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ABSTRACT

Bioclimatic envelope modeling of species’ distributions can be misleading if no measure of
uncertainty is associated with the predicted probability of occurrence values. Here we
demonstrate how jackknife procedures can be used to generate such measures of uncertainty
in the case of the distribution of a carpenter bee (Xylocopa senior) in South Africa. The
modelled probability of occurrence surface for Xylocopa senior is more meaningful when
interpreted in the context of the variation underlying these predictions, i.e., when more
confidence/weight is ascribed to predictions with limited variation. This procedure is
potentially of considerable value for any approach based on interpolated species distributions,
including survey planning, area selection, modelling of climate change effects and
biogeography. Resampling techniques can also be used as a means to provide insights into
model performance and for crossvalidation, without the need for data partitioning or the

acquisition of additional data.
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INTRODUCTION

Bioclimatic models are routinely used to predict and define the broad scale limits of species
distributions (Lindenmayer et al. 1991). Thus, where the spatial distribution of a taxon is not
fully defined, bioclimatic analyses allow researchers to describe the probable limits of
distribution. (Lindenmayer et al. 1991; Brzeziecki et al. 1995; Lindsay et al. 1998).
Moreover, such models can be used to evaluate the risks and benefits likely to arise for
species under future climatic scenarios (Lindenmayer et al. 1991; Jeffree & Jeffree 1994,
Huntley et al. 1995; Sykes & Prentice 1995; Jeffree & Jeffree 1996; Sykes et al. 1996; Hill et
al. 1999). The underlying principle of bioclimatic modelling is to determine whether there is
any relationship between the known distribution of a species and some climatic variable or
variables. Popular modelling approaches that have been employed include generalised linear
regression (e.g. logistic regression) (Margules & Stein 1989; Austin et al. 1990; Walker
1990; Osborne & Tigar 1992; Cary & Ullyett 1993; Hill ef al. 1999), classification trees
(Walker 1990) and discriminant function analysis (Caughley et al. 1987) (see Guisan &

Zimmerman (2000) for a comprehensive review of predictive habitat distribution models).

The product of such modelling is usually a map with grid coverage that is used to present the
model’s prediction of the probable distribution of a species. The model makes an individual
prediction for every grid cell. The predicted distribution maps can be either binary maps or
probability of occurrence surface maps, depending on the model used (see Osborne & Tigar
(1992) for a combination). In the binary map, each grid cell is assigned either a presence or
an absence rating (e.g. Huntley ez al. 1995; Lindsay et al. 1998; Hill et al. 1999). A limitation
of these maps is that they do not distinguish between areas that are most suitable and those
that are only marginally suitable. Probability surface maps overcome this problem by
assigning a probability of occurrence to each grid cell (see for example Walker 1990;
Beerling ef al. 1995; Erasmus et al. 2000, Erasmus et al. 2002). The probability assigned to a
specific cell is an indication of the suitability of climate (i.e. the predictors in the model) in
that grid cell for the species (Robertson et al. 2001). Since a continuum of suitability values is
generated, the relative suitability of areas (with regard to the variables included as predictors
in the model) can be compared. Because probability surface maps communicate more

information than binary maps, we focus on the former approach.
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Irrespective of the modelling approach used for predicting the probability surface of a
species, the result is a single predicted probability value for each grid cell. These probabilities
could also be called best estimates, because the models base their calculations on all the
available data. The predicted distribution is therefore presented as a geographical area
divided into grid cells with a single probability (best estimate) of the suitability of that
locality for a specific species (as determined by the selected predictor variables) (e.g. Fig. 1).
Although the best estimate gives an indication of the probability of a grid cell being
climatically suitable, the best estimate is still a value of a stochastic variable (new data will
necessarily lead to a new best estimate) and it can be misleading if no indication of the
uncertainty associated with that value is provided. In their review, Guisan & Zimmerman
(2000) identify the lack of spatially explicit uncertainty measurements of predicted
probabilities as a key area requiring further development. One way of attributing a useful
uncertainty measurement is to estimate the variation underlying each stochastic best estimate.
All else being equal, more confidence can be placed in a best estimate associated with less
variation than a best estimate associated with substantial variation. However, probabilities of
climate suitability are usually not presented together with estimates of uncertainty since
probability surface models predict only a single probability of occurrence for each grid cell,

using all the relevant data available.

