

# **CHAPTER SEVEN**

# IDENTIFICATION OF *ARMILLARIA* ISOLATES FROM BHUTAN BASED ON DNA SEQUENCE COMPARISONS

Accepted: Plant Pathology (2003)



| ABSTRACT                                   |
|--------------------------------------------|
| INTRODUCTION                               |
| MATERIALS AND METHODS4                     |
| COLLECTION SITES                           |
| FUNGAL ISOLATION AND CULTIVATION           |
| DNA EXTRACTION                             |
| Amplification of the ITS and IGS-1 regions |
| RFLP ANALYSIS OF THE IGS-1                 |
| DNA sequencing                             |
| CLONING OF IGS-1 AMPLICONS                 |
| SEQUENCE AND PHYLOGENETIC ANALYSES         |
| SEXUAL COMPATIBILITY TESTS                 |
| RESULTS                                    |
| RFLP ANALYSIS                              |
| SEQUENCE ANALYSES                          |
| RFLP GROUP 1 isolates                      |
| RFLP GROUP 2 isolates                      |
| Sexual compatibility tests                 |
| DISCUSSION                                 |
| REFERENCES                                 |

- -

# IDENTIFICATION OF ARMILLARIA ISOLATES FROM BHUTAN BASED ON DNA SEQUENCE COMPARISONS

# ABSTRACT

Armillaria root rot is a serious disease in fir and mixed conifer forests of Bhutan, Eastern Himalayas. The species causing this disease have, however, never been identified. The aim of this study was to identify field isolates collected at four localities in Bhutan. Identification was based on RFLP analysis of the IGS-1 region, comparisons of ITS and IGS-1 sequence data with those available on GenBank, cladistic analyses and sexual compatibility studies. Isolates were found to reside in two distinct RFLP groups. RFLP GROUP 1 isolates from Pinus wallichiana at Yusipang had RFLP profiles and IGS-1 sequences similar to those of A. mellea subsp. nipponica. Although ITS sequence data are not available for A. mellea subsp. nipponica, sequences from this DNA region were most similar to the closely related A. mellea from Asia. The RFLP profile and IGS-1 sequences for RFLP GROUP 2 isolates from Abies densa at Changaphug, Tsuga dumosa at Chimithanka as well as Picea spinulosa and T. dumosa in the Phobjikha valley were similar to those published for A. borealis, A. cepistipes, A. gemina and A. ostoyae. Parsimony analysis based on IGS-1 and ITS sequence data placed these isolates in a clade that included A. calvescens, A. cepistipes, A. gallica, A. jezoensis, A. sinapina and A. singula. The isolates were, however, sexually incompatible with tester strains of A. calvescens, A. cepistipes, A. gallica and A. sinapina. Although closely related to these species they appear to represent a distinct taxon that we will refer to as Bhutanese Phylogenetic Species I (BPS I) until basidiocarps are found and the species can be described.

Keywords: Armillaria root rot, Armillaria mellea, RFLP, IGS, ITS, biological species, phylogenetic species, Himalayas, Bhutan.



### INTRODUCTION

Armillaria root rot is caused by various species of *Armillaria* (Tricholomataceae, Agaricales, Basidiomycetes). These fungi are pathogens occurring throughout temperate and most tropical regions of the world (Hood *et al.* 1991). *Armillaria* spp. survive as pathogens, saprobes or perthotrophs on woody trees and shrubs and tend not to show species-specific interactions with their hosts (Gregory *et al.* 1991, Termorshuizen 2001). These survival strategies make *Armillaria* spp. serious pathogens capable of inflicting severe losses in forests and plantations.

Historically, plant pathologists attributed Armillaria root rot to the single species *A. mellea*, based on the assumption that this is a highly pleomorphic species (Singer 1956). This view changed with the emergence of a biological species concept for *Armillaria* and the subsequent identification of new biological species in Europe and North America (Korhonen 1978, Ullrich and Anderson 1978, Anderson and Ullrich 1979). Based on morphological differences and sexual compatibility interactions, at least 36 species are now accepted in *Armillaria* (Volk and Burdsall 1995).

A contemporary approach to the identification of *Armillaria* spp. has been to use DNA-based characteristics. Consequently, restriction fragment length polymorphism (RFLP) profiles (Harrington and Wingfield 1995) and DNA sequence data from the internal transcribed spacer (ITS) (Coetzee *et al.* 2000, 2001) as well as the intergenic spacer region one (IGS-1) (Anderson and Stasovski 1992) of the rRNA operon, have become available for most commonly-known *Armillaria* spp. This has facilitated rapid identification of field isolates for which basidiocarps are not available.

The Kingdom of Bhutan is a small land-locked country, located in the Eastern Himalayas between China and India. The total area is 47 010 km<sup>2</sup> with 64.2% covered by forest (FAO 2001). The dense forest cover of Bhutan is exceptional for Southern and South-Eastern Asia that has generally been severely deforested. Forests are of immense socio-economic and ecological importance to Bhutan. Diseases affecting this natural resource, therefore, pose a great threat to the economic and social well-being of the country.

#### UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIBESITHI VA PRETORIA

Very little is known regarding diseases in Bhutanese forests. Recent surveys have recorded a number of diseases of which Armillaria root rot was commonly encountered (Donaubauer 1986, 1993, Nedomlel 1994, Tshering and Chhetri 2000, Kirisits *et al.* 2002). Based on basidiocarp morphology Nedomlel (1994) recorded the presence of *A. ostoyae* in Bhutan. Apart from this record, virtually nothing is known regarding the identity of the *Armillaria* spp. causing root rot in conifer forests of this Himalayan country.

During the course of a survey of tree diseases in 2001 (Kirisits *et al.* 2002), typical symptoms and signs of Armillaria root rot were found in various conifer forests in Bhutan. These symptoms and signs included trees dying in patches and white mycelial mats below the bark, at the bases of dead and dying trees (Morrison *et al.* 1991). Rhizomorphs were also present in the soil and under the bark of dead and dying trees. Although basidiocarps were never encountered, it was possible to obtain diploid *Armillaria* isolates from dying trees. The aim of this study was, therefore, to identify field isolates from Bhutan using RFLP and DNA sequence data. In addition, results from these DNA based studies were evaluated using sexual compatibility tests with appropriate haploid tester strains.

### MATERIALS AND METHODS

### **Collection sites**

A total of thirteen Armillaria isolates were collected from trees in fir and mixed conifer forests at four locations in Bhutan, during July of 2001 (Table 1). Collection sites included Changaphug, Yusipang and Chimithankha in the Western part of the country and the Phobjikha valley in Central Bhutan (Fig. 1). The high altitude forests at Changaphug that consist of Eastern Himalayan fir (*Abies densa*), suffered severely from a disease syndrome, known as fir decline (Donaubauer 1993), in the 1980's, which resulted in the death of the majority of the trees at this site. This dramatic and wide-spread decline of fir in Western Bhutan was thought to be primarily caused by prolonged drought, but various biotic agents, including Armillaria spp., were suggested to be involved as contributing factors in the syndrome (Donaubauer 1986, 1987, 1993, Ciesla and Donaubauer 1994). In the Phobjikha valley, isolates were collected in a stand of Eastern Himalayan spruce (*Picea spinulosa*), suffering from a local outbreak of the bark beetle *Ips schmutzenhoferi* (Schmutzenhofer 1988, Kirisits *et al.* 2002). Obvious signs of Armillaria root rot were present on spruce trees, attacked by *I. schmutzenhoferi*. In addition to spruce, one



isolate was collected from Himalayan hemlock (*Tsuga dumosa*) in the Phobjikha valley. At Yusipang and Chimithankha, isolates were collected from Himalayan blue pine (*Pinus wallichiana*) and Himalayan hemlock, respectively. Armillaria root rot was not obvious on living trees at the latter sites but the isolates were included to gain a broader view of the occurrence and species composition of *Armillaria* spp. in Bhutan.

#### Fungal isolation and cultivation

Isolates were obtained either from mycelial fans or from rhizomorphs found between the bark and the wood of dying trees or on stumps. Small samples from the mycelial fans were placed on selective DBS (Dichloran-Benomyl-Streptomycin) medium (Harrington *et al.* 1992) and incubated at about 20 °C in artificial light for 2 weeks. Rhizomorphs from infected trees or stumps were surface sterilized in 96% ethanol for 1 min; small pieces from the inner parts were excised and placed on MA (2% Malt extract and 1.6% Agar) or selective DBS medium. Mycelium or rhizomorph tips, growing from primary isolates, were transferred to fresh medium and incubated. This procedure was repeated until pure cultures were obtained. Pure cultures were maintained on MYA (1.5% Malt extract, 0.2% Yeast extract and 1.5% Agar) medium. All isolates obtained from Bhutan are maintained in the culture collections of the Forestry and Agricultural Biotechnology Institute (FABI) (CMW), University of Pretoria, Pretoria, South Africa and the Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Universität für Bodenkultur Wien (BOKU), Vienna, Austria.

#### **DNA** extraction

Armillaria isolates were grown in liquid MY (1% Malt and 2% Yeast extract) medium at 24 °C for four weeks in the dark. Mycelium was harvested using a sterile metal strainer, frozen at -70 °C for 20 min and lyophilized. The freeze-dried mycelium was then ground to a fine powder in liquid nitrogen. DNA extraction from the powdered mycelium followed the method described by Coetzee *et al.* (2000).

#### Amplification of the ITS and IGS-1 regions

The ITS region (ITS1, 5.8S and ITS2) of the rRNA operon was amplified using primer set ITS1/ITS4 (White et al. 1990). The IGS-1 region was amplified with primers CLR12R



(Veldman *et al.* 1981) and O-1 (Duchesne and Anderson 1990). The PCR mixture and conditions for amplification of the ITS and IGS-1 regions were the same as those described by Coetzee *et al.* (2000). Amplified ITS and IGS-1 PCR products were visualized on an agarose gel (1% agar) stained with ethidium bromide under UV illumination.

#### RFLP analysis of the IGS-1

Restriction enzyme digestion was done after PCR reactions by adding 10 U of the endo-nuclease *AluI* to unpurified PCR mix (20 µL) containing the IGS-1 amplicons. DNA fragments were separated on an agarose gel (3%) stained with ethidium bromide and visualized under UV illumination. RFLP fragment sizes larger than 100 bp. were determined with GelFrag version 2.0.5 (National Centre for Super Computing Applications, University of Illinois at Urbana Champaign). RFLP profiles obtained for the isolates were compared with those previously published for various *Armillaria* spp. from Asia, Europe and North America (Harrington and Wingfield 1995, Schulze *et al.* 1995, Banik *et al.* 1996, Volk *et al.* 1996, Coetzee 1997, Chillali *et al.* 1998, Frontz *et al.* 1998, Terashima *et al.* 1998, White *et al.* 1998, Pérez Sierra *et al.* 1999, Coetzee *et al.* 2000, Kim *et al.* 2000, 2001).

#### **DNA** sequencing

DNA sequences for the ITS and IGS-1 regions were obtained using an ABI PRISM<sup>™</sup> automated sequencer. PCR products were purified from unincorporated nucleotides and primer dimers prior to sequencing using a QIAquick PCR purification kit (QIAGEN, Germany) and eluted with 50 µL water. Sequence reactions were carried out with the ABI Prism® BigDye<sup>™</sup> Terminator Cycle Sequencing Ready Reaction Kit with AmpliTaq® DNA Polymerase, FS (Perkin Elmer, Warrington, UK) following the protocol supplied by the manufacturer. The ITS region was sequenced in both directions using primers ITS1 and ITS4 as well as internal primers CS2B and CS3B (Coetzee *et al.* 2001). DNA sequences for the IGS-1 region were determined with primers P-1 (Hsiau 1996), O-1 and primers MCO2 and MCO2R (Coetzee *et al.* 2000) that anneal to a region in the middle of the IGS-1 region.



