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ABSTRACT

The application of a model modified from Jeffree & Jeffree (1994) for investigating
the distribution responses of selected antlion species to a climate change scenario was
explored in this study. Modifications include a multivariate capability that facilitates the
incorporation of precipitation seasonality, and provides useful outputs in the form of
probability of occurrence values for each species. The model can be used to interpolate the
distributions of poorly sampled taxa as well as predict responses to a changing climate. It is
predicted that species from the more arid western parts of South Africa will be subject to
severe range contraction and range shifts whereas the species from the more mesic eastern
parts will experience range contraction with limited range shift. The likelihood of successful
range shifts will be affected by the nature of novel communities, habitat suitability and the
degree of land transformation encountered. Given the extent of the predicted spatial
responses, conservation planners can no longer afford to ignore future climate impacts on

species distribution patterns.
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INTRODUCTION

The conservation of poorly sampled taxa presents special challenges to conservation
biology. Information on the geographic distributions of such taxa should ideally be extended
through intensive biodiversity surveys before conservation decision-making (Balmford &
Gaston 1999), although this strategy is usually confounded by time and resource constraints
(Freitag et al. 1998). Acknowledging that the use of poor distribution data may significantly
affect land use and related economic efficiency of conservation practice (Balmford & Gaston
1999), an alternative strategy is to model the predicted distributions of species based on
suitable broad-scale environmental parameters, e.g. soil, climate and vegetation types
(Margules & Redhead 1995). In many instances this approach may require a number of
assumptions, including: linear relationships between species’ physiological tolerances and
their distribution limits, minimal effects of interspecific interactions on species distributions,
and that fewer rather than many abiotic variables determine distributions (Chown & Gaston
1999). In the context of the conservation crisis, however, predictive modelling remains one
of the few practical alternatives likely to provide information on species distribution patterns
and their range dynamics, at a time scale relevant to conservation practitioners.

A recent model developed by Jeffree & Jeffree (1994, 1996) to predict species’
distribution patterns and their response to climate change (Intergovernmental Panel on
Climate Change 1992) was investigated during this study. The model is straightforward and
could potentially be applied to large numbers of taxa in a cost effective manner. The original
model was modified by adding a multivariate capability that transcends pure climate
matching (Tribe & Richardson 1994; Eeley et al. 1999). The output from this modified
model is a spatially explicit set of probabilities of occurrence values for each species.

To demonstrate the potential value of this modified modelling approach, it was used
to derive interpolated distributions of selected and poorly surveyed antlion species, and to
generate climate-affected distribution patterns for these species under climate change
conditions. Because antlions generally prefer arid areas (Mansell 1985a) and climate change
models predict general aridification in southern Africa (Hewitson 1998), these neuropteran
species were considered appropriate for exploring the value of such a climate-based

distribution modelling procedure for poorly sampled taxa.
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METHODS

The study was conducted at a subcontinental scale using climate data and antlion
(Neuroptera: Myrmeleontidae) distribution data for South Africa. Data resolution was
resolved to quarter degree grid cells (approximately 25 km x 25 km). The Computing Centre
for Water Research (CCWR, University of Natal) provided climate data for 1858 grid cells
encompassing South Africa. Neuroptera distribution data were extracted from the Plant
Protection Research Institute (PPRI) database (see Freitag & Mansell 1997) which, for the
antlions, comprises 606 records for 49 species. Expert opinion showed that model output
based on less than nine sampling records produced spurious predictions and therefore
sampling density together with biome representation and expert assessment of sampling bias
were used to select appropriate species for inclusion in the model. Five species were selected
to test the modelling approach, to illustrate the principles on which the model is based, and to
demonstrate the ways in which the model can highlight potential conservation concerns. The

selected species were Palpares caffer (Burmeister), a species endemic to southern Africa with

the largest proportion of its distribution in the moister eastern parts of South Africa (Mansell,

unpubl.); Palpares speciosus (Linnaeus), a species endemic to the Eastern and Western Cape

provinces; Palparellus dubiosus (Péringuey), a species endemic to the arid western parts of

South Africa; Pamexis luteus (Thunberg), a range-restricted species endemic to the Western

Cape Fynbos biome (Low & Rebelo 1996) and Pamexis namaqua (Mansell), a range-

restricted species from the Succulent Karoo biome of Namaqualand (Mansell 1985b).
Although only five species were selected, they account for 26 % of the 606 records in the
PPRI database and were regarded as representative for the purposes of this study.

