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Abstract

As predictive distribution modelling has become more common in response to a need to
understand potential effects of environmental change, there has been a concomitant increase
in the diversity of models used for such predictive modelling. This study contributes to this
body of work by comparing 3 different predictive distribution models: a climate envelope
model, BIOCLIM and GARP. Comparisons were done by using a standard set of climatic
predictor variables for a set selection of species. Receiver operating characteristic analysis
showed good overall model accuracy and little difference in the mean output between
models. However, by mapping the distributions of individual species for which models
disagree, it was found that although the models perform adequately, they disagreed on the
predicted distributions of individual species in the same geographically distinct region. This
region was shown to be an area of significant environmental heterogeneity, with climate,
vegetation and avian community transitions occurring here. Identifying such areas prior to a
distribution modelling exercise and explicitly accounting for this source of model
disagreement, will improve the accuracy of model predictions. The methods followed in this

study present a simple analysis to identify such transition zones.
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Introduction

The number of investigations using predictive species distribution modelling is increasing
rapidly, largely because these models are of considerable value for understanding the likely
impacts of environmental change. The models can be used to understand biogeographic
patterns (Jeffree and Jeffree 1994, Cowling and Lombard 2002), ascertain the potential
distributions of economically important pest species (Bylund 1999, Robertson et al. 2001,
Todd et al. 2002, Watt and McFarlane 2002), determine changes in threats associated with
infectious and vector-borne diseases (Daszak et al. 2000, Rogers and Randolph 2000, Harvell
et al. 2002), predict potential species invasions (Peterson and Vieglais 2001), and understand
the ecological and conservation implications of global environmental change ( Pounds et al.
1997, Petchey et al. 1999, Rutherford et al. 1999, Beaumont and Hughes 2002, Feria and
Peterson 2002, Hannah et al. 2002, Peterson et al. 2000, 2001, 2002).

By definition, all models, including predictive species distribution models, constitute an
incomplete abstraction of reality (see Samways 2003). In consequence, they will fail to
capture all sources of variation, whether these are a result of predictor variable or model
characteristics. The extent to which this abstraction of reality is useful for understanding
natural phenomena is determined by the model’s ability to describe variation in the observed
data, using predictor variables selected a priori by the modeller (Sutherst 2003). Different

types of models differ in their ability to describe this variation.

Climate envelope models have their roots in the concept of “envirograms™ first put forward
by Andrewartha and Birch (1954, 1986). Since the first generation climate envelope models
were developed as specific software applications (Sutherst and Maywald 1985), the approach
has found wide application (Walker and Cocks 1991, Carpenter et al. 1993, Jeffree and
Jeffree 1994, 1996, Robertson et al. 2001, Erasmus et al. 2000, 2002, Van Staden et al. in
press). Standardising the approach into readily available software packages (BIOCLIM1 and
CLIMEX?) has made it more accessible and fostered a wider user base, not only for these

packages (Busby 1986, 1988, 1991, Nix 1986, Lindenmayer et al. 1991, Beaumont and

! http://cres.anu.edu.au/outputs/anuclim html
? http://www.ento.csiro.au/climex/climex.htm
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Hughes 2002)°, but also for climate envelope models in general. On the other hand, the
increase in computing power in standard desktop computers has made it practical to utilise
computing-intensive machine learning type models for distribution predictions (Guegan et al.
1998, Kobler and Adamic 2000). Until fairly recently, this complicated methodology was not
readily accessible to biologists. A genetic algorithm-based model developed specifically for
species distribution prediction from incomplete data (GARP, Stockwell and Peters (1999))
was made available first as a web application4 and then later as a stand-alone Windows
application5 . An increase in the number of GARP applications (Feria and Peterson 2002,
Peterson and Cohoon 1999, Peterson et al. 2000, 2001, 2002, Peterson and Vieglais 2001,)
can be expected, given the fact that it is user friendly, easily accessible, well supported, and
places a powerful, well-documented computational technique at the disposal of biologists.
Consequently, a comparison between the more established climate envelope models that
already have a broad user base, represented by BIOCLIM and the simple PCA-based model
developed by Jeffries (Jeffree and Jeffree 1994, 1996), and modified by Erasmus (Erasmus et
al. 2000), and GARP, which is likely to become more widely used in future, would be useful
to ascertain the extent to which these approaches are comparable. Given that these kinds of
modelling approaches provide only a broad-brush view of the likely responses of species to
climate, strong model disagreement would strengthen the case against them (see Davis et al.
1998, Gaston 2003, Sutherst 2003 for additional discussion). On the other hand, agreement
between models would provide additional support for their continued use. Moreover, explicit
investigation of lack of congruence between models would improve confidence in the utility
of modelling exercises. The aims of this study are therefore to compare the ability of different
predictive distribution models to describe observed variation given a fixed set of predictor
variables for a selected number of species, and to investigate the spatial attributes of predictor
variables that cause between-model disagreement of predicted species distributions. In so
doing, this work contributes to the useful and growing body of model evaluations (Fielding
and Bell 1997, Manel et al. 2001) and model comparisons (Brito et al. 1999, Manel et al.
1999, Guisan and Zimmermann 2000).