### Cloning of IGS-1 amplicons

IGS-1 PCR products from isolates that gave poor sequencing results were cloned into vector pCR®4-TOPO® after purification, as outlined above. Cloning reactions were done using a TOPO TA Cloning® Kit for Sequencing (Invitrogen Life Technologies, Carlsbad, California) with One Shot® TOP10 Chemically Competent *E. coli* cells following the manufacturer's directions. Positive inserts were verified by amplifying the IGS-1 directly from transformed *E. coli* cells. The PCR mixture included dNTPs (250  $\mu$ M each), *Taq* Polymerase (2.5 U) (Roche Diagnostics, Mannheim, Germany), PCR buffer with MgCl2 (supplied by the manufacturer) and primers P-1 and O-1 (0.1  $\mu$ M each). The final volume of the PCR reaction mix was brought to 50  $\mu$ L with water. PCR conditions were as follows: 1 cycle at 95 °C for 1 min (denaturation), 35 cycles of 60 °C for 30 s (primer annealing), 70 °C for 30 s (elongation) and 95 °C for 30 s (denaturation). A final elongation step was allowed at 70 °C for 7 min. PCR products were visualized under UV illumination on a 1% agarose gel stained with ethidium bromide. Two to three IGS-1 PCR products that had been successfully amplified from positively transformed cells were sequenced as described above.

#### Sequence and phylogenetic analyses

The identity of Bhutanese isolates was further investigated by comparing the ITS and IGS-1 sequences from representative isolates with sequence data available on the NCBI (National Center for Biotechnology Information) databases using a nucleotide BLAST (Basic Local Alignment Search Tool) search. This was followed by phylogenetic analyses to determine the relationship between the Bhutanese isolates and the *Armillaria* species, with which they had a high sequence similarity. ITS and IGS-1 DNA sequences for representative isolates from Bhutan were aligned with sequences of various *Armillaria* spp. available on GenBank. Alignment was done with Clustal X (Thompson *et al.* 1997) and manually corrected. Phylogenetic analysis was based on parsimony methods using PAUP\* version 4.10 (Swofford 1998). Indels larger than two base pairs were coded using a multistate character system as outlined by Coetzee *et al.* (2001). Missing, parsimony-uninformative and ambiguously aligned regions were excluded from the data sets before analyses. Gaps were treated as a fifth character, "newstate". Most parsimonious trees were generated by heuristic searches with random addition of sequences (100 replicates), TBR (tree bisection reconnection) branch swapping and MULPARS active. MaxTrees was set to auto-increase after 100 MP trees were generated and



branches collapsed if negative branch lengths were obtained. Most parsimonious trees obtained were optimized by applying successive weighting of parsimony-informative characters according to their mean consistency index. Confidence in branching points was determined by bootstrap analysis (1000 replicates) (Felsenstein 1985).

#### Sexual compatibility tests

Diploid isolates belonging to RFLP GROUP 2, were paired with haploid tester strains of *A. calvescens*, *A. cepistipes*, *A. gallica*, *A. gemina*, *A. mellea* and *A. sinapina* (Table 2) to confirm the results from DNA-based identifications. Sexual compatibility tests were conducted on MEA (1.5% Difco malt extract, 1.5% Difco agar) medium. Small (2 mm diam) plugs from diploid Bhutanese cultures and haploid tester strains were placed 5 mm apart on the medium and incubated at 24 °C in the dark. Mating reactions were evaluated after 4 and again after 6 weeks. Sexual compatibility tests were conducted at both FABI (all tester strains) and IFFF (only for *A. cepistipes* and *A. gallica*).

### RESULTS

#### **RFLP** analysis

All isolates from Bhutan resided in one of two groups based on their RFLP profiles (Fig. 2). These are, hereafter, referred to as RFLP GROUP 1 and RFLP GROUP 2 isolates. RFLP GROUP 1 isolates had a profile with fragment sizes of 376 (374-379) and 166 (165-167) bp. This profile corresponded most closely to that of *A. mellea* subsp. *nipponica* from Japan (Terashima *et al.* 1998).

The fragment sizes for isolates in RFLP GROUP 2 were 309 (305-316), 195 (189-199) and 139 (137-141) bp. Some variation was, however, observed amongst banding patterns for these isolates. Isolate CMW10578 (Phob6), from the Phobjikha valley, had a profile slightly different to those of the other isolates. RFLP fragment sizes for this isolate were 417, 313, 198 and 138 bp. A species name could not be assigned to isolates residing in RFLP GROUP 2 because the banding patters were similar to those of *A. borealis*, *A. cepistipes*, *A. gemina* and *A. ostoyae* (Harrington and Wingfield 1995, Pérez Sierra *et al.* 1999, Kim *et al.* 2001).



#### Sequence analyses

#### **RFLP GROUP 1 isolates**

IGS-1 DNA sequences for isolates CMW8082 and CMW8202 from Yusipang residing in RFLP GROUP 1, were most similar to those of *A. mellea* from Japan (AF163610) and South Korea (AF163613, AF163612 and AF163611) and *A. mellea* subsp. *nipponica* (D89922) (98%). The highest blast score (932 bits) was obtained with *A. mellea* (AF163610) from Japan. The highest ITS sequence identity for these Bhutanese isolates was with *A. mellea* (98%) from South Korea (AF163592, AF163593 and AF163591).

Phylogenetic trees generated from IGS-1 sequences (Fig. 3) placed isolates CMW8082 and CMW8202 in a strongly supported monophyletic group that included *A. mellea* s. str. from Japan (AF163610) and South Korea (AF163611, AF162613) as well as *A. mellea* subsp. *nipponica* (100% bootstrap support). Most parsimonious trees obtained from ITS sequences (Fig. 4) placed the two isolates in a strongly supported monophyletic group (100% bootstrap support) that included isolates representing *A. mellea* s. str. from Japan (AF163594) and South Korea (AF163592 and AF163593).

#### **RFLP GROUP 2 isolates**

The IGS-1 amplicons for representative isolates residing in RFLP GROUP 2 could not be sequenced directly and the fragments were subsequently cloned. Sequence heterogeneity within the IGS-1 repeat region of the rDNA was observed when comparing cloned IGS-1 amplicons from the same individual. IGS-1 sequence comparisons indicated the presence of one 4 bp. indel and eleven nucleotide substitution sites with five of these sites being unique to CMW10578 (Fig. 5).

The highest IGS-1 sequence similarity for isolate CMW10583 from the Phobjikha valley, was with *A. cepistipes* (AF243069 and D89919), *A. sinapina* (D89925), *A. jezoensis* (D89921) and NABS X (AF243062). Although IGS-1 sequences of these species were all 97% similar to those of the isolate from Bhutan, the highest blast score was obtained with *A. cepistipes* and NABS X (888 bits). ITS sequences for isolate CMW10583 had the highest identity with ITS sequences for *A. cepistipes* (AJ250053) (99%, 1501 bits).



Parsimony trees generated from the IGS-1 region grouped representative isolates (CMW8095, CMW10578, CMW10581 and CMW10583) from RFLP GROUP 2 in a strongly supported clade (Fig. 6). Isolate CMW10578 from Phobjika valley, which had a different RFLP pattern, grouped within this clade with a 95% bootstrap support. RFLP GROUP 2 isolates formed a sister group to *A. cepistipes* (D89919), *A. sinapina* (D89925), *A. jezoensis* (D89921) and *A. singula* (D89926) from Japan, but this relationship had only a 50% bootstrap support. Most parsimonious trees generated from the ITS data set placed isolates CMW10583, CMW10581, CMW8095 and CMW8096 from Bhutan in a clade that included *A. cepistipes* (U54811, U54810 and AJ250053) and *A. gallica* (U54814, U54814 and AJ250054) with a 55% bootstrap support (Fig. 4). *Armillaria sinapina* (AF169646) formed a sister taxon to this clade with a 74% bootstrap support.

#### Sexual compatibility tests

Haploid tester strains representing *A. calvescens, A. cepistipes, A. gallica*, and *A. sinapina* were used for sexual compatibility tests because of their phylogenetic relationships with RFLP GROUP 2 isolates. Tester strains of *A. mellea* and *A. gemina*, two species distantly related to the Bhutanese isolates, were included as negative controls. The haploid tester strains of these species retained their fluffy, white aerial mycelium when crossed with diploid isolates in RFLP GROUP 2 (Fig. 7). Demarcation lines were also observed where mycelial growth from the different inocula interacted. These results indicate that the RFLP GROUP 2 isolates from Bhutan are sexually incompatible with the tester strains included in this study.

#### DISCUSSION

This study represents a first attempt to identify a reasonably large collection of Armillaria isolates from Bhutan. The isolates were from a variety of locations and hosts at different altitudes in Bhutan and we, therefore, anticipated finding a variety of Armillaria spp. RFLP analyses, however, showed that all isolates resided in one of two distinct groups that could easily be recognised.

RFLP profiles of Bhutanese isolates from *P. wallichiana* at Yusipang (RFLP GROUP 1) were similar to those previously published by Terashima *et al.* (1998) for the homothallic *A. mellea* 



subsp. *nipponica* from Japan. It was, therefore, suspected that RFLP GROUP 1 isolates from Bhutan represent this subspecies of *A. mellea*. Phylogenetic analyses based on parsimony that incorporated IGS-1 and ITS sequence data were subsequently used to confirm this finding. Parsimony trees generated in this study grouped the RFLP GROUP 1 isolates in a strongly supported monophyletic Asian *A. mellea* subclade, comprised of isolates from Japan and Korea. This subclade included *A. mellea* subsp. *nipponica* in cladograms generated from IGS-1 sequence data. The strongly supported grouping of this subspecies of *A. mellea* within the Asian subclade suggests that other isolates included in this clade also represent *A. mellea* subsp. *nipponica*. Based on these findings we believe that the Bhutanese RFLP GROUP 1 isolates belong to *A. mellea* subsp. *nipponica*.

Direct sequencing of the IGS-1 PCR products for representative isolates residing in RFLP GROUP 2 was difficult, despite various attempts using different reaction conditions. The IGS-1 region forms part of the tandemly repeated rDNA multigene family (Long and Dawid 1980). Sequences from a limited number of cloned IGS-1 fragments showed sequence heterogeneity among multi-copies of this region; indicating intragenomic IGS-1 sequence variation within individuals. Our limited data further indicated that the IGS-1 could be separated into two non-orthologous (homologs that are not the result of speciation) intragenomic types based on the presence or absence of a four base pair indel.

It was not possible to fully resolve the identity of isolates residing in RFLP GROUP 2. This was firstly because their RFLP profiles resembled those of more than one *Armillaria* sp. Furthermore, there was poor statistical support for groupings based on phylogenetic analyses of ITS and IGS-1 sequences. However, it was clear that RFLP GROUP2 isolates are closely related to *A. cepistipes*, *A. sinapina* and *A. gallica*. The isolates are, therefore, considered to be part of the "A. gallica cluster" that includes *A. cepistipes*, *A. gallica*, *A. sinapina* and various other *Armillaria* spp. from the Northern Hemisphere (Korhonen 1995). Species residing in this group are similar in having basidiocarps with a delicate annulus and a bulbouse stipe-base, thin cylindrical monopodially branching rhizomorphs, and saprophytic or weakly parasitic life cycles (Korhonen 1995).