Using a case study, the present paper makes a start at addressing Guissan & Zimmerman’s
(2000) concerns regarding the lack of a spatially explicit uncertainty measure for interpolated
distributions and shows how jackknife re-sampling procedures can be used to estimate the
variation around each probability of occurrence value. The manner in which such estimates of
variation can improve the interpretation of a probability surface map generated by a

bioclimatic model is shown, and the implications of this approach are outlined.

MATERIAL AND METHODS

Xyplocopa senior Vachal distribution records

Collection records from the Plant Protection Research Institute of South Africa and the South

African Museum were combined into a data set containing 27 records of a carpenter bee,

Xylocopa senior (Fig. 1). The data set of Xylocopa senior was chosen because 27 records do
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Fig. 1: Known distribution records (e) of Xylopa senior and the bioclimatically modelled

probability of occurrence surface
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not represent a comprehensive data set, and this is often a reality for poorly surveyed species,
especially invertebrates (Koch er al. 2000). This example illustrates how limited distribution
data can be used to provide useful information with regard to the probable distribution of a
species. Moreover, the geographical distribution records for this species are particularly
useful for illustrating the powers of the jackknife procedure. From Fig. 1 it is clear that five
of the 27 records lie far beyond what seems to be the “core” distribution range of Xylocopa
senior. These five records could be indicative of populations occurring in habitats
geographically isolated from the core range. For example, carpenter bees need woody plants
for nesting sites (Johnson 1997). The central parts of South Africa are grasslands with
isolated woody patches in riverbeds. An alternative explanation for these five records may be
that they represent misidentifications. This is a distinct possibility for species that are
taxonomically closely related. We suspect that these five records represent Xylocopa
scioensis Gribodo, a carpenter bee nesting in phragmites stems (the three central records
clearly along the Orange river and the other two also possibly on river courses). However, re-
examination of questionable records might not always be possible or might require a
complete systematic revision. The Xylocopa senior case study illustrates how the jackknife

procedure provides a way to further understand questionable or outlying distribution records.

Climate data

The Computing Centre for Water Research (CCWR) provided the historic climate data
(thirty-year means; 1960-1990). These data comprise interpolated climate surfaces at a
minute by minute resolution. These climate surfaces were resampled to a 10km x 10km grid
cell size. Grid cell size was dictated by the total number of cells that can realistically be
analysed given the available computer time without sacrificing output resolution too much.

Bee point occurrence records were also generalised to this 10 km gridcell resolution.

The objective of this paper is not to make any concrete conclusions about the distribution of
Xylocopa senior or the factors controlling its distribution, but rather to illustrate how the
interpretation of a probability of occurrence surface of a species can be improved by
employing jackknife procedures. Consequently, we did not strive to optimise the model by
using the minimum number of significant variables, nor have we interpreted the model
outcomes fully. The complexity of the model and the modeling approach is therefore

considered relatively unimportant in this paper. Six climatic variables (mean temperature,
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minimum temperature, maximum temperature, mean annual rainfall, mean rainfall for the
driest month and mean rainfall for the wettest month) were selected as the climatic predictors.
These variables were selected because they represent a suite of climatic variables likely to

control the distribution of insects, either directly or indirectly (see Chown & Gaston 1999).

Model

The model we used here is a multivariate generalisation of the bivariate model described by
Jeffree & Jeffree (1994). Briefly, using this method the grid cells where a particular species is
recorded are referred to as known records. A scatter plot of the climate values of all grid cells
for any two chosen climate variables is defined as the climate space. The climate values at
points in the climate space that represent known records are used to construct the principle
axes of an elliptical confidence region by using the sums of squares of the distance from the
major and minor principal axis. The elliptical confidence region is superimposed on the
climate space and can be interpreted as a climate envelope containing localities climatically
similar to known records. All points falling within this climate envelope are then mapped
back into geographical space to form an interpolated distribution of climatically similar areas
where this species might potentially be found (see Jeffree & Jeffree (1994) for additional
information). This approach by Jeffree & Jeffree (1994) is similar to the technique described
by Sokal & Rohlf (1981) and relies heavily on the graphical interpretation of a two-
dimensional scatter plot. In consequence, it has very limited application in scenarios where
the climate space has to be multidimensional if three or more climate variables are needed to
explain observed distribution patterns satisfactorily. Thus, we have adapted the original
model to incorporate m climatic predictor variables. Not only is this a significant
improvement on the original model, but it also allows the production of a probability surface
of suitability for each species (Erasmus et al. 2000), rather than a more simplistic presence-
absence distribution model. In the multivariate generalisation of the bivariate model the
values of selected climate variables for each known record cell are plotted on an m-
dimensional scatter plot (for the m climate variables), and mean climate values are subtracted
to centre values around the origin of the multidimensional scatter plot. An mxm covariance
matrix is calculated and this matrix is used as an input to calculate eigen values and eigen
vectors for the covariance matrix. These eigen vectors from the orthogonal principle axis of
an m-dimensional hyperspace with the origin representing the theoretical core of the species’