3 See http://www.ento.csiro.au/climex/bibliography.htm for a list of 148 references on the implementation of the
original climate envelope model called CLIMEX by Sutherst and Maywald (1985)

* http://biodi.sdsc.edu/bsw_home. html

? http://www.lifemapper.org/desktopgarp/
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Methods

Data

Distribution data for birds were obtained from the Avian Demography Unit, University of
Cape Town® (Southern African Bird Atlas Project (SABAP, Harrison et al. (1997)). These
data are the result of a directed sampling effort to map the birds of southern Africa (1987-
1992), and unlike data for other taxa from the region (Scholtz and Chown 1995; van
Jaarsveld et al.1998a.b, Koch et al. 2000), constitute a close approximation of true presence-
absence data. From the total data set for southern African birds, a data subset for grid cells
with reliable climate data for South Africa was extracted. This subset consisted of 294816
unique records for 748 bird species occurring in 1858 grid cells (~625krn2 per grid cell),
encompassing South Africa and Lesotho, but excluding the other countries included in the
SABAP. For a previous predictive distribution modelling study (see Erasmus et al. 2002 for a
species list), 34 species were selected from this South African data subset based on (a)
accurate but not necessarily complete distribution data, (b) representative geographic range
types (e.g. species restricted to winter or to summer rainfall regions), (c) robust, well-
resolved taxonomy and (d) species known from a reasonable number of records. We used the
same 34 species in this study. These 34 species have 23047 records in total, and their
summed distributions encompass all 1858 grid cells. The number of records for each of these
34 species varies from 49 to 1574, with half the species having distributions of less than a

third of the region’s total area.

Van Rensburg et al. (2002) showed that mean annual precipitation (mm.yr") and mean
absolute monthly minimum temperature (°C) averaged over the year are significant positive
correlates of avian species richness in South Africa (see also Dean 2000). These results for
South Africa are supported by similar findings for other taxa in North America (Currie and
Paquin 1987, Boone and Krohn 2000a), New Zealand (Leathwick et al. 1998), Costa Rica
(Enquist 2002) and sub-Saharan Africa (Jetz and Rahbek 2002). Based on these known
relationships between richness, temperature and precipitation at broad scales, we made use of
the same mean annual precipitation and mean absolute monthly minimum and maximum
temperature data used by Van Rensburg et al. (2002) as predictor variables in this study.

South African climate data were provided by the Computing Centre for Water Research

® http://www.uct.ac.za/depts/stats/adu/index.html

139



University of Pretoria etd — Erasmus, B F N (2006)

7. Comparing predictive distribution models

(CCWR, University of Natal, Pietermaritzburg, metadata published in Schulze and Maharaj
(1997)). The historic data (30 year monthly and annual means: 1960 — 1990) were re-sampled
to 15° x 15’ grid cells from interpolated climate surfaces available at a minute by minute

resolution to conform to the resolution of the bird data.

Modelling procedure

Using these bird distribution and climate data, we implemented three different species
distribution prediction models that have been exposed to peer review: Jeffree’s multivariate
climate envelope model (Jeffree and Jeffree 1994, 1996, Erasmus et al. 2000, 2002, Olwoch
et al. in press, Van Staden et al. in press, also see Robertson et al. 2001 for a similar PCA-
based model), the BIOCLIM envelope model (Busby 1986, 1988, 1991, Nix 1986,
Lindenmayer et al. 1991, Beaumont and Hughes 2002) and GARP, an inferential genetic
algorithm-based model (Peterson et al. 2000, 2001, 2002, Peterson and Cohoon 1999,
Peterson and Vieglais 2001, Feria and Peterson 2002). GARP has different output options;
we used the probability surface output option to enable comparisons with the probability

surfaces generated by the other two envelope models.