Isolates from Chimitankha, Changaphug and all but one of the isolates from Phobjika valley had the same RFLP profiles and most likely represent a single taxon. Isolate CMW10578 from *P. spinulosa* in Phobjika valley was, however, the exception in having a RFLP profile slightly



7-12

different to the rest of the RFLP GROUP 2 isolates. IGS-1 sequence data obtained for this isolate showed that a number of unique base substitutions were present, thus explaining the anomalous RFLP results. Phylogenetic analyses, however, placed this isolate in a strongly supported clade that included representative isolates from the same region and host. Despite RFLP and IGS-1 sequence variation, this isolate (CMW10578) is, therefore, thought to represent the same species as others in RFLP GROUP 2.

Representative isolates in RFLP GROUP 2 could not be identified based on mating tests. These isolates were clearly intersterile with those species (*A. calvescens*, *A. cepistipes*, *A. gallica* and *A. sinapina*) phylogenetically most closely related to them. Isolates of RFLP GROUP 2, therefore, either represent an undescribed taxon or one of the Indian (Himalayan) *Armillaria* spp. (Chandra and Watling 1981) for which neither tester strains for matings, reference cultures, nor molecular data are available. Until basidiocarps linked to this group of isolates can be found and collected, their exact identity cannot be resolved. For the present, we will refer to them as Bhutanese Phylogenetic Species I (BPS I).

### REFERENCES

- Anderson JB, Ullrich RC. 1979. Biological species of Armillaria mellea in North America. Mycologia 71: 402 - 414.
- Anderson JB, Stasovski E. 1992. Molecular phylogeny of Northern Hemisphere species of Armillaria. Mycologia 84: 505 - 516.
- Banik MT, Volk TJ, Burdsall HH. 1996. Armillaria species of the Olympic Peninsula of Washington state, including confirmation of North America biological species IX. Mycologia 88: 492 - 496.
- Chandra A, Watling R. 1981. Studies in Indian Armillaria (Fries per Fries) Staude (Basidiomycotina). Kavaka 10: 63 - 84.
- Chillali M, Idder-Ighili H, Guillaumin J-J, Mohammed C, Lung Escarmant B, Botton B. 1998. Variation in the ITS and IGS regions of ribosomal DNA among the biological species of European Armillaria. Mycological Research 102: 533 - 540.
- Ciesla W, Donaubauer E, 1994. Decline and Dieback of Trees and Forests. A Global Overview. Rome, Italy: Food and Agriculture Organization of the United Nations, FAO Forestry Paper 120.

- Coetzee MPA. 1997. Characterisation of Armillaria in South Africa. Bloemfontein, South Africa: University of the Orange Free State, MSc thesis.
- Coetzee MPA, Wingfield BD, Harrington TC, Dalevi D, Coutinho TA, Wingfield MJ. 2000. Geographical diversity of Armillaria mellea s.s. based on phylogenetic analysis. Mycologia 92: 105 - 113.
- Coetzee MPA, Wingfield BD, Bloomer P, Ridley GS, Kile GA, Wingfield MJ. 2001. Phylogenetic relationships of Australian and New Zealand Armillaria species. Mycologia 93: 887 - 896.
- Donaubauer E. 1986. Technical Advisory Services for Forest Development, Bhutan, Forest Pathology. FO/DP/BHU/83/022, Field Document 11. Thimphu, Bhutan: Department of Forests, Ministry of Trade, Industry and Forests; Rome, Italy, FAO.
- Donaubauer E. 1987. Technical Advisory Services for Forest Development, Bhutan, Forest Pathology. FO/DP/BHU/83/022, Field Document 12. Thimphu, Bhutan: Department of Forests, Ministry of trade, Industry and Forests; Rome, Italy: FAO.
- Donaubauer E. 1993. On the decline of fir (Abies densa Griff.) in Bhutan. In: Huettl RF, Mueller-Dombois, eds. Forest Decline in the Atlantic and Pacific Region. Berlin, Heidelberg, Germany: Springer-Verlag, 332 - 337.
- Duchesne LC, Anderson JB. 1990. Location and direction of transcription of the 5S rRNA gene in Armillaria. Mycological Research 94: 266 - 269.
- FAO. 2001. Global Forest Resources Assessment 2000 Main report. FAO Forestry Paper 140. Rome, Italy.
- Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783 - 791.
- Frontz TM, Davis DD, Bunyard BA, Royse DJ. 1998. Identification of Armillaria species isolates from bigtooth aspen based on rDNA RFLP analysis. Canadian Journal of Forestry Research 28: 141 - 149.
- Gregory SC, Rishbeth J, Shaw CG. 1991. Pathogenicity and virulence. In: Shaw CG, Kile GA, eds. Armillaria Root Disease. USDA Agriculture Handbook No. 691. Washington DC, USA: Forest Service, United States Department of Agriculture, 76 - 87.
- Harrington TC, Worrall JJ, Baker FA. 1992. Armillaria. In: Singleton LL, Mihail JD, Rush C, eds. Methods for Research on Soil-Borne Phytopathogenic Fungi. St. Paul, USA: American Phytopathological Society Press, 81 - 85.
- Harrington TC, Wingfield BD. 1995. A PCR-based identification method for species of Armillaria. Mycologia 87: 280 - 288.



- Hood IA, Redfern DB, Kile GA. 1991. Armillaria in planted hosts. In: Shaw CG, Kile GA, eds. Armillaria Root Disease. USDA Agriculture Handbook No. 691. Washington, DC, USA: Forest Service, United States Department of Agriculture, 122 - 149.
- Hsiau PT-W. 1996. The taxonomy and Phylogeny of the Mycangial Fungi from Dendroctonus brevicomis and D. frontalis (Coleoptera: Scolytidae) Ames, USA: Iowa State University, PhD thesis.
- Kim M-S, Klopfenstein NB, McDonald GI, Arumuganthan K, Vidaver AK. 2000. Characterization of North American Armillaria species by nuclear DNA content and RFLP analysis. Mycologia 92: 874 - 883.
- Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K, Vidaver AK. 2001. Use of flow cytometry, fluorescence microscopy, and PCR-based techniques to assess intraspecific and interspecific matings of *Armillaria* species. *Mycological Research* 105: 153 - 163.
- Kirisits T, Wingfield MJ, Chhetri DB. 2002. Studies on the Association of Blue-Stain Fungi Associated with the Eastern Himalayan Spruce Bark Beetle (Ips schmutzenhoferi) and with Other Bark Beetles in Bhutan. Yusipang Report YREP/2002/02.
- Korhonen K. 1978. Interfertility and clonal size in the Armillariella mellea complex. Karstenia 18: 31 - 42.
- Korhonen K. 1995. Armillaria since Elias Fries. Acta Universitatis Upsaliensis Symbolae Botanicae Upsalienses 30: 153 - 161.
- Long EO, Dawid IB. 1980. Repeated genes in eukaryotes. Annual Review of Biochemistry 49: 727 - 764.
- Morrison DJ, Williams RE, Whitney RD. 1991. Infection, disease development, diagnosis, and detection. In: Shaw CG, Kile GA, eds. Armillaria Root Disease. USDA Agriculture Handbook No. 691. Washington DC, USA: Forest Service, United States Department of Agriculture, 62 - 75.
- Nedomlel C. 1994. Forest Pathological Characterisation of Abies densa in the Integrated Forest Management Project Area. Thimphu, Bhutan: Royal Government of Bhutan, Ministry of Agriculture, Department of Forestry; Vienna, Austria: ADC and FALCH Austria, Austrian association for development and cooperation.
- Pérez Sierra A, Whitehead DS, Whitehead MP. 1999. Investigation of a PCR-based method for the routine identification of British Armillaria species. Mycological Research 103: 1631 -1636.
- Schmutzenhofer H. 1988. Mass outbreak of *Ips* bark beetles in Bhutan and the revision of the genus *Ips* de Geer for the Himalayan region. In: Payne TL, Saarenmaa H, eds.



Proceedings of the IUFRO Working Party VII, International Congress of Entomology Symposium "Integrated control of Scolytid bark beetles". Vancouver BC, Canada, 345 -355.

Schulze S, Bahnweg G, Tesche M, Sandermann H. 1995. Identification of European Armillaria species by restriction-fragment-length polymorphisms of ribosomal DNA. European Journal of Forest Pathology 25: 214 - 223.

Singer R. 1956. The Armillariella mellea group. Lloydia 19: 176 - 178.

- Swofford DL. 1998. PAUP\*: Phylogenetic Analysis Using Parsimony (\*and Other Methods). Vers. 4. Sunderland, USA: Sinauer Associates.
- Terashima K, Kawashima Y, Cha JY, Miura K. 1998. Identification of Armillaria species from Hokkaido by analysis of the intergenic spacer (IGS) regions of ribosomal DNA using PCR-RFLP. Mycoscience 39: 179 - 183.
- Termorshuizen AJ. 2001. Ecology and epidemiology of Armillaria. In: Fox RTV, ed. Armillaria Root Rot: Biology and Control of Honey Fungus. Andover, UK: Intercept Limited, 45 -63.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research* 24: 4876 - 4882.
- Tshering G, Chhetri DB. 2000. Important Forest Insect Pests and Diseases of Bhutan with Control Measures. Field Guide 2000/1. Thimphu, Bhutan: Department of Research and Development Services, Ministry of Agriculture.
- Ullrich RC, Anderson JB. 1978. Sex and diploidy in Armillaria mellea. Experimental Mycology 2: 119 - 129.
- Veldman GM, Klootwijk J, de Regt VCHF, Planta RJ, Branlant C, Krol A, Ebel J-P. 1981. The primary and secondary structure of yeast 26S rRNA. *Nucleic Acids Research* 9: 6935 -6952.
- Volk TJ, Burdsall HH. 1995. A Nomenclatural Study of Armillaria and Armillariella Species (Basidiomycotina, Tricholomataceae). Førde, Norway: Fungiflora.
- Volk TJ, Burdsall HH, Banik MT. 1996. Armillaria nabsnona, a new species from western North America. Mycologia 88: 484 - 491.
- White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. San Diego, USA: Academic Press, Inc, 315 - 322.



