (Eds) Watson RT, Noble IR, Bolin
B, Ravindranath NH, Verardo DJ & Dokken DJ. Cambridge University Press, UK, pp
373,

IPCC (2000b) Emissions Scenarios. (Eds) Nakicenovic N & Swart R. Cambridge University
Press, UK, pp 570.

IPCC (2000c) Methodological and Technological Issues in Technology Transfer. (Eds) Metz
B, Davidson O, Martens J, Van Rooijen S & Van Wie Mcgrory L. Cambridge
University Press, UK, pp 432.

IPCC (2001a) Climate Change 2001: Synthesis Report. (Eds) Watson RT and the Core
Writing Team. Cambridge University Press, UK, pp 398.

IPCC (2001b) Climate Change 2001: The Scientific Basis. (Eds) Houghton JT, Ding Y,
Briggs DJ, Noguer M, van der Linden PJ & Xiaosu D. Cambridge University Press,
UK, pp 944.

IPCC (2001c) Climate Change 2001: Impacts, Adaptation & Vulnerability. (Eds) McCarthy
JI, Canziani OF, Leary NA, Dokken DJ & White KS. Cambridge University Press,
UK, pp 1000.



University of Pretoria etd — Erasmus, B F N (2006)

1. Introduction

IPCC (2001d) Climate Change 2001: Mitigation. (Eds) Metz B, Davidson O, Swart R & Pan
J. Cambridge University Press, UK, pp 700.

IPCC (2002) Climate Change and Biodiversity: IPCC Technical Paper V. (Eds) Gitay H,
Suarez A, Watson RT & Dokken DJ. IPCC Secretariat, Geneva, pp.86.

Mace GM, Balmford A, Boitani L, Cowlishaw G, Dobson AP, Faith DP, Gaston KJ,
Humphries CJ, Vane-Wright RI, Williams PH, Lawton JH, Margules CR, May RM,
Nicholls AO, Possingham HP, Rahbek C & van Jaarsveld AS (2000) It's time to work
together and stop duplicating conservation efforts... Nature 405(6785):393.

Midgley GF, Hannah L, Millar D, Rutherford MC & Powrie LW (2002) Assessing the
vulnerability of species richness to anthropogenic climate change in a biodiversity

hotspot. Global Ecology & Biogeography 11:445-451.

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB & Kent J (2000) Biodiversity

hotspots for conservation priorities. Nature 403:853-858.
Parmesan C (1996) Climate and species' range. Nature 382: 765-766.

Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila
L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA & Warren M (1999) Poleward

shifts in geographical ranges of butterfly species associated with regional warming.
Nature 399: 579-583.

Parmesan C & Yohe G (2003) A globally coherent fingerprint of climate change impacts

across natural systems. Nature 421:37-42.

Petchey OL, McPhearson PT, Casey TM & Morin PJ (1999) Environmental warming alters

food-web structure and ecosystem function. Nature 402: 69-72.

Pimm S (2001) The world according to Pimm — a scientist audits the earth. McGraw-Hill,
New York, pp. 285.

Pounds JA, Fogden MPL & Campbell JH (1999) Biological response to climate change on a
tropical mountian. Nature 398: 611-615.

10



University of Pretoria etd — Erasmus, B F N (2006)

1. Introduction

Root T, Price JT, Hall KR, Schneider SH, Rosenzweig C & Pounds JA (2003) Fingerprints of

global warming on wild animals and plants Nature 421-57-60

Samways MJ, Osborn R, Hastings H & Hattingh V (1999) Global climate change and
accuracy of prediction of species geographical ranges: establishment success of
introduced ladybirds (Coccinellidae, Chilocorus spp.) worldwide. Journal of
Biogeography 26: 795-812.

Samways MJ (2003) Critical response from Professor Michael J. Samways. Journal of

Biogeography 30:817.

Schlesinger WH, Clark JS, Mohan JE & Reid CD. (2001) Global environmental change —
effects on biodiversity. In: Conservation Biology: research priorities for the next

decade, Soule ME & Orians GH (eds). Island Press, London, pp. 175-223.

Stenseth N Chr, Mysterud A, Ottersen G, Hurrell JW, Chan K-S & Lima M (2002)
Ecological effects of climate fluctuations. Science 297: 1292-1296

Sutherst RW (2003) Prediction of species geographical ranges. Journal of Biogeography 30:
805-816.

Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M,
Hoegh-Guldberg O & Bairlein F (2002) Ecological responses to recent climate
change. Nature 416: 389-395.

11



University of Pretoria etd — Erasmus, B F N (2006)

CHAPTER 2

A modelling approach to antlion (Neuroptera: Myrmeleontidae)

distribution patterns

12




University of Pretoria etd — Erasmus, B F N (2006)

2. Antlion distribution patterns

A modelling approach to antlion (Neuroptera: Myrmeleontidae)
distribution patterns

BF.N. Erasmus'. M. Kshatriya', MW. Mansel?, S.L. Chown® & A.S. van

Jaarsveld"*

!Conservation Planning Unit, Department of Zoology and Entomology, University of
Pretoria, Pretoria, 0002 South Africa.

?Biosystematics Division, ARC — Plant Protection Research Institute, Private Bag X134,
Pretoria, 0001 South Africa.

3Department of Zoology & Entomology, University of Pretoria, Pretoria, 0002 South Africa.

4Centre for Environmental Studies, University of Pretoria, Pretoria, 0002 South Africa

Key words: species distribution, predicted climate change, antlion

*To whom correspondence should be addressed, Asvlaarsveld@zoology.up.ac.za

Published in: Afiican Entomology(2000) 8(2):157-168

13



University of Pretoria etd — Erasmus, B F N (2006)

2. Antlion distribution patterns

ABSTRACT

The application of a model modified from Jeffree & Jeffree (1994) for investigating
the distribution responses of selected antlion species to a climate change scenario was
explored in this study. Modifications include a multivariate capability that facilitates the
incorporation of precipitation seasonality, and provides useful outputs in the form of
probability of occurrence values for each species. The model can be used to interpolate the
distributions of poorly sampled taxa as well as predict responses to a changing climate. It is
predicted that species from the more arid western parts of South Africa will be subject to
severe range contraction and range shifts whereas the species from the more mesic eastern
parts will experience range contraction with limited range shift. The likelihood of successful
range shifts will be affected by the nature of novel communities, habitat suitability and the
degree of land transformation encountered. Given the extent of the predicted spatial
responses, conservation planners can no longer afford to ignore future climate impacts on

species distribution patterns.
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INTRODUCTION

The conservation of poorly sampled taxa presents special challenges to conservation
biology. Information on the geographic distributions of such taxa should ideally be extended
through intensive biodiversity surveys before conservation decision-making (Balmford &
Gaston 1999), although this strategy is usually confounded by time and resource constraints
(Freitag et al. 1998). Acknowledging that the use of poor distribution data may significantly
affect land use and related economic efficiency of conservation practice (Balmford & Gaston
1999), an alternative strategy is to model the predicted distributions of species based on
suitable broad-scale environmental parameters, e.g. soil, climate and vegetation types
(Margules & Redhead 1995). In many instances this approach may require a number of
assumptions, including: linear relationships between species’ physiological tolerances and
their distribution limits, minimal effects of interspecific interactions on species distributions,
and that fewer rather than many abiotic variables determine distributions (Chown & Gaston
1999). In the context of the conservation crisis, however, predictive modelling remains one
of the few practical alternatives likely to provide information on species distribution patterns
and their range dynamics, at a time scale relevant to conservation practitioners.

A recent model developed by Jeffree & Jeffree (1994, 1996) to predict species’
distribution patterns and their response to climate change (Intergovernmental Panel on
Climate Change 1992) was investigated during this study. The model is straightforward and
could potentially be applied to large numbers of taxa in a cost effective manner. The original
model was modified by adding a multivariate capability that transcends pure climate
matching (Tribe & Richardson 1994; Eeley et al. 1999). The output from this modified
model is a spatially explicit set of probabilities of occurrence values for each species.

To demonstrate the potential value of this modified modelling approach, it was used
to derive interpolated distributions of selected and poorly surveyed antlion species, and to
generate climate-affected distribution patterns for these species under climate change
conditions. Because antlions generally prefer arid areas (Mansell 1985a) and climate change
models predict general aridification in southern Africa (Hewitson 1998), these neuropteran
species were considered appropriate for exploring the value of such a climate-based

distribution modelling procedure for poorly sampled taxa.
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METHODS

The study was conducted at a subcontinental scale using climate data and antlion
(Neuroptera: Myrmeleontidae) distribution data for South Africa. Data resolution was
resolved to quarter degree grid cells (approximately 25 km x 25 km). The Computing Centre
for Water Research (CCWR, University of Natal) provided climate data for 1858 grid cells
encompassing South Africa. Neuroptera distribution data were extracted from the Plant
Protection Research Institute (PPRI) database (see Freitag & Mansell 1997) which, for the
antlions, comprises 606 records for 49 species. Expert opinion showed that model output
based on less than nine sampling records produced spurious predictions and therefore
sampling density together with biome representation and expert assessment of sampling bias
were used to select appropriate species for inclusion in the model. Five species were selected
to test the modelling approach, to illustrate the principles on which the model is based, and to
demonstrate the ways in which the model can highlight potential conservation concerns. The

selected species were Palpares caffer (Burmeister), a species endemic to southern Africa with

the largest proportion of its distribution in the moister eastern parts of South Africa (Mansell,

unpubl.); Palpares speciosus (Linnaeus), a species endemic to the Eastern and Western Cape

provinces; Palparellus dubiosus (Péringuey), a species endemic to the arid western parts of

South Africa; Pamexis luteus (Thunberg), a range-restricted species endemic to the Western

Cape Fynbos biome (Low & Rebelo 1996) and Pamexis namaqua (Mansell), a range-

restricted species from the Succulent Karoo biome of Namaqualand (Mansell 1985b).
Although only five species were selected, they account for 26 % of the 606 records in the
PPRI database and were regarded as representative for the purposes of this study.

The climate data initially selected were the mean minimum temperature of the coldest
month and the mean maximum temperature of the hottest month for each grid square. Jeffree
& Jeffree (1994, 1996) considered these two variables to be sufficient for their models of the
distribution changes of European insect and plant species expected under scenarios of climate
change. However, exploratory modeling in the present study revealed that these variables
were insufficient for realistically describing antlion spatial distributions, partly as a result of
the seasonal rainfall patterns in the southern African region. As there are strong east to west
rainfall gradients across the subcontinent that have a marked influence on the biota (Schulze
1997; Harrison et al. 1997; Le Lagadec et al. 1998; Davis et al. 2000), and because antlions

are generally xerophilous (Mansell 1985a), measures of precipitation were included as
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additional explanatory variables to increase the predictive power of the proposed model.
Mean annual precipitation and precipitation seasonality were included. The latter can be seen
as a joint measure reflecting when precipitation occurs as well as the amount recorded.
Precipitation seasonality was calculated as the difference between the mean rainfall for
February and the mean rainfall for August. These months were selected based on a factor
analysis of the 12 monthly rainfall means which showed that February rainfall contributed
most to Factor 1, explaining 56 % of the variance in monthly rainfall, and August rainfall
contributed most to Factor 2 that explained an additional 37 % of the variance in monthly
rainfall. A negative precipitation seasonality value indicates winter rainfall and a positive
value summer rainfall. All mean values were calculated from climate data from the last 30
years. Two sets of climate data were used for the four variables employed; one set based on
historic climate data and the other on a General Circulation Model (GCM) predicting climate
change. The Hadley Centre Unified Model (HadCM2 with no sulphates)
(http://www.meto.govt.uk/secS/NWP/NWP_sys.html) GCM was used because it represents a
worst-case scenario for South Africa, predicting the most extreme changes in climate (G.
Kiker, pers. comm.). It predicts a temperature rise of 2.5 — 3 °C for South Africa by the time
that atmospheric carbon dioxide levels have doubled from their pre-industrial levels. Erring
on the side of caution, this means that significant changes in the regional climate can be
expected by the year 2050 (Hewitson 1998) but possibly sooner. These changes can be
expected to be significant given that climate fluctuations of similar magnitude led to biotic
range shifts during the last glacial period (Allen et al. 1999).

The original bivariate Jeffree & Jeffree (1994) modelling approach proceeded as
follows. A scatterplot of the values of all grid cells for any two chosen climate variables was
defined as the climate space. The grid cells where a particular species was recorded was
referred to as the known records (KR). The values of these two climate variables for all KR
cells were used to construct an elliptical confidence region that was superimposed on the
scatterplot (Fig. 1). The choice of an ellipse to define the confidence region implies the
assumption that the shape of the realised niche in climate space is elliptical. The ellipse was
chosen partly based on the work of Jeffree & Jeffree (1994, 1996) but also based on the need
for a simple basic model that can be used for broad scale modelling for a large number of
species. Although it would be possible to build a species-specific model that uses a more
complex shape to define the realised niche in climate space, such a model would not be

generalisable across species.
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Fig. 1. Scatterplot of the minimum and maximum temperature values for 1858
quarter degree grid squares covering South Africa. Superimposed on this
scatterplot is an elliptical confidence region whose size and shape was derived from

historic temperature values in grid squares where Palpares caffer was recorded.

Red dots represent known records for P. caffer falling inside the confidence region,
blue dots represent known records that fall outside the confidence region, green
dots represent the distribution predicted for this species by the climate data
(interpolated distribution (ID) in the text), and black dots represent the grid squares

where this species does not occur and where it was not predicted to occur.
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All points falling within this elliptical confidence region were then mapped back on to
geographical space to form an interpolated distribution where this species could occur. This
interpolated distribution based on historic climate data was referred to as ID (interpolated
distribution, historic climate). For the climate change analysis, the size, shape and position of
the elliptical confidence region was kept constant, but it is superimposed on a scatterplot of
climate variables predicted by the GCM (see Fig. 2 for an example). Points falling within the
ellipse were then mapped back to geographical space to depict a climate affected distribution
(CAD) based on GCM predicted climate change values. This approach is the biological
analogue of a bivariate analysis technique described by Sokal & Rohlf (1981) and it relies
heavily on the graphical interpretation of a two-dimensional scatterplot. It therefore has very
limited application in scenarios where three or more climate variables are needed to explain
observed distribution patterns satisfactorily.

The original model was consequently adapted to incorporate » variables. Not only did
the multivariate model significantly improve the original model, it also allowed the
production of a probability surface of occurrence for each species rather than a more
simplistic presence-absence distribution model. The modified multidimensional model
proceeds as follows:

On an n-dimensional scatterplot (for n climate variables), values of selected climate
variables were plotted for each KR grid cell and subtracted mean climate values to generate
transformed values for each grid cell. This procedure centres values around the origin of the
multidimensional scatterplot. An z x » covariance matrix was calculated and then this matrix
was used as an input to calculate eigen values and eigen vectors for the covariance matrix.
The climate variable values of all grid cells were then transformed into this eigen vector
space. The transformed climate variables were then divided by the eigen values and the
distances of these points from the above origin follows a y* distribution. This allows one to
read the probability of occurrence of a species in any grid cell off a x2 probability table at the
appropriate degree of freedom (KR-1). The technique is relatively straightforward and does
not require considerable computing power. The outcome of this analysis is a probability of

occurrence surface for each species across the country.
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Fig. 2. Scatterplot of the GCM predicted minimum and maximum temperature
values for 1858 quarter degree grid squares covering South Africa. Superimposed
on this scatterplot is an elliptical confidence region whose size and shape were

derived from historic temperature values in grid squares where Palpares caffer was

recorded. Red dots represent known records for P. caffer falling inside the
confidence region, blue dots represent known records that fall outside the
confidence region, green dots represent the distribution predicted for this species by
the climate data (climate affected distribution (CAD) in the text), and black dots
represent the grid squares where this species does not occur and where it was not

predicted to occur.
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RESULTS

Because this modified multivariate model (Jeffree & Jeffree 1994) provides a probability of
occurrence value for each grid cell, it was necessary to select an appropriate probability level
to employ across the study for comparing results from different species. At a probability of
occurrence of 50 %, about 60 % of all KR are included. Beard et al. (1999) found the same
capture rate of known records using probabilistic models to model species’ distributions and
therefore a 50 % level of probability of occurrence was regarded as sufficient to conduct
comparative analyses between species in the present study. Model validation would have
been improved by an assessment of the ability of the model to accurately predict the absence
of a species. However, the taxa analysed in this study are known to be poorly sampled and
therefore reliable absence data are not available. This makes such an assessment, although
desirable, impossible.

Initial results showed that the ID for P. caffer was very broad when employing only
minimum and maximum temperatures as explanatory variables (Fig. 3a). The ID derived
from minimum temperature, maximum temperature and mean annual precipitation
significantly improved the model by excluding the western arid regions of the subcontinent
from the ID for this species (Fig 3b), a region where this species does not occur. However,
this improved ID failed to correspond closely with the actual distribution data for the species
(Fig. 3b) because it predicted that the species would occur in the eastern summer rainfall
region of South Africa and along the southern coastal region that has a predominantly winter
rainfall pattern. Similar results for the other species confirmed that employing temperature
and mean annual rainfall in the model does not adequately represent distributions that are
strongly affected by seasonal rainfall patterns. For this reason the mean annual precipitation
variable was replaced with a precipitation seasonality value. This resulted in a further
improved predicted ID pattern for P. caffer (Fig. 4), using minimum and maximum
temperature and precipitation seasonality as explanatory variables. Here the ID is limited to
the eastern portions of South Africa, which is more consistent with the distribution data
derived from the PPRI database. The improved predictions using precipitation seasonality
together with minimum and maximum temperatures were consistent for all species except P.
dubiosus. which yielded similar ID’s when using either of the precipitation variables in

conjunction with minimum and maximum temperatures.
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Fig. 3(a). These figures (3a and 3b) illustrate the modelling process. Black squares
represent known records (KR) and grey squares represent the interpolated
distribution. This figure shows the Interpolated distribution (ID) from historic climate

data for Palpares caffer using minimum monthly temperature and maximum monthly

temperature.
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Fig. 3(b) Interpolated distribution (ID) from historic climate data for Palpares caffer

using minimum monthly temperature, maximum monthly temperature and mean

annual precipitation.
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0 300 600 Kilometers

Fig. 4. Predicted distributions for Palpares caffer derived from minimum monthly

temperature, maximum monthly temperature and precipitation seasonality. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data
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Nonetheless, following the seasonality-based procedure, on average 51.7 % (+ SD 4.9) of the
PPRI database-derived records fell within their respective ID’s generated by the modified
multivariate model. This is consistent with the 50 % probability of occurrence cut-off that
was applied to all results to indicate presence or absence of a species in this study. This,
together with the improvements brought about by the successive addition of rainfall
parameters in the model (Fig. 3), confirms that the multivariate modelling procedure appears
to be robust with regard to the prediction of distributions based on historic climate data, at
least as far as it is possible to confirm without confirmed absence records. The degree of
range contraction and range shift likely to be precipitated by climate change is summarized in
Table 1. Under the predicted climate change scenario, the antlion species mostly show range
shifts towards the eastern rim of the inland escarpment and it would seem that western
species are more vulnerable to climate change (Figs 5-8) than their eastern counterparts.. For
these western species the percentage of the CAD coinciding with the ID varies from 0 - 33.8
% (Table 1). This is well illustrated by P. dubiosus which shows a marked change in both
range size and position in response to climate change (Table 1, Fig. 5).

By contrast, although the eastern P. caffer also shows a contraction towards the
eastern rim of the escarpment, the predicted range change includes little range shift, with the
CAD and ID overlapping by 91.4 % (Table 1, Fig. 4). Overall, but with the exception of P.
luteus from the Fynbos region, distributions predicted under the climate change scenario are

markedly smaller than the current distributions predicted from historic climate data (Table 1)

DISCUSSION

Model characteristics

It is clear from this analysis that the modified model’s ability to accurately predict
distributions decreases if the distribution of the species being modelled straddles seasonal
rainfall regions. For example, P. speciosus occurs in regions with markedly different seasonal
rainfall patterns (Figs 6 & 9) resulting in the disjunct ID in Fig. 6. This distribution is
unlikely to be biologically realistic, and clearly some additional improvements to the model
are required to adequately deal with species that show this type of distribution pattern. These
improvements may include more detailed information on the biology of this particular species
to identify appropriate variables that drive its distribution pattern and a subsequent

adjustment in the model to include such variables. Such adjustments might include modelling
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Table 1. The number of grid cells occupied by each species. The values in brackets indicate
percentages. Abbreviations: KR — Known records, ID — interpolated distribution from
historical climate data, CAD — Predicted distribution from predicted climate data'. The
results are from the multivariate improvement on Jeffree & Jeffree (1994) model at a 50%

probability of occurrence

Species KR ID CAD (CAD KR falling Overlap
as % of ID) inside ID between
(% of KR) ID and

CAD

(%CAD
inside ID)

Palparellus 24 461 59 (12,7) 12 (50) 16 (27,1)

dubiosus

Palpares 74 684 361 (52,8) 43(58,1) 330 (91,4)

caffer

Palpares 27 187 65 (34,8) 13 (48,1) 22 (33,8)

speciosus

Pamexis 15 16 18 (112,5) 7 (46,7) 1(5,3)

luteus

Pamexis 9 12 6 (50,0) 5:(55,6) 0 (0)

namagqua

'"The percentage overlap between ID and CAD was calculated using proportional overlap (Prendergast
et al. 1993) where the number of coinciding grids cells is divided by the maximum number of possible
overlapping grid cells, ie. the number of grid cells containing records of the smallest distribution.
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0 300 600 Kilometers

Fig. 5. Predicted distributions for Palparellus dubiosus derived from minimum

monthly temperature, maximum monthly temperature and mean annual
precipitation. Black squares represent known records (KR) for this species, hatched
squares represent the climate affected distribution (CAD) and grey squares

represent the interpolated distribution from historic climate data.
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Fig. 6. Predicted distributions for Palpares speciosus derived from minimum monthly

temperature, maximum monthly temperature and mean annual precipitation. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data.
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0 300 600 Kilometers

Fig. 7. Predicted distributions for Pamexis luteus derived from minimum monthly

temperature, maximum monthly temperature and mean annual precipitation. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data.
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0 300 600 Kilometers

Fig. 8. Predicted distributions for Pamexis namaqua derived from minimum monthly

temperature, maximum monthly temperature and mean annual precipitation. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data.
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Fig. 9. Precipitation seasonality for South Africa, measured in mm, expressed as
the difference in mean rainfall for February and August. A positive value indicates

summer rainfall and a negative value winter rainfall.
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distributions in the two major climate regions separately, a technique that has been used to
improve similar models for tsetse flies in Zambia (Robinson et al. 1997a, b). Despite these
problematic taxa, an average of 51.7 % of the known records were captured by IDs
representing probability of occurrence values of 50 % or higher, confirming the relevance of
this employed probability level. This, together with the progressive improvement in spatial
coincidence between the ID’s and the KR’s during the modelling process (Figs 3a-b), provide
support for the the modelling approach adopted. Apart from the obvious model limitations
discussed above, it appears that the generated ID’s provide reasonably realistic predictions
for the distribution ranges of poorly sampled species (Figs 4-8).It consequently appears that
the approach, modified from Jeffree & Jeffree (1994, 1996), and presented here will be useful
for examining the likely effects of climate change on the distributions of a range of species
from any specific region (Van Jaarsveld et al. 2000), and can also be used as a platform from
which further, more detailed approaches to understanding the likely affects of climate change
on biota (e.g. Davis et al. (1998a,b)), can be undertaken.

Model outputs and conservation implications

The distributions predicted under the climate change scenario suggest that species
ranges are likely to change both in size and shape (see Brown et al. 1996; Gaston 1994 for
general discussions of the size and shape of species ranges). This has a number of
conservation implications. A range expansion will present possibilities of novel interactions
with previously unencountered species, and assemblages (Parmesan et al. 1999; Pounds et al.
1999). The likely outcome of such novel interactions is difficult to predict, as the biological
invasion and biological control literature illustrates, (Williamson 1996; Lonsdale 1999;
McEvoy & Coombs 1999), although many species have survived exposure to such changes in
the past (Coope 1979). Nonetheless, some progress could be made toward understanding the
outcome of novel interactions by basing microcosm-type experiments (see e.g. Davis et al.
1998a,b), on the new species combinations predicted by climate modelling procedures such
as the current one.