Model output was evaluated (Oreskes et al. 1994, Guisan and Zimmerman 2000) by
comparing predicted distributions with known records. However, model output consists of a
probability of occurrence value and to compare this continuous variable with a binary
presence-absence value presents a methodological problem. Although the predicted
probability output can be dichotomised to predicted presence-absence by applying a threshold
probability, this procedure results in a significant loss of information (Deleo 1993, Fielding
and Bell 1997). For example, if a threshold probability of 0.5 is chosen, this means that
species having a predicted probability of occurrence of 0.51 will be regarded as present
together with species that have a much higher predicted probability of occurrence. However,
receiver operating characteristic (ROC) analysis enables the use of the actual predicted
probabilities, and is threshold-independent. ROC analysis has its origins in engineering in the
context of measuring the ability of a detector to detect a particular signal. It has found wide
application in the evaluation of clinical medical tests (Fielding and Bell 1997) and here it is
used to measure the performance of a predictive species distribution model. ROC analysis
primarily concerns the calculation of specificity and sensitivity values. Sensitivity is defined
as the number of true occurrences of a species (true positive predictions, TP) divided by the

total number of positive predictions, whether true (TP) or not (false negatives predictions,
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FN). Similarly, specificity is defined as the number of true negative predictions (TN) divided
by the total number of negative predictions, whether TN or false positive (FP) predictions
(Fielding and Bell 1997). The area-under-curve (AUC) of a plot of 1-specificity against
sensitivity at every given probability of occurrence value is used as a test statistic. An AUC
value of 0.5 corresponds to a random test with no discriminatory ability. AccuROC®
software (Vida 1993) was used to determine the statistical significance of the difference
between any two or three AUC values according to the nonparametric method of Delong et
al. (1988). The confidence interval for the AUC was calculated using the asymptotic method
(Obuchowski and Lieber 1998).

The chosen model evaluation criteria should be prevalence (frequency of occurrence)
independent across models (Manel et al. 2001). Following suggestions from previous model
comparisons (Manel et al. 1999, 2001, Guisan and Zimmerman 2000), we tested ROC
analysis (Fielding and Bell 1997, Deleo 1993, Obuchowski and Lieber 1998) for prevalence

independence by performing a linear least squares regression of AUC values on prevalence.

Kraemer’s (1988) critique of the use of ROC in biology is limited to medical and behavioural
contexts where a human observer applies a procedure under evaluation to detect the presence
of a signal. This signal is typically the presence of a disease or a particular animal behaviour.
Kraemer (1988) regarded such a human observer as subjective and prone to be influenced by
preconceived ideas. In the classical engineering application of ROC analysis, such a bias does
not exist for a mechanical or electronic detector (Kraemer 1988). Likewise, in predictive
distribution modelling, the predicted probability of occurrence is a value determined by a
statistical model that is not subject to observer bias. Indeed, the output value of this model is
analogous to the reading an electronic detector would record for a particular electronic signal.
Although the model can have biases in terms of predictor variables and modelling
assumptions, these are explicit, constant and objective. Erroneous species identification may
also lead to a false evaluation of model performance, but the bird data set has been subjected
to extensive expert vouching procedures and as such presents as close an approximation of
objective observations and accurate identifications as can realistically be expected (Harrison
et al. 1997, Van Jaarsveld et al. 1998a). In summary, the specific application of ROC analysis
to predictive distribution modelling evaluation is much closer to the original engineering
application than Kraemer’s (1988) “biobehavioural context”, and therefore we regard

classical ROC analyses as suitable for our purposes of model comparison.
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Model comparisons proceeded in three phases. In the first phase, we compared the output of
each model for each species to a random model with no discriminatory ability. Phase two
consisted of obtaining a mean AUC value for all 34 species, for each model, and comparing
these three values using a nonparametric Kruskal-Wallis test. Phase three compared models
on a species-by-species basis and as such provides more detail on which models disagree for
which species. The procedure followed in phase three is summarised in Figure 1, and consists

of the following steps:

Step I: Three species-by-species pairwise between-model comparisons were undertaken (e.g.
Jeffree-BIOCLIM (J-B), Jeffree-GARP (J-G), GARP-BIOCLIM (G-B)), as well as a species-
by-species three-way between-model comparison (Jeffree-GARP-BIOCLIM (JGB)),
resulting in a total of four model comparisons. Each of these four comparisons was done for
every species, summarised in the table shown for step 1 in Figure 1. Each comparison
resulted in a list of species for which that particular comparison showed significant
differences between the models that were compared.