- White EE, Dubetz CP, Cruickshank MG, Morrison DJ. 1998. DNA diagnostic for Armillaria species in British Columbia: within and between species variation in the IGS-1 and IGS-2
  - regions. Mycologia 90: 125 131.



| Isolate number | Alternative | Location in Bhutan | Host tree         |  |
|----------------|-------------|--------------------|-------------------|--|
|                | number      |                    |                   |  |
| CMW8081        | Yus1        | Yusipang           | Pinus wallichiana |  |
| CMW8082        | Yus2        | **                 | £¢                |  |
| CMW8084        | Yus3        |                    |                   |  |
| CMW8202        | Yus4        |                    | **                |  |
| CMW8095        | Chal        | Changaphug         | Abies densa       |  |
| CMW8096        | Cha2        |                    | **                |  |
| CMW10583       | Phob2       | Phobjikha valley   | Tsuga dumosa      |  |
| CMW10576       | Phob3       | **                 | Picea spinulosa   |  |
| CMW10577       | Phob4       |                    | cc                |  |
| CMW10578       | Phob6       |                    | 20                |  |
| CMW10579       | Phob7       |                    | **                |  |
| CMW10581       | Phob9       |                    | **                |  |
| CMW10582       | Chim2       | Chimithankha       | T. dumosa         |  |

TABLE 1: Armillaria isolates from Bhutan included in this study.



| Species       | Isolate<br>number | Other<br>numbers | Origin      | Collector   | Host         |
|---------------|-------------------|------------------|-------------|-------------|--------------|
| A. calvescens | CMW6893           | PR-2, ss-2       | USA         | Banik MT    | Acer rubrum  |
| A. cepistipes | CMW6909           | 82-14-14         | Canada      | Morrison DJ | unknown      |
|               | CMW6912           | HHB-14868        | USA         | Banik MT    | Alnus rubra  |
|               |                   | ss-2             |             |             |              |
| ai -          | CMW11262          | IFFF 4           | 16, Finland | Korhonen K. | Salix caprea |
|               |                   | 92165            |             |             |              |
| и             | CMW11263          | IFFF 4           | 17, Poland  | Zólciak A.  | unknown      |
|               |                   | 93288            |             |             |              |
| u.            | CMW11269          | IFFF 441         | Unknown     | Unknown     | unknown      |
| A. gallica    | CMW3169           | В500,            | USA         | Anderson JB | unknown      |
|               |                   | ATCC52114        |             |             |              |
| u.            | CMW11272          | IFFF 451         | unknown     | unknown     | unknown      |
| A. gemina     | CMW3166           | B735, AMP4       | B USA       | Worrall JJ  | unknown      |
| "             | CMW3181           | B485,            | USA         | Anderson JB | unknown      |
|               |                   | ATCC52102        |             |             |              |
| <i>u</i>      | CMW6889           | TJV 94-47,       | USA         | Banik MT    | Quercus      |
|               |                   | ss-2             |             |             | velutina     |
| A. sinapina   | CMW6894           | HHB-14911,       | USA         | Banik MT    | Tsuga        |
|               |                   | ss-9             |             |             | heterophylla |
| A. mellea     | CMW6901           | IL-7, ss-3       | USA         | Banik MT    | Ulmus sp.    |
| <i>q</i> .    | CMW11271          | 1FFF 448         | Unknown     | unknown     | unknown      |

TABLE 2: Armillaria isolates used as testers in the sexual compatibility tests.



Figure 1. Map of Bhutan, showing the four collection sites.



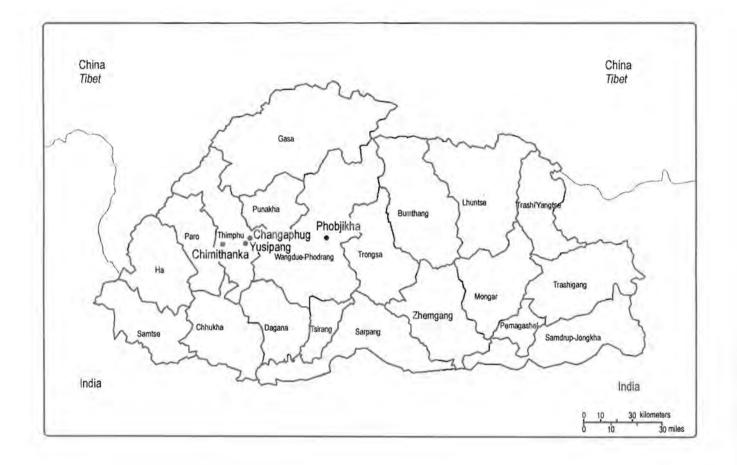





Figure 2. A 3% agarose gel stained with ethidium bromide showing *Alu*I restriction fragments for isolates of *Armillaria* from Bhutan. Lanes labeled M show a 100 bp. molecular marker (band sizes indicated in base pairs).



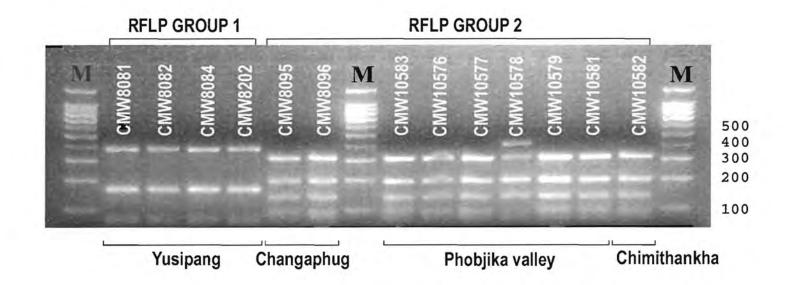





Figure 3. The single most parsimonious trees generated after a heuristic search in PAUP\* using IGS-1 sequence data (782 characters, 180 parsimony informative characters) from RFLP GROUP 1. Tree length = 203 steps, CI = 0.929 and RI = 0.958. Numbers above and below the tree branches indicate the branch length and the bootstrap support values for the branching nodes, respectively. The tree is rooted to *A. ostoyae*.



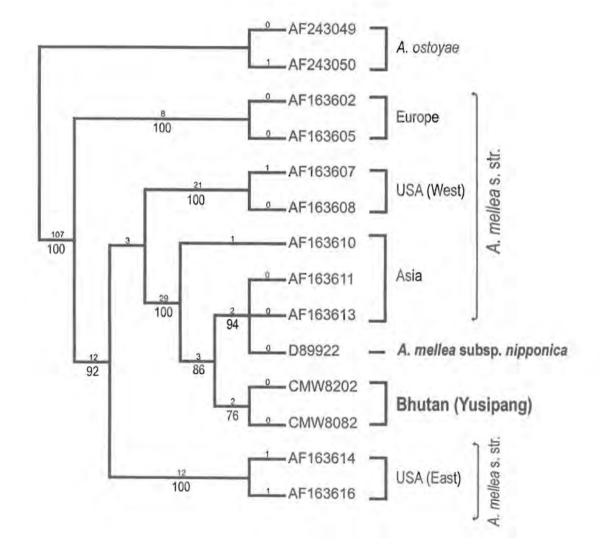





Figure 4. One of 18 most parsimonious trees based on ITS sequence data (1033 characters, 266 parsimony informative characters) for RFLP GROUP 1 and 2 from Bhutan generated after a heuristic search in PAUP\*. Tree length = 433 steps, CI = 0.849 and RI = 0.916. Armillaria fuscipes is used as outgroup.



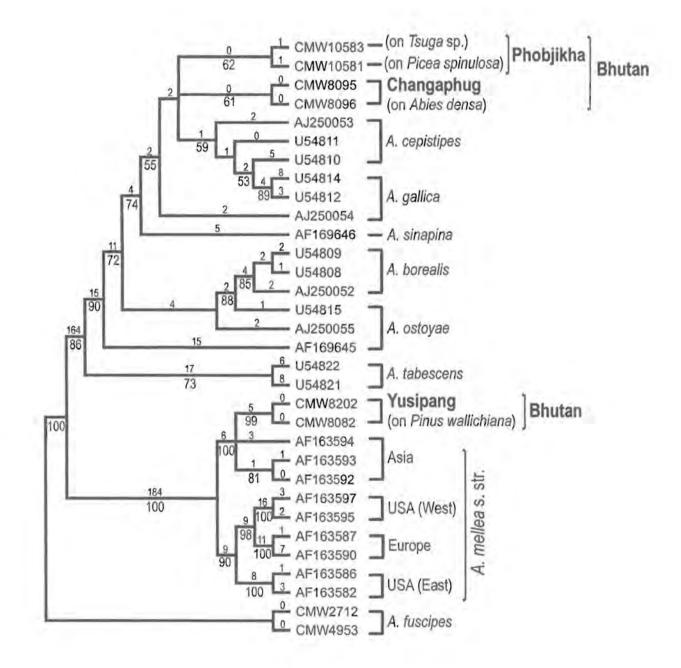




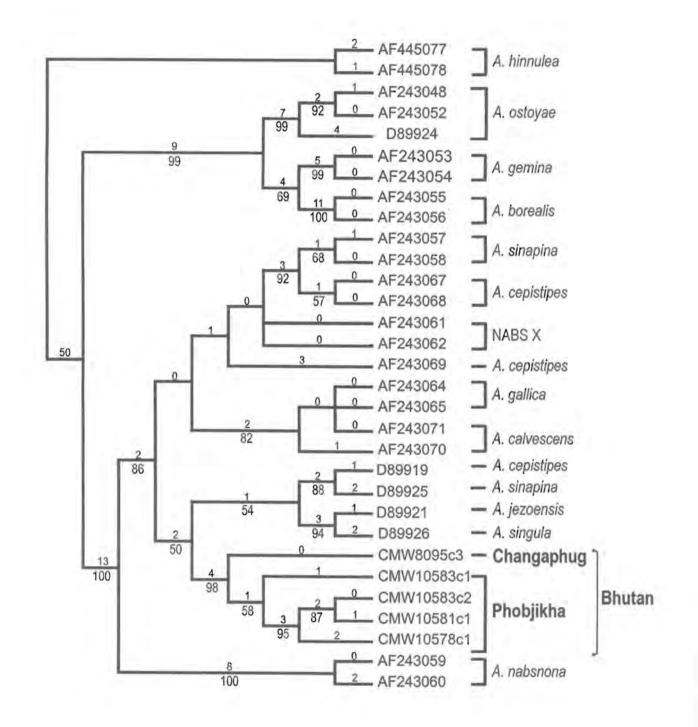

Figure 5. Alignment of DNA sequences from cloned IGS-1 fragments. Numbers (C) following the isolate number refer to the clone number. Dashes and stars below the sequences indicate homogeneous and heterogenous regions, respectively. Blocks in gray indicate sites with substitution unique for CMW10578 from Phobjikha valley that had a different RFLP pattern to the rest of the isolates from the same area as well as those from Chimithankha and Changaphug.



| .                                                                                        |                                        |
|------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                          |                                        |
| TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG                                               |                                        |
| TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG<br>TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG |                                        |
|                                                                                          |                                        |
| TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG                                               |                                        |
| TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG                                               |                                        |
| TGAGGTTAAGCTCTTGTTCTAAAGATTTGTTCAACTTTGTTG                                               | of a case of the case of the           |
| TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG                                               |                                        |
| TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG                                               |                                        |
| TGAGGTTAAGCCCTTGTTCTAAAGATTTGTTCAACTTTGTTG                                               |                                        |
|                                                                                          |                                        |
| 70 80 90 100 110                                                                         |                                        |
| · [ · · · · ] · · · · ] · · · · ] · · · ·                                                |                                        |
| TACATGCTGAGACCTTGAGGGCCGGGATAGTATCCTTTGTGC                                               | 18 전 전 (전)(전)(전)(전 전 전 전 전             |
| TACATGCTGAGACCTTGAGGGCCGGGATAGTATCCTTTGTGCA                                              |                                        |
| TACATGCTGAGACCTTGAGGGCCGGGATAGTATCCTTTGTGC                                               |                                        |
| TACATGCTGAGACCTTGAGGGCCGGAATAGTATCCTTTGTGC                                               | 10 ST 2 ST 2 ST 2 ST 2 ST              |
| TACATGCTGAGACCTTGAGGGCCGGAATAGTATCCTTTGTGC                                               |                                        |
| TACATGCTGAGACCTTGAGGGCCGGAATAGTATCCTTTGTGC                                               | ACTCGCGAC                              |
| TACATGCTGAGGCCTTGAGGGCCGGGATAGTATCCTTTGTGC                                               | ACTCGCGAC                              |
| TACATGCTGAGACCTTGAGGGCCGG ATAGTATCCTTTGTGC                                               |                                        |
| TACATGCTGAGACCTTGAGGGCCGGGATAGTATCcTTTGTGC                                               |                                        |
| **                                                                                       |                                        |
| 130 140 150 160 170                                                                      | 0 18                                   |
| · · · · · · · · · · · · · · · · · · ·                                                    |                                        |
| CTTAGATTCGAAAGGGTAAG TAACAACAA GCCTTAGTGTT                                               |                                        |
| CTTAGATTCGAAAGGGTAAG TAACAACAA GCCTTAGTGTT                                               | TTGTT                                  |
| CTTAGATTCGAAAGGGTAAGCTAACAACAACGCCTTAGTGTT                                               | TTGT'TTGTT/                            |
| CTTAGATTCGAAAGGGTAAGTTAACAACAATGCCTTAGTGTT                                               | FTGTTCGTT                              |
| CTTAGATTCGAAAGGGTAAGTTAACAACAATGCCTTAGTGTT                                               | <b>TTGTTTGTT</b>                       |
| CTTAGATTCGAAAGGGTAAG "TAACAACAA" GCCTTAGTGTT"                                            | TTGTTTGTT?                             |
| CTTAGATTCGAAAGGGTAAG TAACAACAA GCCTTAGTGTT                                               | TTGTTTGTT                              |
| CTTAGATTCGAAAGGGTAAG TAACAACAA GCCTTAGTGTT                                               | TTGTTTGTT                              |
| CTTAGATTCGAAAGGGTAAG TAACAACAACGCCTTAGTGTT                                               | TTGTTTGTT                              |
| ******                                                                                   | *****                                  |
| 190 200 210 220 230                                                                      | 0 2.                                   |
| . []                                                                                     |                                        |
| CTTTGAATCACGAGTTATTATGAGCCTTGAAGGCTTATAAGG                                               | State of the state of the state of the |
| CTTTGAATCACGAGTTATTATGAGCCTTGAAGACTTATAAGG                                               |                                        |
| CTTTGAATCACGAGTTATTATGAGCCTTGaAgACTTATAAGG                                               | CACTTAGTT                              |
|                                                                                          | and a second second second             |
| CTTTGAATCACGAGTTATTATGAGCCTTGAAGACTTATAAGG                                               | CACTTAGTTA                             |