Over and above any novel species interactions, of immediate conservation concern is
the contraction in range sizes predicted for four of the five species modelled in this study. A
reduction in range size may also result in a decline in the local abundance of a species (see
Gaston et al. 1996 for a general overview of the range size abundance relationship). Species
subjected to both range size contraction and population decline are clearly at substantial

conservation risk, the double jeopardy of Gaston (1998). Although P. caffer is vulnerable in
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terms of range contraction for the reasons outlined above, it may be less susceptible than the
other species because it is widespread and shows little range shift under the climate change
scenario.

The remaining four species all display range shifts as well as range contractions with
ID’s and CAD’s revealing an average coincidence of 16 % (+ SD 16, n = 4, Table 1). Arid-
adapted antlion species from the western parts of South Africa will thus experience more
severe shifts in distribution than their eastern counterparts (Figs 4-8). This predicted pattern is
not unexpected given the general aridification predicted by the HadCM2 general circulation
model. However, the likelihood of a species successfully colonising a new habitat during a
range shift depends primarily on habitat suitability. In the case of antlions, many of the
predicted range shifts are into areas that have been highly transformed for intensive
agriculture (Fairbanks et al. 2000). They will consequently be largely unsuitable for antlion
colonisation. Predicted range shifts may thus actually represent range contractions, thereby
exacerbating the likelihood of species extinction. In effect, our results suggests that arid areas
in South Africa may become too arid to support previously xerophilous species, while
previously marginal temperate areas may be unsuitable because of land transformation.

Finally, the expected response of P. luteus, the fynbos endemic, raises an important
point regarding modelling exercises of this kind (Chown & Gaston 1999). The ID
encompasses not only the known records for this species (Fig. 7), but also various habitat
patches in what is known as the Afromontane phytogeographical region (Cowling & Hilton-
Taylor 1997). Fynbos-related elements do occur in these Afromontane patches in the form of
ericaceous shrublands (Killick 1978; White 1978), but P. luteus apparently does not. This
example therefore illustrates that although the model is useful for many species, there are
clearly cases where other biological variables such as specific habitat requirements will
ultimately determine potential habitat occupancy (Chown & Gaston 1999).

A model previously developed for predicting the effects of climate change on insects
and plants in Europe is shown here to be applicable to southern Africa, after modification to
account for seasonal rainfall patterns. An added advantage of this modified multivariate
approach is that the model provides probability of occurrence values for each grid cell in
contrast with the presence absence outputs generated by the original bivariate approach
(Jeffree & Jeffree 1994). Most importantly, it is shown that range contractions and shifts in
the positions of species ranges are likely to be significant consequences of climate change for
antlions in South Africa. If this applies to other animal taxa, and it seems that it does (Van

Jaarsveld et al. 2000) then the message to the conservation community is clear. The likely
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impacts of climate change on our ability to conserve our fauna can no longer be ignored, but

must now form an integral part of conservation planning.
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Abstract

The responsiveness of South African fauna to climate change events is poorly documented
and not routinely incorporated into regional conservation planning. We model the likely
range alterations of a representative suite of 179 animal species to climate change brought
about by the doubling of CO, concentrations. This scenario is expected to cause a mean
temperature increase of 2°C. We applied a multivariate climate envelope approach and
evaluated model performance using the most comprehensive bird data set. The results, based
on distribution records from South Africa only, were encouraging although model
performance was inconsistent in the eastern coastal area of the country. The levels of climate
change-induced impacts on species ranges varied from little impact to local extinction. Some
17% of species expanded their ranges, 80% displayed range contraction (0 — 98%) and 3%
showed no response. The majority of range shifts (41%) were in an easterly direction,
reflecting the east-west aridity gradient across the country. Species losses were highest in the
west. Substantially smaller westward shifts were present in some eastern species. This may
reflect a response to the strong altitudinal gradient in this region, or may be a model artifact.
Species range change (composite measure reflecting range contraction and displacement)
identified selected species that could act as climate change indicator taxa. Red-data and
vulnerable species showed similar responses but were more likely to display range change
(58% vs. 43% for all species). Predictions suggest that the flagship Kruger National Park
conservation area may lose up to 66% of the species included in this analysis. This highlights
the extent of the predicted range shifts, and indicates why conflicts between conservation and

other land uses are likely to escalate under conditions of climate change.
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Introduction

Large-scale species extinctions and movements were precipitated by major climate events in
the past (Gates 1993; Coope 1995; Roy et al. 1996). Consequently, prediction of the
biodiversity consequences of current and predicted climate change is becoming increasingly
important (McNeely e al. 1995), especially because such change is not likely to affect all
species similarly. Some species are expected to benefit from and others to suffer under
altered climatic conditions (Fajer et al. 1989; Freedman 1989; Cammell & Knight 1992;
Davis et al. 1998a,b). Thus, not only are species likely to be affected by such change, but
community composition is also likely to be altered because of individualistic species
responses (see Coope 1995; Jablonski & Sepkoski 1996 for examples of such changes in the
past). If biodiversity is to be conserved (Convention on Biodiversity, UNEP, Rio de Janeiro
1992), an understanding of how species and communities are likely to change under
conditions of climate change is essential. Such understanding is particularly important
because existing conservation networks, as well as theoretically selected areas, will not
perform adequately if species temporal turnover is not taken into consideration (Rodrigues et
al. 2000). This is likely to be true particularly if current and predicted climate change result in
dramatic species movements, as seems likely to be the case (Parmesan ef al. 1999, Pounds et
al. 1999). Furthermore, interactions between habitat fragmentation, and changing species
distribution patterns imply considerable future conservation conflicts (McNeely 1994,
Fearnside 2000), making predictions of likely range shifts all the more important.

In South Africa, early qualitative (McDonald & Midgley 1996), and more recent
quantitative (Rutherford e al. 2000) analyses of the effects of predicted climate change on
the flora have suggested that the species rich biomes in the south-west of the country are
likely to suffer substantial biodiversity losses, and that species loss from the existing
protected area network will be significant. Despite these rather dramatic predictions, to date
no attempts have been made to investigate the likely effects of predicted climate change on
the South African fauna. Here we provide a first assessment of individual animal species
responses to a climate change scenario in South Africa, by modeling the likely responses of
the geographic ranges of a selection of 179 animal species from across the taxonomic
spectrum.

The analytical approach we employ is generally referred to as the “climate envelope”
approach (Sutherst & Maywald 1985; Sutherst et al. 1995; Markham & Malcolm 1996), and

explores the extent to which species ranges might shift in response to changes in the
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surrounding environment. Qur use of this approach does not mean that we are unaware that
climate is only one determinant of species distributions. Rather, we reasoned that while other
factors, such as both horizontal and vertical linkages in ecosystems (Davis et al. 1998a, b;
Buse ef al. 1999; Hochberg & Ives 1999), and the phylogenetic history of taxa (see Myers &
Giller 1988; Brown & Lomolino 1998), are likely to influence the geographic distributions of
taxa, in the main, geographic distributions are likely to be determined to a large degree by
climate (Jablonski ef al. 1985; Root 1988; Rogers & Williams 1994; Coope 1995; Robinson
et al. 1997a, b; Chown & Gaston 1999; Spicer & Gaston 1999). Nonetheless, we
acknowledge that a full understanding of the consequences of climate-induced range changes
for the functioning of local ecosystems is unlikely to be achieved without additional
investigations. These include the development of an understanding of the influence of such
changes on regional diversity, and in turn its influence on local communities (see Cornell &
Lawton 1992; Ricklefs & Schluter 1993; Tokeshi 1999 for review of local and regional
interactions), and the effect that novel species interactions, precipitated by range changes,
will have at local scales.

However, given the speed with which climate change is taking place (IPCC 1992, 1995,
1997, 2000) and that, within the context of urgent local development needs (e.g. ANC 1994),
conservation decisions have to be made (van Jaarsveld et al. 1998), the approach we use
provides a rapid and initial best estimate of likely responses of species over broad areas
(Guisan & Zimmerman 2000). This estimate can be used as a broad guide to the urgent
conservation action that is required, while additional, more specific data on species
interactions and their change under different climate scenarios are collected (e.g. Masters et

al. 1998; Buse et al. 1999; Fielding et al 1997).

Materials and methods

Species screening and distribution data

Distribution data for birds, mammals, reptiles (snakes, lizards, and tortoises), butterflies,
dung beetles (Scarabaeidae), antlions (Neuroptera), jewel beetles (Buprestidae) and termites
were collated. The last four invertebrate taxa were grouped together under “other
invertebrates” because they are generally poorly known in the subregion (Scholtz & Chown
1995; Koch et al. 2000). The species distribution data were obtained from: birds (Avian
Demography Unit, University of Cape Town), mammals (Natural History Museum, Northern
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Flagship Institution, Pretoria (NFI); Durban Natural Science Museum; Conservation Planning
Unit, University of Pretoria (CUP)), reptiles (NFI; Port Elizabeth Museum), butterflies (NFI),
antlions (National Insect collection, ARC Plant Protection Research Institute (NCI)), jewel
beetles (NFI), dung beetles (NCL, NFI, CUP) and termites (CUP). Data were generalized to a
15°x 15° grid cell resolution (~25 X 25 km), the finest common resolution between taxa, to
generate absence-presence maps. Because many southern African species remain poorly
known, both taxonomically and geographically (Scholtz & Chown 1995; van Jaarsveld
2000), taxonomic experts were requested to identify a suite of representative species in their
study taxon, to increase the likelihood of including accurate and representative distributions,
based on the following criteria: (a) accurate but not necessarily comprehensive distribution
patterns, (b) representative geographic range types (e.g. species restricted to winter or to
summer rainfall regions), (c) taxonomic clarity, and (d) species known from a reasonable
number of records. A total of 34 bird, 19 mammal, 50 reptile, 19 butterfly, and 57 “other

invertebrate” species were finally selected (Appendix 1).

Climate data (historic and predicted)

Climate data for South Africa were provided by the Computing Centre for Water Research
(CCWR, University of Natal, Pietermaritzburg). The historic data (30 year monthly and
annual means: 1960 — 1989) were re-sampled to 15” x 15° grid cells from interpolated climate
surfaces available at a minute by minute resolution to conform with the resolution of the
species data. The variables employed in the present study are: minimum temperature,
maximum temperature, and precipitation seasonality measured as the difference between
February and August mean rainfall figures. These months were selected because a factor
analysis of the 12 monthly rainfall means showed that February rainfall contributed most to
Factor 1, which explained 56% of the variance, and August rainfall contributed most to
Factor 2, which explained 37% of the variance in the data. Preliminary analyses with these
data indicated that temporal variability is a dominant feature, with annual mean precipitation
values tending to disguise seasonal aspects of climate change (Erasmus et al. 2000).
Equivalent precipitation and temperature variables were also obtained for a predicted
climate change scenario (CCWR). These climate data were derived from climate surfaces
produced from GCM (General Circulation Model) predictions. Climate changes values were
derived by implementing the Hadley Centre Unified Model with no sulphates, which

represents a worst-case scenario for South Africa (Hewitson 1998). This GCM predicts a
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temperature increase of 2.5 — 3°C for South Africa with atmospheric CO, doubling from pre-
industrial levels. Erring on the side of caution, this means that significant climate change can

be expected by the year 2050 (Hewitson 1998), and quite possibly earlier.

Species distribution modeling and evaluation

The model we employed is conceptually similar to the one proposed by Jeffree & Jeffree
(1994, 1996). The original model was modified to accept multivariate data as input, and to
produce a probability surface as output, rather than a simple binary prediction (see Erasmus
et al. 2000 for a full description). Essentially, on a scatterplot of climate variables
(multivariate climate space), the values of climate variables at known records are used to
construct a confidence region where there is a high probability that the records reflect the
core range of the species. Points falling inside this confidence region are then mapped back
to geographic space to represent an interpolated distribution (ID). Climate affected
distributions are produced by altering the climate variables of individual cells according to
the GCM predictions, i.e. shifting the climate space, and subsequently mapping the predicted
climate affected species distributions (CAD) back into geographic space.

Changes in distribution patterns owing to predicted climate change were assessed by
comparing interpolated distribution patterns (ID) with climate affected distribution patterns
(CAD) using a number of variables:

a. Species richness pattern — number of species predicted per grid cell using
interpolated distributions;

b. Species range shift — proportion of climate-affected distributions (CAD) inside the
interpolated distribution (ID).

c. Species range contraction — climate-affected distribution (CAD) as a proportion of
the interpolated distribution (ID), and

d. Species range change — the sum of interpolated distribution grid cells lost and
additional grid cells added under climate change, expressed as a percentage of the
original interpolated distribution (ID). This additional measure provides an
integrated assessment of range alterations through the combined effects of range
contraction and shift.

These analyses were conducted for each taxonomic group separately, collectively across
all species and for Red-data (mammals, birds, butterflies) and vulnerable species (identified

as such by taxon experts: reptiles, jewel beetles, dung beetles, termites and antlions). Areas of
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the country that are currently more than 50% transformed by human activity (Fairbanks ef al.
2000) were superimposed on the post climate change species richness map to assess the
potential availability of pristine land for accommodating climate-driven species range shifts.

To evaluate our model (Oreskes et al. 1994, Guisan & Zimmerman 2000), we compared
interpolated distributions with known records. Incomplete distribution data severely limited
the extent to which absence data could be included in model evaluation procedures for most
taxa. The bird data, resulting from extensive sampling, was the best approximation of true
presence-absence data and was used for evaluation. Instead of dichotomising the predicted
probability output to predicted presence-absence by applying a threshold probability, which
results in loss of information (Deleo 1993, Fielding er al. 1997), the actual predicted
probabilities were utilized using receiver operating characteristic analyses (ROC). ROC
analysis has its origins in engineering in the context of measuring the ability of a detector to
detect a particular signal. It has found wide application in clinical medical tests (Fielding et
al. 1997) and here it is used to measure the performance of a predictive species’ distribution
model. Kraemer’s (1988) critique of ROC application in biology concerns the subjectivity of
observations and the inability of the observed characters to be controlled or known with
absolute certainty. The bird data set has been subjected to extensive expert vouching
procedures and as such presents a close approximation of objective observations (Allan et al.
1997, van Jaarsveld er al. 1998). Therefore, we regard ROC analyses as suitable for our
purposes of evaluation.

ROC analysis primarily concerns the calculation of specificity and sensitivity values.
Sensitivity is defined as the number of true occurrences of a species (true positive
predictions, TP) divided by the total number of positive predictions, whether true (TP) or not
(false negatives predictions, FN). Similarly, specificity is defined as the number of true
negative predictions (TN) divided by the total number of negative predictions, whether TN or
false positive (FP) predictions (Fielding et al. 1997). The area-under-curve (AUC) of a plot
of 1-specificity against sensitivity at every given probability of occurrence value is used as a
test statistic. The AccuROC® software (Vida 1993) uses the nonparametric method of De
Long et al. (1988) to determine the statistical significance of the difference between an AUC
of 0.5 (corresponding to a random test with no discriminatory ability) and the AUC of every
bird species. The confidence interval for the AUC was calculated using the asymptotic
method (Obuchowski ez al. 1998). A random subsample (with no replacement) of 20% of the
known records of each species were also taken and used as input to generate probabilities of

occurrence. The AUC of the 20% subsample was compared with the AUC based on all
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known records (De Long et al. 1998). Such cross validation should ideally involve two
independent data sets, although subsampling is an acceptable alternative (Guisan &
Zimmerman 2000). Owing to a lack of absence data, the ROC analyses were only applied to
the bird dataset to evaluate the model’s ability to match predicted and observed data. The
predicted probabilities generated for the other taxonomic groups had to be dichotomized into
presence-absence data after determining a probability of occurrence threshold level from the
ROC analyses of the bird data. This threshold was determined by calculating the correct
classification rate ([TP + TN]/[TP+FP+TN+FN]) for all possible thresholds and selecting an
appropriate probability threshold at which to interpret distribution changes.

Results
Model evaluation

The model correctly classified TN and TP predictions at a mean correct classification rate of
0.79 (SD=0.09) using a 50% probability of occurrence threshold for all 34 bird species. Such
a high correct classification rate suggests strongly that the model can make useful predictions.
Further support for the usefulness of the model (Zweig & Campbell 1993) comes from the
construction of a confusion matrix (Fielding & Bell 1997) for the bird data. The results are
summarized in Table 1. Mean values of 60% for true positives and 88% for true negatives
suggest a reasonable performance of the model. This result is further underscored by the
narrow ranges recorded for the variables. Although the mean figures for false positives and
false negatives may inspire confidence in the above conclusion, the extremely large ranges
recorded for false positives (1 — 44%) suggest that the model is useful for predicting the true
ranges of some species but less so for other bird species. For those species where the model
performs poorly, the 50% probability of occurrence area may extend inarkedly beyond the
recorded range of the species. The large mean figure obtained for false negative values (38%)
can be explained by our application of the 50 % probability of occurrence rule, with many
species being recorded at lower probabilities of occurrence than the benchmark 50% level.
Given these considerations, the 50% probability of occurrence figure was considered an
acceptable probability of occurrence and was applied to all other taxa. Thus, species were

considered present when the model predicted a probability of
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Table 1 Percentage prediction reliability at the 50% probability of occurrence level, for the
multivariate model (Erasmus ef al. 2000) used in this study. These estimates are for the bird

data only because true distributions of the other taxa are too poorly known.

True positives ~ True negatives  False positives ~ False negatives

Mean +S.D. 603 £52 87.8 £10.3 122 =+ 10.3 397482
Range 49.1 -69.3 56.0 -98.6 1.4-44.0 30.7-50.9

47



University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

occurrence of > 50%, and absent below 50%. The application of this general rule accounts
for losses of species from many areas of the country. Thus, a 100% species loss in any one
area in effect means that no species were present in that area at a > 50% probability of
occurrence.

Although ROC analyses performed on the bird data could not be applied to other taxa
due to a lack of absence data, the results form these analyses provided further support for the
usefulness of the model‘s predictions. Model evaluation using the area under the ROC curve
as a test statistic found that all 34 bird species in the ROC analyses had area-under-curve
(AUC) values significantly different (p < 0.05, ranging from 0.6357 to 0.9665, mean 0.85)
from an AUC of 0.5 (see Fig. 1 for an example). The number of known records needed to
detect a significant difference (probability of type I error 0.1, probability of type II error, 0.5)
between an AUC of 0.5 and 0.85 was found to be lower (44) than the number of known
records for the species with the least number of records (49 for the Drakensberg Siskin). The
remaining 33 bird species had larger ranges with the number of known records varying from
98 to 1573 with a mean of 697. This means that differences between the measured AUC
values and an AUC of 0.5 are real and that the model performs significantly better than a
random model with no discriminatory ability.

For 24 of the 34 bird species, the AUC values derived from analyses using a 20%
subsample of known records were not significantly different (p < 0.05) from the AUC values
derived from the complete data set of known records for each bird. The remaining 10 species
(all non-passerine and of relatively large body size) had AUC values significantly different (p
values ranging from 0.0553 to 0.9131) from the AUC values based on the complete data set
of known records for each species. This result suggests that these 10 species might
experience range limitation due to other factors than climate, such as resource quality or

resource availability.

Species distribution changes

The species richness pattern for all taxa, produced using the interpolated distributions (ID),
differs markedly from the richness pattern using climate affected data (CAD) (Fig. 2). The
model predicts that the most speciose areas in the country will be concentrated on the eastern
escarpment, with significant species losses occurring in the western, arid regions (Fig. 2b). A
general decline in the size of speciose areas and a concentration of species around the eastern

escarpment was a consistent outcome of the model across all taxonomic groups, and reflects
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Fig. 1 An example of a ROC curve. The area under the dotted line represents an AUC of 0.5,
which would translate into a test with discriminatory ability. The area under the solid black

line represents the AUC for this particular species, the South African shelduck.
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Fig. 2 Species richness patterns for (a) interpolated distributions (ID), (b) climate affected
distributions (CAD) for all 179 species included in this study.
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to some extent, the likely western movement of most species and also movement of species
up altitudinal gradients towards the eastern and south-eastern highlands. Similar patterns
were found for the red-data and vulnerable species. Nonetheless, the model outputs suggested
that only four species (2.2%) would be lost from the country (see Table 2).

Twenty-five percent of the modeled species show more than a 90% range shift in
response to predicted climate change (Fig. 3a). This pattern was most marked in the reptiles
and a number of invertebrates. In contrast, a substantial proportion of species from groups
such as birds, mammals and butterflies show more than a 50% overlap between their present
and predicted geographic ranges. The proportion of Red-data and vulnerable species that shift
their ranges by more than 90% approaches 40% vs. the 25% recorded for all species, and few
Red-data or vulnerable species displayed no range shift (Fig. 3c).

While some species appear to expand their ranges under climate change, most species
show range contractions (Fig. 3b). For example, predicted range contractions are in the order
of 40% of the ID for butterflies, and this is generally true of most of the invertebrate taxa. On
the other hand, this figure can be both much higher (98% for the lizard Homopholis
wahlbergi) and lower (0%, see Table 2) depending on the particular taxon under
investigation. Overall, however, substantial range contractions are likely to occur, and this is
true also of the red-data and vulnerable species (Fig. 3c)

The combination of the range contraction and range shift results suggests that, under a
climate change scenario, the majority of species will show both a decline in range size and
substantial range displacement. Species for which this range alteration exceeds 50% of their
extant distribution range (ID) can be considered particularly vulnerable to predicted climate

change, and this includes several red—data and vulnerable species (Table 3).

Conservation and land-use consequences

Figure 4 indicates areas in South Africa where existing land-use practices have transformed
natural land-cover by more than 50%. These areas are concentrated in the southern coastal
belt (South-Western Cape), across the Northern Provinces (Free State, Gauteng,
Mpumalanga, North-West and Northern Province) as well as parallel to the eastern shores
(KwaZulu-Natal and Eastern Cape). The areas where most overlap between transformed
areas and regions likely to form species richness ‘hotspots’ under conditions of climate
change is likely to occur are in the northern Free State, Gauteng, Mpumalanga and Northern

Province. This overlap between climate affected species richness ‘hotspots’ and areas
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Table 2. Species included in the present study that the model predicted would likely go

locally extinct in South Africa following climate change (< 50% probability of occurrence

throughout the country).

Species

Stolotermes — termite genus
Epirinus gratus - canthonine dung beetle
Chrysospalax trevelyani — golden mole

Cordylus macrophallus — armoured lizard
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Fig. 3 Percentage of species that exhibit range shifts (expressed as percentage of climate
affected distribution outside the interpolated distribution) for (a) all species and (c) red-data
and vulnerable species. Percentage of species that exhibit range contraction (climate affected
distribution expressed as a percentage of the interpolated distribution) predicted for (b) all

species and (d) red data and vulnerable species.
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Table 3 Red data and vulnerable species that are expected to experience a range change

(sum of range shift and contraction) of more than 50% (expressed as percentage of ID).

Lizards Snakes Tortoises

Acontias plumbeus Amblyodipsas concolor Geochelone pardalis
Chamaeleo dilepis Bitis gabonica Homopus signatus
Heliobolus lugubris Dispholidus typus Kinixys belliana
Homopholis wahlbergi Psammobates oculifer Kinixys lobatsiana
Mabuya capensis Python sebae Kinixys natalensis
Mabuya homalocephala ~ Macrelaps microlepidotus Kinixys spekii
Varanus albigularis

Dung beetles Butterflies

Garreta unicolor Dira swanepoeli

Gymnopleurus humanus
Neosisyphus infuscatus
Neosisyphus mirabilis
Onthophagus stigmosis
Phalops ardea
Scarabaeus rugosus
Scrabaeus aesculapius

Papilio euphranor
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Fig. 4 Predicted climate affected (CAD) species richness patterns and extant land-cover

patterns in South Africa. Areas coloured in black are at least 50% transformed and/or

degraded.
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presently subjected to cultivation and land transformation points to an increased potential for
land-use conflict (Wessels et al. 2000) between agents of land transformation and

conservation advocates.

Discussion

Model performance

Because data quality for most of the taxa used in this study varies considerably, and is often
relatively poor (e.g. Lombard 1995; Freitag & Van Jaarsveld 1995; Freitag & Mansell 1997,
Hull et al. 1998; Koch et al. 2000), the performance of the climate model in predicting
known species occurrences was assessed using the bird atlas data. The quality of these data is
far superior to that for other taxa (compare Harrison ez al. 1997 and Hull et al. 1998).