Steps 2 to 4 were subsequently repeated for each of these species lists.

Step 2. The original presence-absence distribution data for every species on the lists (i.e.
those species for which model outputs differed) generated in Step 1 were drawn from the

database, and all individual presence-absence maps for species were overlaid in a GIS.

Step 3: Every grid cell was queried for the presence or absence of a species, and the number
of species from the lists that occurred in each of the grid cells was recorded.

The end result of this process was a map where each grid cell represented the number of
species for which the models in question gave significantly different model outputs (p <
0.05). Grid cells that contained a large number of species for which model outputs disagreed,

were referred to as cells rich in model disagreement species.

Step 4: Homogenous spatial clusters of grid cells that contain similar numbers of model
disagreement species are identified by calculating Moran’s I values as a local indicator of
spatial association (LISA) (Anselin 1995). These values were calculated using the SPLUS®
for ArcView extension to ArcView® GIS. The module calculates generalised LISA values
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Fig 1: Flow chart of the methods followed. Significant disagreement between the predictive
distribution models for a particular species is shown in the table under step 1. For example,
species 1 and 2, but not 3, would be members of the species list for model comparison J-G in
figure 1. These four generated lists contained the species for which model outputs differed
significantly. Each of these lists are used as input to first generate species richness maps,
where richness refers to the number of model disagreement species occurring in each grid cell
(steps 2 and 3). Step 4 calculates significantly homogenous areas of model disagreement by
LISA analysis, and then a spatial intersect between the 4 LISA maps from step 4 creates the
map of the core area of model disagreement in step 5. Two hypotheses about this core area of

model disagreement are tested in step 6.
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(Bao and Henry 1996) that correct for spatial heterogeneity, but since all grid cells are
effectively of equal size and neighbouring centroids are equidistant, we simply use LISA.
Moran’s I values range from positive, indicating spatial clustering of similar numbers of
model disagreement species, to 0, indicating no spatial clustering, to negative, indicating
clustering of dissimilar numbers of model disagreement species (Anselin 1995). However,
highly positive Moran’s I values provide no indication whether these spatial clusters contain
similarly rich or similarly poor model disagreement grid cells. A Moran’s I scatterplot
(Anselin 1998) shows this information and was used to identify clusters of cells with
similarly high numbers of model disagreement species. Since the underlying distribution of
this LISA statistic is unknown (Anselin 1995), we used a conditional randomisation approach
with 10000 permutations to calculate pseudo-significance values (Anselin 1995). In short,
this approach selects a particular grid cell, randomly chooses new neighbours and re-
calculates the local Moran’s I value for that particular grid cell. This process is repeated
10000 times and the position of the real local Moran’s I on the frequency distribution of the
10000 permuted local Moran’s I values provides a pseudo-significance value. Using this
method, we identified significantly homogenous spatial clusters of rich model disagreement

cells for each of the species lists generated in Stepl.

Step 5: Repeating steps 2 to 4 for each of the species lists generated in step 1 resulted in four
model disagreement maps. A fifth model disagreement map was created by spatially
intersecting these four model disagreement areas. This fifth area of model disagreement
contained at least one species for which all four model comparisons showed significant
differences and was referred to as the core area of model disagreement, and further analyses

were focussed on this particular area.

Step 6: We tested two hypotheses relating to this core area of model disagreement: first, that
it is an area of climate transition, and secondly, that it is an area of habitat transition.

For the climate transition hypothesis, spatial variation of the climatic variables across the
entire study area as well as in the core area of model disagreement was investigated. Mean
annual precipitation is a measure of the expected quantity of water available to a catchment in
a decadal to centennial time scale (Schulze et al. 2001). Potential evapotranspiration provides
a measure of how easily water could potentially be lost to the atmosphere through
evaporation and transpiration (Currie 1991, Hulme 1996). Therefore, the relationship

between precipitation and potential evapotranspiration gives a broad indication of whether a
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system is run-off or evaporation dominated, and as such summarises the water balance in a
system (Knapp and Smith 2001). We used this single climate variable, the
precipitation/evapotranspiration ratio (PPT/PET), as a descriptor of the general environmental
constraints on water availability, and indirectly, species distributions. Calculating LISA
values and corresponding pseudo-significance values for the PPT/PET ratio, we identified
areas with high and low local spatial autocorrelation of their PPT/PET ratios. The geographic
positions of homogenous spatial clusters of PPT/PET ratios indicate areas that are subject to
similar water balance conditions. The boundaries between these homogeneous clusters
provide an indication of areas that can be interpreted as transitional zones between low and
high PPT/PET ratios.