|                                                                                  | 250 260 270 280 290 300                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  |                                                                                                                                                                                                                                                                                                                                |
| CMW8095c3                                                                        | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10583c1                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGCTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10583c2                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10578c1                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10578c2                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10578c5                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10581c1                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10581c2                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
| CMW10582c4                                                                       | GCAAGCTCTAACCGCGCGCTGACTTGGAACGGTCTTTACCTTGTACTTGATATCGACTTT                                                                                                                                                                                                                                                                   |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                |
|                                                                                  | 310 320 330 340 350 360                                                                                                                                                                                                                                                                                                        |
|                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                          |
| CMW809503                                                                        | ATGGCCGATATCCCGTATATGGTATAGCCAAGATCCTTCAAACGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10583c1                                                                       | ATGGCCGATATCCCGTATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10583c2                                                                       | ATGGCCGATATCCCGTATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10578cl                                                                       | ATGGCCGATATCCCATATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10578c2                                                                       | ATGGCCGATATCCCATATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10578c5                                                                       | ATGGCCGATATCCCATATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10581c1                                                                       | ATGGCCGATATCCCGTATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10581c2                                                                       | ATGGCCGATATCCCGTATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
| CMW10582c4                                                                       | ATGGCCGATATCCCGTATATGGTATAGCCAAGATCCTTGAAAGGGCAAGTCAACGACTGA                                                                                                                                                                                                                                                                   |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                |
|                                                                                  | 370 380 390 400 410 420                                                                                                                                                                                                                                                                                                        |
|                                                                                  | ·····[····[····[····]····]····[····]····]····]····]····]····]                                                                                                                                                                                                                                                                  |
| CMW8095c3                                                                        | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
| CMW10583c1                                                                       | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGAC                                                                                                                                                                                                                                                                   |
| MW10583c2                                                                        | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
| CMW10578cl                                                                       | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
| CMW10578c2                                                                       | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
| CMW10578c5                                                                       | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
| MW10581c1                                                                        | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
| CMW10581c2                                                                       | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
| CMW10582c4                                                                       | TTTTCTGGATCGTTAGTGAGCTTGAGGGTCTGCCCTAAGGTTGCCATGATTGAAAAGGCC                                                                                                                                                                                                                                                                   |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                |
|                                                                                  | 430 440 450 460 470 480                                                                                                                                                                                                                                                                                                        |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                |
| CMW8095c3                                                                        | TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG                                                                                                                                                                                                                                                                   |
| CWM8093C3                                                                        |                                                                                                                                                                                                                                                                                                                                |
|                                                                                  | TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG                                                                                                                                                                                                                                                                   |
| CMW10583cl                                                                       | TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTCACTTTTTTAACCGTTTCAACTGTTTACTTAG                                                                                                                                                                                                   |
| CMW10583cl<br>CMW10583c2                                                         |                                                                                                                                                                                                                                                                                                                                |
| CMW10583c1<br>CMW10583c2<br>CMW10578c1                                           | TTAGAAGCTAAGTTAAGCTACGGTCACTTTTTTAACCGTTTCAACTGTTTACTTAG                                                                                                                                                                                                                                                                       |
| CMW10583c1<br>CMW10583c2<br>CMW10578c1<br>CMW10578c2<br>CMW10578c5               | TTAGAAGCTAAGTAAGTTAAGCTACGGTCACTTTTTTAACCGTTTCAACTGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG                                                                                                                                                                                                   |
| CMW10583c1<br>CMW10583c2<br>CMW10578c1<br>CMW10578c2<br>CMW10578c5               | TTAGAAGCTAAGTAAGTTAAGCTACGGTCACTTTTTTAACCGTTTCAACTGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG                                                                   |
| CMW10583c1<br>CMW10583c2<br>CMW10578c1<br>CMW10578c2<br>CMW10578c5<br>CMW10581c1 | TTAGAAGCTAAGTAAGTTAAGCTACGGTCACTTTTTTAACCGTTTCAACTGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG                                                                                                                                   |
| CMW10583c1<br>CMW10583c2<br>CMW10578c1<br>CMW10578c2                             | TTAGAAGCTAAGTAAGTTAAGCTACGGTCACTTTTTTAACCGTTTCAACTGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTAACCGTTTCAACCGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTTAACCGTTTCAACCGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTACGGTTACCTTTTTTAACCGTTTCAACCGTTTACTTAG<br>TTAGAAGCTAAGTAAGTTAAGCTATGGTTACTTTTTTAACCGTTTCAACCGTTTACTTAG |



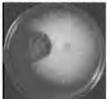

|                          | 490 500                | 510                                              | 520                 | 530              | 54    |
|--------------------------|------------------------|--------------------------------------------------|---------------------|------------------|-------|
|                          |                        |                                                  |                     |                  |       |
| CMW8095c3                | CTTTCGAGGGCTACGTTCAAAA | TTTGAACGGCAACT                                   | GGTTCTGAA           | ACGAAAGGTT       | TGCTA |
| CMW10583c1               | CTTTCGAGGGCTACGTTCAAAA | TTTGAACGGCAACT                                   | GTTCTGAA            | ACGAAAGGTT       | TGCTA |
| CMW10583c2               | CTTTCGAGGGCTACGTTCAAAA | TTTGAACGGCAACT                                   | GGTTCTGAA           | ACGAAAGGTT       | TGCTA |
| CMW10578c1               | CTTTCGAGGGCTACGTTCAAAA | TTTGAACGGCAACT                                   | TGTTCTGAA           | ACGAAAGGTT       | TGCTA |
| CMW10578c2               | CTTTCGAGGGCTAGGTTCAAAA | TTTGAACGGCAACT                                   | TGTTCTGAA           | ACGAAAGGTT       | TGCTA |
| CMW10578c5               | CTTTCGAGGGCTAGGTTCAAAA | TTTGAACGGCAACT                                   | TGTTCTGAA           | ACGAAAGGTT       | TGCTA |
| CMW10581c1               | CTTTCGAGGGCTA GTTCAAAA | TTTGAACGGCAACT                                   | GTTCTGAA            | ACGAAAGGTT       | TGCTA |
| CMW10581c2               | CTTTCGAGGGCTACGTTCAAAA | TTTGAACGGCAACT                                   | GGTTCTGAA           | ACGAAAGGTT       | TGCTA |
| CMW10582c4               | CTTTCGAGGGCTACGTTCAAAA | TTTGAACGGCAACT                                   | GTTCTGAA            | ACGAAAGGTT       | TGCTA |
|                          | ***                    |                                                  | *                   |                  |       |
|                          |                        |                                                  | 2.2.4               |                  |       |
|                          | 550 560                | 570                                              | 580                 | 590              |       |
|                          |                        |                                                  |                     |                  |       |
| CMW8095c3                | AGTAAACCATTGGTCAAGACCG | · 친구 공 공 전 전 것 2 전 2 전 전 전 전 전 전 전 전 전 전 전 전 전 전 |                     | 여행가 가 관계를 집중하는 것 |       |
| CMW10583c1               | AGTAAACCATTGGTCAAGACCG |                                                  | R 7,7,7,7,7,7,7,7,7 |                  |       |
| CMW10583c2               | AGTAAACCATTGGTCAAGACCG | GTTTGCAACAATT                                    | TGGTGGCTG           | TAGGGTGAG        |       |
| CMW10578c1               | AGTAAACCATTGGTCAAGACCG | GTTTGCAACAATT                                    | TTGGTGGCTG          | TAGGGTGAG        |       |
| CMW10578c2               | AGTAAACCATTGGTCAAGACCG | GTTTGCAACAATTT                                   | TGGTGGCTG           | TAGGGTGAG        |       |
| CMW10578c5               | AGTAAACCATTGGTCAAGACCG | GTTTGCAACAATT                                    | TGGTGGCTG           | TAGGGTGAG        |       |
| CMW10581c1               | AGTAAACCATTGGTCAAGACCG | GTTTGCAACAATTT                                   | TGGTGGCTG           | TAGGGTGAG        |       |
|                          | AGTAAACCATTGGTCAAGACCG | GTTTGCAACAATTT                                   | TGGTGGCTG           | TAGGGTGAG        |       |
| CMW10581c2               |                        |                                                  |                     |                  |       |
| CMW10581c2<br>CMW10582c4 | AGTAAACCATTGGTCAAGACCO | GTTTGCAACAATTT                                   | TGGTGGCTG           | TAGGGTGAG        |       |



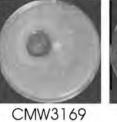
Figure 6. One of five most parsimonious trees based on IGS-1 sequence data (531 characters, 125 parsimony informative characters) for isolates from RFLP GROUP 2 after a heuristic search in PAUP\*. Tree length = 162 steps, CI = 0.878 and RI = 0.949. C-numbers indicate the clone number for a specific isolate. Numbers above and below the tree branches indicate the branch length and the bootstrap support values for the branching nodes, respectively. The outgroup taxon for this tree is *A. hinnulea*.





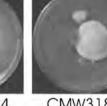

7-32



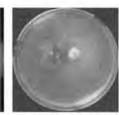

Figure 7. Two examples of results obtained after sexual compatibility tests between diploid RFLP GROUP 2 isolates from Bhutan (left inoculum) and haploid tester strains (right inoculum).