The ROC analyses showed that the model performs significantly better than a random
model. Cross validation with a 20% subsample of known records further supported the
model's accuracy and usefulness with 24 of the 34 species' complete distributions being
accurately predicted by this subsample. This result might thus be considered an estimate of
the proportion of species that have distributions determined largely by climate, and hence
provide insight into the broader applicability of the approach. If the model is valid for
approximately 70% of the species in the taxa we have selected, then we consider the outcome
of this exercise a useful first take at the likely impacts of climate change on animal
distributions in South Africa. In some instances, the model did not perform well, especially in
predicting presence/absence data for eastern parts of South Africa. This may well be due to
the biogeographic complexity of the region and its strong altitudinal gradient that has a
considerable influence on animal distribution patterns (see Low & Rebelo 1996; van Wyk
1996; Schulze et al. 1997; Oatley & Arnott 1998; Poynton 1961; White 1983; Poynton &
Boycott 1996; Davis 1997; Eeley et al. 1999; Van Rensburg et al. 2000)

Notwithstanding these problems, we are of the opinion that the model used here
represents a best estimate for a provisional study of the likely impacts of climate change on
the South African higher invertebrate and vertebrate terrestrial fauna. We hold this view for a
variety of reasons. First, despite what appear to be poor model performances on the east
coast, the mean values for false presences and absences at a countrywide level were generally

low, while those for true presence and absence data were not unreasonable (60, and 87%,
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respectively). Second, given the resolution of the available data, and the quality of the data
available for most taxa, this model is currently the only way in which the potential impacts of
climate change can be investigated for a reasonable “shopping basket of taxa” (Hammond

1994).

The effects of climate change: model outputs and biological implications

Under the climate change scenario associated with a doubling in pre-industrial CO; levels,
impacts on the fauna of South Africa range from minimal (six species showed no change in
range size) to severe (four species were predicted to go extinct). Nonetheless, it appears that
many species will show a range alteration characterized by a marked range shift from west to
east, a somewhat smaller shift from east to west, and a substantial reduction in absolute range

size.

Eastward range shifs

Range shifts from west to east are a common prediction of the model, and are characteristic
of approximately 41% of all the taxa we examined. Given the pronounced aridity gradient in
an east-west direction across the country (Rutherford & Westfall 1994; Schulze et al. 1997),
the general decline in species richness in this direction (e.g. Drinkrow & Cherry 1995;
Gelderblom et al. 1995; Freitag & Van Jaarsveld 1995, but also Gelderblom & Bronner 1995;
Branch e al. 1995), and replacements over this gradient of species that differ markedly in
their physiological tolerances (e.g. Le Lagadec et al. 1998), these changes are undoubtedly a
realistic reflection of the likely impacts of climate change. In this context it is significant that
range shifts as substantial as those predicted here have already been documented over the past
century in western Europe (Parmesan ef al. 1999), and similar range shifts are predicted
elsewhere (e.g. Kerr & Packer 1998).

The extent to which such predicted eastward shifts in range will translate into realized
alterations in range position will obviously also vary between taxa. For example, in species
that are dependent on surface water for drinking, such as many southern African dove
species, eastward shifts in range may not take place at all if agricultural practices continue to
involve the surface provision of artesian water to livestock. Likewise, if species are capable
of adapting to local conditions by behavioural or physiological means, realised range shifts

may not be as pronounced as those predicted. However, information on the relationships
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between species ranges and behavioural patterns and physiological tolerances, and the extent
to which behavioural and physiological flexibility influence species ranges is limited to just a
few South African taxa (e.g. Lovegrove & Wissel 1988; Richter et al. 1997; LeLagadec et al.
1998).

Landscape alterations in the eastern and central portions of South Africa will also
have a marked impact on the extent to which the predicted changes will be realised.
Extensive habitat alteration and fragmentation could prevent eastward range shifts from
taking place because of the unavailability of suitable habitat patches (see also Hill ez al. 1999;
Parmesan ef al. 1999), and because of large distances between suitable patches (see Brown &
Lomolino 1998; Thomas et al. 1999; Tokeshi 1999; Channell & Lomolino 2000 for further
discussion of the influence of these parameters on species occurrences). This interaction
between species range alterations and habitat transformation is amongst the most significant
consequences of climate change in a landscape that has been transformed by humans. If a
species is unable to move into an area because of a lack of suitable habitat, or because that
area is too distant from the closest source population of that species, then that area is
effectively unavailable to the species and local extinction (or extirpation) is the most likely
outcome. In effect this means that range contractions predicted by the current model may be

underestimates.

Westward range shifts

Although there are good reasons for doubting the ability of the model to predict reliably
range changes in the eastern coastal areas, it seems likely that at least some of the predicted
westward range shifts will be real, rather than model artifacts. In particular, the shift of
species up the altitudinal gradient (i.e. a gradient of increasing water availability and
decreasing temperature) in this region does not seem unlikely. Such shifts already take place
on a seasonal basis in a number of local avian migrants (see discussion in Harrison er al.
1997; Oatley & Arnott 1998), and have been documented in the Neotropics (Pounds et al.
1999). At least amongst the ectotherms, such shifts are likely to be more pronounced for
coastal than for interior species. It appears that it is an inability to tolerate low temperatures
that prevents the more tropical species from expanding their range up the elevational gradient
(Gaston & Chown 1999). Thus, an increase in temperature in this region will undoubtedly

lead to an expansion of the ranges of the tropical species.
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Range alteration as a whole

Of the 179 species we examined, 30 species expanded their ranges, while 143 species showed
range contractions varying between 0 and 98%. Few species showed no response or little
response in terms of changes to their absolute range size. Because so many of the species we
examined here showed substantial range contractions, it is this facet of range alterations that
is of most concern. This concern is especially warranted if it is borne in mind that although
the range contractions we have predicted here, are in some instances quite dramatic, they may
actually be underestimates because landscape transformation has not been explicitly factored
into the model. In practice, theoretical range shifts into transformed landscapes may mean
local extinction. On the other hand, it is also possible that some of the dramatic predicted
range changes may be mitigated by species immigration from outside the modelled area.
Ideally, the geographic extent of the model area should be bounded physiographically, ie.
coastal boundaries for terrestrial animals, and not by political boundaries. In the real world,
however, data availability dictated the use of political boundaries for this particular study.
The effects of this artificial partition in species’ ranges on modelled output have yet to be
investigated.

The major reasons for significant concerns regarding range contractions have to do
with the negative relationship between range size and extinction probability (Jablonski 1991;
Gaston 1994). A reduction in the absolute range size of a species will almost inevitably mean
an increase in its risk of extinction. There are several reasons for this. First, a decrease in
range size will mean that smaller catastrophic events affect a larger proportion of the species
total population. If a species is restricted to just a few sites, then a local catastrophic event
could easily cause the extinction of that species (Gaston 1994; see also Lawton & May 1995).
Second, the generally positive interspecific relationship between population size and range
size is such that population size increases at a disproportionately faster rate with increasing
range size, and hence local density also increases with increasing range size (Brown 1995,
Gaston ef al. 1997). Thus a decrease in range size is likely to effect a reasonably rapid decline
in population size, and consequently extinction rate will increase for the usual small
population reasons, susceptibility to stochastic variation being amongst the most important
(see Gaston 1994; Caughley & Gunn 1996). Contraction of species’ ranges towards the centre
of their original distributions, as predicted by the model used here, is also unlikely to be
entirely realistic given landscape transformation. Channell & Lomolino (2000) recently

showed that in many of the 245 species they examined, which have recently shown range
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contractions, the peripheral, rather than central populations of the species have survived. This
means that range fragmentation is likely to be more pronounced than that predicted by our

model. Such fragmentation is in itself of considerable conservation concern.

Conclusions

In summary, our model suggests that climate change will have a profound impact on
terrestrial animal species in South Africa. Moreover, even this assessment is likely to be
conservative given that population growth in South Africa is in the order of 1.9% per year
(Anonymous 1998), and that the concomitant increases in population density are likely to
result in additional, profound landscape transformation (perhaps exacerbated by high and
increasing prevalence of AIDS, Williams et al. 2000). Mitigation of the impacts of climate
change is ultimately a function of political will to confront difficult issues such as land-use
and population planning. However, from a conservation and research perspective several
actions can be taken. These include: better communication of findings to politicians,
substantial improvements in the quality of information on animal diversity and distribution in
South Africa, integration of this information into land-use planning, time-series data for at
least some taxa, and the need for substantial improvement of knowledge of the causal links

between climate and animal distributions. Of these, the first remains most critical.

Acknowledgements

C.L. Bellamy, W. R. Branch, C. Chimimba, A. Davies, S. Freitag, J.A. Harrison, H. Hull,
S.0. Koch, M. Kriiger, M. Mansell, C. Muller, D. Oschadleus, D. Schlitter, L. Underhill, M.
Whiting assisted with species selection. Financial support was generously provided by the
Pittsburgh Zoo Conservation Fund, the USA Country Studies Program on Climate Change,
the South African Department of Environmental Affairs & Tourism, the National Research
Foundation and the University of Pretoria. Technical support for GIS software support was
provided by Geogaphic Information Management Systems (GIMS) and SA-Isis/Biomap

(www.sa-isis.co.za). Climate data were supplied by the Computing Centre for Water

Research (CCWR, WWW.CCWr.ac.za).

60




University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

References

Allan DG, Harrison JA, Herremans M, ef al. (1997) Southern African geography: its
relevance to birds. In: The Atlas of Southern African Birds. (eds Harrison JA, Allan
DG, Underhill LG et al), pp. 1xv-ci. Birdlife South Africa, Johannesburg,

African National Congress (1994) The Reconstruction and Development Programme.
Umanyano, Johannesburg.

Anonymous (1998) White Paper on Population Policy. http://www.polity.org.za/

oovdocs/white papers/popwp.html.

Branch WR ef al. (1995) The tortoises (Testudinidae) and terrapins (Pelomedusidae) of
southern Africa: their diversity, distribution and conservation. South Afiican Journal
of Zoology, 30, 91-102.

Brown JH (1995) Macroecology. University of Chicago Press, Chicago, 269 pp.

Brown JH, Lomolino MV (1998) Biogeography. Sinauer Associates, Sunderland, 691 pp.

Buse A ef al. (1999) Effects of elevated temperatures on multi-species interactions: the case
of pedunculate oak, winter moth and tits. Functional Ecology, 13, 74-82.

Cammell ME, Knight JD (1992) Effects of climate change on the population dynamic of crop
pests. Advances in Ecological Research, 22, 117-162.

Caughley G, Gunn A, (1996) Conservation Biology in Theory and Practice. Blackwell
Science, Oxford, 459pp.

Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered
species. Nature, 403, 84-86.

Chown SL, Gaston K (1999) Exploring links between physiology and ecology at macro-
scales: the role of respiratory metabolism in insects. Biological Review, 74, 87-120.

Coope GR (1995) Insect faunas in ice age environments: why so little extinction? In:
Extinction Rates. (eds Lawton JH, May RM), pp. 55-74. Oxford University press,
Oxford.

Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits
to the richness of ecological communities: A theoretical perspective. Journal of
Animal Ecology, 61, 1-12.

Davis ALV (1997) Climatic and biogeographical associations of southern African dung
beetles (Coleoptera: Scarabaceidae s. str.). African Journal of Ecology, 35, 10-38.

Davis AJ et al. (1998a) Making mistakes when predicting shifts in species range in response
to global warming. Nature, 391, 783-786.

61



University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

Davis Al et al. (1998b) Individualistic species responses invalidate simple physiological
models of community dynamics under global environmental change. Journal of
Animal Ecology, 67, 600-612.

Deleo, JM. (1993) Receiver operating characteristic laboratory (ROCLAB): software for
developing decision strategies that account for uncertainty. In: Proceedings of the
Second International Symposium on Uncertainty Modelling and Analysis, pp. 318-
325. College park, MD: IEEE Computer Society Press.

Delong ER, Delong DM, Clarke-Pearson DL (1988) Comparing thr areas under two or more
correlated receiver operating characteristic curves: a nonparametric approach.
Biometrics, 44, 837-845.

Drinkrow DR, Cherry MI (1995) Anuran distribution, diversity and conservation in South
Africa, lesotho and Swaziland. South African Journal of Zoology, 30, 82-90.

Eeley HAC, et al. (1999) The influence of climate change on the distribution of indigenous
forest in Kwazulu-Natal, South Africa. Journal of Biogeography, 26, 595-617.

Erasmus, BFN, Kshatriva M, Mansell MW, Chown SL, Van Jaarsveld, AS (2000) A
modelling approach to antlion (Neuroptera: Myrmeleontidae) distribution patterns.
African Entomology, 8,157-168.

Fairbanks DHK et al. (2000) The South African land-cover characteristics database: a
synopsis of the landscape. South African Journal of Science, 96, 69-82.

Fearnside, PM (1999) Biodiversity as an environmental sefvice in Brazil's Amazonian
forests: risks, value and conservation Environmetnal Conservation, 26, 305-321.

Fielding, AH, Bell, JF (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation, 24, 38-49.

Fajer ED et al. (1989) The effects of enriched carbon dioxide atmospheres on plant-insect
herbivore interactions. Science, 243, 1198-1200.

Freedman B (1989) Environmental Ecology: the Impacts of Pollution and other Stresses on
Ecosystem Structure and Function. Academic Press, San Diego, 424 pp.

Freitag S, Mansell MW (1997) The distribution and protection status of selected antlion
species (Neuroptera: Myrmeleontidae) in South Africa. African Enfomology, S, 205-
216.

Freitag S, Van Jaarsveld AS (1995) Towards conserving regional mammalian species
diversity: a case study and data critique. South African Journal of Zoology, 30, 136-
144.

Gaston KJ (1994) Rarity. Chapman & Hall, London, 205 pp.

62



University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

Gaston KJ ef al. (1997) Interspecific abundance-range size relationships: an appraisal of
mechanisms, Journal of Animal Ecology 66, 579-601.

Gaston KJ, Chown SL (1999) Elevation and climatic tolerance: a test using dung beetles.
Oikos, 86, 584-590.

Gates DM (1993) Climate Change and its Biological Consequences. Sinauer Associates,
Sunderland, Mass., 280 pp.

Gelderblom CM, Bronner GN (1995) Patterns of distribution and protection status of
endemic mammals in South Africa. South African Journal of Zoology, 30, 127-135.

Gelderblom CM et al. (1995) Patterns of distribution and current protection status of the
Carnivora, Chiroptera and Insectivora in South Africa. South African Journal of
Zoology, 30, 103-114.

Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology.
Ecological mModelling, 135, 147-186.

Hammond P (1994) Practical approaches to the estimation of the extent of biodiversity in
speciose groups. Philosophical Transactions of the Royal Society of London B, 345,
119-136.

Harrison JA et al. (1997) The atlas of southern African birds. Birdlife South Africa,
Johannesburg, vol I 732 pp., vol II 785 pp.

Hewitson BC (1998) South African National Assessment for the Framework Convention for

Climate Change: Climate Change Scenarios http://tie.egs.uct.ac.za/fccc/hadem?2.html

Hill JK et al. (1999) Climate and habitat availability determine 20th century changes in a
butterfly’s range margin. Proceedings of the Royal Society of London B, 266, 1197-
1206.

Hochberg ME, Ives AR (1999) Can natural enemies enforce geographical range limits?
Ecography, 222, 268-276.

Hull HE et al. (1998) Identification and evaluation of priority conservation areas for
Buprestidae (Coleoptera) in South Africa, Lesotho, Swaziland and Namibia. Afiican
Entomology, 6, 265-274.

[PCC (1992) IPCC Supplement: Scientific Assessment of Climate change. Report prepared by
Working Group 1. WHO-UNEP. (eds Houghton JT, Callender BA, Varney S).
Cambridge University Press, Cambridge.

[PCC (1995) IPCC Second Assessment Synthesis of Scientific-Technical Information
Relevant to Interpreting Article 2 of the UN Framework Convention on Climate

Change. http://www.ipcc.ch/pub/sarsyn.html.

63



University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

IPCC (1997) Summary for Policymakers: The Regional Impacts of Climate Change — an
Assessment of Vulnerability. http://www.ipce.ch/pub/sr97.html

IPCC (2000) Summary for Policymakers: Emissions Scenarios.

http://www.ipcc.ch/pub/reports.htm

Jablonski D (1991) Extinctions: A paleontological persective. Science, 253, 754-757.

Jablonski D, Sepkoski JJ (1996) Paleobiology, community ecology and scales of ecological
pattern. Ecology, 77, 1367-1378.

Jablonski D et al. (1985) Biogeography and paleobiology. Paleobiology, 11, 75-90.

Jeffree CE, Jeffree EP (1996) Redistribution of the potential geographical ranges of Mistletoe
and Colorado Beetle in Europe in response to the temperature component of climate.
Functional Ecology 10, 562-577.

Jeffree EP, Jeffree CE (1994) Temperature and the biogeographical distribution of species.
Functional Ecology, 8, 640-650.

Kerr I, Packer L (1998) The impact of climate change on mammal diversity in Canada.
Environmental Monitoring and Assessment, 49, 263-270.

Koch SO ef al. (2000) Conservation strategies for poorly surveyed taxa: a dung beetle
(Coleoptera, Scarabaeidae) case study from southern Africa. Journal of Insect
Conservation, 4, 45-56.

Kraemer HC (1988) Assessment of 2 x 2 association: generalisations of signal-detection
methodology. The American Statistician, 42, 37-49.

Lawton JH, May RM (1995) Extinction Rates. Oxford University Press, Oxford, 233 pp.

Le Lagadec MD et al. (1998) Desiccation resistance and water balance in southern African
keratin beetles (Coleoptera, Trogidae): the influence of body size and habitat. Journal
of Comparative Physiology B, 168, 112-122.

Lombard AT (1995) The problems with multi-species conservation: do hotspots, ideal
reserves and existing reserves coincide? South African Journal of Zoology, 30, 145-
163.

Lovegrove BG, Wissel C (1998) Sociality in molerats, metabolic scaling and the role of risk
sensitivity. Oecologia, 74, 600-606.

Low AB, Rebelo AG (1996.) Vegetation of South Africa, Lesotho, and Swaziland.
Department of Environmental Affairs and Tourism, Pretoria, South Africa.

Markham A, Malcolm J (1996) Wildlife and biodiversity impact and adaptation assessment.
In: Vulnerability and Adaptation Assessment: an International Handbook (eds

Benioff R, Guill S, Lee ), pp. 5-107 — 5-133. Kluwer Academic, London.

64




University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

Masters GJ et al. (1998) Direct and indirect effects of climate change on insect herbivores:
Auchenorrhyncha (Homoptera). Ecological Entomology, 23, 45-52.

McDonald IAW, Midgley GF (1996) Impacts and implications for nature conservation. In:
Global Climate Change and South Africa. (eds Shackleton LY, Lennon SJ, Tosen
GR) pp. 83-86. Environmental Scientific Association, Cleveland, South Africa.

McNeely JA (1994) Protected areas for the 21% century: working to provide benefits to
society Biodiversity and Conservation, 3, 390-403.

McNeely JA (1995) Keep all the pieces: Systematics 2000 and world conservation.
Biodiversity and Conservation, 4, 510-519.

Myers AA, Giller PS. (1988) Analytical Biogeography. An Integrated Approach to the Study
of Animal and Plant Distributions. Chapman & Hall, London, 578 pp.

Qatley T, Amott G (1998) Robins of Africa. Acorn Books, Randburg and Russel Friedman
Books, Halfway House.

Oreskes N et al. (1994) Verification, validation and confirmation of numerical models in the
earth sciences. Science, 263, 641-644.

Osborne PE, Tigar BJ (1992) Interpreting bird atlas data using logistic models: an example
from Lesotho, Southern Africa. Journal of Applied Ecology, 29, 55-62.

Parmesan C, Ryrholm N, Stefanescus C ez al. (1999) Poleward shifts in geographical ranges
of butterfly species associated with regional warming. Nature, 399, 579-583.

Pounds JA et al. (1999) Biological response to climate change on a tropical mountain.
Nature, 398, 611-615.

Poynton JC (1961) Biogeography of south-east Africa. Nature, 189, 801-803.

Poynton JC, Boycott RC (1996) Species turnover between Afromontane and eastern African
lowland faunas: patterns shown by amphibians. Journal of Biogeography, 23, 669-
680.

Richter TA et al. (1997) Limits to the distribution of the southern African Ice rat (Oftomys
sloggettii): thermal physiology or competitive exclusion? Functional Ecology, 11,
240-246.

Ricklefs RE, Schluter D (1993) Species Diversity in Ecological Communities: Historical and
Geographical Perspectives. University of Chicago Press, Chicago, 414 pp.

Robinson T et al. (1997a) Univariate analysis of tsetse habitat in the common fly belt of
southern Africa using climate and remotely sensed vegetation data. Medical and

Veterinary Entomology, 11, 223-234.

65



University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

Robinson T ef al. (1997b) Mapping tsetse habitat suitability in the common fly belt of
southern Africa using multivariate analysis of climate and remotely sensed vegetation
data. Medical and Veterinary Entomology, 11, 235-245.

Rodrigues ASL et al. (2000) Robustness of reserve selectio procedures under temporal
species turnover. Proceedings of the Royal Society London B, 267, 49-55.

Rogers DJ, Williams BG (1994) Tsetse distribution in Africa: seeing the wood and the trees.
In: Large-Scale Ecology and Conservation Biology. (eds Edwards PJ, May RM,
Webb, NR) pp. 247-271. Blackwell Scientific Publications, Oxford.

Root T (1988) Environmental factors associated with avian distribution boundaries. Journal
of Biogeography, 15, 4839-505.

Roy K ef al. (1996) Scales of climatic variability and time averaging in Pleistocene biotas:
implications for ecology and evolution. Trends in Ecology and Evolution, 11, 458-
463.

Rutherford MC, Westfall RH (1994) Biomes of southern Africa: an objective categorization.
Memoirs of the Botanical Survey of South Africa, 63, 1-94.

Rutherford MC ef al. (2000) Climate change in conservation areas of South Africa and its
potential impact on floristic composition: a first assessment. Diversity &
Distributions, 5,253-262.

Scholtz CH, Chown SL (1995) Insects in southern Africa: How many species are there?
South African Journal of Science, 91, 124-126.

Schulze R ef al. (1997) South African Atlas of Agrohydrology and Climatology. CSIR,
Pretoria, 276 pp.

Spicer JI, Gaston KJ (1999) Physiological Diversity and its Ecological Implications.
Blackwell Science, Oxford, 241 pp.

Sutherst RW, Maywald GF (1985) A computerized system for matching climates in ecology.
Agriculture, Systems and Environment, 13, 281-299.

Sutherst RW et al.(1995) Predicting insect distributions in a changed climate. In: Insects in a
Changing Environment (eds Harrington R, Stork NE) pp. 59-91. Academic Press,
London.

Thomas JA et al. (1999) Intraspecific variation in habitat variability among ectothermic
animals near their climatic limits and their centres of range. Functional Ecology, 13,
55-64.

Tokeshi M (1999) Species Coexistence. Ecological and Evolutionary Perspectives. Blackwell

Science, Oxford.

66



University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

Van Jaarsveld AS et al. (1998) Throwing biodiversity out with the binary data? South African
Journal of Science, 94, 210-214.

Van Jaarsveld AS (2000) Biodiversity: conserving the building blocks of environmental
health. In: The sustainability challenge for southern Africa (ed Whitman J), pp. 265-
290. McMillan Press, London, UK.

Van Rensburg BJ ef al. (2000) Testing generalities in the shape of patch occupancy
frequency distributions. Ecology, 8, 3163-3177.

Van Wyk AE (1996) Biodiversity of the Maputaland Centre. In: The Biodiversity in African
Savannahs. (eds van der Maesen LJG, van der Burgt XM, van Medenbach de Rooy
IM), pp. 198-207. Kluwer Academic Publishers, Dordrecht.

Vida S (1993) A computer program for non-parametric receiver operating characteristic
analysis. Computer Methods and Programs in Biopmedicine, 40, 95-101.

Wessels KJ ef al. (2000) Incorporating land cover information into regional biodiversity
assessments in South Africa. Animal Conservation, 3, 67-79.

White F (1983) The Vegetation of Africa: a Descriptive Memoir to Accompany the
UNESCO/AETFAT/ UNSO Vegetation Map of Afiica. Natural Resources Research
XX. UNESCO, Paris.

Williams BG et al. (2000) Where are we now? Where are we going? The demographic
impact of HIV/AIDS in South Africa. South African Journal of Science, 96, 297-300.

Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental

evaluation tool in clinical medicine. Clinical Medicine, 39, 561-577.

67



University of Pretoria etd — Erasmus, B F N (2006)

3. South African fauna and climate change

Appendix 1 List of 179 species included in the analyses.