distribution, as defined by the predictor climate variables (see Robertson et al. 2001 for a
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detailed description of a similar, PCA-based model). The climate variable values of all grid
cells are then transformed into this eigen vector space. These transformed climate variables
are subsequently divided by the eigen values. In the resulting m-dimensional hyperspace, the
distance of any particular unsampled grid cell from the origin represents a measure of the
suitability of that locality for the specific species (Robertson et al 2001). The entire
calculation for this multivariate technique is relatively straightforward and does not require
considerable computing power. The outcome of this analysis is a probability surface map of
suitability, as determined by the set of predictor variables, for a species. Hereafter, this

probability surface of climate suitability will be referred to as the probability of occurrence.

Estimating variation using the jackknife procedure

By using jackknife procedures, » probability of occurrence values (n = size of data set) can be
generated for each grid cell instead of a single value. This method re-calculates the statistic of
interest, in this case a probability of occurrence, n times, each time using a different
combination of -1 of the data set records. The jackknife principle uses these n pseudovalues

to estimate the variation associated with the statistic.

In the Erasmus ef al. (2000) modelling procedure, the whole data set (n = 27) is used to
calculate a single probability of occurrence for each grid cell (the best estimate, Fig. 1). The
jackknife procedure re-calculates the probability of occurrence for each grid cell 27 (n) times
using the same model with a different combination of 26 (- ) records each time. These re-

calculated estimates are referred to as the jackknife pseudovalues.

The jackknife pseudovalues can be used to calculate the standard error of the best estimate,
which is an estimate of the variation associated with that best estimate, using the following

formula (Efron & Tibshirani 1993; Shao & Tu 1995):

S€ jack = \/;(n —1)x (i 6 - (i 6% I n) (eqn 1)

where se ., =estimated standard error of the best estimate;

Jack

HA,.= i th jackknife pseudovalue;
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n = size of data set.

se . is an estimate of the standard error of the best estimate and does not merely represent

the standard deviation of the » jackknife pseudovalues.

se Jack

The se,, and the coefficient of variation (-——————
best estimate

) are therefore measures of variation

associated with the best estimate. The se,, is a measure of absolufe variation while the

coefficient of variation is a measure of relative variation (variation relative to the best
estimate) (see results section). In reality, by assessing the best estimate’s variation, the
jackknife procedure has generated additional information from the original data set. These
variance estimates are likely to improve the interpretation of the generated probability

surfaces considerably.
RESULTS
Best estimate probability surface (model prediction)

The probability of occurrence surface (best estimates) for Xylocopa senior in South Africa,
using a suite of six climatic variables as predictors in the model (Erasmus ef al. 2000), is
illustrated in Fig. 1. The model’s prediction seems to provide a reasonably good fit for the
data records, except for the distortion caused by five influential records which “pull” the
probability surface well into the central parts and down towards the eastern shores of the

country.
Estimated variance

The se,, and coefficient of variation associated with the best estimate for each grid cell are

illustrated in Figs. 2a and 2b respectively.

The best estimate communicates a lot more information when interpreted in the context of its
estimated variance. For example, cell A (Fig. 2b) has a probability of occurrence (best

estimate) of 0.72 and a se ,, of 0.42. This large variation suggests that the best estimate is
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Fig. 2: Known distribution records (e) of Xylopa senior and (a) the estimated standard error
(se,,4)> and (b) coefficient of variation underlying the predicted probability of occurrence

surface for the species. The modelled probability of occurrence values for cell A and B are
0.72 and 0.75. The estimated standard error underlying each prediction is 0.42 and 0.12 for
cells A and B respectively.
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sensitive to some influential/outlying records and that the best estimate is not a reliable

estimate of the probability of occurrence. However, cell B (Fig. 2b) which is relatively close

to cell A (approximately 120 km), has a best estimate of 0.75 and a se ,, of 0.12. Thus,

without the jackknife estimates of variation, the interpretation for both cells would have been

very similar because of their similar best estimates. However, comparison of the se values

suggest that these two cells should be interpreted differently. More confidence can be
attributed to the best estimate of cell B than to the best estimate for cell A. In Fig. 2b it is also
clear that a high coefficient of variation (>0.5) is associated with the five outlying distribution
records. Therefore, without having to identify and treat these observations as
outlying/influential, the jackknife procedure takes their influence into consideration and
suggests that the predicted probability of occurrence of these cells should be treated with

caution owing to the large variation associated with them.