The climate data initially selected were the mean minimum temperature of the coldest
month and the mean maximum temperature of the hottest month for each grid square. Jeffree
& Jeffree (1994, 1996) considered these two variables to be sufficient for their models of the
distribution changes of European insect and plant species expected under scenarios of climate
change. However, exploratory modeling in the present study revealed that these variables
were insufficient for realistically describing antlion spatial distributions, partly as a result of
the seasonal rainfall patterns in the southern African region. As there are strong east to west
rainfall gradients across the subcontinent that have a marked influence on the biota (Schulze
1997; Harrison et al. 1997; Le Lagadec et al. 1998; Davis et al. 2000), and because antlions

are generally xerophilous (Mansell 1985a), measures of precipitation were included as
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additional explanatory variables to increase the predictive power of the proposed model.
Mean annual precipitation and precipitation seasonality were included. The latter can be seen
as a joint measure reflecting when precipitation occurs as well as the amount recorded.
Precipitation seasonality was calculated as the difference between the mean rainfall for
February and the mean rainfall for August. These months were selected based on a factor
analysis of the 12 monthly rainfall means which showed that February rainfall contributed
most to Factor 1, explaining 56 % of the variance in monthly rainfall, and August rainfall
contributed most to Factor 2 that explained an additional 37 % of the variance in monthly
rainfall. A negative precipitation seasonality value indicates winter rainfall and a positive
value summer rainfall. All mean values were calculated from climate data from the last 30
years. Two sets of climate data were used for the four variables employed; one set based on
historic climate data and the other on a General Circulation Model (GCM) predicting climate
change. The Hadley Centre Unified Model (HadCM2 with no sulphates)
(http://www.meto.govt.uk/secS/NWP/NWP_sys.html) GCM was used because it represents a
worst-case scenario for South Africa, predicting the most extreme changes in climate (G.
Kiker, pers. comm.). It predicts a temperature rise of 2.5 — 3 °C for South Africa by the time
that atmospheric carbon dioxide levels have doubled from their pre-industrial levels. Erring
on the side of caution, this means that significant changes in the regional climate can be
expected by the year 2050 (Hewitson 1998) but possibly sooner. These changes can be
expected to be significant given that climate fluctuations of similar magnitude led to biotic
range shifts during the last glacial period (Allen et al. 1999).

The original bivariate Jeffree & Jeffree (1994) modelling approach proceeded as
follows. A scatterplot of the values of all grid cells for any two chosen climate variables was
defined as the climate space. The grid cells where a particular species was recorded was
referred to as the known records (KR). The values of these two climate variables for all KR
cells were used to construct an elliptical confidence region that was superimposed on the
scatterplot (Fig. 1). The choice of an ellipse to define the confidence region implies the
assumption that the shape of the realised niche in climate space is elliptical. The ellipse was
chosen partly based on the work of Jeffree & Jeffree (1994, 1996) but also based on the need
for a simple basic model that can be used for broad scale modelling for a large number of
species. Although it would be possible to build a species-specific model that uses a more
complex shape to define the realised niche in climate space, such a model would not be

generalisable across species.
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Fig. 1. Scatterplot of the minimum and maximum temperature values for 1858
quarter degree grid squares covering South Africa. Superimposed on this
scatterplot is an elliptical confidence region whose size and shape was derived from

historic temperature values in grid squares where Palpares caffer was recorded.

Red dots represent known records for P. caffer falling inside the confidence region,
blue dots represent known records that fall outside the confidence region, green
dots represent the distribution predicted for this species by the climate data
(interpolated distribution (ID) in the text), and black dots represent the grid squares

where this species does not occur and where it was not predicted to occur.
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All points falling within this elliptical confidence region were then mapped back on to
geographical space to form an interpolated distribution where this species could occur. This
interpolated distribution based on historic climate data was referred to as ID (interpolated
distribution, historic climate). For the climate change analysis, the size, shape and position of
the elliptical confidence region was kept constant, but it is superimposed on a scatterplot of
climate variables predicted by the GCM (see Fig. 2 for an example). Points falling within the
ellipse were then mapped back to geographical space to depict a climate affected distribution
(CAD) based on GCM predicted climate change values. This approach is the biological
analogue of a bivariate analysis technique described by Sokal & Rohlf (1981) and it relies
heavily on the graphical interpretation of a two-dimensional scatterplot. It therefore has very
limited application in scenarios where three or more climate variables are needed to explain
observed distribution patterns satisfactorily.