Birds

Common name Scientific name
Anteating Chat Myrmecocichla formicivora
Blackchested Prinia Prinia flavicans
Blackheaded Canary Serinus alario
Blackthroated Canary Serinus atrogularis

Blue Korhaan Eupodotis caerulescens
Buffstreaked Chat Qenanthe bifasciata
Bully Canary Serinus sulphuratus

Cape Bunting Emberiza capensis

Cape Canary Serinus canicollis
Crimsonbreasted Shrike Laniarius artococcineus
Dark Chanting Goshawk Melierax metabates
Drakensberg Siskin Pseudochloroptila symonsi
Dusky Sunbird Nectarinia fusca

Forest Canary Serinus scotops

Ground Woodpecker Geocolaptes olivaceus
Kalahari Robin Erythropygia paena
Karoo Korhaan Eupodotis vigorsii

Karoo Robin Erythropygia coryphaeus
Larklike Bunting Emberiza impetuani
Longtailed Shrike Corvinella melanoleuca
Ludwig's Bustard Neotis ludwigii
Malachite Sunbird Nectarinia famosa

Pale Chanting Goshawk Melierax canorus
Redcrested Korhaan Eupodotis ruficrista
Redeyed Bulbul Pycnonotus nigricans
Rock Bunting Emberiza tahapisi

Rock Kestrel Falco tinnunculus

South African Cliff Swallow
South African Shelduck
Stanley's Bustard
Streakyheaded Canary
Tractrac Chat

Whitethroated Canary
Yellow Canary

Hirundo spilodera
Tadorna cana
Neotis denhami
Serinus gularis
Cercomela tractrac
Serinus albogularis
Serinus flaviventris

Mammals

Common name Scientific name
Cape pangolin Manis temminckii
Cape serotine bat Eptesicus capensis
Caracal Felis caracal

Giant golden mole
Grant's rock mouse
Gunning's golden mole
Hottentot golden mole
Meller's mongoose
Namaqua rock mouse
Red duiker

Riverine rabbit

Rock dassie

Chrysospalax trevelyani
Aethomys granti
Amblysomus gunningi
Amblysomus hottentotus
Rhynchogale melleri
Aethomys namaquensis
Cephalophus natalensis
Bunolagus monticularis
Procavia capensis
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South African lesser bushbaby
Striped polecat

Suricate

Verreaux's mouse

Wahlberg's epauletted fruit bat
Water mongoose

Yellow mongoose

Galago moholi

Ictonyx striatus

Suricata suricatta
Myomyscus verreauxii
Epomophorus wahlbergi
Atilax paludinosus
Cynictis penicillata

Butterflies

Abantis bicolor
Acraea natalica
Belenois aurota
Catopsilia florella
Charaxes jasius
Colias electo
Colotis danae
Danaus chrysippus
Dira swanepoeli
Eurema brigitta
Freyeria trochylus
Henotesia perspicua
Lepidochrysops bacchus
Papilio dardanus
Papilio demodocus
Papilio euphranor
Papilio nireus
Pontia helice
Zizeeria knysna

Reptiles
Lizards

Snakes

Tortoises

Acontias plumbeus
Bradypodium damaranum
Chamaeleo dilepis
Chamaeleo namaquensis
Chamaesaura aneae
Chondrodactylus angulifer
Cordylus giganteus
Cordylus macrophallus
Heliobolus lugubris
Homopholis wahlbergi
Mabuya capensis
Mabuya homalocephala
Nucras lalandei

Nucras livida

Pedioplanis laticeps
Pedioplanis namagquensis

Amblyodipsas concolor
Bitis atropos

Bitis caudalis

Bitis cornuta

Bitis gabonica

Causus defilippii
Dasypeltis inornata
Dispholidus typus
Hemachatus haemachatus
Homoroselaps dorsalis
Lamprophis aurora
Lamprophis inornatus
Lycodonomorphus rufulus
Macrelaps microlepidotus
Naja nivea

Psammophis subtaeniatus

Scelotes mirum Python sebae
Tropidosaura montana Typhlops bibronii
Varanus albigularis Typhlops fornasinii

Geochelone pardalis
Homopus areolatus
Homopus boulengeri
Homopus femoralis
Homaopus signatus
Kinixys belliana
Kinixys lobatsiana
Kinixys natalensis
Kinixys spekii
Psammobates geometricus
Psammobates oculifer
Psammobates tentorius
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Other invertebrates
Dung beetles

Jewel beetles

Antlions

Chironitis audens
Copris cornifirons
Epirinus flagellatus
Epirinus gratus

Garreta unicolor
Gymnopleurus humanus
Metacatharsius marani
Neosisyphus infuscatus
Neosisyphus mirabilis
Onitis minutus
Onthophagus asperulus
Onthophagus binodis
Onthophagus cameloides
Onthophagus immundus
Onthophagus stigmosis
Phalops ardea
Scarabaeus gariepinus
Scarabaeus rugosus
Scrabaeus aesculapius

Acmaeodera albovillosa
Acmaeodera grata
Julodis cirrosa

Julodis viridipes
Lampetis gregaria
Lampetis viridimarginata
Megactenodes reticulata
Monosacra lalandei
Neojulodis tomentosa
Phlocteis exasperata
Pseudophlocteis vidua
Scaptelytra aliena
Sphenoptera brincki
Sternocera orissa

Termites

Stolotermes

Porotermes
Fulleritermes
Apicotermes
Macrotermes (4 species)
Termes

Allodontotermes
Cryptotermes (2 species)
Hodotermes

Cymothales bouvieri
Cymothales illusiris
Golafrus oneili
Palparellus festivus
Palpares annulatus
Palpares cataractae
Palpares lentus
Palpares sobrinus
Palpares sparsus
Palpares speciosus
Pamexis karoo
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Modelling the spatial distribution of two important South African

plantation forestry pathogens
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ABSTRACT

Pathogens, pests and diseases impact heavily on commercial plantation forestry in South
Africa, and must thus be considered in any diversified and adaptive management approach.
Two important fungal pathogens of Pinus and Eucalyptus species respectively are

Sphaeropsis sapinea and Cryphonectria cubensis. The most common disease symptoms

associated with S. sapinea infections are shoot blight and top dieback. S. sapinea also exists
as an asymptomatic endophyte in healthy tissue of susceptible pine species and can cause
disease following predisposition, such as mechanical damage. Canker formation following
infection by C. cubensis results in the death of young tress, while older trees with stem
cankers are prone to wind breakage. The aim of this study was to explore the use of
bioclimatic modelling to predict the habitat distribution for these pathogens, and to consider
potential distribution patterns under conditions of climate change. High risk areas
identified for Sphaeropsis dieback coincide with the summer rainfall hail belt, emphasising
the need for planting resistant Pinus spp. in these regions. A much smaller area of South
Africa is predicted to be suitable for the occurrence of C. cubensis than for S. sapinea, but a
range shift westward in suitable habitat for C. cubensis is predicted under a climate change
scenario. Of concern is that many of these areas are currently being planted with disease
susceptible Eucalyptus clones. These preliminary results, and further refinement of the
model, will lay a valuable foundation for future risk assessment and strategic planning in

the South African forestry industry.
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INTRODUCTION

The South African commercial forestry industry is of considerable economic importance to
the country, with the value of timber products estimated at US $15 million for 1996 (Hassan,

1999). The industry depends almost exclusively on the planting of exotic Pinus, Eucalyptus

and Acacia species, that collectively cover an area of approximately 1.5 million ha
(Anonymous, 2001). The extensive use of monocultures has raised concerns regarding the
impact of diseases on the future competitiveness and sustainability of the industry (Wingfield
et al., 1989). Many fungal pathogens cause diseases in commercial plantation species in
South Africa. These account for losses of millions of dollars due to timber damage or tree

mortality, excluding impacts due to loss of growth (Zwolinski et al., 1990).

Sphaeropsis sapinea (Fr.:Fr.) Dyko & Sutton [Syn. Diplodia pinea (Desm.) Kickx] is one of
the most important and widespread pathogens in pine plantations in South Africa. This
pathogen has caused severe damage to pine plantations in many countries, but its notoriety is
based on the devastation it has caused in South African plantations of Pinus radiata D.Don
and P. patula Schlechtend & Cham., especially after hail injury (Laughton, 1937; Swart et al.,
1987b). The fungus is widespread in South Africa, and numerous outbreaks have been
reported, mostly from summer rainfall areas following hail damage. The most common
disease symptoms associated with S. sapinea infections are shoot blight and top dieback, but
canker accompanied by resinosis, bluestain and root disease are also found (Swart et al.,
1987b, Swart and Wingfield, 1991a). S. sapinea also exists as an asymptomatic endophyte in
healthy tissue of susceptible pine species (Smith et al., 1996; Stanosz et al., 1997), and can
cause disease following predisposition. Disease usually affects trees that are wounded by
hail, insects or other agents, or physiologically stressed by drought or nutrient deficiencies.
Relative humidity, optimum temperatures, the occurrence of rain, temperatures prevailing
after rainfall, microclimatic conditions and the season can all influence the dispersal of
conidia, spore germination and host penetration by S. sapinea (Swart et al., 1985; Swart et al.,
1987a; Swart and Wingfield, 1991a, Swart and Wingfield, 1991b).

In Eucalyptus, canker caused by Cryphonectria cubensis (Bruner) Hodges is one of the most
important limitations to plantation success (Bruner, 1916; Boerboom and Maas, 1970;

Hodges, 1980). The disease was first discovered in South Africa in 1988 (Wingfield et al.,
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1989) and it has subsequently caused significant losses in the sub-tropical Zululand area.
Infection generally results in the formation of cankers at the bases and around branch stubs of
trees. Basal cankers are characterised by swelling and cracking of the bark, while stem
cankers generally result from infection of branch stubs and death of the cambium. Infection
of young trees results in death, while older trees with stem cankers are prone to wind
breakage (Sharma et al., 1985; Florence et al., 1986). Cryphonectria canker is prevalent in
many tropical parts of the world, particularly between 30° north and south of the equator.
The growth and spread of the pathogen is promoted by high rainfall, humid conditions, and
temperatures above 23°C (Hodges et al., 1979; Sharma et al., 1985).

Plantation disease management relies heavily on the selection of disease tolerant planting
material, since chemical control on established trees is generally uneconomical and
unreliable. Great success has been achieved in disease management through the selection of
disease tolerant clones and hybrids (Denison and Kietzka, 1993; Wingfield et al., 2001).
Breeding and selection is often, however, dependent on accurate site species matching. Trees
selected for disease tolerance on one site, can be susceptible to the same disease on an
unfavourable site. Extensive breeding programmes are thus used to select Eucalyptus clones
resistant to Cryphonectria infection for the Zululand area of South Africa (Van Zyl and
Wingfield, 1998; Van Zyl and Wingfield, 1999; Van Heerden and Wingfield, 2001).

Pine and eucalyptus plantations in South Africa are distributed mainly along the eastern and
south-eastern parts of the country, and include various climatic regions. The distribution and
infectivity of both pathogens considered in this study are affected by climatic parameters.
Thus, climate studies can promote our understanding of why species are limited to specific
regions. If the spatial distribution of a plant is not fully defined, bio-climatic analysis allows
the prediction of the probable or theoretical limits of the distribution (Lindenmayer et al.,
1991). This could have important implications for developing appropriate management

strategies to reduce disease impact or incidence.

Powerful statistical techniques coupled with geographical information systems (GIS), have
fostered the development of a host of predictive habitat distribution models. This array of
models covers aspects as diverse as biogeography, conservation biology, habitat or species

management and climate change research (Guisan and Zimmermann, 2000). A bivariate
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climate envelope model developed by Jeffree and Jeffree (1994, 1996) for predicting species
distribution patterns and the effects of climate change has recently been modified to accept

multivariate inputs to yield probability of occurrence maps for species (Erasmus et al., 2000).

The aim of this study was to assess the value of the modified Jeffree and Jeffree model
(Erasmus et al., 2000) for predicting the broad habitat distributions of two important South
African forestry pathogens, S. sapinea and C. cubensis, and to explore their potential
distributions under conditions of climate change. In future, successful plantation disease
management will depend on cooperative research involving many disciplines such as
pathology, entomology, genetics, soil science and silviculture. A disease modelling system
that can aid in the selection or matching of specific clones to specific sites could have a major
positive impact on the management of plantation diseases. Our results should form a

valuable basis for the development of future spatial disease management systems.

MATERIALS and METHODS

Pathogen distribution records

The distribution records for S. sapinea and C. cubensis were obtained from the disease
database of the Tree Pathology Co-operative Programme (TPCP) at the Forestry and
Agricultural Biotechnology Institute (FABI), University of Pretoria. The TPCP represents a
collaborative venture between the University of Pretoria and all the major players in the South
African forestry industry, and manages a centralised database of all important local forest
pathogens. In the case of S. sapinea the data set contained 87 confirmed reports of the
fungus identified between 1994 and 1999 on 11 different Pinus species, 66% of which were

from either P. patula or P. radiata. For the purposes of this modeling exercise, input data
were resolved to 10 x 10 km grid cells, reducing the 87 reports to 48 records. This was due to
multiple reports of the pathogen from the same region in different years or from different host

species.
For C. cubensis the data set comprised 17 confirmed reports of the pathogen, 14 cases
identified on Eucalyptus trees, and 3 from Tibouchina spp. As in the case of S. sapinea, the

close proximity of some reports resulted in a reduction of the number of input records for
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modelling purposes from 17 to 14. As a sampling density of less than nine records is
regarded as an unreliable input for the model (Erasmus et al., 2000), these 14 records were

considered sufficient for predicting the habitat distribution of C. cubensis.

Climate data

Historic climate data (thirty year means 1960-1990) and a digital elevation model for South
Africa were obtained from the Computing Centre for Water Research (CCWR, University of
Natal, South Africa). These data comprised interpolated climate surfaces at a minute by
minute resolution. Five variables, i.e. altitude, average rainfall of the driest month, average
rainfall of the wettest month, average temperature of the hottest month and average
temperature of the coldest month were selected for use as model predictors. They were
identified from a suite of 11 variables using Pearson’s correlation coefficient to select the
least correlated variables. It is commonly known that there is a degree of correlation between
altitude and temperature; however, this relationship varies in time and space. The fact that
both altitude and temperature variables were identified in this least-correlated selection
procedure, shows that the correlation is not that strong and that altitude could potentially
explain parts of the distribution that temperature can not. However, temperature at similar
altitudes may vary considerably due to local conditions, and it should therefore be interpreted

with caution.

For predicting distributions under conditions of climate change, two sets of climate data were
used. From the available data sets for climate change conditions, only three variables could
be employed at a resolution of quarter-degree grid cells (25 x 25 km): (1) minimum
temperature of the coldest month, (2) maximum temperature of the hottest month and (3)
mean annual precipitation. Although precipitation seasonality has been shown to be a useful
predictor variable across South Africa (Erasmus et al. 2000), the study area falls completely
within a summer rainfall area, and as such mean annual precipitation was regarded as

sufficient for the purposes of this modelling exercise.

One set of data was based on historical climate data and one set on a General Circulation
Model (GCM) predicting climate change. The Hadley Centre Unified GCM (HadCM2 with
no sulphates) was used, and it predicts significant changes in the regional climate by the year

2050 or sooner, with an average temperature increase of 2.5-3°C expected (Erasmus et al.,
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2000). Mean annual hail day frequency (HDF) data, derived from HDF, altitude and latitude
were available for the summer rainfall region of South Africa and obtained from Le Roux and

Olivier (1996).

Climate matching

For comparative purposes in the case of C. cubensis, the global geographic distribution of the

pathogen was summarized from existing literature. For each of these localities, the annual
rainfall, mean temperature, maximum temperature and minimum temperature were obtained
from New et al. (1999, 2000) (http://www.cru.uea.ac.uk/~marknfcru05/cru05_intr0.html,

hitp://ipce-dde.cru.uea.ac.uk/).  Altitude values were determined from a global digital

elevation model GTOPO30 with a horizontal spacing of 30 arc seconds developed through a
collaborative effort led by the U.S. Geological Survey’s EROS Data Centre
(http://edcdaac.usgs.gov/gtopo30). Areas predicted to be a suitable habitat for the fungus
under local conditions were identified based on homoclime matching. Homoclimes are
Jocations that experience similar climatic conditions (Lindenmayer et al., 1991). Areas within
South Africa were identified where the climatic conditions were within the limits of the
minimum and maximum values identified globally for each of the five parameters under
consideration. From this, a single common area meeting all criteria was defined as a potential
habitat for the pathogen, distinct from the Jeffree and Jeffree modelled solution explained

below.

Modelling procedure

The adapted Jeffree and Jeffree bioclimatic model can incorporate not only two but multiple
climate variables (Erasmus et al., 2000). The input data comprises 11800 grid cells covering
South Africa populated with climate variables. The grid cells in which the particular pathogen
species was recorded, were termed known records. The model creates a multidimensional
scatterplot using the selected climate variables for each known record grid cell, generates an
X n covariance matrix, transforms the variables according to specified criteria, and maps the
generated values back onto geographical space. The output is a probability of occurrence
value in every grid cell for a given species. However, such a single probability of occurrence
value for each cell gives no indication of the underlying variation in the calculated probability
values. This means that although two grid cells may have the same probability of occurrence

for a given species, they may differ in their ability to reflect the true distribution pattern of the
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species in question. Consequently, a statistical re-sampling technique known as jackknifing
was incorporated into the model to quantify the variation underlying the calculated
probability values. By making use of jackknifing, n probability of occurrence values (n = size
of data set) can be generated for each grid cell instead of a single value. This method re-
calculates the probability of occurrence n times, each time using a different combination of n-
1 of the data set’s known records. The jackknife principle uses these n replicates to estimate
the variation associated with the probability of occurrence estimates. It calculates an
estimated standard error (a measure of absolute variation), and a coefficient of variation (a
measure of relative variation), associated with each probability of occurrence value (I. Smit,

personal communication).

Model evaluation

The opportunistic nature with which the distribution data for the two fungi were collected
precluded rigorous model evaluation with this particular data set. However, this same climate
envelope model has been subjected to rigorous evaluation using presence-absence data
resulting from a coordinated survey effort. Erasmus et al. (2002) used the distribution records
of 34 bird species and tested model performance using receiver operator characteristic
analyses (Fielding and Bell, 1997). The model performed significantly better than a random
model with no discriminatory ability. The model also accurately predicted the complete
known distributions for 24 of the 34 bird species, using a 20% sub-sample of the known
records. The remaining 10 bird species distributions are thought to be more determined by
habitat and resource preferences than climate. In sum, the model performed satisfactorily and

is therefore considered adequate for the present study.

RESULTS

Predicted distribution of Sphaeropsis sapinea

A predicted distribution providing probability of occurrence values for S. sapinea in South
Africa was derived from five variables (Fig. 1A). The predicted distribution range decreased
as the level of probability was increased. At a probability of occurrence of greater than 0.5, a

total of 994 grid cells (10 x 10 km) were selected, which contained 50% of the known
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e S. sapinea records
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T 0-024
[] 0.25-0.49
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0 100 200 300 400 500 Kilometers B 075-1
f.*  Pine plantations

Fig. 1(A) The bioclimatically modelled probability of occurrence surface for

Sphaeropsis. sapinea distribution shows the areas at risk of infection. Black dots indicate

known distribution records for this species. Perimeters of regions which encompass

approximately 90% of commercial pine plantations are indicated.
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distribution records of the fungus. The selected area closely corresponds to the regions
utilised for commercial plantations in South Africa. This result raises the obvious question
whether the pathogen or host distribution is being modelled. The host is an obvious
requirement for the distribution of these pathogens, and would result in a self-fulfilling
model. Unfortunately, there is not enough data on the distribution of these pathogens outside
plantations to provide a substantive answer. The interpretation of the calculated probability
of occurrence values can be improved when the underlying variation associated with each
probability value is considered, and more confidence can be attributed to a grid cell with a
high probability value and a low standard error. Under more stringent criteria of a probability
of occurrence value greater than 0.75 and a standard error of less than 0.15 (arbitrary values),
491 grid cells were selected (Fig. 1B). This area, derived from environmental parameters,
and which includes eastern Mpumalanga, central and western KwaZulu-Natal, and the eastern
parts of the Eastern Cape Province, represents a core region predicted to reflect the region of

the country most at risk of S. sapinea infection.

In the South African context the principal risk factor for outbreaks of Sphaeropsis disease
remains hail damage to susceptible trees. A spatial pattern of mean annual hail day frequency
(HDF) (Le Roux and Olivier, 1996) was combined with the S. sapinea distribution
predictions. The areas identified in Mpumalanga and KwaZulu-Natal as high risk regions for
S. sapinea infection, also expect more than three occurrences of hail per annum (Fig 1B).
This emphasises the management reality that plantation production will necessarily be
compromised by a widespread pathogen such as S. sapinea. Furthermore, estimated

production targets for such hail-affected regions will have to be weighted accordingly.

Predicted distribution of Cryphonectria cubensis

C. cubensis has been reported from numerous tropical countries of the world, where its
distribution is probably determined by humid conditions needed for the growth and spread of
the pathogen (Conradie et al., 1990). Environmental conditions prevailing at locations where
C. cubensis exists, were thus investigated (Table 1). Using the minimum and maximum
values of each climatic parameter as limits, the corresponding homoclime area, which

matched these climate values in South Africa was identified (Fig. 2A).
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Fig. 1(B) Risk areas for Sphaeropsis sapinea infection in South Africa. Modelled
surface with probability of occurrence values greater than 0.75 and a standard error less than

0.15, together with mean annual hail occurrence patterns (adapted from Le Roux and Olivier,
1996).
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Table 1 (continued on next page)
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Geographical distribution of Cryphonectria cubensis and environmental conditions at these localities

Country Island/Town/District  Annual  Max. annual Min. annual Mean annual  Elevation’  Reference or Source
rainfall' tempc-:r::ltureI temperaturel temper:;tturel (m)
(mm) cO) (WY ()
Brazil Sao Paulo 2847 26.7 18.2 22.4 635 Hodgesé&Reis, 1974
Brazil Aracruz 1862 31 22.1 26.5 67 Alfenas et al., 1983
Brazil Brazilia 3030 273 18 22.6 1087 MIW’
Brazil Vitoria 1679 31.1 22.8 26.9 68 MIW
Brazil Piracicaba 2701 28.5 19 23.7 512 MIW
Equador Quevedo 4307 28.3 15.6 21.9 99 MIW
Colombia Cali 1643 27.1 16.4 21.7 770 MJW
Argentina Posadas 1679 32.5 20.3 26.4 72 MJW
Surinam 2920 29.5 21.3 25.1 Boerboomé&Maas, 1970
Venezuela Acarigua 438 30.1 18.4 24.2 199 MIW
Mexico Los Choapas 1424 26.4 17.5 219 13 MIW
Mexico Villahermosa 2008 28.1 18.3 23.2 9 MIW
Cuba Santiago de las Vegas 694 26.6 15.6 21.1 116 Bruner, 1916
Trinidad & Tobago  Trinidad 767 29.1 20 24.5 Hodges, 1980
Puerto Rico Toro Negro State Forest 986 25.4 18.5 21.9 543 Hodges et al., 1979
Puerto Rico Rio Abajo State Forest 986 254 18.5 21.9 297 Hodges et al., 1979
USA, Florida La Belle 767 23.6 13 17.7 7 Hodges et al., 1979
Hawaii Kauai 1250* 23.7 15.4 19.5 Hodges et al., 1979
Western Samoa Western Samoa 4709 30 24.2 212 Hodges, 1980
Malaysia 1314 29.3 20.9 2571 Hodges et al., 1986
Indonesia Bangka Island 3030 29.6 22.6 26.1 Hodges et al., 1986
Indonesia Prapat 2336 30.6 15 22.8 910 MIW
Indonesia Bali 3358 299 20.1 24.9 MIW
Congo Pointe-Noire 1898 29.7 23.1 26.4 1 Roux et al., 2000
Cameroon Edéa 657 31.4 22.1 26.7 21 Alfenas et al., 1983
Tanzania Zanzibar 876 32 22.9 274 Hodges et al., 1986
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Fig. 2(A) Risk areas for Cryphonectria cubensis infection in South Africa. Black dots

indicate known distribution records for this species. The shaded area represents a region
predicted as suitable habitat for C. cubensis based on matching of climatic conditions from
other locations. This area has an elevation between 1 and 1100 m, mean annual precipitation
between 438 and 5217 mm, minimum annual temperature between 13 and 24.3°C, maximum
annual temperature between 23.6 and 32.5°C, and mean annual temperature between 17.7 and

27.6°C. Names of provinces of South Africa are indicated.
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This potential habitat defines the broad scale limits of the pathogen’s possible distribution,

but does not provide the same resolution associated with models capable of predicting regions
with higher probabilities for disease development. The degree of congruence between the
potential habitat and areas most at risk of C. cubensis infection was investigated more
thoroughly using the predictive modelling approach previously described (Erasmus et al.,

2000).