Therefore, areas with high estimates of variation are an indication of either insufficient data

for accurately predicting the probability of occurrence for those areas or an inadequate model.

DISCUSSION

Usually the prediction of a bioclimatic model is represented as a single distribution map as
shown in Fig. 1 (Walker 1990; Beerling ef al. 1995; Huntley et al. 1995; Lindsay et al. 1998;
Hill et al. 1999). Such maps are of limited value if the model is not tested or validated.
Independent data can be collected or the original data partitioned as a means for evaluating
the model (Verbyla & Litvaitis 1989). However, if the data set is small it is not always viable
to apply the split-sample approach in order to partition the data into a training set and a
validation set. Moreover, validating the model by collecting “new” distribution data is often
not practicable. As a cheap and robust alternative, re-sampling techniques like bootstrapping
and jackknifing can provide valuable insight into model performance (Verbyla & Litvaitis
1989; Osborne & Tigar 1992; Fielding & Bell 1997; Manel et al. 1999, Guisan &
Zimmerman 2000). For example, when modelling techniques using presence/absence data
instead of presence only data are used (e.g. logistic regression), real values can be compared
to values predicted by the jackknife procedure, using the prediction from the model without
the observation considered..The overall predictive ability of the model can then be evaluated

by applying, for instance, the ROC-plot approach (Fielding & Bell 1997). Moreover,
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although the value of re-sampling techniques for validating or testing distribution models has
been recognised, they are still not routinely used. Here we have shown how re-sampling can
be used effectively to provide a measure of confidence in model predictions, and how, in
consequence, the interpretation of predicted distributions can be improved. Arguably,
insights can be gained from a careful, expert-based scrutiny of the data; the main advantage
of this jackknife procedure is that it provides quantitative support for such expert opinions,
and where expert opnion is not readily available, it provides a method with which to assess to

data of unknown quality.

Jackknifing may also to some extent be used to detect misclassifications of species, especially
for species that are taxonomically closely related. For example, in the Xylocopa senior case
study presented in this paper we suspected that five of the observations were
misclassifications due to their geographical location. However, without having to treat these
observations as misclassification or re-examining these records, the jackknife technique
supported our suspicion by attributing high variation to the predicted probability of

occurrence values at these sites and the surrounding areas (Fig. 2b).

It has to be borne in mind that there might be computational limitations when applying this
jackknife approach to large datasets. There are more small data sets than larger ones, and the
potential limitation of computing power on large data sets do not invalidate the usefulness of
the approach on smaller data sets, where there are no computing limitations. The analyses in
this paper was conducted on what can now be considered an entry level Pentium 3
workstation, and analysis on other data sets of up to 1000 records have been achieved within

reasonable time limits

Arbitrary thresholds are sometimes placed on probability surfaces to identify “core”
distribution areas of species (Walker 1990; Buckland & Elston 1993; Huntley et al. 1995).
Fig. 3. illustrates all the grid cells with a probability of occurrence > 0.5. We arbitrarily used
this threshold value for illustration purposes, but methods for optimising this value can be
found in the literature (e.g. Huntley et al. 1995, Zweig & Campbell 1993). The variation
underlying predictions can be used as an additional condition to identify core distribution

areas. In Fig. 3, all the filled cells have a probability of occurrence = 0.5, but the dark grey
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Fig. 3: Known distribution records (¢) of Xylocopa senior. All the filled cells have predicted
probability of occurrence values of > 0.5. Dark grey cells satisfy the additional condition that

the coefficient of variation underlying the predicted probability of occurrence is <0.15

127



University of Pretoria etd — Erasmus, B F N (2006)

6. Jackknifing to improve distribution models

cells satisfy the additional condition that the coefficient of variation is < 0.15 (also arbitrary).
Therefore, the dark grey cells are a filtered subset of the light grey cells, satisfying the
additional threshold criterion for the coefficient of variation. Without the jackknife
pseudovalues and the resulting estimates of variance underlying each prediction, we would
not have been able to make this distinction, which is clearly useful for a variety of purposes

in ecology.