The original model was consequently adapted to incorporate » variables. Not only did
the multivariate model significantly improve the original model, it also allowed the
production of a probability surface of occurrence for each species rather than a more
simplistic presence-absence distribution model. The modified multidimensional model
proceeds as follows:

On an n-dimensional scatterplot (for n climate variables), values of selected climate
variables were plotted for each KR grid cell and subtracted mean climate values to generate
transformed values for each grid cell. This procedure centres values around the origin of the
multidimensional scatterplot. An z x » covariance matrix was calculated and then this matrix
was used as an input to calculate eigen values and eigen vectors for the covariance matrix.
The climate variable values of all grid cells were then transformed into this eigen vector
space. The transformed climate variables were then divided by the eigen values and the
distances of these points from the above origin follows a y* distribution. This allows one to
read the probability of occurrence of a species in any grid cell off a x2 probability table at the
appropriate degree of freedom (KR-1). The technique is relatively straightforward and does
not require considerable computing power. The outcome of this analysis is a probability of

occurrence surface for each species across the country.
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Fig. 2. Scatterplot of the GCM predicted minimum and maximum temperature
values for 1858 quarter degree grid squares covering South Africa. Superimposed
on this scatterplot is an elliptical confidence region whose size and shape were

derived from historic temperature values in grid squares where Palpares caffer was

recorded. Red dots represent known records for P. caffer falling inside the
confidence region, blue dots represent known records that fall outside the
confidence region, green dots represent the distribution predicted for this species by
the climate data (climate affected distribution (CAD) in the text), and black dots
represent the grid squares where this species does not occur and where it was not

predicted to occur.
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RESULTS

Because this modified multivariate model (Jeffree & Jeffree 1994) provides a probability of
occurrence value for each grid cell, it was necessary to select an appropriate probability level
to employ across the study for comparing results from different species. At a probability of
occurrence of 50 %, about 60 % of all KR are included. Beard et al. (1999) found the same
capture rate of known records using probabilistic models to model species’ distributions and
therefore a 50 % level of probability of occurrence was regarded as sufficient to conduct
comparative analyses between species in the present study. Model validation would have
been improved by an assessment of the ability of the model to accurately predict the absence
of a species. However, the taxa analysed in this study are known to be poorly sampled and
therefore reliable absence data are not available. This makes such an assessment, although
desirable, impossible.

Initial results showed that the ID for P. caffer was very broad when employing only
minimum and maximum temperatures as explanatory variables (Fig. 3a). The ID derived
from minimum temperature, maximum temperature and mean annual precipitation
significantly improved the model by excluding the western arid regions of the subcontinent
from the ID for this species (Fig 3b), a region where this species does not occur. However,
this improved ID failed to correspond closely with the actual distribution data for the species
(Fig. 3b) because it predicted that the species would occur in the eastern summer rainfall
region of South Africa and along the southern coastal region that has a predominantly winter
rainfall pattern. Similar results for the other species confirmed that employing temperature
and mean annual rainfall in the model does not adequately represent distributions that are
strongly affected by seasonal rainfall patterns. For this reason the mean annual precipitation
variable was replaced with a precipitation seasonality value. This resulted in a further
improved predicted ID pattern for P. caffer (Fig. 4), using minimum and maximum
temperature and precipitation seasonality as explanatory variables. Here the ID is limited to
the eastern portions of South Africa, which is more consistent with the distribution data
derived from the PPRI database. The improved predictions using precipitation seasonality
together with minimum and maximum temperatures were consistent for all species except P.
dubiosus. which yielded similar ID’s when using either of the precipitation variables in

conjunction with minimum and maximum temperatures.
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Fig. 3(a). These figures (3a and 3b) illustrate the modelling process. Black squares
represent known records (KR) and grey squares represent the interpolated
distribution. This figure shows the Interpolated distribution (ID) from historic climate

data for Palpares caffer using minimum monthly temperature and maximum monthly

temperature.
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Fig. 3(b) Interpolated distribution (ID) from historic climate data for Palpares caffer

using minimum monthly temperature, maximum monthly temperature and mean

annual precipitation.
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0 300 600 Kilometers

Fig. 4. Predicted distributions for Palpares caffer derived from minimum monthly

temperature, maximum monthly temperature and precipitation seasonality. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data

24



University of Pretoria etd — Erasmus, B F N (2006)