The same set of five variables used for S. sapinea was used for modelling the predicted
habitat of C. cubensis. The analysis identified the coastal area of KwaZulu-Natal, as well as a
few smaller interior areas from northern KwaZulu-Natal, Mpumalanga and the Limpopo
Province, as possible distribution areas for the pathogen (Fig. 2B). However, at a probability
of occurrence value of greater than 0.5 only 47 grid cells were identified. These were

clustered mainly in a band not more than 40 km wide along the KwaZulu-Natal coast.

The limited distribution of C. cubensis in South Africa, and its climate-dependent occurrence,
raises questions regarding the possible effects of climate change on its future distribution
patterns. Although climate change modeling was conducted using only three variables as
model predictors, the expected distribution (Fig. 3) from historic climate data (solid cells)
corresponded well with the modeled distribution derived from five variables (see Fig. 2B).
The climate affected distribution (hatched cells) indicates a range shift to the region west and
bordering the region of the current expected distribution, as well as a small area in the far
north of the country. Grid cells selected, represented areas with a predicted probability of
disease occurrence greater than 0.5. Most of the distribution areas predicted under climate
change conditions (Fig. 3) also border, but do not overlap, the areas identified in Fig. 2A.
This confirms that these areas would only become a potential habitat for the pathogen once

temperature and rainfall patterns have altered.

DISCUSSION

Indigenous tree species suitable for short rotation plantations in support of timber and pulp

production are extremely scarce in South Africa. Thus the local commercial forestry industry
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Fig. 2(B) Risk areas for Cryphonectria cubensis infection in South Africa. Black dots

indicate known distribution records for this species. The bioclimatically modelled probability

of occurrence surface for C. cubensis distribution
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Fig.3 The modelled distribution for Cryphonectria cubensis derived from mean annual
precipitation, minimum monthly temperature and maximum monthly temperature from
historic climate data (solid cells) or under a climate change scenario (hatched cells). Black
dots indicate known distribution records for this species. Perimeters of regions which

encompass approximately 90% of commercial eucalyptus plantations are indicated
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depends almost entirely on exotic tree species, grown in plantations. Although these exotics
have been spatially separated from many of the diseases that occur in their areas of origin,
diseases already present in the country impart significant losses (Wingfield and Swart, 1994,
Wingfield et al., 2001). Successful disease management requires integrated management
strategies based on extensive knowledge of the pathogens concerned. Research to assess and
mitigate the disease risks to the forestry industry and to optimize production strategies from
pathogens should include the identification of focal organisms likely to be agents of future
disturbance, surveys of their abundance and impact, and an improved understanding of the
direct environmental effects of temperature and moisture on their biology. Conclusions
should ideally be expressed within a spatially explicit modelling framework that predicts
regional production, disease and disease affected production patterns for historic climate data,
projected climate change scenarios, and appropriate ground truthing (Ayres and Lombardero,
2000). In this study we have focussed on modelling the potential distributions of two
economically important South African plantation pathogens. The results have shown clearly
that the climate affected distribution of both pathogens under current and future climate

conditions will impact on the local forestry industry.

S. sapinea has been present in South Africa since the early 1900's, and was selected for this
study as the dieback associated with it is considered to be the most important limitation to
pine production in the country (Zwolinski et al., 1990; Swart and Wingfield, 1991a). The
ability of the pathogen to persist in asymptomatic association with its host (Smith et al., 1996;
Stanosz et al., 1997) and the high level of genotypic diversity of S. sapinea in South Africa
(Smith et al., 2000), complicates disease management strategies (McDonald and McDermott,
1993). Although factors governing Sphaeropsis disease manifestation are clearly complex,
we attempted to correlate the range of this pathogen with climate at a regional scale. Based on
a suite of five environmental variables, an area stretching from the Limpopo Province,
through Mpumalanga, KwaZulu-Natal, Eastern Cape and Western Cape Provinces was
identified as potential risk areas for Sphaeropsis disease. This area closely corresponds to the
regions utilised for commercial forestry in South Africa, confirming the potential threat of

Sphaeropsis dieback in all susceptible pine plantations.

The use of a statistical re-sampling technique enabled the identification of a core risk region

for Sphaeropsis occurrence with a consistently high probability of disease occurrence.
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Isolated cases of extensive losses from Sphaeropsis have been reported from the Southern
Cape, an all year rainfall region, following a single severe hail storm and infestation of trees
by cambiophagous insects (Zwolinski et al., 1990; Zwolinski et al., 1995). The core risk
region, however, falls in the summer rainfall region of South Africa, which regularly
experiences thunderstorms and hail. When the expected annual hail occurrences are viewed
together with the Sphaeropsis risk area, it is clear that the production of susceptible pine
species will necessarily be affected by Sphaeropsis dieback along the eastern Mpumalanga
escarpment. Thus, in this region the emphasis should be on planting Pinus spp. which are not

susceptible to S. sapinea infection.

Disease severity and distribution associated with C. cubensis infection appears to be much
more directly related to climatic conditions than is the case for S. sapinea. We used two
different approaches - through either homoclime matching, or modelling the predicted

distribution - to identify general and high-risk areas for C. cubensis infection. Superimposing

the results modelled from historic climate data (predicted distribution, Fig. 2B) onto the broad
potential habitat (Fig. 2A) illustrated that the modelled distribution of C. cubensis only
extends over less than a fifth of the suitable habitat identified through homoclime matching.
The reason for this is that large parts of the area selected as potential habitat fall only

marginally within the global climate parameter limits obtained from Table 1.

In the case of mean annual rainfall, the fungus has been reported from locations with rainfall
figures ranging from less than 500 mm to more than 5000 mm per annum (see Table 1).
However 72% of these locations record more than 1200 mm annually, and in Brazil the
severity of the disease has been shown to be more intense in areas of high rainfall (Hodges et
al., 1979). Although no attempt was made here to investigate the different contributions of
temperature and rainfall on the fungus’s biology, it has been shown that colonization of young
Eucalyptus plants by C. cubensis following artificial inoculation under greenhouse conditions
was inhibited by drought stress (Swart et al., 1992). South Africa is relatively dry, and only
about 3% of the country receives more than 1000 mm per year. This includes the narrow strip
along the eastern coast where most of the local occurrences of C. cubensis have been
recorded. Therefore, the predicted distribution modelled from historic climate data (Fig. 2B),
which represents a probability of occurrence based on a suite of relevant parameters, probably

more accurately reflects the actual risk areas for Cryphonectria canker than the potential

90



University of Pretoria etd — Erasmus, B F N (2006)

4. Distribution of forestry pathogens

habitat area identified through the homoclime / climate matching approach (Fig. 2A).
Although a much smaller area of South Africa is suitable for the occurrence of C. cubensis

than for S. sapinea, these areas are also exactly within extant forestry areas.

Increases in atmospheric greenhouse gases are expected to have significant impacts on the
world’s future climate. There is evidence that the anomalous climate of the past century has
already affected the physiology, distribution and phenology of some species in ways
consistent with theoretical predictions (Hughes, 2000). Projected climate change will
obviously also impact on forest growth and composition (Lindner, 2000). An investigation of
local forestry regions showed that climate changes could lead to substantial loss of production
in the core areas presently used by the forestry industry (Fairbanks and Scholes, 1999).
Climate will however also impact indirectly on forests by altering disturbance patterns from
pathogens (Loehle and LeBlanc, 1996; Ayres and Lombardero, 2000). For C. cubensis in
South Africa, the distribution predicted under the climate change scenario suggests that the
fungus could in the future establish itself in areas inland of where it is currently considered a
problem. Most of these areas already support eucalypt plantations. Of greatest concern here
is that many of the areas that would become suitable for C. cubensis are currently planted
with E. grandis seedlings or clones. E. grandis is especially susceptible to C. cubensis
infection in other parts of the world and in South Africa (Hodges et al., 1979; Conradie et

al.,1990) and losses could be severe.

This study aimed to investigate gradual, long-term distribution changes (Easterling et al.,
2000). These changes are the sum of seasonal range expansions and contractions as
determined by a complex interaction of climate and community level processes, with climate
being more important at broader temporal scales. Theoretically our modelling technique
would be equally suitable for use with short-term climate and distribution data; the
calculations are blind to the source of the data. However, we feel that such short-term (intra-
annual) modelling results based on weather data would not be robust. The reason for this
concern lies with the nature of the short-term climate data needed for such an analysis. There
has been significant improvements in the reliability of decadal scale climate change
predictions (Zwiers, 2002; Knutti et al., 2002; Stott and Kettleborough, 2002) and such
developments allow for insightful analyses of distribution shifts, either historically (Parmesan

etal., 1999; Pounds et al., 1999) or predicted (Erasmus et al., 2000; Peterson et al., 2002).
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It is true that many currently relevant ecological concerns operate at finer temporal scales
(Walther et al., 2002). However, at increasingly finer scales (i.e. seasonal or intra-annual),
the paucity of data on the relative importance of physiological processes (Chown and Gaston,
1999), community processes and climate on population dynamics (Stenseth et al., 2002),
renders model outputs extremely uncertain. In addition, an increase in the frequency of
extreme climate events is predicted to co-occur with climate change (Easterling et al., 2000).
Such extreme events would have a large negative impact on the reliability of a fine temporal
scale model, and as such provides additional support for avoiding intra-annual distribution

shift predictions.

Forestry management decisions are based on information pertaining to current and future
resource conditions, and many forest simulation models have been widely used to provide
information for sound decision making. Different applications require different types of
models and varying modelling approaches (Peng, 2000). We have investigated the use of a
bioclimatic model to predict the distribution of two important South African forestry
pathogens. This provides the first such study, and provides valuable information to the South
African Forestry Industry. The results can be integrated into other existing decision support
systems to meet the demands of forest management and pathogen control under uncertain
future environmental conditions. Further refinement, and the use of more detailed and
systematically collected data for diseases will make it possible to improve systematic

plantation risk assessment for management and planning purposes.
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Abstract

This paper links two different methodologies to determine the effects of climate change on the
Western Cape farm sector. First, it uses a general circulation model (GCM) to model future
climate change in the Western Cape, particularly with respect to precipitation. Second, a sector
mathematical programming model of the Western Cape farm sector is used to incorporate the
predicted climate change, specifically rainfall, from the GCM to determine the effects on key
variables of the regional farm economy. In summary, results indicate that future climate change
will lead to lower precipitation, which implies that less water will be available to agriculture in
the Western Cape. This will have a negative overall effect on the Western Cape farm economy.
Both producer welfare and consumer welfare will decrease. Total employment in the farm
sector will also decrease as producers switch to a more extensive production pattern. The direct

economic impacts, therefore, will fall disproportionately on the poor.
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1.1 Introduction

At any one location, year-to-year variations in weather can be large, but analyses of
meteorological and other data over large areas and over period of decades or more have
provided evidence for some important systematic changes in weather over the past century
(IPCC, 1995a). For example, global mean surface air temperature has increased by between 0,3

and 0,6 degrees centigrade, with some regional variations, since the late 19" century.

Considerable progress has been made in the 1990s in the modelling of climatic change. Three
advances are of particular interest. First, in order to distinguish between natural and
anthropogenic influences on climate, the inclusion of effects of sulphate aerosols in addition to
greenhouse gases has led to more realistic estimates of human-induced radiative forcing.
Second, simulations with coupled atmosphere-ocean models have provided important
information about decade to century time-scale natural internal climate variability. Third, there
has been a shift of focus from studies of global-mean changes to comparisons of modelled and
observed spatial and temporal patterns of climate change (IPPC, 1995a). Two results from
these models are important: The balance of evidence suggests that there is a discernible human

influence on global climate, and climate is expected to continue to change in the future.

A range of future scenarios, incorporating future greenhouse gas and aerosol precursor
emissions based on assumptions concerning population and economic growth, land-use,
technological changes, energy availability and fuel mix during the period 1990-2100, has been
developed. General circulation models (GCMs) use these emissions to develop projections of
future climate by linking the global carbon cycle and atmospheric chemistry (IPCC, 1995b).
However, the limitations of these GCM results should be recognised when quantifying effects
of climate change. Due to the complex nature of atmospheric conditions giving rise to
precipitation, there is more confidence in temperature predictions than in hydrological
predictions. Confidence is also presently higher in broad scale (global and hemispheric)
climate predictions than in regional predictions. In spite of these limitations, these results
remain important, as they provide the only indication of the potential effects of climate change,
particularly precipitation, on regions that are to a large degree dependent on favourable climatic
conditions for securing livelihoods for the inhabitants. One such region is the Western Cape,

where agricultural production, based largely on irrigation, provides the backbone of the regional
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economy.

Against this background, the objectives of this paper are twofold. First, it uses a general
circulation model (GCM) to model future climate change in the Western Cape, particularly with
respect to precipitation. Second, a sector mathematical programming model of the Western
Cape farm sector is used to incorporate the predicted climate change, specifically rainfall, from
the GCM to determine the effects on key variables of the regional economy. Ideally, each farm
in a region should be modelled independently, with its own unique set of production conditions.
However, this is hardly feasible and not necessary when production conditions are broadly
homogeneous over an area. For both the GCM and sector mathematical programming model,
the Western Cape has been divided into ten relatively homogeneous regions. This demarcation
follows the Statistical Regions constituting the former Development Region A of South Africa,
but includes a new Region 10 and leaves out the districts which were incorporated into the new
Northern Cape Province. The Western Cape region modelled here thus closely approximates the

Western Cape Province as defined in the 1997 Constitution.

The paper is organised as follows: The modelling of climate change in the Western Cape, using
a GCM, is discussed next (Section 2). This is followed by a description of the regional
mathematical programming model of the Western Cape farm economy in Section 3. The
modelling of the effects of future climate change on the Western Cape farm economy is done in

Section 4. Some conclusions follow in Section 5.

2. Modelling climate change in the Western Cape

2.1 General

There are a host of GCM models developed by various metereological offices world-wide. The
model used to predict climate changes for the Western Cape region was developed by the
Hadley Centre for Climate Prediction and Research of the United Kingdom Metereological
Office. The model gives pessimistic but robust predictions and is generally accepted as reliable.
It is currently being employed in the South African Country Studies Programme on Climate
Change.

There are two options when implementing this model: with and without the potential mitigating

101



University of Pretoria etd — Erasmus, B F N (2006)

5. Climate change effects on the farm sector

effects of sulphate aerosols. Climate change values for this paper were derived by implementing

the Hadley Centre Unified Model with no sulphates

(http://www.meto.govt.uk/sec5S/NWP/NWP_sys.html). The model was implemented by the
Computing Centre for Water Research (CCWR) and the resultant values represent a worst case
scenario for South Africa (Hewitson, 1998). This GCM predicts a temperature rise of 2,5-3,0
degrees centigrade for South Africa by the time that atmospheric CO; levels have doubled from
their pre-industrial levels. Erring on the side of caution, this means that significant climate

change can be expected at latest by the year 2050 (and quite possibly earlier) (Hewitson, 1998).

Historical precipitation data consisted of annual and monthly means from the past 30 years.
These data at 1 minute resolution were re-sampled to a quarter degree resolution since
predictions at the 1 minute resolution were considered unreliable because of modelling
limitations (CCWR). Predicted changes in monthly precipitation were provided for each quarter
degree grid square by the CCWR. The annual change for every quarter degree grid square was
derived by adding up the changes for each of the 12 months. These precipitation data were then
spatially intersected with the ten homogenous regions of the Western Cape (derived from 50
magisterial districts) to arrive at a map where every region is assigned a mean precipitation

value based on the values of all the quarter degree grid squares intersecting that specific region.

Previous experience with analyses of these data (Erasmus et al., in review) has shown that
temporal variability is a dominant feature. Annual means therefore tend to disguise seasonal
effects of climate change. In order to account for this, seasonal data were represented by values
for February and August. These months were chosen because a factor analysis (Statsoft Inc,
1995) of the 12 monthly rainfall shows that February rainfall contributed most to Factor 1,
explaining 56% of the variance in rainfall data, and August rainfall contributed most to Factor 2,

which explained 37% of the variance in the data.

2.2 Results

Table 1 contains a summary of the future changes in precipitation that can be expected in the
Western Cape. All the sub-regions have lower predicted precipitation values in February and
August, as well as mean annual precipitation, compared to present values. There is a relatively

wide range in the predicted decrease in mean annual precipitation from just over 3 per cent in
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Table 1: Summary of present and predicted future mean precipitation for the Western

Cape sub-regions.

Present Predicted Present Predicted Mean Predicted
Sub- mean Future % mean Future % Annual  Future %
region PPT PPT Change PPT PPT Change PPT Mean  Change
February February August  August PRT
(mm) (mm) (%) (mm)  (mm) (%) (mm) (mm) (%)
1 9.800 9.522 2.8 81.000 75.020 7.4 632.400 602.142 4.8
2 14.111 13.688 3.0 117.889 112.485 4.6 831.187 801.741 35
3 14.871 13.654 8.2 52.516 46.351 11.7 514.499 477.792 7.1
4 32.048 29.363 8.4 38.857 33.227 14.5 531.023 486.128 8.5
5 32.385 28.033 13.4 32.462  28.707 11.6 501.820 448.008 10.7
6 17.731 13.953 21.3 22962 18.750 18.3 351.138 302.068 14.0
7 6.750 5.461 19.1 47.021  43.617 7.2 421.029 391.111 7.1
8 4.227 3.976 5.9 61.773  60.071 2.8 417.708 399.470 4.4
9 1.213 0.922 24.0 27.574 27.273 1.1 219.157 203.190 7.3
10 16.551 10.015 39.5 7.562 6.703 11.4 225812 164.932 27.0
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Sub-region 2 to 27 per cent in Sub-region 10. The relationship between mean annual
precipitation and percentage change in precipitation was further investigated by using these
values for the original 50 magisterial districts from which the above-mentioned 10 regions were
constructed, A linear least-squares regression of percentage change in precipitation on current
mean annual precipitation shows a significant negative relationship that accounts for 42% of
observed variation (y = -0.0242x + 22.3317; F = 36,09, df(49), p<0.0001). Further evidence for
this trend becomes clear when the mean annual precipitation data set is divided in half to
represent drier and wetter conditions; there is a significant difference in the percentage
precipitation change that is expected to occur between these two groups (Kruskal Wallis chi
square = 17.4981, p<0.000001). It is clear that drier areas will be more affected.

3s Modelling the farm sector in the Western Cape'

3.1  Basic considerations

The theory for the construction of sector mathematical programming models has been applied to
South African agriculture on a number of occasions’. In this paper, these procedures are used to
model the Western Cape farm sector to determine the effects of climatic change, particularly the
effects of rainfall. Due to time and other constraints, Western Cape agriculture is modelled
using 1988 census reports (CSS, 1993), which appeared in June 1993, as a basis. A number of

more recent features of the economy are, however, modelled onto this base.

The construction of the model was done in three phases. First, the basic model with costs and
fixed prices only was assembled. Next, risk was included by the mean absolute deviation
method (MOTAD). Finally, variable product and input prices were modelled by using stepped

demand functions.

In this model the Western Cape has been divided into ten relatively homogeneous regions, as
described above. Two import and export ‘regions’ were also included, namely Cape Town for
international imports and exports and Beaufort West for domestic trade with the rest of South

Africa. Farm commodities can be produced in any of the ten resource regions, or imported from

! This section describes a model of the Western Cape farm sector developed by Vink and Van Zyl (1998).

? The model construction is described in a report to the Development Bank of Southern Africa by Van Zyl (1995)
which summarises much of the relevant theoretical literature. South African applications include Ortmann, 1985;
Frank, 1986; Van Zyl, 1987; 1989a; 1989b; Howcroft, 1991; Van Zyl et al, 1991; Meyer and Van Zyl, 1992; Vink
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the international market or the rest of South Africa. Similarly, commodities are either consumed
in the region (on the consumption side no differentiation is made between the regions), or

exported to the international market or to the rest of South Africa.

It is important to identify those commodities that compete for land and other resources so that
the alternative production possibilities that face the farmer are also specified in the computer
model. In this way, substitution in supply is included in the analysis. The 20 major agricultural
commodities produced in the Western Cape were selected as production alternatives in this
particular application. These commodities were selected on the basis of their contribution to
gross farm income, as well as the land allocated to them. The selected commodities account for
more than 90 per cent of the total agricultural land used in the region, and more than 85 per cent
of the gross value of agricultural production.

Because there is a constraint for land in each area the model generates shadow prices for land if
all the land is used. It is assumed that farmers employ a resource until its marginal revenue
equals its price within a given set of physical, financial and institutional constraints. Therefore,
the shadow price of land serves as a check on the model, because these shadow prices can be
compared with the rental value of land. Labour and credit were assumed to be freely available,
albeit at an increased cost for increasing amounts. Supply elasticities of 5 and 6, respectively,

were assumed.

Water is included as a conventional input into irrigation farming at existing price levels, while
the total availability of irrigation water is set as the outer limit to irrigation use. This allows
manipulation of both the price of water (the tariff) as well as the total availability of irrigation
stocks. In the former case a change in water tariffs will affect net farm income, and therefore the
objective function of the model. In the latter case the model optimises using a different total

availability of water as a binding constraint.

Since Freund’s (1956) article on the inclusion of risk in a programming model, rapid
developments have occurred in techniques for incorporating risk, particularly in single-period
optimisation models (Hazell, 1982). Evidence suggests that farmers behave in a risk-averse

manner (Young, 1979:1065). Neglect of risk can lead to considerable overstatement of the size

et al, 1996.
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of risky enterprises. Risk can be considered as a cost, namely the additional expected return that
farmers want as compensation for taking risk (Barry & Fraser, 1976:288). Risk associated with
various enterprises may be taken as the deviations of gross income per hectare from the mean or
from the trend line over time (at least six years) as the enterprise price elasticities relate price
and yield variability to income variability. The mean absolute deviation method (MOTAD), first
proposed by Hazell (1971) and later developed by Hazell & Scandizzo (1974), was used in this
application. Income variations during the six year period 1982 to 1988 were used to model the
production risk associated with production of each of the commodities in each of the ten

regions.

Transport opportunities/activities link the supply and demand sections of the model. Each of the
thirteen resource regions or two import ‘harbours’ can supply any of the three consumption
points, namely the Western Cape as a whole, and the two export ‘harbours’ (Cape Town and
Beaufort West). Supply and demand for each region is treated as if it is coming from a specific
point rather than from all over a region. This is done to make the representation of transport
costs between and within resource regions easier. Consumption and production points were
subsequently developed to facilitate this treatment. This is in line with the assumption that

production practices, yields, risk and prices are the same within each of the regions.

The final model has 200 production activities (20 commodities in 10 regions); 24 import
activities (12 commodities with two import points); 624 transport activities (200 production
activities transported to 3 consumption areas, and 24 import activities); 42 demand schedules
(of which 24 consist of 10 steps each), and 6 years of risk data for each commodity in each
region. In addition, the model was structured to allow for the easy measurement of producer,
consumer and total welfare, which form part of the different objective functions, depending on

the scenario followed.
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3.2  Model validation

Validation of the model is a process that leads to: (1) a numerical report of the model’s fidelity
to the historical data set; (2) improvements to the model in the case of imperfect validation; (3)
a qualitative judgement on the reliability of the model in terms of its stated purposes; and (4) a
conclusion (preferably explicit) concerning the kinds of applications for which it should not be
used (Hazell and Norton, 1986). Validation begins with a series of comparisons of model results

with the reported actual values of the variables.

Production is the variable most commonly used in validation tests, and for a number of
agricultural models there are reported validation results that can be used for comparative
purposes. Typically, there is considerable variation in the closeness of the fit to the historical
data across different products, and the model builder may be willing to accept greater deviations
in minor products if the predictions are good for the major products. There is no consensus on
the statistic to be used in evaluating the fit, but in most cases a simple measure such as the mean

absolute deviation (MAD) or the percentage absolute deviation (PAD) have been used.