The climate transition hypothesis was further tested by determining whether the core area of
model disagreement showed greater values of the PPT/PET ratio and local Moran’s I of the
PPT/PET ratio than expected by chance. The mean values for the PPT/PET ratio and local
Moran’s I of the PPT/PET ratio in the core area of model disagreement were compared to the
mean PPT/PET ratio and mean local Moran’s I of the PPT/PET ratio for 10 000 sets of
randomly selected grid cells from across the study region. The number of randomly selected

grid cells was equivalent to the number of grid cells in the core area of model disagreement.

The habitat transition zone hypothesis was tested using 10 000 random draws in a similar
fashion, using biome heterogeneity as a variable. Low and Rebelo’s (1996) classification of
the study area into seven biome types was used to calculate the percentage of each biome
type per quarter-degree cell. These were the forest, thicket, savanna, grassland, Nama karoo,
succulent karoo, and fynbos biomes. Each of these is characterised by several vegetation
types, giving a total of 68 different vegetation types for the study area (see Low and Rebelo,
1996 for further information). Following Gaston et al. (2001), biome heterogeneity was
obtained using Simpson’s index of diversity (Krebs 1989):

1 — Sum (p)*

where p; is the fraction of the grid cell’s area occupied by biome i. This index ranges from
zero (only one biome present in a cell) to 0.86 (all seven biomes present in the same
proportions) and is expected to reach high values in areas of transition between biomes. The

values recorded ranged between 0 and 0.76.
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Results

In contrast to Manel et al.’s (2001) study, we found a significant (p<0.001), but weak
negative relationship for the linear regressions of AUC on prevalence for each of the three
models that we employed. (Jeffree model: adjusted R*=0.28587591, F(1,32)=14.210
p<0.00067; GARP: adjusted R>=0.28261882, F(1,32)=14.001 p<0.00072; BIOCLIM:
adjusted R?=0.17839935, F(1,32)=8.1655 p<0.00745) This relationship between prevalence
and AUC values was constant across all three models — there was no significant difference
between the intercepts or slopes of each of the regression lines of AUC on prevalence across
the predictive models (ANCOVA, Zar 1986) (Intercept: F(2,98)=1.06; p<.3509, slope:
F(2,96) = 0.007; p<.9932).

The first phase of model comparison showed that all three models performed significantly
better than a random model. In the second phase of model comparison, the mean AUC value
across species for each of the three models was not significantly different from the mean
AUC value for any of the other models (AUC values Jeffree: 0.843+ 0.084, GARP:
0.834+0.082, BIOCLIM: 0.816%0.105).

Results from the third phase of model comparison, which was conducted on a species-by-
species basis, showed that there were several significant differences in model outputs (p <
0.05) for a number of species. In total , 28 (82%) of the species produced modelled outputs
that differed significantly across all three models. Fourteen (41%) species were common to
all four lists of species for which model outputs differed significantly. From this it appears
that there are more species from this sample for which the comparative model outputs

disagree than ones about which they agree.

The core area of model disagreement derived in step 5 of Figure 1 is presented as the hatched
area in Figure 2. This core area of model disagreement showed a proportional overlap
(Prendergast et al. 1993) with the other four areas of model disagreement ranging from 44%
to 59%.

Testing the climate transition zone hypothesis, LISA analyses of PPT/PET ratios across the
study area showed two highly significant (p<0.001) spatial clusters: a cluster of low PPT/PET
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: Core area of model disagreement
Significance of LISA values

[ hot significant

i p=0.05
B p=001
i p=0.001

Fig 2: Significant LISA values for the PPT/PET ratio over the study area. Hatched cells

represent the core area of model disagreement.
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values in the west and a cluster of high PPT/PET values in the east (Fig. 2). Figure 2 also
shows the geographical position of the core area of model disagreement relative to these two
PPT/PET spatial clusters. The core area of model disagreement is spatially congruent
(proportional overlap value of 83% - Prendergast et al. 1993) with a narrow strip of non-
significantly autocorrelated PPT/PET ratios between the significant spatial clusters in the
west and east. The core area of model disagreement displayed significantly (two-tailed
p<0.05) lower values of PPT/PET ratios than expected by chance. Local Moran’s I values of

the PPT/PET ratio were also significantly lower than expected by chance, but still positive.