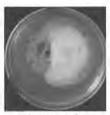
# CMW9585




CMW6909 A. cepistipes

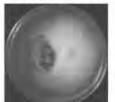



A. gallica


CMW6894 A. sinapina



CMW3181 A. gemina

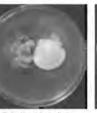



CMW6893 A. calvescens

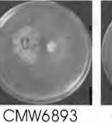


CMW11271 A. mellea

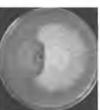
# CMW9588




CMW6909 A. cepistipes




A. gallica






CMW3181 A. gemina



A. calvescens



CMW6901 A. mellea



# CHAPTER EIGHT

# RFLP IDENTIFICATION TOOL FOR ARMILLARIA SPECIES



| ABSTRACT                                    |   |
|---------------------------------------------|---|
| INTRODUCTION                                |   |
| COMPUTER SOFTWARE DESIGN                    | ŀ |
| Specific requirements4                      | ŀ |
| DATABASE DESIGN                             | ł |
| APPLICATION DESIGN                          | 1 |
| SEARCH ALGORITHMS FOR ANALYSES              |   |
| DISCUSSION                                  |   |
| LITERATURE CITED                            |   |
| DESCRIPTION OF THE USER GRAPHICAL INTERFACE |   |



# RFLP IDENTIFICATION TOOL FOR ARMILLARIA SPECIES

## ABSTRACT

Armillaria spp. cause an important disease known as Armillaria root rot on woody plants throughout the world. Strategies to monitor and control this disease require correct and efficient identification of species. Identification of Armillaria spp. is typically based on basidiocarp morphology, which is complicated by the fact that these structures are rare and ephemeral. Sexual compatibility tests between isolates are also used for identification, but these are time consuming and often yield ambiguous results. Recently, restriction fragment length polymorphisms of the ITS and IGS-1 rRNDA regions have been employed and are now standard procedure for rapid and effective identification of Armillaria spp. The extensive use of this method has yielded a large number RFLP profiles for different species, which are available from a substantial and rapidly expanding suite of publications. Identification following this approach consequently requires a large number of comparisons between RFLP profiles of unknown isolates with those that have been published. This is a procedure that is becoming increasingly cumbersome. We have, therefore, developed an electronic database of published profiles and an automated search algorithm for rapid identification of Armillaria isolates. At present this application is "stand-alone" and includes RFLP profiles only from the ITS and IGS-1 rDNA regions of Armillaria spp. In future it will be converted to a WEB-based application and expanded to include profiles from other gene regions and genera.

Key words: RFLP, IGS, ITS, taxonomy.

## INTRODUCTION

Armillaria (Basidiomycetes, Agaricales, Tricholomataceae) comprises a group of fungi causing the important disease known as Armillaria root rot. This disease is well known to plant pathologists due to the substantial losses that it can cause in natural forests, commercial forest plantations, horticultural crops and in agriculture where specifically cash crop plantations are damaged (Hood *et al.* 1991, Kile *et al.* 1991). The impact of Armillaria root rot is exacerbated by its cosmopolitan distribution (Hood *et al.* 1991). It thus poses a potential threat to industries based on woody crops and needs to be continually monitored and correctly managed.

Strategies for monitoring and managing Armillaria root rot disease require correct and efficient identification of the *Armillaria* spp. involved in the various disease syndromes. Historically, these fungi have been classified based on their basidiocarp morphology, but this poses several problems. These structures are seasonal and often unavailable when field surveys are conducted. They are also ephemeral and disappear within a relatively short period after sporulation. Furthermore, some of the *Armillaria* species have similar basidiocarp morphology and are difficult to distinguish from one another. It was largely due to these problems that the biological species concept was adopted for species recognition (Korhonen 1978, Anderson and Ullrich 1979, Guillaumin and Berthelay 1981). Identification based on recognition of biological species involves sexual compatibility tests between known haploid tester strains and cultures made from field samples. These tests are routinely employed in some laboratories but they are time consuming and often yield ambiguous results. In recent years, identification using DNA-based data has become increasingly common. This approach is relatively simple and time efficient. Thus, although a reasonable repertoire of methods is available to identify *Armillaria* spp., those based on DNA data are considered to be the most robust.

DNA-based data for Armillaria spp. identification are currently generated from DNA sequences and PCR-RFLPs (restriction fragment length polymorphisms) from the ITS and IGS-1 regions of the rRNA operon (e.g. Anderson and Stasovski 1992, Harrington and Wingfield 1995, Chillali *et al.* 1998, Coetzee *et al.* 2000b). Identification based on DNA sequences is hampered by the fact that generating and comparing sequence data is slow and expensive when large numbers of samples are to be processed. In contrast, PCR-RFLPs represent a relatively inexpensive and



rapid approach that does not require highly specialised services. These advantages lend impetus to the application of PCR-RFLP analysis as standard procedure for identifying *Armillaria* spp.

Extensive application of PCR-RFLPs by several research laboratories has yielded large numbers of RFLP profiles associated with various *Armillaria* spp. (Tables 1 and 2). These profiles are available from a large and rapidly expanding suite of publications. Identification involves obtaining the information from all relevant publications and comparing RFLP profiles from isolates of unknown identity with those that have previously been produced. Due to the large number of comparisons that must be made, this procedure is becoming increasingly cumbersome and difficult to achieve manually.

The time and effort required to make RFLP-based identifications would be substantially reduced if all available information were collated in a single, organised body of data, and if a rapid technique were devised for comparing the numerous profiles. Computer technology presents an appropriate tool for achieving both these goals. The aim of this study was, therefore, to develop an electronic database and automated search algorithm based on PCR-RFLP profiles to facilitate the identification of *Armillaria* isolates.

## COMPUTER SOFTWARE DESIGN

#### Specific requirements

In order to be effective, a computerised RFLP-based identification tool must meet a number of criteria. It has to:

- Be compatible with different Microsoft® Windows® operating systems.
- · Enable the user to store, change, extract and present data in the database.
- Compare RFLP data for an isolate entered by the user with those in the database.
- Take into account the fact that the user profile might not match any of the profiles in the database exactly; the closest match must, therefore, be returned as its probable identity.

#### Database design

The database was developed in Microsoft® Access. Data for the database were obtained from all previous publications containing RFLP profiles for *Armillaria* spp. (Tables 1 and 2). The design of the database and relationships among components and sub-components within the database are depicted in Fig. 1.

#### Application design

Code for this application was written in Microsoft® Visual Basic and has interactions with Microsoft® Access, Macromedia Flash and Microsoft® Word. Interaction between Microsoft® Visual Basic and Microsoft® Access takes place when data are being written to or extracted from the database. Macromedia Flash provides animation to the interface when the user is presented with options from menus within the application. Reports are generated through an interaction between Microsoft® Visual Basic and Microsoft® Visual Basic and Microsoft® Word after data has been extracted from the database. The architecture of this application is depicted in Figs. 2 - 4.

#### Search algorithms for analyses

Algorithm 1 (Sum of differences - default): This algorithm calculate the summed squared deviation (S) between the user profile (I) and every profile in the database (D) that has the same number of fragments as the user profile. The summed deviation is calculated by squaring the difference between each fragment length in the user profile and the corresponding fragment length in the profile with which is being compared, and then taking the square root of the sum of these squared differences. Hence, the summed squared deviation between the user profile and profile i in the database is given by:

$$S_{i} = \sqrt{\sum_{j=1}^{n_{i}} (I_{j} - D_{ij})^{2}}$$
(1)

where  $I_j$  is the length of Fragment *j* in the user profile,  $D_{ij}$  is the length of the corresponding fragment for Profile *i* in the database, and  $n_i$  is the number of fragments in each profile.

The database profile that yields the smallest value for  $S_i$  is then returned as the best match for the user profile.

|                |       | Fragm | nent num | ber (j) |                                                                  |
|----------------|-------|-------|----------|---------|------------------------------------------------------------------|
|                |       | 1     | 2        | 3       | Si                                                               |
|                | $D_I$ | 350   | 180      | 119     | $[(350-350)^2 + (172-180)^2 + (125-119)^2]^{\frac{1}{2}} = 10$   |
| $(\mathbf{E})$ | $D_2$ | 348   | 175      | 120     | $[(350-348)^2 + (172-175)^2 + (125-120)^2]^{\frac{1}{2}} = 6.16$ |
|                | $D_3$ | 345   | 172      | 130     | $[(350-345)^2 + (172-170)^2 + (125-130)^2]^{\frac{1}{2}} = 7.07$ |
|                | I     | 350   | 172      | 125     |                                                                  |

| Example: User profile = 350, 172 and 125 bp. (b | base pairs). |
|-------------------------------------------------|--------------|
|-------------------------------------------------|--------------|

Thus, database profile  $D_2$  ( $S_2 = 6.16$ ) is the best much for the user profile.



Algorithm 2 (Normal distribution error): Algorithm 1, which was described above, only draws comparisons with those profiles in the database that have the same number of RFLP fragments as the user profile. If two similar fragment lengths are mistakenly entered as a single fragment in the user profile, Algorithm 1 would compare this profile with the wrong subset of profiles in the database, yielding incorrect results. A second algorithm was, therefore, developed. This algorithm rounds user and database RFLP fragment sizes to the nearest 5 bp. Fragment sizes are then distributed over a probability matrix with increments of 5 bp.  $S_i$  (Eqn 1) is then calculated, with the smallest value being the closest match.

*Example:* User profile = 454, 448 and 254 bp. Initial dataset

|   |       | Fragm | ent num | ber (j) |
|---|-------|-------|---------|---------|
|   |       | 1     | 2       | 3       |
|   | Di    | 448   | 249     |         |
| S | $D_2$ | 451   | 302     | 247     |
|   | $D_3$ | 299   | 248     |         |
|   | Ι     | 454   | 448     | 254     |

Is then converted to

|   |         | Fragm | ent num | ber (j) |
|---|---------|-------|---------|---------|
|   |         | 1     | 2       | 3       |
|   | $D_{I}$ | 450   | 250     |         |
| S | $D_2$   | 450   | 300     | 245     |
|   | $D_3$   | 300   | 250     |         |
|   | I       | 455   | 450     | 255     |

#### Probability matrix

|                  |   |     |     |     |     |     |     | Fra | gme | nth | leng | ths |         |     |     |     |     |          |
|------------------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|---------|-----|-----|-----|-----|----------|
|                  |   | 460 | 455 | 450 | 445 | 440 | *** | 310 | 305 | 300 | 295  | 290 | <br>260 | 255 | 250 | 245 | 240 | <br>Si   |
| $\overline{D_I}$ | 0 | 0   | 0.5 | 1   | 0.5 | 0   |     | 0   | 0   | 0   | 0    | 0   | <br>0   | 0.5 | 1   | 0.5 | 0   | <br>1    |
| $D_2$            | 0 | 0   | 0.5 | 1   | 0.5 | 0   |     | 0   | 0.5 | 1   | 0.5  | 0   | <br>0   | 0,5 | 1   | 0.5 | 0   | <br>1.58 |
| $D_3$            | 0 | 0   | 0   | 0   | 0   | 0   |     | 0   | 0.5 | 1   | 0.5  | 0   | <br>0   | 0.5 | 1   | 0.5 | 0   | <br>2    |
| 1                | 0 | 0   | 0.5 | 1   | 0,5 | 0   |     | 0   | 0   | 0   | 0    | 0   | <br>0.5 | 1   | 0.5 | 0   | 0   | <br>     |

Thus, database profile  $D_1$  ( $S_1 = 1$ ) in the above example is the best match.



## DISCUSSION

In this study we have developed an electronic database and search algorithm for rapid identification of *Armillaria* spp. using previously published RFLP profiles. This application allows the user to search, add, and update data in the database. Identification of unknown isolates using this application is achieved through search algorithms comparing user and database profiles to determine the closest match.

The computer program presented in this study is currently a stand-alone application for Microsoft® Windows®. All classes created in Microsoft® Visual Basic and animations developed in Macromedia Flash can be converted to function in a web-based environment. A future aim is thus to convert the application to function in a web-environment and to place it on a server at the Campus of the University of Pretoria (RSA) for use and update through the World Wide Web.