The testing of the model was done by imposing all of the relevant policies which were current in
1988, specifically the marketing and pricing regime for each product, credit policy and other on-
farm policies, in order to see how well it simulated the existing (1988) situation. The better the
current situation is represented by the model, the more reliable the model. The values generated
by the model correspond fairly well with the actual values for the Western Cape as a whole,
although this is not necessarily true for the 10 sub-regions.” If a deviation of 15 per cent is
deemed acceptable as a general rule of thumb (as suggested by Hazell and Norton, 1986), all the
generated production quantities for the Western Cape are within this limit. A PAD of 8.19 per
cent across all commaodities for the Western Cape (as a whole) is obtained, which is adequate

for this type of model.

3 In some of the individual sub-regions, relatively small quantities of some specific commodities are produced. In
these areas, the model predicts a relatively large deviation (increase or decrease) of up to 75 per cent of the actual
production, but in absolute terms these variations are small and insignificant. Where a specific commodity is
important in a region, the model predicts both the relative and absolute production levels fairly accurately.
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4. Modelling the effects of future climate change on the Western Cape farm economy

4.1 General

Different scenarios were modelled to demonstrate the effects of climate change, particularly as it
impacts on water availability, on selected key variables to determine the effects of such change.
These variables include the physical change in output (area under production for each of the
commodities and livestock numbers); commodity prices; employment; and changes in producer
welfare, consumer welfare and total (social) welfare. The information provided by the base
scenario simulation depicting the ‘before scenario’ was subsequently used to compare the
different climate scenarios (indicated by different amounts of water availability). It is important
to emphasise that all other variables, for example transport costs, exchange rates, international

prices and interest rates, stay the same for each scenario.’

The results obtained with the different simulations are often a function of the set of assumptions
that underpin the analysis. Therefore, it is necessary to explicitly state some of the most
important assumptions, which impact on the subsequent results.” Also, the direction of change
is often much more important than the actual magnitude of the results obtained. For this reason
less emphasis should be placed on the actual results than on the direction of change, while the
assumptions which underpin the analysis should be considered together with the analysis of the

results.

4.2  Resulls

Two different types of scenarios are used. First, the total availability of water to the each of the
ten sub-regions comprising the Western Cape farm sector is limited by 10 and 30 per cent of
current use, respectively. Second, the changes in rainfall generated by the GCM (Table 1) are
used to model water availability for each of the sub-regions. New crop budgets had to be

developed for each scenario. These scenarios allow for the full complementarity and

* This restrictive ceteris paribus assumption allows for evaluation of the effects of the specific scenario in relative
isolation.

* The most limiting factors in the analysis are as follows: (1) only the farm sector is modelled, with no attention
given to changes in the farm input sector (credit aside); (2) there is no scope for changing input mixes of
commodities in reaction to changes in output prices -- the assumed underlying technologies and market demand
guide the whole system; (3) income changes and its effects on demand are not taken into account; (4) specific
transport costs, exchange rates and international prices underlie the analysis; and (5) changes are not shown in a
dynamic manner, but as final results.
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supplementarity that exists with respect to water use between the different commodities within
the different production sub-sectors. The production of the different commodities will be
affected in different ways when water availability becomes increasingly limited, and the
available water is transferred to the most profitable commodities. It was assumed that water
could not be transferred between the ten relatively homogeneous sub-regions within the model.

Table 2 provides a summary of the results.

From the table it is clear that the production of field crops and extensive livestock products will
increase with lower water availability, while vegetable, fruit and intensive livestock production
will decrease. The direction of change stays the same regardless of the level of the constraint on
water availability, but as expected, the magnitude of change increases the less water is available.
This seemingly counter-intuitive result has important consequences for total welfare and for the

level of employment in Western Cape agriculture.

The sequence of the argument starts with the availability of water. In the first example, the stock
of water is decreased by 10 per cent. The first reaction of the model is to reallocate water to its
highest and best use. However, because water is less available, some amounts of other resources
such as land are left idle. So, for example, one would expect that water would be reallocated
from wheat under irrigation to higher value fruit. The land that was being used for the less
valued irrigation crops will be left idle, as there is not enough water for it to be kept under
irrigation. It is then reallocated to uses that do not require water, such as dryland field crop

production and extensive livestock production.

Table 2 also shows the details of this result. All the sectors that are water-intensive (vegetables,
fruit, dairy, angoras, pigs and chickens) experience a drop in output as water is allocated away
from their use. The freed resources are allocated to wheat, barley, oats, beef cattle, and wool and
non-wool sheep. These increases and decreases are reflected in the changes in commodity prices
in the lower half of the table. So, for example, an increase in field crop production is reflected in
a lower price, while a decrease in fruit production results in a higher price. It is important to
note, as stated previously, that these changes in the physical volume of production and in prices
are the net result of a chain of shifts in supply and demand that take place as a result of the

changing availability of water.
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Table 2: Effects of different scenarios of decreased water availability to the farm sector

Deviation of simulation

Measure Item results from base values (%)
10% less | 30% less Water
water in | waterin | availability
all sub- | all sub- | determined
regions | regions | from GCM
Production of crops (ton):
Field crops: + + +
Vegetables: - - -
Production Fruit: - x .
Number of livestock:
-Extensive - - -
-Intensive =8 % +
Field crops: - - -
Vegetables: + e +
Prices Fruit: + + +
Livestock:
- Extensive - - -
- Intensive + + +
Producers -4.72 -21.54 -3.61
Welfare Consumers -2.48 -8.49 -1.86
Total -2.64 -10.25 -1.98
Employment Farm employment -3.56 -13.40 -2.74
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The effect on welfare and employment are fairly predictable, and disastrous. Producers as a
group lose, because production shifts away from high value crops and livestock products to
extensive field and livestock sectors. Consumers (as a group) lose, even though they are paying
less for basic foodstuffs. The total welfare of the Western Cape, which is the sum of the
producer and the consumer surplus, therefore also decreases. Finally, as production shifts from
intensive to extensive industries, the labour intensity of agriculture also declines, as can be seen
by the decline in employment. This discriminates against the poor, so the conclusion can be

drawn that the net effect of the changes is regressive in terms of income distribution.

5. Conclusions

This paper links two different methodologies to determine the effects of climate change on
the Western Cape farm sector. First, it uses a general circulation model (GCM) to model
future climate change in the Western Cape, particularly with respect to precipitation. Second,
a sector mathematical programming model of the Western Cape farm sector is used to
incorporate the predicted climate change, specifically rainfall, from the GCM to determine the

effects on key variables of the regional economy.

In summary, results indicate that future climate change will lead to lower precipitation, which
implies that less water will be available to agriculture in the Western Cape. This will have a
negative overall effect on the Western Cape farm economy. Climate change will lead to a
relative shift away from intensive production sectors in agriculture towards more extensive
sectors. Both producer welfare and consumer welfare decrease. Total employment in the farm
sector decreases as producers switch to a more extensive production pattern. The total decline in
welfare, therefore, falls disproportionately on the poor in the province. These consequences
could, of course be mitigated if the restriction on available water were to be matched by

reactions such as a more efficient use of available water.
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ABSTRACT

Bioclimatic envelope modeling of species’ distributions can be misleading if no measure of
uncertainty is associated with the predicted probability of occurrence values. Here we
demonstrate how jackknife procedures can be used to generate such measures of uncertainty
in the case of the distribution of a carpenter bee (Xylocopa senior) in South Africa. The
modelled probability of occurrence surface for Xylocopa senior is more meaningful when
interpreted in the context of the variation underlying these predictions, i.e., when more
confidence/weight is ascribed to predictions with limited variation. This procedure is
potentially of considerable value for any approach based on interpolated species distributions,
including survey planning, area selection, modelling of climate change effects and
biogeography. Resampling techniques can also be used as a means to provide insights into
model performance and for crossvalidation, without the need for data partitioning or the

acquisition of additional data.
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INTRODUCTION

Bioclimatic models are routinely used to predict and define the broad scale limits of species
distributions (Lindenmayer et al. 1991). Thus, where the spatial distribution of a taxon is not
fully defined, bioclimatic analyses allow researchers to describe the probable limits of
distribution. (Lindenmayer et al. 1991; Brzeziecki et al. 1995; Lindsay et al. 1998).
Moreover, such models can be used to evaluate the risks and benefits likely to arise for
species under future climatic scenarios (Lindenmayer et al. 1991; Jeffree & Jeffree 1994,
Huntley et al. 1995; Sykes & Prentice 1995; Jeffree & Jeffree 1996; Sykes et al. 1996; Hill et
al. 1999). The underlying principle of bioclimatic modelling is to determine whether there is
any relationship between the known distribution of a species and some climatic variable or
variables. Popular modelling approaches that have been employed include generalised linear
regression (e.g. logistic regression) (Margules & Stein 1989; Austin et al. 1990; Walker
1990; Osborne & Tigar 1992; Cary & Ullyett 1993; Hill ef al. 1999), classification trees
(Walker 1990) and discriminant function analysis (Caughley et al. 1987) (see Guisan &

Zimmerman (2000) for a comprehensive review of predictive habitat distribution models).

The product of such modelling is usually a map with grid coverage that is used to present the
model’s prediction of the probable distribution of a species. The model makes an individual
prediction for every grid cell. The predicted distribution maps can be either binary maps or
probability of occurrence surface maps, depending on the model used (see Osborne & Tigar
(1992) for a combination). In the binary map, each grid cell is assigned either a presence or
an absence rating (e.g. Huntley ez al. 1995; Lindsay et al. 1998; Hill et al. 1999). A limitation
of these maps is that they do not distinguish between areas that are most suitable and those
that are only marginally suitable. Probability surface maps overcome this problem by
assigning a probability of occurrence to each grid cell (see for example Walker 1990;
Beerling ef al. 1995; Erasmus et al. 2000, Erasmus et al. 2002). The probability assigned to a
specific cell is an indication of the suitability of climate (i.e. the predictors in the model) in
that grid cell for the species (Robertson et al. 2001). Since a continuum of suitability values is
generated, the relative suitability of areas (with regard to the variables included as predictors
in the model) can be compared. Because probability surface maps communicate more

information than binary maps, we focus on the former approach.
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Irrespective of the modelling approach used for predicting the probability surface of a
species, the result is a single predicted probability value for each grid cell. These probabilities
could also be called best estimates, because the models base their calculations on all the
available data. The predicted distribution is therefore presented as a geographical area
divided into grid cells with a single probability (best estimate) of the suitability of that
locality for a specific species (as determined by the selected predictor variables) (e.g. Fig. 1).
Although the best estimate gives an indication of the probability of a grid cell being
climatically suitable, the best estimate is still a value of a stochastic variable (new data will
necessarily lead to a new best estimate) and it can be misleading if no indication of the
uncertainty associated with that value is provided. In their review, Guisan & Zimmerman
(2000) identify the lack of spatially explicit uncertainty measurements of predicted
probabilities as a key area requiring further development. One way of attributing a useful
uncertainty measurement is to estimate the variation underlying each stochastic best estimate.
All else being equal, more confidence can be placed in a best estimate associated with less
variation than a best estimate associated with substantial variation. However, probabilities of
climate suitability are usually not presented together with estimates of uncertainty since
probability surface models predict only a single probability of occurrence for each grid cell,

using all the relevant data available.

Using a case study, the present paper makes a start at addressing Guissan & Zimmerman’s
(2000) concerns regarding the lack of a spatially explicit uncertainty measure for interpolated
distributions and shows how jackknife re-sampling procedures can be used to estimate the
variation around each probability of occurrence value. The manner in which such estimates of
variation can improve the interpretation of a probability surface map generated by a

bioclimatic model is shown, and the implications of this approach are outlined.

MATERIAL AND METHODS

Xyplocopa senior Vachal distribution records

Collection records from the Plant Protection Research Institute of South Africa and the South

African Museum were combined into a data set containing 27 records of a carpenter bee,

Xylocopa senior (Fig. 1). The data set of Xylocopa senior was chosen because 27 records do
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Fig. 1: Known distribution records (e) of Xylopa senior and the bioclimatically modelled

probability of occurrence surface
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not represent a comprehensive data set, and this is often a reality for poorly surveyed species,
especially invertebrates (Koch er al. 2000). This example illustrates how limited distribution
data can be used to provide useful information with regard to the probable distribution of a
species. Moreover, the geographical distribution records for this species are particularly
useful for illustrating the powers of the jackknife procedure. From Fig. 1 it is clear that five
of the 27 records lie far beyond what seems to be the “core” distribution range of Xylocopa
senior. These five records could be indicative of populations occurring in habitats
geographically isolated from the core range. For example, carpenter bees need woody plants
for nesting sites (Johnson 1997). The central parts of South Africa are grasslands with
isolated woody patches in riverbeds. An alternative explanation for these five records may be
that they represent misidentifications. This is a distinct possibility for species that are
taxonomically closely related. We suspect that these five records represent Xylocopa
scioensis Gribodo, a carpenter bee nesting in phragmites stems (the three central records
clearly along the Orange river and the other two also possibly on river courses). However, re-
examination of questionable records might not always be possible or might require a
complete systematic revision. The Xylocopa senior case study illustrates how the jackknife

procedure provides a way to further understand questionable or outlying distribution records.

Climate data

The Computing Centre for Water Research (CCWR) provided the historic climate data
(thirty-year means; 1960-1990). These data comprise interpolated climate surfaces at a
minute by minute resolution. These climate surfaces were resampled to a 10km x 10km grid
cell size. Grid cell size was dictated by the total number of cells that can realistically be
analysed given the available computer time without sacrificing output resolution too much.

Bee point occurrence records were also generalised to this 10 km gridcell resolution.

The objective of this paper is not to make any concrete conclusions about the distribution of
Xylocopa senior or the factors controlling its distribution, but rather to illustrate how the
interpretation of a probability of occurrence surface of a species can be improved by
employing jackknife procedures. Consequently, we did not strive to optimise the model by
using the minimum number of significant variables, nor have we interpreted the model
outcomes fully. The complexity of the model and the modeling approach is therefore

considered relatively unimportant in this paper. Six climatic variables (mean temperature,
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minimum temperature, maximum temperature, mean annual rainfall, mean rainfall for the
driest month and mean rainfall for the wettest month) were selected as the climatic predictors.
These variables were selected because they represent a suite of climatic variables likely to

control the distribution of insects, either directly or indirectly (see Chown & Gaston 1999).

Model

The model we used here is a multivariate generalisation of the bivariate model described by
Jeffree & Jeffree (1994). Briefly, using this method the grid cells where a particular species is
recorded are referred to as known records. A scatter plot of the climate values of all grid cells
for any two chosen climate variables is defined as the climate space. The climate values at
points in the climate space that represent known records are used to construct the principle
axes of an elliptical confidence region by using the sums of squares of the distance from the
major and minor principal axis. The elliptical confidence region is superimposed on the
climate space and can be interpreted as a climate envelope containing localities climatically
similar to known records. All points falling within this climate envelope are then mapped
back into geographical space to form an interpolated distribution of climatically similar areas
where this species might potentially be found (see Jeffree & Jeffree (1994) for additional
information). This approach by Jeffree & Jeffree (1994) is similar to the technique described
by Sokal & Rohlf (1981) and relies heavily on the graphical interpretation of a two-
dimensional scatter plot. In consequence, it has very limited application in scenarios where
the climate space has to be multidimensional if three or more climate variables are needed to
explain observed distribution patterns satisfactorily. Thus, we have adapted the original
model to incorporate m climatic predictor variables. Not only is this a significant
improvement on the original model, but it also allows the production of a probability surface
of suitability for each species (Erasmus et al. 2000), rather than a more simplistic presence-
absence distribution model. In the multivariate generalisation of the bivariate model the
values of selected climate variables for each known record cell are plotted on an m-
dimensional scatter plot (for the m climate variables), and mean climate values are subtracted
to centre values around the origin of the multidimensional scatter plot. An mxm covariance
matrix is calculated and this matrix is used as an input to calculate eigen values and eigen
vectors for the covariance matrix. These eigen vectors from the orthogonal principle axis of
an m-dimensional hyperspace with the origin representing the theoretical core of the species’

distribution, as defined by the predictor climate variables (see Robertson et al. 2001 for a
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detailed description of a similar, PCA-based model). The climate variable values of all grid
cells are then transformed into this eigen vector space. These transformed climate variables
are subsequently divided by the eigen values. In the resulting m-dimensional hyperspace, the
distance of any particular unsampled grid cell from the origin represents a measure of the
suitability of that locality for the specific species (Robertson et al 2001). The entire
calculation for this multivariate technique is relatively straightforward and does not require
considerable computing power. The outcome of this analysis is a probability surface map of
suitability, as determined by the set of predictor variables, for a species. Hereafter, this

probability surface of climate suitability will be referred to as the probability of occurrence.

Estimating variation using the jackknife procedure

By using jackknife procedures, » probability of occurrence values (n = size of data set) can be
generated for each grid cell instead of a single value. This method re-calculates the statistic of
interest, in this case a probability of occurrence, n times, each time using a different
combination of -1 of the data set records. The jackknife principle uses these n pseudovalues

to estimate the variation associated with the statistic.

In the Erasmus ef al. (2000) modelling procedure, the whole data set (n = 27) is used to
calculate a single probability of occurrence for each grid cell (the best estimate, Fig. 1). The
jackknife procedure re-calculates the probability of occurrence for each grid cell 27 (n) times
using the same model with a different combination of 26 (- ) records each time. These re-

calculated estimates are referred to as the jackknife pseudovalues.

The jackknife pseudovalues can be used to calculate the standard error of the best estimate,
which is an estimate of the variation associated with that best estimate, using the following

formula (Efron & Tibshirani 1993; Shao & Tu 1995):

S€ jack = \/;(n —1)x (i 6 - (i 6% I n) (eqn 1)

where se ., =estimated standard error of the best estimate;

Jack

HA,.= i th jackknife pseudovalue;
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n = size of data set.

se . is an estimate of the standard error of the best estimate and does not merely represent

the standard deviation of the » jackknife pseudovalues.

se Jack

The se,, and the coefficient of variation (-——————
best estimate

) are therefore measures of variation

associated with the best estimate. The se,, is a measure of absolufe variation while the

coefficient of variation is a measure of relative variation (variation relative to the best
estimate) (see results section). In reality, by assessing the best estimate’s variation, the
jackknife procedure has generated additional information from the original data set. These
variance estimates are likely to improve the interpretation of the generated probability

surfaces considerably.
RESULTS
Best estimate probability surface (model prediction)

The probability of occurrence surface (best estimates) for Xylocopa senior in South Africa,
using a suite of six climatic variables as predictors in the model (Erasmus ef al. 2000), is
illustrated in Fig. 1. The model’s prediction seems to provide a reasonably good fit for the
data records, except for the distortion caused by five influential records which “pull” the
probability surface well into the central parts and down towards the eastern shores of the

country.
Estimated variance

The se,, and coefficient of variation associated with the best estimate for each grid cell are

illustrated in Figs. 2a and 2b respectively.

The best estimate communicates a lot more information when interpreted in the context of its
estimated variance. For example, cell A (Fig. 2b) has a probability of occurrence (best

estimate) of 0.72 and a se ,, of 0.42. This large variation suggests that the best estimate is
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Fig. 2: Known distribution records (e) of Xylopa senior and (a) the estimated standard error
(se,,4)> and (b) coefficient of variation underlying the predicted probability of occurrence

surface for the species. The modelled probability of occurrence values for cell A and B are
0.72 and 0.75. The estimated standard error underlying each prediction is 0.42 and 0.12 for
cells A and B respectively.
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sensitive to some influential/outlying records and that the best estimate is not a reliable

estimate of the probability of occurrence. However, cell B (Fig. 2b) which is relatively close

to cell A (approximately 120 km), has a best estimate of 0.75 and a se ,, of 0.12. Thus,

without the jackknife estimates of variation, the interpretation for both cells would have been

very similar because of their similar best estimates. However, comparison of the se values

suggest that these two cells should be interpreted differently. More confidence can be
attributed to the best estimate of cell B than to the best estimate for cell A. In Fig. 2b it is also
clear that a high coefficient of variation (>0.5) is associated with the five outlying distribution
records. Therefore, without having to identify and treat these observations as
outlying/influential, the jackknife procedure takes their influence into consideration and
suggests that the predicted probability of occurrence of these cells should be treated with

caution owing to the large variation associated with them.

Therefore, areas with high estimates of variation are an indication of either insufficient data

for accurately predicting the probability of occurrence for those areas or an inadequate model.

DISCUSSION

Usually the prediction of a bioclimatic model is represented as a single distribution map as
shown in Fig. 1 (Walker 1990; Beerling ef al. 1995; Huntley et al. 1995; Lindsay et al. 1998;
Hill et al. 1999). Such maps are of limited value if the model is not tested or validated.
Independent data can be collected or the original data partitioned as a means for evaluating
the model (Verbyla & Litvaitis 1989). However, if the data set is small it is not always viable
to apply the split-sample approach in order to partition the data into a training set and a
validation set. Moreover, validating the model by collecting “new” distribution data is often
not practicable. As a cheap and robust alternative, re-sampling techniques like bootstrapping
and jackknifing can provide valuable insight into model performance (Verbyla & Litvaitis
1989; Osborne & Tigar 1992; Fielding & Bell 1997; Manel et al. 1999, Guisan &
Zimmerman 2000). For example, when modelling techniques using presence/absence data
instead of presence only data are used (e.g. logistic regression), real values can be compared
to values predicted by the jackknife procedure, using the prediction from the model without
the observation considered..The overall predictive ability of the model can then be evaluated

by applying, for instance, the ROC-plot approach (Fielding & Bell 1997). Moreover,
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although the value of re-sampling techniques for validating or testing distribution models has
been recognised, they are still not routinely used. Here we have shown how re-sampling can
be used effectively to provide a measure of confidence in model predictions, and how, in
consequence, the interpretation of predicted distributions can be improved. Arguably,
insights can be gained from a careful, expert-based scrutiny of the data; the main advantage
of this jackknife procedure is that it provides quantitative support for such expert opinions,
and where expert opnion is not readily available, it provides a method with which to assess to

data of unknown quality.

Jackknifing may also to some extent be used to detect misclassifications of species, especially
for species that are taxonomically closely related. For example, in the Xylocopa senior case
study presented in this paper we suspected that five of the observations were
misclassifications due to their geographical location. However, without having to treat these
observations as misclassification or re-examining these records, the jackknife technique
supported our suspicion by attributing high variation to the predicted probability of

occurrence values at these sites and the surrounding areas (Fig. 2b).

It has to be borne in mind that there might be computational limitations when applying this
jackknife approach to large datasets. There are more small data sets than larger ones, and the
potential limitation of computing power on large data sets do not invalidate the usefulness of
the approach on smaller data sets, where there are no computing limitations. The analyses in
this paper was conducted on what can now be considered an entry level Pentium 3
workstation, and analysis on other data sets of up to 1000 records have been achieved within

reasonable time limits

Arbitrary thresholds are sometimes placed on probability surfaces to identify “core”
distribution areas of species (Walker 1990; Buckland & Elston 1993; Huntley et al. 1995).
Fig. 3. illustrates all the grid cells with a probability of occurrence > 0.5. We arbitrarily used
this threshold value for illustration purposes, but methods for optimising this value can be
found in the literature (e.g. Huntley et al. 1995, Zweig & Campbell 1993). The variation
underlying predictions can be used as an additional condition to identify core distribution

areas. In Fig. 3, all the filled cells have a probability of occurrence = 0.5, but the dark grey
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Fig. 3: Known distribution records (¢) of Xylocopa senior. All the filled cells have predicted
probability of occurrence values of > 0.5. Dark grey cells satisfy the additional condition that

the coefficient of variation underlying the predicted probability of occurrence is <0.15
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cells satisfy the additional condition that the coefficient of variation is < 0.15 (also arbitrary).
Therefore, the dark grey cells are a filtered subset of the light grey cells, satisfying the
additional threshold criterion for the coefficient of variation. Without the jackknife
pseudovalues and the resulting estimates of variance underlying each prediction, we would
not have been able to make this distinction, which is clearly useful for a variety of purposes

in ecology.