We found that biome heterogeneity in the core area of model disagreement was also

significantly higher than can be expected by chance.

Discussion

The outcome of the comparison between different predictive distribution models has been
shown to be dependent on the chosen model evaluation criteria (Manel et al. 2001). Since the
aim of this study was to compare predictive distribution models, we needed a robust
evaluation criterion. Such a robust criterion should be threshold independent, which ROC
analysis is by definition, and prevalence independent (Manel et al. 2001). The literature
shows two approaches to assess prevalence independence: a regression of the AUC values
from ROC analysis on the prevalences for each species in the dataset, so that the number of
data points is equal to the number of species in the data set (the approach followed here, and
by Manel et al. 2001); or using random subsets of different sizes of the data for an individual
species and regressing those AUC values on the prevalences determined by the size of the

subsets.

The AUC values in the first approach are derived from different known species distributions
with different climate envelopes. These known species distributions have different
prevalences and different spatial configurations. Therefore, differences in AUC values
derived in this fashion reflect not only the effects of prevalence, but also the model’s ability
to predict species distributions for these different climate envelopes. This approach is well-
suited to evaluate model performance over a range of different types of distributions and get

an overall view of model performance. Manel et al. (2001) used ROC analysis to identify
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optimal probability thresholds, and therefore this approach was well suited to that study. No
regression diagnostics were provided with which to compare the regression results from the
current study and we can only conclude that for our study, the relationship between AUC and
prevalence is weak when using data from all species. However, the main aim of the current
study was not to provide an overall view of model performance, but to compare model
outputs for individual species. Such comparisons were done with a fixed set of predictor
variables applied by different models to the distribution of a specific species. Therefore, even
though there is a relationship between prevalence and AUC values, this relationship is weak
and constant for all three models and therefore its influence, if any, will be constant across

model comparisons.

Further support for ROC analysis as an appropriate model evaluation criterion for this study
comes from other studies that have followed the second approach to assess the prevalence
independence of AUC values. Cumming (2000) used different sized subsets of known data
for a tick species to derive an AUC-prevalence graph and found that the AUC values were
prevalence independent, all be it without regression diagnostics. Since our study focuses on
model comparisons for individual species, rather than overall model performance for an
assemblage of species, it is closer in scope to Cumming (2000) than Manel et al. (2001).
Cumming (2000) also investigated the effects of hypothetically small prevalences on AUC
values and found that AUC values are more prevalence dependent at low prevalences. Using
the same data as the current study, Erasmus et al. (2002) investigated model performance for
individual species at low prevalences and found that, for the majority of species studied, there
was no significant difference between models based on a 20% random subsample of the
known distribution and models based on 100% of the known distribution. In short, we
maintain that ROC analysis is an appropriate model evaluation criterion for our purposes of
comparing different predictive distribution models, not only for the reasons provided above,

but also because of its broad support in the literature (Fielding and Bell 1997).

The first two phases of model comparison showed little differences between models,
irrespective of whether the comparison was with a random model or with another model.
Using other model evaluation criteria, Manel et al. (1999) compared a discriminant analysis,
a neural network and a logistic regression model and also found little differences in model
performance. These similar results for studies using different models with different predictor

variables, suggest that, despite the differences in the underlying assumptions of the various
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models, all of the models have an ability to extract at least partial environmental
dependencies of species distributions and facilitate meaningful predictions. Therefore, these
results suggest that model performance is more strongly influenced by predictor variable

selection than by model selection.

The core area of model disagreement identified in phase three of the model comparison
process showed the geographic location of an area with a high number of model disagreement
species, i.e. the three model outputs, although reasonably accurate by themselves, differed
from each other for a high number of species. The fact that this area was a discrete
homogenous spatial cluster, and not a large extensive area, raises a question about the cause
of such model disagreement in an area that comprises only 4% of the country’s total surface
area. Although the different models use predictor variables in different ways to arrive at a
predicted distribution, the common factor between all models remains their use of climatic
predictor variables. If model disagreement shows a common spatial clustering, it stands to

reason that some climate-related process drives this pattern.