The application "RFLP Identification Tool for *Armillaria* species" was developed for identification of *Armillaria* species based only on ITS and IGS-1 PCR RFLP data. This application will, however, in future be expanded to incorporate RFLPs from other genes. It will also be made more informative regarding the species within the database by including information about species, descriptions, illustrations etc. At the present time, this application is restricted to identification and RFLP profiles pertaining to *Armillaria* spp., but it could be easily augmented in future to accommodate RFLP data for other genera of fungi.

## LITERATURE CITED

- Anderson JB, Stasovski E. 1992. Molecular phylogeny of Northern Hemisphere species of Armillaria. Mycologia 84: 505 - 516.
- Anderson JB, Ullrich RC. 1979. Biological species of Armillaria mellea in North America. Mycologia 71: 402 - 414.
- Banik MT, Volk TJ, Burdsall HH. 1996. Armillaria species of the Olympic Peninsula of Washington state, including confirmation of North America biological species XI. Mycologia 88: 492 - 496.



- Chillali M, Idder-Ighili H, Agustian A, Guillaumin J-J, Mohammed C, Botton B. 1997. Species delimitation in the African Armillaria complex by analysis of the ribosomal DNA spacers. Journal of General and Applied Microbiology 43: 23 - 29.
- Chillali M, Idder-Ighili H, Guillaumin J-J, Mohammed C, Lung Escarmant B, Botton B. 1998. Variation in the ITS and IGS regions of ribosomal DNA among the biological species of European Armillaria. Mycological Research 102: 533 - 540.
- Coetzee MPA, Wingfield BD, Coutinho TA, Wingfield MJ. 2000a. Identification of the causal agent of Armillaria root rot of *Pinus* species in South Africa. Mycologia **92**: 777 785.
- Coetzee MPA, Wingfield BD, Harrington TC, Dalevi D, Coutinho TA, Wingfield MJ. 2000b. Geographical diversity of Armillaria mellea s. s. based on phylogenetic analysis. Mycologia 92: 105 - 113.
- Guillaumin J-J, Berthelay S. 1981. Détermination spécifique des armillaires par la méthode des groupes de compatibilité sexuelle. Spécialisation écologique des espèces françaises. Agronomie 1: 897 - 908.
- Harrington TC, Wingfield BD. 1995. A PCR-based identification method for species of Armillaria. Mycologia 87: 280 - 288.
- Hood IA, Redfern DB, Kile GA. 1991. Armillaria in planted hosts. In: Shaw CG, GA Kile, eds. Armillaria Root Disease. USDA Agricultural Handbook No. 691. Washington DC, USA: United States Department of Agriculture, 122 - 149.
- Kile GA, McDonald GI, Byler JW. 1991. Ecology and disease in natural forests. In: Shaw CG, Kile GA, eds. Armillaria Root Disease. USDA Agricultural Handbook No. 691. Washington DC, USA: United States Department of Agriculture, 102 - 121.
- Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K, Vidaver AK. 2000. Characterization of North American Armillaria species by nuclear DNA content and RFLP analysis. Mycologia 92: 874 - 883.
- Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K, Vidaver AK. 2001. Use of flow cytometry, fluorescence microscopy, and PCR-based techniques to assess intraspecific and interspecific matings of *Armillaria* species. *Mycological Research* 105: 153 - 163.
- Korhonen K. 1978. Interfertility and clonal size in the Armillariella mellea complex. Karstenia 18: 31 - 42.
- Mwenje E, Wingfield BD, Coetzee MPA, Wingfield MJ. 2003. Molecular characterisation of Armillaria species from Zimbabwe. Mycological Research 107: 291 - 296.
- Otieno W, Pérez Sierra A, Termorshuizen A. 2003. Characterization of Armillaria isolates from tea (Camellia sinensis) in Kenya. Mycologia 95: 160 - 175.



- Pérez Sierra A, Whitehead DS, Whitehead MP. 1999. Investigation of a PCR-based method for the routine identification of British Armillaria species. Mycological Research 103: 1631 -1636.
- Terashima K, Kawashima Y, Cha JY, Miura K. 1998. Identification of Armillaria species from Hokkaido by analysis of the intergenic spacer (IGS) region of ribosomal DNA using PCR-RFLP. Mycoscience 39: 179 - 183.
- Volk TJ, Burdsall HH, Banik MT. 1996. Armillaria nabsnona, a new species from western North America. Mycologia 88: 484 - 491.
- White EE, Dubetz CP, Cruickshank MG, Morrison DJ. 1998. DNA diagnostic for Armillaria species in British Columbia: within and between species variation in the IGS-1 and IGS-2 regions. Mycologia 90: 125 - 131.



| Species        | Reference                       | RFLP Profile (bp)                         |
|----------------|---------------------------------|-------------------------------------------|
| IGS-1 digested | with AluI                       |                                           |
| Armillaria sp. | Otieno et al. (2003)            | 310, 220, 135                             |
| A. borealis    | Peréz Sierra et al. (1999)      | 305, 200, 100                             |
| A. borealis    | "                               | 305, 200, 135                             |
| A. borealis    | Harrington and Wingfield (1995) | 310, 200, 104                             |
| A. borealis    | "                               | 310, 200, 135                             |
| A. calvescens  |                                 | 582, 240                                  |
| A. calvescens  | Kim et al. (2000)               | 401 (6), 239 (4), 184 (2)                 |
| A. cepistipes  | Peréz Sierra et al. (1999)      | 305, 200, 135                             |
| A. cepistipes  | Kim et al. (2001)               | 309, 199, 137                             |
| A. cepistipes  | Harrington and Wingfield (1995) | 310, 200, 135                             |
| A. cepistipes  | "                               | 399, 200, 183                             |
| A. cepestipes  | Peréz Sierra et al. (1999)      | 400, 200, 190                             |
| A. fuscipes    | Mwenje et al. (2003)            | 380, 255, 130                             |
| A. fuscipes*   | Otieno et al. (2003)            | 380, 245, 135                             |
| A. fuscipes    | Coetzee et al. (2000a)          | 365, 245, 135                             |
| A. gallica     | Terashima et al. (1998)         | 317, 209, 135                             |
| A. gallica     | Peréz Sierra et al. (1999)      | 390, 230, 190                             |
| A. gallica     | Kim et al. (2000)               | 398 (2), 249 (5), 236 (2), 180 (3)        |
| A. gallica     | Harrington and Wingfield (1995) | 399, 240, 183                             |
| A. gallica     | Banik et al. (1996)             | 400, 235, 175                             |
| A. gallica     | White et al. (1998)             | 400, 235, 190                             |
| A. gallica     | Peréz Sierra et al. (1999)      | 400, 240, 190                             |
| A. gallica     | White et al. (1998)             | 400, 245, 190                             |
| A. gallica     | Peréz Sierra et al. (1999)      | 400, 250, 240, 190                        |
| A. gallica     | Harrington and Wingfield (1995) | 582, 240                                  |
| A. gallica     | Kim et al. (2000)               | 584 (8), 234 (4)                          |
| A. gallica     | **                              | 584 (8), 398 (2), 235 (3), 180 (2)        |
| A. gemina      | "                               | 308 (3), 196 (2), 138 (1), 93 (3)         |
| A. gemina      | - 44                            | 308 (3), 196 (2), 168 (2), 138(1), 93 (3) |

TABLE 1: Published IGS-1 PCR-RFLP profiles (published RFLP fragment size ranges are indicated in brackets but are not included in the database).



-

| Species          | ed)<br>Reference                | RFLP Profile (bp)                  |
|------------------|---------------------------------|------------------------------------|
| A. gemina        | Harrington and Wingfield (1995) | 310, 200, 135                      |
| A. heimii        | Mwenje et al. (2003)            | 480, 255, 175                      |
| A. heimii        | "                               | 480, 230, 175                      |
| A. heimii        | Coetzee et al. (2000a)          | 520, 220, 175                      |
| A. jezoensis     | Terashima et al. (1998)         | 312, 250, 185                      |
| A. jezoensis     |                                 | 413, 308, 249, 185                 |
| A. jezoensis     |                                 | 417, 252, 187                      |
| A. mellea        | Otieno et al. (2003)            | 310, 170                           |
| A. mellea        | Peréz Sierra et al. (1999)      | 320, 155                           |
| A. mellea        | Harrington and Wingfield (1995) | 320, 155                           |
| A. mellea        | Peréz Sierra et al. (1999)      | 320, 180, 155                      |
| A. mellea        | Kim et al. (2000)               | 472 (6), 186 (2), 175 (1), 153 (1) |
| A. mellea        |                                 | 473 (7), 175 (2)                   |
| A. mellea        | Harrington and Wingfield (1995) | 490, 180                           |
| A. mellea subsp. | Terashima et al. (1998)         | 371, 162                           |
| nipponica        |                                 |                                    |
| A. nabsnona      | Volk et al. (1996)              | 306 (299-314), 230 (223-237), 196  |
|                  |                                 | (191-202)                          |
| A. nabsnona      | Kim et al. (2000)               | 308 (4), 229 (3), 196 (2)          |
| A. nabsnona      | White et al. (1998)             | 310, 225, 200                      |
| A. nabsnona      | Harrington and Wingfield (1995) | 534, 200                           |
| A. nabsnona      | White et al. (1998)             | 535, 200                           |
| A. nabsnona      | Kim et al. (2000)               | 541 (7), 197 (1)                   |
| A. nabsnona      | **                              | 541 (7), 308 (4), 229 (3), 196 (2) |
| A. nabsnona      | Banik et al. (1996)             | 553 (490-615), 210                 |
| A. nabsnona      | xc                              | 556 (513-598), 314 (302-327), 233  |
|                  |                                 | (221-246), 203(191-216)            |
| A. nabsnona      | Volk et al. (1996)              | 560 (541-581), 321 (311-332), 237  |
|                  |                                 | (229-245), 203 (197-210)           |
| A. nabsnona      | "                               | 563 (552-575), 200 (144-206)       |
| A. ostoyae       | Peréz Sierra et al. (1999)      | 305, 200, 135                      |
| A. ostoyae       | Kim et al. (2000)               | 308 (3), 196 (2), 138 (1)          |

# TABLE 1 (continued)



| Species      | Reference                       | RFLP Profile (bp)                       |
|--------------|---------------------------------|-----------------------------------------|
| A. ostoyae   | Kim et al. (2000)               | 308 (3), 196 (2), 138 (1), 93 (3)       |
| A. ostoyae   | Harrington and Wingfield (1995) | 310, 200, 135                           |
| A. ostoyae   | White et al. (1998)             | 310, 200, 135                           |
| A. ostoyae   | Terashima et al. (1998)         | 312, 210, 137                           |
| A. ostoyae   | Banik et al. (1996)             | 314 (309-319), 207 (203-211),           |
|              |                                 | 141(137-145)                            |
| A. sinapina  | Harrington and Wingfield (1995) | 399, 200, 135                           |
| A. sinapina  | Kim et al. (2001)               | 401, 241, 186                           |
| A. sinapina  | White et al. (1998)             | 400, 200, 135                           |
| A. sinapina  | "                               | 400, 200, 190                           |
| A. sinapina  | **                              | 400, 200, 190, 135                      |
| A. sinapina  | a                               | 400, 235, 190                           |
| A. sinapina  | **                              | 400, 235, 200, 190, 135                 |
| A. sinapina  | Kim et al. (2000)               | 401 (4), 239 (4), 196 (2), 184 (2), 139 |
|              |                                 | (1)                                     |
| A. sinapina  |                                 | 401 (6), 239 (4), 184 (2)               |
| A. sinapina  | Banik et al. (1996)             | 401 (391-410), 237 (299-245), 184       |
|              |                                 | (177-191)                               |
| A. sinapina  | Kim et al. (2000)               | 402 (7), 196 (2), 184 (2), 139 (1)      |
| A. sinapina  | Terashima et al. (1998)         | 423, 258, 190                           |
| A. singular  | 64                              | 410, 207, 184                           |
| A. singular  | **                              | 417, 266, 186                           |
| A. tabescens | Harrington and Wingfield (1995) | 320, 240, 100                           |
| A. tabescens | Peréz Sierra et al. (1999)      | 430, 240                                |
| A. tabescens | Harrington and Wingfield (1995) | 430, 240                                |
| NABS X       | "                               | 399, 183, 142                           |
| NABS X       | Kim et al. (2001)               | 401, 186, 144                           |
| NABS X       | "                               | 401 (3), 184 (1), 145 (1)               |
| NABS XI      | "                               | 401 (3), 197 (1), 184 (1)               |
| NABS XI      | "                               | 401, 197, 186                           |
| NABS XI      | Banik et al. (1996)             | 413 (389-436), 203 (198-207), 185       |