An improved way of quantifying the confidence in the probability of occurrence predictions
would be to use the variance estimates to generate confidence intervals. These intervals will
be a reflection of the precision and confidence in the estimation process. Confidence intervals
are easy to interpret but have thus far been used to a limited extent in distribution studies (see
for example Buckland & Elston 1993). Using empirical confidence limits, based on the lower
and upper percentiles of the jackknife pseudovalues, is a straightforward way of calculating
confidence intervals. However, the jackknife pseudovalues do not simulate the underlying
distribution of the probability of occurrence data and merely generates pseudovalues closely
clumped around the probability as only one record is removed at a time. The empirical
confidence intervals will therefore consistently underestimate the real interval length. The
purpose of these jackknife pseudovalues is to estimate the variation (using equation 1) and
they should not be used for calculating empirical confidence limits. Empirical confidence
limits can only be used with bootstrapping, another re-sampling method, which simulates the
underlying distribution of the statistic under consideration (this approach was followed by
Buckland & Elston 1993). Since empirical confidence limits cannot be used for jackknifing,

the normal approximation is sometimes used. Equation 2 gives the upper and lower

A

confidence limits of a jackknife confidence interval if it can be assumed that &, i 1S

normally distributed:

6 Z,2 X S€ jm} (eqn 2)

i {
best estimate

~

where: ¢ = best estimate;

best estimate

z,,,= (1—a/2)th percentile of the standard normal distribution;

se = standard error of the best estimate (from equation 1)

Jack
One of the assumptions of equation 2 is that the underlying distribution of the statistic under
consideration is approximately normal (Efron & Tibshirani 1993). This condition is not true

for a statistic that is bounded, like the probability of occurrence values generated in the
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present study (0<8 <1). Where a statistic is bounded, transformations can be used to

hest estimate
normalise the data. For example, Efron & Tibshirani (1993) used the Fisher transformation to
normalise jackknife pseudovalues before confidence limits were calculated for correlation
coefficients (a correlation coefficient, p, is bounded: -1<p<l). We tested a range of
transformations, inter alia the probit (Cox 1970) and logit (Williamson & Gaston 1999)
transformations that are suitable for probability values that are bounded between zero and
one. After transforming the raw data, histograms for jackknife pseudovalues for each grid cell
were drawn and a Kolmogorov-Smirnov normality test employed to test whether the data
were adequately transformed to an approximate normal distribution. However, all of the
transformations we employed failed to normalise the data adequately. Further work is needed
in this regard since confidence intervals, as a function of the estimated variation, will be

easier to present and interpret.

The predicted probabilities of occurrence and their variance estimates can have important
implications for ecological surveys, conservation and management. The jackknife procedure
presents a quantitative way to identify outliers in known distribution records. Such outliers
might be real and truly peripheral to the core distribution, or they may indicate some error in
data collection. Either way, further attention to these specific records is warranted.. The same
argument can be applied to the planning of productive sampling sites, conservation hotspot
identification (Meyers et al. 2000) and reserve selection (Margules & Pressey 2000).
Therefore, without having to conduct extensive surveys, probabilities of occurrence together
with their variance estimates can be used as a source of reference, as a decision-making tool

in planning and for development proposals (Buckland & Elston 1993).

Another potential application of bioclimatic models is to predict possible distribution changes
that may result from changing climates (Lindenmayer et al. 1991; Jeffree & Jeffree 1994,
Huntley et al. 1995; Jeffree & Jeffree 1996; Sykes & Prentice 1995; Sykes et al. 1996; Hill et
al. 1999). The interpretation of the predicted distributions under various climatic scenarios
can be considerably improved by supplementing this information with indications of the
variance underlying such predictions. Data sets with few known records may give rise to a
probability of occurrence surface associated with large variance parameters, especially when

the climate predictors for the different records are dissimilar.
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Although the advantages of jackknifing is illustrated in this paper using a specific modelling
approach, it is important to note that this re-sampling technique can readily be applied to
most existing modelling techniques (e.g. GLM, GAM, CART, etc.). This makes jackknifing
an important tool for estimating the variation underlying the predictions of various

bioclimatic modelling techniques.
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Abstract

As predictive distribution modelling has become more common in response to a need to
understand potential effects of environmental change, there has been a concomitant increase
in the diversity of models used for such predictive modelling. This study contributes to this
body of work by comparing 3 different predictive distribution models: a climate envelope
model, BIOCLIM and GARP. Comparisons were done by using a standard set of climatic
predictor variables for a set selection of species. Receiver operating characteristic analysis
showed good overall model accuracy and little difference in the mean output between
models. However, by mapping the distributions of individual species for which models
disagree, it was found that although the models perform adequately, they disagreed on the
predicted distributions of individual species in the same geographically distinct region. This
region was shown to be an area of significant environmental heterogeneity, with climate,
vegetation and avian community transitions occurring here. Identifying such areas prior to a
distribution modelling exercise and explicitly accounting for this source of model
disagreement, will improve the accuracy of model predictions. The methods followed in this

study present a simple analysis to identify such transition zones.
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Introduction

The number of investigations using predictive species distribution modelling is increasing
rapidly, largely because these models are of considerable value for understanding the likely
impacts of environmental change. The models can be used to understand biogeographic
patterns (Jeffree and Jeffree 1994, Cowling and Lombard 2002), ascertain the potential
distributions of economically important pest species (Bylund 1999, Robertson et al. 2001,
Todd et al. 2002, Watt and McFarlane 2002), determine changes in threats associated with
infectious and vector-borne diseases (Daszak et al. 2000, Rogers and Randolph 2000, Harvell
et al. 2002), predict potential species invasions (Peterson and Vieglais 2001), and understand
the ecological and conservation implications of global environmental change ( Pounds et al.
1997, Petchey et al. 1999, Rutherford et al. 1999, Beaumont and Hughes 2002, Feria and
Peterson 2002, Hannah et al. 2002, Peterson et al. 2000, 2001, 2002).

By definition, all models, including predictive species distribution models, constitute an
incomplete abstraction of reality (see Samways 2003). In consequence, they will fail to
capture all sources of variation, whether these are a result of predictor variable or model
characteristics. The extent to which this abstraction of reality is useful for understanding
natural phenomena is determined by the model’s ability to describe variation in the observed
data, using predictor variables selected a priori by the modeller (Sutherst 2003). Different

types of models differ in their ability to describe this variation.

Climate envelope models have their roots in the concept of “envirograms™ first put forward
by Andrewartha and Birch (1954, 1986). Since the first generation climate envelope models
were developed as specific software applications (Sutherst and Maywald 1985), the approach
has found wide application (Walker and Cocks 1991, Carpenter et al. 1993, Jeffree and
Jeffree 1994, 1996, Robertson et al. 2001, Erasmus et al. 2000, 2002, Van Staden et al. in
press). Standardising the approach into readily available software packages (BIOCLIM1 and
CLIMEX?) has made it more accessible and fostered a wider user base, not only for these

packages (Busby 1986, 1988, 1991, Nix 1986, Lindenmayer et al. 1991, Beaumont and

! http://cres.anu.edu.au/outputs/anuclim html
? http://www.ento.csiro.au/climex/climex.htm
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Hughes 2002)°, but also for climate envelope models in general. On the other hand, the
increase in computing power in standard desktop computers has made it practical to utilise
computing-intensive machine learning type models for distribution predictions (Guegan et al.
1998, Kobler and Adamic 2000). Until fairly recently, this complicated methodology was not
readily accessible to biologists. A genetic algorithm-based model developed specifically for
species distribution prediction from incomplete data (GARP, Stockwell and Peters (1999))
was made available first as a web application4 and then later as a stand-alone Windows
application5 . An increase in the number of GARP applications (Feria and Peterson 2002,
Peterson and Cohoon 1999, Peterson et al. 2000, 2001, 2002, Peterson and Vieglais 2001,)
can be expected, given the fact that it is user friendly, easily accessible, well supported, and
places a powerful, well-documented computational technique at the disposal of biologists.
Consequently, a comparison between the more established climate envelope models that
already have a broad user base, represented by BIOCLIM and the simple PCA-based model
developed by Jeffries (Jeffree and Jeffree 1994, 1996), and modified by Erasmus (Erasmus et
al. 2000), and GARP, which is likely to become more widely used in future, would be useful
to ascertain the extent to which these approaches are comparable. Given that these kinds of
modelling approaches provide only a broad-brush view of the likely responses of species to
climate, strong model disagreement would strengthen the case against them (see Davis et al.
1998, Gaston 2003, Sutherst 2003 for additional discussion). On the other hand, agreement
between models would provide additional support for their continued use. Moreover, explicit
investigation of lack of congruence between models would improve confidence in the utility
of modelling exercises. The aims of this study are therefore to compare the ability of different
predictive distribution models to describe observed variation given a fixed set of predictor
variables for a selected number of species, and to investigate the spatial attributes of predictor
variables that cause between-model disagreement of predicted species distributions. In so
doing, this work contributes to the useful and growing body of model evaluations (Fielding
and Bell 1997, Manel et al. 2001) and model comparisons (Brito et al. 1999, Manel et al.
1999, Guisan and Zimmermann 2000).

3 See http://www.ento.csiro.au/climex/bibliography.htm for a list of 148 references on the implementation of the
original climate envelope model called CLIMEX by Sutherst and Maywald (1985)

* http://biodi.sdsc.edu/bsw_home. html

? http://www.lifemapper.org/desktopgarp/
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Methods

Data

Distribution data for birds were obtained from the Avian Demography Unit, University of
Cape Town® (Southern African Bird Atlas Project (SABAP, Harrison et al. (1997)). These
data are the result of a directed sampling effort to map the birds of southern Africa (1987-
1992), and unlike data for other taxa from the region (Scholtz and Chown 1995; van
Jaarsveld et al.1998a.b, Koch et al. 2000), constitute a close approximation of true presence-
absence data. From the total data set for southern African birds, a data subset for grid cells
with reliable climate data for South Africa was extracted. This subset consisted of 294816
unique records for 748 bird species occurring in 1858 grid cells (~625krn2 per grid cell),
encompassing South Africa and Lesotho, but excluding the other countries included in the
SABAP. For a previous predictive distribution modelling study (see Erasmus et al. 2002 for a
species list), 34 species were selected from this South African data subset based on (a)
accurate but not necessarily complete distribution data, (b) representative geographic range
types (e.g. species restricted to winter or to summer rainfall regions), (c) robust, well-
resolved taxonomy and (d) species known from a reasonable number of records. We used the
same 34 species in this study. These 34 species have 23047 records in total, and their
summed distributions encompass all 1858 grid cells. The number of records for each of these
34 species varies from 49 to 1574, with half the species having distributions of less than a

third of the region’s total area.

Van Rensburg et al. (2002) showed that mean annual precipitation (mm.yr") and mean
absolute monthly minimum temperature (°C) averaged over the year are significant positive
correlates of avian species richness in South Africa (see also Dean 2000). These results for
South Africa are supported by similar findings for other taxa in North America (Currie and
Paquin 1987, Boone and Krohn 2000a), New Zealand (Leathwick et al. 1998), Costa Rica
(Enquist 2002) and sub-Saharan Africa (Jetz and Rahbek 2002). Based on these known
relationships between richness, temperature and precipitation at broad scales, we made use of
the same mean annual precipitation and mean absolute monthly minimum and maximum
temperature data used by Van Rensburg et al. (2002) as predictor variables in this study.

South African climate data were provided by the Computing Centre for Water Research

® http://www.uct.ac.za/depts/stats/adu/index.html
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(CCWR, University of Natal, Pietermaritzburg, metadata published in Schulze and Maharaj
(1997)). The historic data (30 year monthly and annual means: 1960 — 1990) were re-sampled
to 15° x 15’ grid cells from interpolated climate surfaces available at a minute by minute

resolution to conform to the resolution of the bird data.

Modelling procedure

Using these bird distribution and climate data, we implemented three different species
distribution prediction models that have been exposed to peer review: Jeffree’s multivariate
climate envelope model (Jeffree and Jeffree 1994, 1996, Erasmus et al. 2000, 2002, Olwoch
et al. in press, Van Staden et al. in press, also see Robertson et al. 2001 for a similar PCA-
based model), the BIOCLIM envelope model (Busby 1986, 1988, 1991, Nix 1986,
Lindenmayer et al. 1991, Beaumont and Hughes 2002) and GARP, an inferential genetic
algorithm-based model (Peterson et al. 2000, 2001, 2002, Peterson and Cohoon 1999,
Peterson and Vieglais 2001, Feria and Peterson 2002). GARP has different output options;
we used the probability surface output option to enable comparisons with the probability

surfaces generated by the other two envelope models.

Model output was evaluated (Oreskes et al. 1994, Guisan and Zimmerman 2000) by
comparing predicted distributions with known records. However, model output consists of a
probability of occurrence value and to compare this continuous variable with a binary
presence-absence value presents a methodological problem. Although the predicted
probability output can be dichotomised to predicted presence-absence by applying a threshold
probability, this procedure results in a significant loss of information (Deleo 1993, Fielding
and Bell 1997). For example, if a threshold probability of 0.5 is chosen, this means that
species having a predicted probability of occurrence of 0.51 will be regarded as present
together with species that have a much higher predicted probability of occurrence. However,
receiver operating characteristic (ROC) analysis enables the use of the actual predicted
probabilities, and is threshold-independent. ROC analysis has its origins in engineering in the
context of measuring the ability of a detector to detect a particular signal. It has found wide
application in the evaluation of clinical medical tests (Fielding and Bell 1997) and here it is
used to measure the performance of a predictive species distribution model. ROC analysis
primarily concerns the calculation of specificity and sensitivity values. Sensitivity is defined
as the number of true occurrences of a species (true positive predictions, TP) divided by the

total number of positive predictions, whether true (TP) or not (false negatives predictions,
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FN). Similarly, specificity is defined as the number of true negative predictions (TN) divided
by the total number of negative predictions, whether TN or false positive (FP) predictions
(Fielding and Bell 1997). The area-under-curve (AUC) of a plot of 1-specificity against
sensitivity at every given probability of occurrence value is used as a test statistic. An AUC
value of 0.5 corresponds to a random test with no discriminatory ability. AccuROC®
software (Vida 1993) was used to determine the statistical significance of the difference
between any two or three AUC values according to the nonparametric method of Delong et
al. (1988). The confidence interval for the AUC was calculated using the asymptotic method
(Obuchowski and Lieber 1998).

The chosen model evaluation criteria should be prevalence (frequency of occurrence)
independent across models (Manel et al. 2001). Following suggestions from previous model
comparisons (Manel et al. 1999, 2001, Guisan and Zimmerman 2000), we tested ROC
analysis (Fielding and Bell 1997, Deleo 1993, Obuchowski and Lieber 1998) for prevalence

independence by performing a linear least squares regression of AUC values on prevalence.

Kraemer’s (1988) critique of the use of ROC in biology is limited to medical and behavioural
contexts where a human observer applies a procedure under evaluation to detect the presence
of a signal. This signal is typically the presence of a disease or a particular animal behaviour.
Kraemer (1988) regarded such a human observer as subjective and prone to be influenced by
preconceived ideas. In the classical engineering application of ROC analysis, such a bias does
not exist for a mechanical or electronic detector (Kraemer 1988). Likewise, in predictive
distribution modelling, the predicted probability of occurrence is a value determined by a
statistical model that is not subject to observer bias. Indeed, the output value of this model is
analogous to the reading an electronic detector would record for a particular electronic signal.
Although the model can have biases in terms of predictor variables and modelling
assumptions, these are explicit, constant and objective. Erroneous species identification may
also lead to a false evaluation of model performance, but the bird data set has been subjected
to extensive expert vouching procedures and as such presents as close an approximation of
objective observations and accurate identifications as can realistically be expected (Harrison
et al. 1997, Van Jaarsveld et al. 1998a). In summary, the specific application of ROC analysis
to predictive distribution modelling evaluation is much closer to the original engineering
application than Kraemer’s (1988) “biobehavioural context”, and therefore we regard

classical ROC analyses as suitable for our purposes of model comparison.
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Model comparisons proceeded in three phases. In the first phase, we compared the output of
each model for each species to a random model with no discriminatory ability. Phase two
consisted of obtaining a mean AUC value for all 34 species, for each model, and comparing
these three values using a nonparametric Kruskal-Wallis test. Phase three compared models
on a species-by-species basis and as such provides more detail on which models disagree for
which species. The procedure followed in phase three is summarised in Figure 1, and consists

of the following steps:

Step I: Three species-by-species pairwise between-model comparisons were undertaken (e.g.
Jeffree-BIOCLIM (J-B), Jeffree-GARP (J-G), GARP-BIOCLIM (G-B)), as well as a species-
by-species three-way between-model comparison (Jeffree-GARP-BIOCLIM (JGB)),
resulting in a total of four model comparisons. Each of these four comparisons was done for
every species, summarised in the table shown for step 1 in Figure 1. Each comparison
resulted in a list of species for which that particular comparison showed significant
differences between the models that were compared.

Steps 2 to 4 were subsequently repeated for each of these species lists.

Step 2. The original presence-absence distribution data for every species on the lists (i.e.
those species for which model outputs differed) generated in Step 1 were drawn from the

database, and all individual presence-absence maps for species were overlaid in a GIS.

Step 3: Every grid cell was queried for the presence or absence of a species, and the number
of species from the lists that occurred in each of the grid cells was recorded.

The end result of this process was a map where each grid cell represented the number of
species for which the models in question gave significantly different model outputs (p <
0.05). Grid cells that contained a large number of species for which model outputs disagreed,

were referred to as cells rich in model disagreement species.

Step 4: Homogenous spatial clusters of grid cells that contain similar numbers of model
disagreement species are identified by calculating Moran’s I values as a local indicator of
spatial association (LISA) (Anselin 1995). These values were calculated using the SPLUS®
for ArcView extension to ArcView® GIS. The module calculates generalised LISA values
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Fig 1: Flow chart of the methods followed. Significant disagreement between the predictive
distribution models for a particular species is shown in the table under step 1. For example,
species 1 and 2, but not 3, would be members of the species list for model comparison J-G in
figure 1. These four generated lists contained the species for which model outputs differed
significantly. Each of these lists are used as input to first generate species richness maps,
where richness refers to the number of model disagreement species occurring in each grid cell
(steps 2 and 3). Step 4 calculates significantly homogenous areas of model disagreement by
LISA analysis, and then a spatial intersect between the 4 LISA maps from step 4 creates the
map of the core area of model disagreement in step 5. Two hypotheses about this core area of

model disagreement are tested in step 6.
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(Bao and Henry 1996) that correct for spatial heterogeneity, but since all grid cells are
effectively of equal size and neighbouring centroids are equidistant, we simply use LISA.
Moran’s I values range from positive, indicating spatial clustering of similar numbers of
model disagreement species, to 0, indicating no spatial clustering, to negative, indicating
clustering of dissimilar numbers of model disagreement species (Anselin 1995). However,
highly positive Moran’s I values provide no indication whether these spatial clusters contain
similarly rich or similarly poor model disagreement grid cells. A Moran’s I scatterplot
(Anselin 1998) shows this information and was used to identify clusters of cells with
similarly high numbers of model disagreement species. Since the underlying distribution of
this LISA statistic is unknown (Anselin 1995), we used a conditional randomisation approach
with 10000 permutations to calculate pseudo-significance values (Anselin 1995). In short,
this approach selects a particular grid cell, randomly chooses new neighbours and re-
calculates the local Moran’s I value for that particular grid cell. This process is repeated
10000 times and the position of the real local Moran’s I on the frequency distribution of the
10000 permuted local Moran’s I values provides a pseudo-significance value. Using this
method, we identified significantly homogenous spatial clusters of rich model disagreement

cells for each of the species lists generated in Stepl.

Step 5: Repeating steps 2 to 4 for each of the species lists generated in step 1 resulted in four
model disagreement maps. A fifth model disagreement map was created by spatially
intersecting these four model disagreement areas. This fifth area of model disagreement
contained at least one species for which all four model comparisons showed significant
differences and was referred to as the core area of model disagreement, and further analyses

were focussed on this particular area.

Step 6: We tested two hypotheses relating to this core area of model disagreement: first, that
it is an area of climate transition, and secondly, that it is an area of habitat transition.

For the climate transition hypothesis, spatial variation of the climatic variables across the
entire study area as well as in the core area of model disagreement was investigated. Mean
annual precipitation is a measure of the expected quantity of water available to a catchment in
a decadal to centennial time scale (Schulze et al. 2001). Potential evapotranspiration provides
a measure of how easily water could potentially be lost to the atmosphere through
evaporation and transpiration (Currie 1991, Hulme 1996). Therefore, the relationship

between precipitation and potential evapotranspiration gives a broad indication of whether a

144



University of Pretoria etd — Erasmus, B F N (2006)

7. Comparing predictive distribution models

system is run-off or evaporation dominated, and as such summarises the water balance in a
system (Knapp and Smith 2001). We used this single climate variable, the
precipitation/evapotranspiration ratio (PPT/PET), as a descriptor of the general environmental
constraints on water availability, and indirectly, species distributions. Calculating LISA
values and corresponding pseudo-significance values for the PPT/PET ratio, we identified
areas with high and low local spatial autocorrelation of their PPT/PET ratios. The geographic
positions of homogenous spatial clusters of PPT/PET ratios indicate areas that are subject to
similar water balance conditions. The boundaries between these homogeneous clusters
provide an indication of areas that can be interpreted as transitional zones between low and
high PPT/PET ratios.

The climate transition hypothesis was further tested by determining whether the core area of
model disagreement showed greater values of the PPT/PET ratio and local Moran’s I of the
PPT/PET ratio than expected by chance. The mean values for the PPT/PET ratio and local
Moran’s I of the PPT/PET ratio in the core area of model disagreement were compared to the
mean PPT/PET ratio and mean local Moran’s I of the PPT/PET ratio for 10 000 sets of
randomly selected grid cells from across the study region. The number of randomly selected

grid cells was equivalent to the number of grid cells in the core area of model disagreement.

The habitat transition zone hypothesis was tested using 10 000 random draws in a similar
fashion, using biome heterogeneity as a variable. Low and Rebelo’s (1996) classification of
the study area into seven biome types was used to calculate the percentage of each biome
type per quarter-degree cell. These were the forest, thicket, savanna, grassland, Nama karoo,
succulent karoo, and fynbos biomes. Each of these is characterised by several vegetation
types, giving a total of 68 different vegetation types for the study area (see Low and Rebelo,
1996 for further information). Following Gaston et al. (2001), biome heterogeneity was
obtained using Simpson’s index of diversity (Krebs 1989):

1 — Sum (p)*

where p; is the fraction of the grid cell’s area occupied by biome i. This index ranges from
zero (only one biome present in a cell) to 0.86 (all seven biomes present in the same
proportions) and is expected to reach high values in areas of transition between biomes. The

values recorded ranged between 0 and 0.76.
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Results

In contrast to Manel et al.’s (2001) study, we found a significant (p<0.001), but weak
negative relationship for the linear regressions of AUC on prevalence for each of the three
models that we employed. (Jeffree model: adjusted R*=0.28587591, F(1,32)=14.210
p<0.00067; GARP: adjusted R>=0.28261882, F(1,32)=14.001 p<0.00072; BIOCLIM:
adjusted R?=0.17839935, F(1,32)=8.1655 p<0.00745) This relationship between prevalence
and AUC values was constant across all three models — there was no significant difference
between the intercepts or slopes of each of the regression lines of AUC on prevalence across
the predictive models (ANCOVA, Zar 1986) (Intercept: F(2,98)=1.06; p<.3509, slope:
F(2,96) = 0.007; p<.9932).

The first phase of model comparison showed that all three models performed significantly
better than a random model. In the second phase of model comparison, the mean AUC value
across species for each of the three models was not significantly different from the mean
AUC value for any of the other models (AUC values Jeffree: 0.843+ 0.084, GARP:
0.834+0.082, BIOCLIM: 0.816%0.105).

Results from the third phase of model comparison, which was conducted on a species-by-
species basis, showed that there were several significant differences in model outputs (p <
0.05) for a number of species. In total , 28 (82%) of the species produced modelled outputs
that differed significantly across all three models. Fourteen (41%) species were common to
all four lists of species for which model outputs differed significantly. From this it appears
that there are more species from this sample for which the comparative model outputs

disagree than ones about which they agree.

The core area of model disagreement derived in step 5 of Figure 1 is presented as the hatched
area in Figure 2. This core area of model disagreement showed a proportional overlap
(Prendergast et al. 1993) with the other four areas of model disagreement ranging from 44%
to 59%.

Testing the climate transition zone hypothesis, LISA analyses of PPT/PET ratios across the
study area showed two highly significant (p<0.001) spatial clusters: a cluster of low PPT/PET
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: Core area of model disagreement
Significance of LISA values

[ hot significant

i p=0.05
B p=001
i p=0.001

Fig 2: Significant LISA values for the PPT/PET ratio over the study area. Hatched cells

represent the core area of model disagreement.