LISA analysis of PPT/PET values identified a transition zone of environmental water surplus,
l.e. an area with no significant local spatial autocorrelation in PPT/PET ratios. This narrow
strip where significant spatial autocorrelation of the PPT/PET ratio is absent, represents a
transition zone from areas where evaporation plays a more important role, such as the drier
western regions of the country, to areas where run-off is more prevalent, e.g. the moister
eastern regions. The interpretation of PPT/PET ratio is relative. Knapp and Smith (2001)
showed grasslands to have PPT/PET ratios of around unity, with deserts closer to zero and
forests larger than unity in North America. For South Africa, some 93% of grid cells
experience a PPT/PET ratio of smaller than 0.5, therefore South Africa generally experiences
an evaporation-dominated water balance, and that the transition zone identified by the LISA
analysis is a relative one with run-off only dominating evapotranspiration for short and
strictly seasonal periods across the eastern half of the country. Note that it is only where there
is a steep transition gradient that model predictions disagree; the core area of model
disagreement does not extend to the north where the PPT/PET ratio transition is diluted over
a larger area. Therefore, by virtue of the spatial congruence between the core area of model
disagreement and the steep PPT/PET transition zone, this study suggests that the distribution
prediction models implemented here differed in their predictions of species that are found in

this climate transition zone. Figure 3 shows the PPT/PET values for the
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: Core area of model disagreement
PPT/PET

0.009 - 0.232
B 0.454- 0677
I 0.899- 1.122

Fig 3: Map of PPT/PET values for South Africa. Legend classes are of equal interval, so

areas with similar shading indicate the frequency of values in that class interval.
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study area with equal interval classes. The core area of disagreement coincided almost totally
with an area that has low values of PPT/PET. This area was also the largest (white area in
Figure 3) and therefore it is to be expected that PPT/PET ratios will be lower than can be
expected by chance in the core area of model disagreement. The significantly lower mean
local Moran’s I of the PPT/PET values for the core area of model disagreement agreed with
the non-significant area of local spatial autocorrelation in Figure 2, with non-significant
values being defined as closer to zero, but still positive in this case. This indicates that
neighbouring grid cells within the core area of model disagreement have less similar

PPT/PET values than neighbouring grid cells elsewhere in the country.

The PPT/PET ratio is a measure of broad environmental water availability and since moisture
availability is an important driver of vegetation (O’Brien 1993, Schulze 1997, O’Brien 1998,
O’Brien et al. 1998, 2000), this climate transition zone of water availability can be
hypothesized to be a vegetation transition zone. The core area of model disagreement has a
higher mean biome heterogeneity value than is expected by chance, and this supports the

habitat transition zone hypothesis.

The notion of this climate transition area in the Eastern Cape as an area of vegetation
transition is not a new one. Rutherford and Westfall (1986) reviewed 21 studies that
identified “major natural biotic divisions™ (Rutherford and Westfall 1986) between 1936 and
1986. These classifications were by no means transparent and used combinations of edaphic
factors, plant life forms, climate and expert opinion to do the classification. In spite of these
differences in methods, the area that we identified as the core area of model disagreement
coincides with boundaries between four biomes in almost half of these old classifications.
An earlier review of phytogeographical studies (Werger 1978) found a similar result of
agreement between 9 studies dating from between 1886 and 1971. A more rigorous
definition (Rutherford and Westfall 1986) of South African biomes, primarily based on
climate and plant life forms, lends further support for the core area of model disagreement as
a vegetation, and habitat, transition zone. The climate component of this classification was
based on a Summer Aridity Index (SAI), calculated from precipitation for the four hottest
months of the year, and winter concentration of precipitation, calculated from winter
precipitation as a proportion of mean annual precipitation. SAI gives an indication of
moisture stress during growing periods of peak physiological water demand (Rutherford and

Westfall 1986) and winter precipitation concentration provide an indication of the importance
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of seasonal rainfall. Together, these precipitation-derived indices give a similar, but more
detailed picture of environmental water availability than the PPT/PET ratio used in our study.
On a scatterplot of winter precipitation concentration against SAI, Rutherford and Westfall
(1986) identified biomes and biome boundaries. Using Acocks’ veldtypes, (Acocks 1975), we
found that four veld types dominated in the core area of model disagreement, accounting for
74% of this area. These veld types were located along the common boundaries of the nama
karoo, grassland, fynbos, forest and savanna biomes on the scatterplot of SAI against winter
precipitation concentration. These principles that aided in the identification of Rutherford and
Westfall’s (1986) biomes provide further evidence that the core area of model disagreement

is an area of climate, and subsequently, habitat transition.