2. Antlion distribution patterns

Nonetheless, following the seasonality-based procedure, on average 51.7 % (+ SD 4.9) of the
PPRI database-derived records fell within their respective ID’s generated by the modified
multivariate model. This is consistent with the 50 % probability of occurrence cut-off that
was applied to all results to indicate presence or absence of a species in this study. This,
together with the improvements brought about by the successive addition of rainfall
parameters in the model (Fig. 3), confirms that the multivariate modelling procedure appears
to be robust with regard to the prediction of distributions based on historic climate data, at
least as far as it is possible to confirm without confirmed absence records. The degree of
range contraction and range shift likely to be precipitated by climate change is summarized in
Table 1. Under the predicted climate change scenario, the antlion species mostly show range
shifts towards the eastern rim of the inland escarpment and it would seem that western
species are more vulnerable to climate change (Figs 5-8) than their eastern counterparts.. For
these western species the percentage of the CAD coinciding with the ID varies from 0 - 33.8
% (Table 1). This is well illustrated by P. dubiosus which shows a marked change in both
range size and position in response to climate change (Table 1, Fig. 5).

By contrast, although the eastern P. caffer also shows a contraction towards the
eastern rim of the escarpment, the predicted range change includes little range shift, with the
CAD and ID overlapping by 91.4 % (Table 1, Fig. 4). Overall, but with the exception of P.
luteus from the Fynbos region, distributions predicted under the climate change scenario are

markedly smaller than the current distributions predicted from historic climate data (Table 1)

DISCUSSION

Model characteristics

It is clear from this analysis that the modified model’s ability to accurately predict
distributions decreases if the distribution of the species being modelled straddles seasonal
rainfall regions. For example, P. speciosus occurs in regions with markedly different seasonal
rainfall patterns (Figs 6 & 9) resulting in the disjunct ID in Fig. 6. This distribution is
unlikely to be biologically realistic, and clearly some additional improvements to the model
are required to adequately deal with species that show this type of distribution pattern. These
improvements may include more detailed information on the biology of this particular species
to identify appropriate variables that drive its distribution pattern and a subsequent

adjustment in the model to include such variables. Such adjustments might include modelling
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Table 1. The number of grid cells occupied by each species. The values in brackets indicate
percentages. Abbreviations: KR — Known records, ID — interpolated distribution from
historical climate data, CAD — Predicted distribution from predicted climate data'. The
results are from the multivariate improvement on Jeffree & Jeffree (1994) model at a 50%

probability of occurrence

Species KR ID CAD (CAD KR falling Overlap
as % of ID) inside ID between
(% of KR) ID and

CAD

(%CAD
inside ID)

Palparellus 24 461 59 (12,7) 12 (50) 16 (27,1)

dubiosus

Palpares 74 684 361 (52,8) 43(58,1) 330 (91,4)

caffer

Palpares 27 187 65 (34,8) 13 (48,1) 22 (33,8)

speciosus

Pamexis 15 16 18 (112,5) 7 (46,7) 1(5,3)

luteus

Pamexis 9 12 6 (50,0) 5:(55,6) 0 (0)

namagqua

'"The percentage overlap between ID and CAD was calculated using proportional overlap (Prendergast
et al. 1993) where the number of coinciding grids cells is divided by the maximum number of possible
overlapping grid cells, ie. the number of grid cells containing records of the smallest distribution.
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0 300 600 Kilometers

Fig. 5. Predicted distributions for Palparellus dubiosus derived from minimum

monthly temperature, maximum monthly temperature and mean annual
precipitation. Black squares represent known records (KR) for this species, hatched
squares represent the climate affected distribution (CAD) and grey squares

represent the interpolated distribution from historic climate data.
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Fig. 6. Predicted distributions for Palpares speciosus derived from minimum monthly

temperature, maximum monthly temperature and mean annual precipitation. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data.
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0 300 600 Kilometers

Fig. 7. Predicted distributions for Pamexis luteus derived from minimum monthly

temperature, maximum monthly temperature and mean annual precipitation. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data.
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0 300 600 Kilometers

Fig. 8. Predicted distributions for Pamexis namaqua derived from minimum monthly

temperature, maximum monthly temperature and mean annual precipitation. Black
squares represent known records (KR) for this species, hatched squares represent
the climate affected distribution (CAD) and grey squares represent the interpolated

distribution from historic climate data.
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Fig. 9. Precipitation seasonality for South Africa, measured in mm, expressed as
the difference in mean rainfall for February and August. A positive value indicates