147



University of Pretoria etd — Erasmus, B F N (2006)

7. Comparing predictive distribution models

values in the west and a cluster of high PPT/PET values in the east (Fig. 2). Figure 2 also
shows the geographical position of the core area of model disagreement relative to these two
PPT/PET spatial clusters. The core area of model disagreement is spatially congruent
(proportional overlap value of 83% - Prendergast et al. 1993) with a narrow strip of non-
significantly autocorrelated PPT/PET ratios between the significant spatial clusters in the
west and east. The core area of model disagreement displayed significantly (two-tailed
p<0.05) lower values of PPT/PET ratios than expected by chance. Local Moran’s I values of

the PPT/PET ratio were also significantly lower than expected by chance, but still positive.

We found that biome heterogeneity in the core area of model disagreement was also

significantly higher than can be expected by chance.

Discussion

The outcome of the comparison between different predictive distribution models has been
shown to be dependent on the chosen model evaluation criteria (Manel et al. 2001). Since the
aim of this study was to compare predictive distribution models, we needed a robust
evaluation criterion. Such a robust criterion should be threshold independent, which ROC
analysis is by definition, and prevalence independent (Manel et al. 2001). The literature
shows two approaches to assess prevalence independence: a regression of the AUC values
from ROC analysis on the prevalences for each species in the dataset, so that the number of
data points is equal to the number of species in the data set (the approach followed here, and
by Manel et al. 2001); or using random subsets of different sizes of the data for an individual
species and regressing those AUC values on the prevalences determined by the size of the

subsets.

The AUC values in the first approach are derived from different known species distributions
with different climate envelopes. These known species distributions have different
prevalences and different spatial configurations. Therefore, differences in AUC values
derived in this fashion reflect not only the effects of prevalence, but also the model’s ability
to predict species distributions for these different climate envelopes. This approach is well-
suited to evaluate model performance over a range of different types of distributions and get

an overall view of model performance. Manel et al. (2001) used ROC analysis to identify
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optimal probability thresholds, and therefore this approach was well suited to that study. No
regression diagnostics were provided with which to compare the regression results from the
current study and we can only conclude that for our study, the relationship between AUC and
prevalence is weak when using data from all species. However, the main aim of the current
study was not to provide an overall view of model performance, but to compare model
outputs for individual species. Such comparisons were done with a fixed set of predictor
variables applied by different models to the distribution of a specific species. Therefore, even
though there is a relationship between prevalence and AUC values, this relationship is weak
and constant for all three models and therefore its influence, if any, will be constant across

model comparisons.

Further support for ROC analysis as an appropriate model evaluation criterion for this study
comes from other studies that have followed the second approach to assess the prevalence
independence of AUC values. Cumming (2000) used different sized subsets of known data
for a tick species to derive an AUC-prevalence graph and found that the AUC values were
prevalence independent, all be it without regression diagnostics. Since our study focuses on
model comparisons for individual species, rather than overall model performance for an
assemblage of species, it is closer in scope to Cumming (2000) than Manel et al. (2001).
Cumming (2000) also investigated the effects of hypothetically small prevalences on AUC
values and found that AUC values are more prevalence dependent at low prevalences. Using
the same data as the current study, Erasmus et al. (2002) investigated model performance for
individual species at low prevalences and found that, for the majority of species studied, there
was no significant difference between models based on a 20% random subsample of the
known distribution and models based on 100% of the known distribution. In short, we
maintain that ROC analysis is an appropriate model evaluation criterion for our purposes of
comparing different predictive distribution models, not only for the reasons provided above,

but also because of its broad support in the literature (Fielding and Bell 1997).

The first two phases of model comparison showed little differences between models,
irrespective of whether the comparison was with a random model or with another model.
Using other model evaluation criteria, Manel et al. (1999) compared a discriminant analysis,
a neural network and a logistic regression model and also found little differences in model
performance. These similar results for studies using different models with different predictor

variables, suggest that, despite the differences in the underlying assumptions of the various
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models, all of the models have an ability to extract at least partial environmental
dependencies of species distributions and facilitate meaningful predictions. Therefore, these
results suggest that model performance is more strongly influenced by predictor variable

selection than by model selection.

The core area of model disagreement identified in phase three of the model comparison
process showed the geographic location of an area with a high number of model disagreement
species, i.e. the three model outputs, although reasonably accurate by themselves, differed
from each other for a high number of species. The fact that this area was a discrete
homogenous spatial cluster, and not a large extensive area, raises a question about the cause
of such model disagreement in an area that comprises only 4% of the country’s total surface
area. Although the different models use predictor variables in different ways to arrive at a
predicted distribution, the common factor between all models remains their use of climatic
predictor variables. If model disagreement shows a common spatial clustering, it stands to

reason that some climate-related process drives this pattern.

LISA analysis of PPT/PET values identified a transition zone of environmental water surplus,
l.e. an area with no significant local spatial autocorrelation in PPT/PET ratios. This narrow
strip where significant spatial autocorrelation of the PPT/PET ratio is absent, represents a
transition zone from areas where evaporation plays a more important role, such as the drier
western regions of the country, to areas where run-off is more prevalent, e.g. the moister
eastern regions. The interpretation of PPT/PET ratio is relative. Knapp and Smith (2001)
showed grasslands to have PPT/PET ratios of around unity, with deserts closer to zero and
forests larger than unity in North America. For South Africa, some 93% of grid cells
experience a PPT/PET ratio of smaller than 0.5, therefore South Africa generally experiences
an evaporation-dominated water balance, and that the transition zone identified by the LISA
analysis is a relative one with run-off only dominating evapotranspiration for short and
strictly seasonal periods across the eastern half of the country. Note that it is only where there
is a steep transition gradient that model predictions disagree; the core area of model
disagreement does not extend to the north where the PPT/PET ratio transition is diluted over
a larger area. Therefore, by virtue of the spatial congruence between the core area of model
disagreement and the steep PPT/PET transition zone, this study suggests that the distribution
prediction models implemented here differed in their predictions of species that are found in

this climate transition zone. Figure 3 shows the PPT/PET values for the
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: Core area of model disagreement
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Fig 3: Map of PPT/PET values for South Africa. Legend classes are of equal interval, so

areas with similar shading indicate the frequency of values in that class interval.
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study area with equal interval classes. The core area of disagreement coincided almost totally
with an area that has low values of PPT/PET. This area was also the largest (white area in
Figure 3) and therefore it is to be expected that PPT/PET ratios will be lower than can be
expected by chance in the core area of model disagreement. The significantly lower mean
local Moran’s I of the PPT/PET values for the core area of model disagreement agreed with
the non-significant area of local spatial autocorrelation in Figure 2, with non-significant
values being defined as closer to zero, but still positive in this case. This indicates that
neighbouring grid cells within the core area of model disagreement have less similar

PPT/PET values than neighbouring grid cells elsewhere in the country.

The PPT/PET ratio is a measure of broad environmental water availability and since moisture
availability is an important driver of vegetation (O’Brien 1993, Schulze 1997, O’Brien 1998,
O’Brien et al. 1998, 2000), this climate transition zone of water availability can be
hypothesized to be a vegetation transition zone. The core area of model disagreement has a
higher mean biome heterogeneity value than is expected by chance, and this supports the

habitat transition zone hypothesis.

The notion of this climate transition area in the Eastern Cape as an area of vegetation
transition is not a new one. Rutherford and Westfall (1986) reviewed 21 studies that
identified “major natural biotic divisions™ (Rutherford and Westfall 1986) between 1936 and
1986. These classifications were by no means transparent and used combinations of edaphic
factors, plant life forms, climate and expert opinion to do the classification. In spite of these
differences in methods, the area that we identified as the core area of model disagreement
coincides with boundaries between four biomes in almost half of these old classifications.
An earlier review of phytogeographical studies (Werger 1978) found a similar result of
agreement between 9 studies dating from between 1886 and 1971. A more rigorous
definition (Rutherford and Westfall 1986) of South African biomes, primarily based on
climate and plant life forms, lends further support for the core area of model disagreement as
a vegetation, and habitat, transition zone. The climate component of this classification was
based on a Summer Aridity Index (SAI), calculated from precipitation for the four hottest
months of the year, and winter concentration of precipitation, calculated from winter
precipitation as a proportion of mean annual precipitation. SAI gives an indication of
moisture stress during growing periods of peak physiological water demand (Rutherford and

Westfall 1986) and winter precipitation concentration provide an indication of the importance
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of seasonal rainfall. Together, these precipitation-derived indices give a similar, but more
detailed picture of environmental water availability than the PPT/PET ratio used in our study.
On a scatterplot of winter precipitation concentration against SAI, Rutherford and Westfall
(1986) identified biomes and biome boundaries. Using Acocks’ veldtypes, (Acocks 1975), we
found that four veld types dominated in the core area of model disagreement, accounting for
74% of this area. These veld types were located along the common boundaries of the nama
karoo, grassland, fynbos, forest and savanna biomes on the scatterplot of SAI against winter
precipitation concentration. These principles that aided in the identification of Rutherford and
Westfall’s (1986) biomes provide further evidence that the core area of model disagreement

is an area of climate, and subsequently, habitat transition.

An important feature of Rutherford and Westfall’s (1986) classification is the role the
inclusion of a measure of rainfall seasonality plays in delineating biomes. Low and Rebelo
(1996) identified a thicket biome as intermediary between forest and savanna biomes (Vlok
and Euston-Brown 2002). This thicket biome, which is present in 28% of the core area of
model disagreement’s grid cells, is maintained by the balance between winter and summer
rainfall. Winter rainfall is more dominant in the west, and here the thicket becomes
fragmented and is replaced by fynbos, whereas more summer-dominated rainfall fragments
the thicket in the north and east. It is clear then, that the vegetation transition in the core area
of model disagreement is not only influenced by the amount of precipitation but also the
seasonality. This balance between winter and summer rainfall also explains to some extent
the more gradual vegetation transition that takes place north of the core area of model
disagreement. Winter rainfall is limited to the coastal area, and therefore the climate gradient
further north is only a gradient of the amount of precipitation, and not seasonality too, as is
the case along the coastal area. The complex vegetation patterns in this core area of model
disagreement also have some roots in the distant past. Van Zinderen Bakker (1978) found
that Quaternary glacial cycles enabled repeated intrusion and retreat of fynbos into temperate
grassland and forest areas, resulting in a mosaic of fynbos remnants in altitudinal refugia

during unfavourable periods.

So far we have shown that the areas in which the models disagreed were areas of climate and
habitat transition. However, it has been demonstrated elsewhere that habitat heterogeneity is
an important driver for bird species richness not only in sub-Saharan Africa (Jetz and Rahbek

2002), but also for South Africa (Van Rensburg et al. 2002). Spatial congruence between
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avian species range limits and areas with high vegetation heterogeneity have also been found
for other regions (e.g. see Boone and Krohn 2000b). More importantly, in the same study
area, Gaston et al. (2001) have shown that biome edges experience a significantly higher
degree of avian beta diversity than expected by chance. Therefore it is clear that the areas in
which the three predictive distribution models disagree are not only areas of climate and
habitat transition, but also very likely form areas of avian community transition. At broader
scales, using 1437 Afrotropical endemic bird species, De Klerk et al. (2002) showed that 4
biogeographical districts share boundaries in the area that we have identified as the core area

of model disagreement.

Due to the unique biodiversity elements, i.e. the thicket biome, in this ecological transition
zone, considerable effort has been directed at integrated conservation planning in this region
(Cowling et al. 2003, Kerley et al. 1999). An integral part of this conservation plan is the
integration of process that drive biodiversity patterns in this area; macroclimatic gradients has
been explicitly identified as important drivers for maintaining biodiversity in the thicket
biome (Cowling et al. 2003).

In summary, we have shown that there is little difference in model output for the three
different predictive distribution models employed here. We have also shown that these
models fail in the same ecological transition zone by having different predicted distributions
for species occurring here. Although this disagreement seems to point to differences between
models, the fact that there is agreement about where the disagreement occurs is noteworthy
and supports the usefulness of a modelling approach to species distributions. We suggest that
such general ecological transition zones should be sought in environmentally complex
landscapes before blanket analyses (i.e. Erasmus et al. 2002, Van Jaarsveld and Chown 2001)
are applied. Understanding the potential effects of these areas, and how to deal with them
explicitly is likely to be important in efforts to improve model performance. Given the rate of
environmental change and the need for up-to-date conservation planning, the use of
predictive distribution models is likely to increase. It is in the interests of climate-change
integrated conservation planning that such modelling exercises are as accurate and
transparent as possible and therefore, procedures that identify sources of model error are
important. Further research is needed not only into how existing conventional equilibrium
(Guisan and Zimmerman 2000) models treat such transition zones, but also how these

transition zones should be treated to ensure geographically homogenous model performance.
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Such a model performance might only be attained if the model allows for predictor variables
to make a spatially variable contribution to prediction accuracy. Models that have a spatially
explicit component (i.e. spatial regression, cellular automata) might perform better in areas

where predictor variables undergo transitions.
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Summary and conclusion

The case studies presented have a common thread — all evidence, modeled solutions as well
as observed shifts in the literature, points to the fact that species distributions are expected to
show substantial changes in response to a changing climate. These changes, whether they are
range shifts, range contractions or complete range dislocations, are expected to be severe
enough that long term land-use planning can no longer afford not to incorporate a climate

change contingency plan (Hannah et al. 2002)

Conservation, where conservation goals are often measured by the presence of vulnerable
species or communities, faces a particular challenge. Not only will the reserve network need
considerable redundancy in the off-reserve matrix for anticipated range shifts, but it will also
have to deal with range contraction, and associated potential local population declines
(Gaston et al. 1996, Gaston 1998). Range contraction is a common predicted outcome
(Erasmus et al. 2002). Even without any climate change, species with contracted ranges
would already be at greater risk through simple area-abundance relationships (Gaston et al.
1996). However, given the degree of stress that most populations are already subjected to in
their present ranges due to unsustainable land-use practices (Lande 1998), the additional
stress of climate change may make local extinctions a more likely outcome. This finding
from this South African assessment concurs with sentiments expressed by the [IPCC Regional
Assessment (IPCC 1997) on the vulnerability of African ecosystems to climate change due to
unsustainable land-uses. It is a significant step forward to be able to confirm findings from
broad regional assessments at a national scale where conservation planning decisions are

taken (Erasmus et al. 1999).

Eastward range shifts are another typical feature of predicted future species distributions in
South Africa. This predicted shift tracks the predicted decrease in precipitation across the
east-west aridity gradient in South Africa. This predicted shift confirms the IPCC report
(IPCC 1997) that deserts in Africa are particularly at risk; the arid western parts of South
Africa are expected to lose species as arid regions become too arid for even arid-adapted
species which might be close to physiological tolerance limits. This report (IPCC 1997) also
identifies the grasslands of southern and eastern Africa as biomes vulnerable to climate
change. Erasmus et al. (2002) show that the predicted eastward shifts will result in new

species entering this biome, with novel species interactions as a result. The outcomes of
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these novel interactions are difficult to predict, but it is likely that some species will be out-
competed (Lande 1998). Microcosm experiments with novel communities might provide

insight into potential outcomes of species interactions.

The likelihood of successful range shifts will be decreased by habitat fragmentation, the
presence or absence of suitable habitat in intermediate areas and the degree of land
transformation encountered. Climate change and habitat fragmentation are likely to be
opposing shifting forces, with climate change forcing a distribution a shift and habitat
fragmentation preventing that shift through absence of suitable habitat (Warren et al. 2001).
In South Africa, conflict is expected as areas of significant land transformation straddle
potential range displacement routes (Erasmus et al. 2002). A distribution shift consists of one
edge of the distribution experiencing a net mortality, and the other edge a net colonization.
Honnay et al. (2002) have shown that habitat fragmentation inhibits net colonization at the
edge of a shifting distribution, resulting in a severely reduced ability to shift. Apart form the
caveats associated with the availability of suitable habitat for a successful shift, the required
rate of shift is a further complicating factor. In his review, Huntley (1998) shows that the
time frame within which climate change is expected to induce shifts, may be too short; and
that few species have the ability to shift at the required rates. Once again, the net result is

likely to be local extirpation of the population, rather than a shifted population.

The pattern of range contraction and range shift predicted for South Africa confirms
assessments at broader scales. Vulnerable areas (e.g. arid areas and grasslands) identified at a
continental scale (IPCC 1997) were confirmed, and quantified, by a more detailed fine scale
analysis (Erasmus et al. 2002). At the outset of this study a main aim was to fulfill the need
identified by the IPCC for more detailed level studies. This has been done, and in doing so,
confirmed that the broader scale assessments of the [IPCC (IPCC 1997, 2002) are generally
applicable to South Africa.

Range shifts and the resulting novel species interactions also have indirect implications for
conservation, agriculture and forestry through a change in risk profile to potential pathogens.
This change in risk profile will happen through shifting distributions of pathogens (Van
Staden et al in press) as well as through pathogens encountering novel hosts. The same
principles governing the outcome of novel species assemblages will determine the survival of

the pathogen in the presence of a new host. In South Africa susceptible eucalypt plantations
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are currently planted in areas to which a pathogen is expected to shift. This result is

consistent with changes in disease risk due to climate change reported elsewhere (Daszak et

al. 2000, Rogers & Randolph 2000, Harvell et al. 2002).

The other main focus of this thesis was a methodological one, and some valuable insights

were gained. Climate envelope modelling is by definition a static equilibrium approach

(Guisan & Zimmerman 2000) that relies on a snapshot of climate and distribution data to

make predictions. This approach has three main shortcomings:

[

L

The nature of the climate data is such that there is limited scope to incorporate an
explicit temporal component into a single variable. Long-term mean monthly values
can be used to describe the “normal” onset of a particular season in a particular
month. However, inter-annual variation in the onset of such a “normal” season is
easily lost with long term mean data and processes dependent on particular climate
cycles, i.e. seasonal reproductive events, of which the timing can be critical for
population persistence, cannot easily be described. Climates of the future are
expected to exhibit increased levels of inter-annual variability (Easterling et al. 2000,
also see Schulze et al. 2001 for a South African perspective). Climate fluctuations
have well-documented effects on ecosystems (Stenseth et al. 2002). These effects
might be amplified in future climates that are more variable. Currently, effects of such
changes in variability, i.e. more flash floods, can be estimated but the events
themselves cannot be predicted. Even if climate science progresses to the point where
such events can be predicted, an equilibrium model will still struggle to incorporate
this dynamic-orientated data. A solution at this stage is to use derived variables such
as precipitation seasonality (see Erasmus et al. 2000) that describe intra-annual
variability.

The equilibrium nature of the model also pertains to population processes; dynamic
interactions between populations as well as sub-populations of a metapopulation

cannot be captured with this approach.

. Analogous to the climate envelope model’s inability to capture interactions between

populations, it cannot capture interactions between species either. Such interactions
have been shown to enforce range limitations (Hochberg & Ives 1999; Samways

2003).
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In spite of these seemingly gross oversimplifications, the climate envelope model
implemented throughout this study performed well using a standard model evaluation
technique. Further support for the climate envelope model came from its agreement with
other more complex models that were specifically developed for distribution prediction. Not
only is there agreement in the mean outputs of these models, but there is also agreement
about the areas in which the models perform poorly. Robertson et al. (2003) have shown that
an equilibrium type envelope model can perform at least as well, if not better, than a
mechanistic model that is based on explicit and known ecophysiological constraints. Such a
mechanistic model effectively uses the fundamental niche (Hutchinson 1957) to determine
the bioclimatic envelope of a species; however, if the fundamental niche is not realized at
present then it is unlikely to be realized in future. Bioclimatic envelopes based on observed
distributions effectively capture the realized niche, and are likely to be more adept at
predicting future distributions (Pearson & Dawson 2003), since some measure of the factors
determining the realized niche is implicitly included. It seems as if all the models tested here
have at least some useful ability to extract a climate-related distribution dependency from the
climate data. Although this finding needs to be tested with a wider selection of models, it
may be that predictor variable selection are more important than model selection to improve

predictive model outputs.

Although we identified the inability of a climate envelope model to incorporate detail
information on species- and population interactions as a weakness, there are in fact very few
communities, or even populations, for which this sort of detailed information exists.
Typically, detail data on species’ habitat preferences at the individual scale lends itself to a
different modelling approach (e.g. Gurnell et al. 2002), but these more detailed approaches,
very seldom lend themselves to extrapolating to scales at which integrated conservation

planning is conducted.

Therefore, although the broad scale climate envelope approach does have its limitations, at
present it is one of the only techniques with which a quick and useful assessment of potential
climate change vulnerabilities can be made. The technique can be applied in such a way as to
limit the effects of its shortcomings. For example, although it is tempting to interpret
predicted distributions as actual ranges, in fact, they only represent potential climatic areas of
occupancy. The re-sampling technique developed by Smit et al. (in prep) provides an

additional tool with which to interpret the reliability of the envelope model output.
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Identifying and partitioning sources of variation in the data (including spatial variation) a
priori, and treating these data explicitly to ensure geographically homogenous model

performance (Erasmus et al. in prep), will improve the quality of envelope model output.

In spite of all the caveats of the envelope modelling approach, I hold that the results from
such modeling exercises are useful for showing potential effects of climate change and the
magnitudes of these effects. Despite criticism (Davis et al. 1998, Samways 2003) of the
envelope approach, it has been shown that some species have moved (Parmesan 1996,
Parmesan & Yohe 2003, Root et al. 2003) and ecosystem changes have occurred in response
to climate. The often-cited critique of climate envelope models being “invalidated” by
species interactions (Davis et al.1998) was only performed at fine scale in a laboratory. This
is not the scale at which bioclimatic envelopes have proven their usefulness as a tool for
conservation practitioners. In a recent review, Pearson & Dawson (2003) concluded that the
usefulness of bioclimatic envelope modelling is dependent on the scale at which it is applied.
They argue that at broad scales climate is the most important factor that shapes distribution
patterns and therefore this is a sensible scale at which to apply this technique. At increasing
finer scales, other limiting factors such as land use, soil type, and biotic interactions become
more important, and results from bioclimatic envelope modelling at these finer scales should
be interpreted with informed caution (Pearson & Dawson 2003). The studies presented in
this thesis was conducted at the interface of what Pearson & Dawson (2003) calls regional
and landscape scales, where climate and topography are important factors, and these (or their

covariates) are the variables which were used.

Therefore, the notion that all climate envelope approaches are irrelevant is not true. Species
interactions may be important but so is climate, and if a model using the latter gives useful
answers, then conservation practitioners cannot afford to discard any of these approaches at
present. Conservation has become a time-critical discipline and we cannot afford to wait until
ideal data and methods are developed before taking mitigating action (Van Jaarsveld et al
1998).

Consequently, by exploring a series of case studies about the application of climate change
modeling on biodiversity features I identify a number of procedures that need to be
incorporated into a national level study on the biodiversity consequences of climate change:

1. The study should have a long-term view to collect time series data.
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. This longer-term study should include different taxa at different scales.

. The study should incorporate an effort to improve information on animal diversity and
distribution in South Africa. Current databases present a historic snapshot, and are
becoming increasingly irrelevant as land-uses change.

_ There should be an effort to identify systems especially vulnerable to climate change,
and conduct detailed investigations, but not exclusively so. Fynbos, succulent karoo,
isolated pockets of afromontane forest, highveld grassland and extreme arid areas
have been identified by the IPCC as vulnerable (IPCC 2002). This procedure should
include the identification of potential climate change indicator species a priori.

. Methodologies should be standardized to facilitate between-site comparisons, but also
follow IPCC guidelines for climate change assessment (Benioff et al. 1996, IPCC
1994). Following these guidelines would ensure comparability with studies elsewhere
and as such make a contribution to climate change impact studies at a global level.
Modelling procedures should be well established in the scientific literature.

. The study should be designed with a view to inform non-scientific decision makers
and politicians. A shortcoming of the latest IPCC report (IPCC 2001a,b,c,d) is that it
is based on studies that were not intended to inform policy makers as an end-result
(Viner 2003).

. The study should have a dual approach by modelling broad scale patterns and at the
same time, conduct detail investigations into the causal links between climate and
animal distributions. The latter takes place at the level of individual species, and it is
envisaged that as the nature of climate dependence becomes known for a larger
number of species and systems, this information will be used to feed back into the
broader scale models, and thus improve their predictions.

. As an outcome, the study should have a mechanism to feed recommendations into an
integrated land-use planning exercise. Part of this integrated planning should be a
representative conservation area network for South Africa that incorporates

considerable redundancy in order to buffer effects of climate change.

Mitigation of the impacts of climate change is ultimately a function of political will to

confront difficult issues such as climate change-integrated land-use planning. Climate

change presents a significant threat to the South African national biodiversity estate, and our

ability to manage it, and should be considered as of the utmost importance. Implementing the
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steps outlined above would go a long way towards improving our ability to meet this

challenge successfully.
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