An important feature of Rutherford and Westfall’s (1986) classification is the role the
inclusion of a measure of rainfall seasonality plays in delineating biomes. Low and Rebelo
(1996) identified a thicket biome as intermediary between forest and savanna biomes (Vlok
and Euston-Brown 2002). This thicket biome, which is present in 28% of the core area of
model disagreement’s grid cells, is maintained by the balance between winter and summer
rainfall. Winter rainfall is more dominant in the west, and here the thicket becomes
fragmented and is replaced by fynbos, whereas more summer-dominated rainfall fragments
the thicket in the north and east. It is clear then, that the vegetation transition in the core area
of model disagreement is not only influenced by the amount of precipitation but also the
seasonality. This balance between winter and summer rainfall also explains to some extent
the more gradual vegetation transition that takes place north of the core area of model
disagreement. Winter rainfall is limited to the coastal area, and therefore the climate gradient
further north is only a gradient of the amount of precipitation, and not seasonality too, as is
the case along the coastal area. The complex vegetation patterns in this core area of model
disagreement also have some roots in the distant past. Van Zinderen Bakker (1978) found
that Quaternary glacial cycles enabled repeated intrusion and retreat of fynbos into temperate
grassland and forest areas, resulting in a mosaic of fynbos remnants in altitudinal refugia

during unfavourable periods.

So far we have shown that the areas in which the models disagreed were areas of climate and
habitat transition. However, it has been demonstrated elsewhere that habitat heterogeneity is
an important driver for bird species richness not only in sub-Saharan Africa (Jetz and Rahbek

2002), but also for South Africa (Van Rensburg et al. 2002). Spatial congruence between
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avian species range limits and areas with high vegetation heterogeneity have also been found
for other regions (e.g. see Boone and Krohn 2000b). More importantly, in the same study
area, Gaston et al. (2001) have shown that biome edges experience a significantly higher
degree of avian beta diversity than expected by chance. Therefore it is clear that the areas in
which the three predictive distribution models disagree are not only areas of climate and
habitat transition, but also very likely form areas of avian community transition. At broader
scales, using 1437 Afrotropical endemic bird species, De Klerk et al. (2002) showed that 4
biogeographical districts share boundaries in the area that we have identified as the core area

of model disagreement.

Due to the unique biodiversity elements, i.e. the thicket biome, in this ecological transition
zone, considerable effort has been directed at integrated conservation planning in this region
(Cowling et al. 2003, Kerley et al. 1999). An integral part of this conservation plan is the
integration of process that drive biodiversity patterns in this area; macroclimatic gradients has
been explicitly identified as important drivers for maintaining biodiversity in the thicket
biome (Cowling et al. 2003).

In summary, we have shown that there is little difference in model output for the three
different predictive distribution models employed here. We have also shown that these
models fail in the same ecological transition zone by having different predicted distributions
for species occurring here. Although this disagreement seems to point to differences between
models, the fact that there is agreement about where the disagreement occurs is noteworthy
and supports the usefulness of a modelling approach to species distributions. We suggest that
such general ecological transition zones should be sought in environmentally complex
landscapes before blanket analyses (i.e. Erasmus et al. 2002, Van Jaarsveld and Chown 2001)
are applied. Understanding the potential effects of these areas, and how to deal with them
explicitly is likely to be important in efforts to improve model performance. Given the rate of
environmental change and the need for up-to-date conservation planning, the use of
predictive distribution models is likely to increase. It is in the interests of climate-change
integrated conservation planning that such modelling exercises are as accurate and
transparent as possible and therefore, procedures that identify sources of model error are
important. Further research is needed not only into how existing conventional equilibrium
(Guisan and Zimmerman 2000) models treat such transition zones, but also how these

transition zones should be treated to ensure geographically homogenous model performance.
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Such a model performance might only be attained if the model allows for predictor variables
to make a spatially variable contribution to prediction accuracy. Models that have a spatially
explicit component (i.e. spatial regression, cellular automata) might perform better in areas

where predictor variables undergo transitions.
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