summer rainfall and a negative value winter rainfall.
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distributions in the two major climate regions separately, a technique that has been used to
improve similar models for tsetse flies in Zambia (Robinson et al. 1997a, b). Despite these
problematic taxa, an average of 51.7 % of the known records were captured by IDs
representing probability of occurrence values of 50 % or higher, confirming the relevance of
this employed probability level. This, together with the progressive improvement in spatial
coincidence between the ID’s and the KR’s during the modelling process (Figs 3a-b), provide
support for the the modelling approach adopted. Apart from the obvious model limitations
discussed above, it appears that the generated ID’s provide reasonably realistic predictions
for the distribution ranges of poorly sampled species (Figs 4-8).It consequently appears that
the approach, modified from Jeffree & Jeffree (1994, 1996), and presented here will be useful
for examining the likely effects of climate change on the distributions of a range of species
from any specific region (Van Jaarsveld et al. 2000), and can also be used as a platform from
which further, more detailed approaches to understanding the likely affects of climate change
on biota (e.g. Davis et al. (1998a,b)), can be undertaken.

Model outputs and conservation implications

The distributions predicted under the climate change scenario suggest that species
ranges are likely to change both in size and shape (see Brown et al. 1996; Gaston 1994 for
general discussions of the size and shape of species ranges). This has a number of
conservation implications. A range expansion will present possibilities of novel interactions
with previously unencountered species, and assemblages (Parmesan et al. 1999; Pounds et al.
1999). The likely outcome of such novel interactions is difficult to predict, as the biological
invasion and biological control literature illustrates, (Williamson 1996; Lonsdale 1999;
McEvoy & Coombs 1999), although many species have survived exposure to such changes in
the past (Coope 1979). Nonetheless, some progress could be made toward understanding the
outcome of novel interactions by basing microcosm-type experiments (see e.g. Davis et al.
1998a,b), on the new species combinations predicted by climate modelling procedures such
as the current one.

Over and above any novel species interactions, of immediate conservation concern is
the contraction in range sizes predicted for four of the five species modelled in this study. A
reduction in range size may also result in a decline in the local abundance of a species (see
Gaston et al. 1996 for a general overview of the range size abundance relationship). Species
subjected to both range size contraction and population decline are clearly at substantial

conservation risk, the double jeopardy of Gaston (1998). Although P. caffer is vulnerable in
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terms of range contraction for the reasons outlined above, it may be less susceptible than the
other species because it is widespread and shows little range shift under the climate change
scenario.

The remaining four species all display range shifts as well as range contractions with
ID’s and CAD’s revealing an average coincidence of 16 % (+ SD 16, n = 4, Table 1). Arid-
adapted antlion species from the western parts of South Africa will thus experience more
severe shifts in distribution than their eastern counterparts (Figs 4-8). This predicted pattern is
not unexpected given the general aridification predicted by the HadCM2 general circulation
model. However, the likelihood of a species successfully colonising a new habitat during a
range shift depends primarily on habitat suitability. In the case of antlions, many of the
predicted range shifts are into areas that have been highly transformed for intensive
agriculture (Fairbanks et al. 2000). They will consequently be largely unsuitable for antlion
colonisation. Predicted range shifts may thus actually represent range contractions, thereby
exacerbating the likelihood of species extinction. In effect, our results suggests that arid areas
in South Africa may become too arid to support previously xerophilous species, while
previously marginal temperate areas may be unsuitable because of land transformation.

Finally, the expected response of P. luteus, the fynbos endemic, raises an important
point regarding modelling exercises of this kind (Chown & Gaston 1999). The ID
encompasses not only the known records for this species (Fig. 7), but also various habitat
patches in what is known as the Afromontane phytogeographical region (Cowling & Hilton-
Taylor 1997). Fynbos-related elements do occur in these Afromontane patches in the form of
ericaceous shrublands (Killick 1978; White 1978), but P. luteus apparently does not. This
example therefore illustrates that although the model is useful for many species, there are
clearly cases where other biological variables such as specific habitat requirements will
ultimately determine potential habitat occupancy (Chown & Gaston 1999).

A model previously developed for predicting the effects of climate change on insects
and plants in Europe is shown here to be applicable to southern Africa, after modification to
account for seasonal rainfall patterns. An added advantage of this modified multivariate
approach is that the model provides probability of occurrence values for each grid cell in
contrast with the presence absence outputs generated by the original bivariate approach
(Jeffree & Jeffree 1994). Most importantly, it is shown that range contractions and shifts in
the positions of species ranges are likely to be significant consequences of climate change for
antlions in South Africa. If this applies to other animal taxa, and it seems that it does (Van

Jaarsveld et al. 2000) then the message to the conservation community is clear. The likely
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impacts of climate change on our ability to conserve our fauna can no longer be ignored, but

must now form an integral part of conservation planning.
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