An improved way of quantifying the confidence in the probability of occurrence predictions
would be to use the variance estimates to generate confidence intervals. These intervals will
be a reflection of the precision and confidence in the estimation process. Confidence intervals
are easy to interpret but have thus far been used to a limited extent in distribution studies (see
for example Buckland & Elston 1993). Using empirical confidence limits, based on the lower
and upper percentiles of the jackknife pseudovalues, is a straightforward way of calculating
confidence intervals. However, the jackknife pseudovalues do not simulate the underlying
distribution of the probability of occurrence data and merely generates pseudovalues closely
clumped around the probability as only one record is removed at a time. The empirical
confidence intervals will therefore consistently underestimate the real interval length. The
purpose of these jackknife pseudovalues is to estimate the variation (using equation 1) and
they should not be used for calculating empirical confidence limits. Empirical confidence
limits can only be used with bootstrapping, another re-sampling method, which simulates the
underlying distribution of the statistic under consideration (this approach was followed by
Buckland & Elston 1993). Since empirical confidence limits cannot be used for jackknifing,

the normal approximation is sometimes used. Equation 2 gives the upper and lower

A

confidence limits of a jackknife confidence interval if it can be assumed that &, i 1S

normally distributed:

6 Z,2 X S€ jm} (eqn 2)

i {
best estimate

~

where: ¢ = best estimate;

best estimate

z,,,= (1—a/2)th percentile of the standard normal distribution;

se = standard error of the best estimate (from equation 1)

Jack
One of the assumptions of equation 2 is that the underlying distribution of the statistic under
consideration is approximately normal (Efron & Tibshirani 1993). This condition is not true

for a statistic that is bounded, like the probability of occurrence values generated in the
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present study (0<8 <1). Where a statistic is bounded, transformations can be used to

hest estimate
normalise the data. For example, Efron & Tibshirani (1993) used the Fisher transformation to
normalise jackknife pseudovalues before confidence limits were calculated for correlation
coefficients (a correlation coefficient, p, is bounded: -1<p<l). We tested a range of
transformations, inter alia the probit (Cox 1970) and logit (Williamson & Gaston 1999)
transformations that are suitable for probability values that are bounded between zero and
one. After transforming the raw data, histograms for jackknife pseudovalues for each grid cell
were drawn and a Kolmogorov-Smirnov normality test employed to test whether the data
were adequately transformed to an approximate normal distribution. However, all of the
transformations we employed failed to normalise the data adequately. Further work is needed
in this regard since confidence intervals, as a function of the estimated variation, will be

easier to present and interpret.

The predicted probabilities of occurrence and their variance estimates can have important
implications for ecological surveys, conservation and management. The jackknife procedure
presents a quantitative way to identify outliers in known distribution records. Such outliers
might be real and truly peripheral to the core distribution, or they may indicate some error in
data collection. Either way, further attention to these specific records is warranted.. The same
argument can be applied to the planning of productive sampling sites, conservation hotspot
identification (Meyers et al. 2000) and reserve selection (Margules & Pressey 2000).
Therefore, without having to conduct extensive surveys, probabilities of occurrence together
with their variance estimates can be used as a source of reference, as a decision-making tool

in planning and for development proposals (Buckland & Elston 1993).

Another potential application of bioclimatic models is to predict possible distribution changes
that may result from changing climates (Lindenmayer et al. 1991; Jeffree & Jeffree 1994,
Huntley et al. 1995; Jeffree & Jeffree 1996; Sykes & Prentice 1995; Sykes et al. 1996; Hill et
al. 1999). The interpretation of the predicted distributions under various climatic scenarios
can be considerably improved by supplementing this information with indications of the
variance underlying such predictions. Data sets with few known records may give rise to a
probability of occurrence surface associated with large variance parameters, especially when

the climate predictors for the different records are dissimilar.
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Although the advantages of jackknifing is illustrated in this paper using a specific modelling
approach, it is important to note that this re-sampling technique can readily be applied to
most existing modelling techniques (e.g. GLM, GAM, CART, etc.). This makes jackknifing
an important tool for estimating the variation underlying the predictions of various

bioclimatic modelling techniques.
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