# TABLE 1 (continued)



# TABLE 1 (continued)

| Species                   | Reference               | RFLP Profile (bp)  |  |  |  |  |
|---------------------------|-------------------------|--------------------|--|--|--|--|
| IGS-1 digested with Dde I |                         |                    |  |  |  |  |
| A. gallica                | Terashima et al. (1998) | 237, 211, 148      |  |  |  |  |
| A. jezoensis              | "                       | 235, 222, 147, 112 |  |  |  |  |
| A. ostoyae                | "                       | 214, 179, 120      |  |  |  |  |
| A. sinapina               | **                      | 235, 218, 148, 111 |  |  |  |  |
| A. singular               | ан<br>1                 | 234, 150, 113      |  |  |  |  |
|                           |                         |                    |  |  |  |  |

# IGS-1 digested with BsmI

| A. ostoyae | Peréz Sierra et al. (1999)      | 600, 300 |
|------------|---------------------------------|----------|
| A. ostoyae | Harrington and Wingfield (1995) | 620, 300 |

## IGS-1 digested with NdeI

| A. borealis | Harrington and Wingfield (1995) | 550, 370           |  |
|-------------|---------------------------------|--------------------|--|
| A. borealis | Peréz Sierra et al. (1999)      | 565, 380           |  |
| A. gemina   | Kim et al. (2000)               | 913, 552, 461, 372 |  |
| A. ostoyae  | Harrington and Wingfield (1995) | 550, 370           |  |
| A. ostoyae  | Peréz Sierra et al. (1999)      | 565, 380           |  |
| A. ostoyae  | Kim et al. (2000)               | 552, 372           |  |
|             |                                 |                    |  |

# IGS-1 digested with HindII

| A. cepistipes | Harrington and Wingfield (1995) | 580, 340 |
|---------------|---------------------------------|----------|
|---------------|---------------------------------|----------|

\* As A. heimii



# TABLE 2: Published ITS PCR-RFLP profiles.

| Species                  | Reference              | RFLP Profile (bp)  |
|--------------------------|------------------------|--------------------|
| ITS digested with Alu1   |                        |                    |
| A. fuscipes*             | Otieno et al. (2003)   | 480, 160, 85       |
| A. heimii                | Chillali et al. (1997) | 530, 72            |
| A. heimii                | "                      | 530, 72            |
| A. mellea                | Otieno et al. (2003)   | 320, 235, 190, 150 |
| A. mellea subsp africana | Chillali et al. (1997) | 390, 271, 150, 72  |
| Armillaria SIG III       | Chillali et al. (1997) | 540, 234, 72       |
| Armillaria sp.           | Otieno et al. (2003)   | 510, 225, 95       |

# ITS digested with Cfo I

| A. borealis   | Chillali et al. (1998) | 400, 350, 92 |
|---------------|------------------------|--------------|
| A. cepistipes | **                     | 400, 350     |
| A. ectypa     | **                     | 500, 350     |
| A. gallica    |                        | 400, 350     |
| A. ostoyae    |                        | 400, 350     |
| A. tabescens  | **                     | 500, 350     |
|               |                        | 2001220      |

# ITS digested with EcoR I

| A. borealis              | Chillali et al. (1998) | 510, 330 |
|--------------------------|------------------------|----------|
| A. cepistipes            | "                      | 510, 330 |
| A. ectypa                | "                      | 500, 330 |
| A. gallica               | **                     | 510, 330 |
| A. heimii                | Chillali et al. (1997) | 315      |
| A. heimii                | 4.0                    | 315      |
| A. mellea subsp africana |                        | 500, 360 |
| A. ostoyae               | Chillali et al. (1998) | 510, 330 |
| A. tabescens             | "                      | 510, 330 |
| Armillaria SIG III       | Chillali et al. (1997) | 500, 360 |



# TABLE 2 (continued)

| ITS digested with Hinfl   |                        |                         |
|---------------------------|------------------------|-------------------------|
| A. borealis               | Chillali et al. (1998) | 310, 234, 170, 110      |
| A. cepistipes             |                        | 310, 234, 130, 110      |
| A. fuscipes*              | Otieno et al. (2003)   | 220, 190, 170, 72       |
| A. gallica                | Chillali et al. (1998) | 310, 234, 130, 110      |
| A. gallica                |                        | 310, 234, 118, 90       |
| A. heimii                 | Chillali et al. (1997) | 271, 234, 100           |
| A. heimii                 |                        | 420, 234                |
| A. mellea                 | Otieno et al. (2003)   | 280, 180, 170, 140, 100 |
| A. mellea subsp. africana | Chillali et al. (1997) | 400, 234, 200           |
| A. ostoyae                | Chillali et al. (1998) | 310, 234, 170, 110      |
| Armillaria SIG III        | Chillali et al. (1997) | 460, 281, 200           |
| Armillaria sp.            | Otieno et al. (2003)   | 360, 230, 150, 100      |
|                           |                        |                         |

## ITS digested with Nde II

| A. fuscipes*              | Otieno et al. (2003)   | 390, 250           |
|---------------------------|------------------------|--------------------|
| A. heimii                 | Chillali et al. (1997) | 369, 271           |
| A. heimii                 | "                      | 369, 271           |
| A. mellea                 | Otieno et al. (2003)   | 280, 240, 230, 150 |
| A. mellea subsp. africana | Chillali et al. (1997) | 281, 234, 230, 141 |
| Armillaria SIG III        | "                      | 603, 230           |
| Armillaria sp.            | Otieno et al. (2003)   | 590, 270           |

\* as A. heimii



Figure 1. Design of the RFLP database. Black boxes are the components and open boxes the sub-components of each component. Numbers and M (many) indicate the relationship (1:1 or 1:M) between two components or between a component and a sub-component.



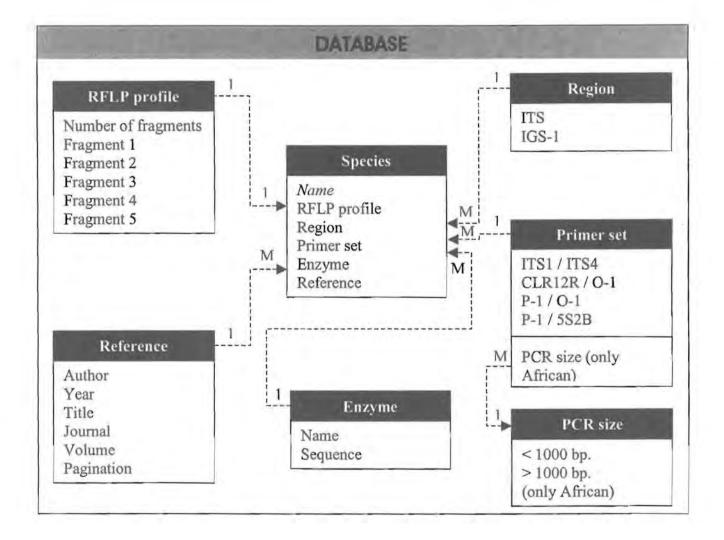





Figure 2. Architecture of the "RFLP Identification Tool for Armillaria species" computer

application. Down arrows (U) indicate drop-down-menus with data from the database. Black boxes show the entities in the data base from Fig. 1.

#### UNIVERSITEIT VAN PRETORIA UNIVERSITE OF PRETORIA VUNIRESITHI VA PRETORIA

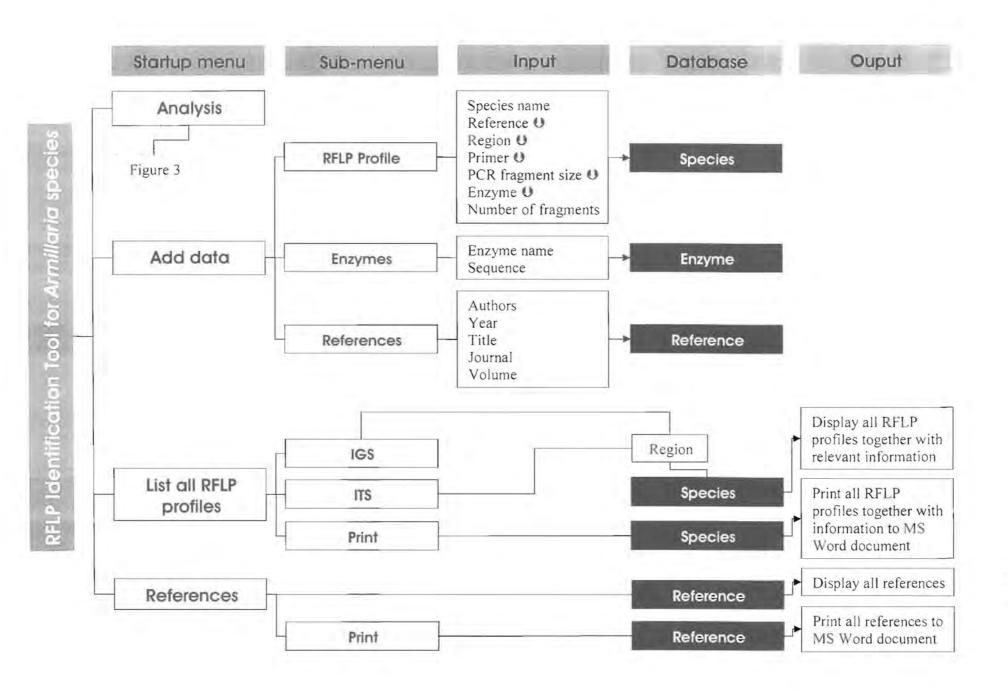





Figure 3. Analyses of user profiles. The user chooses one of the two algorithms to calculate the best much between the user-profile and the profiles selected from the procedure outlined in Fig. 4. The species name, RFLP profile and reference for the best as well as close matches are given as output.

#### UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNISESITHI VA PRETORIA

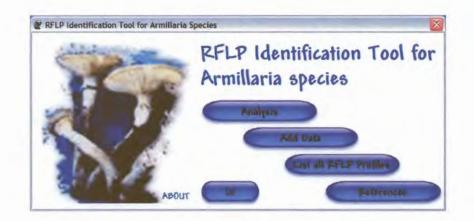




Figure 4. Interaction between database and application interface before calculating the best much between user and database profiles. The type of variables are either categorical (Cat), chosen via drop-down-menus or numerical (Num), provided by the user. Vertical arrows ( $\Rightarrow$ ) indicate the directional sequence of events and encircled arrows ( $\mathbf{U}$ ), drop-down-menus with data from the database.

#### UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIRESITHI VA PRETORIA

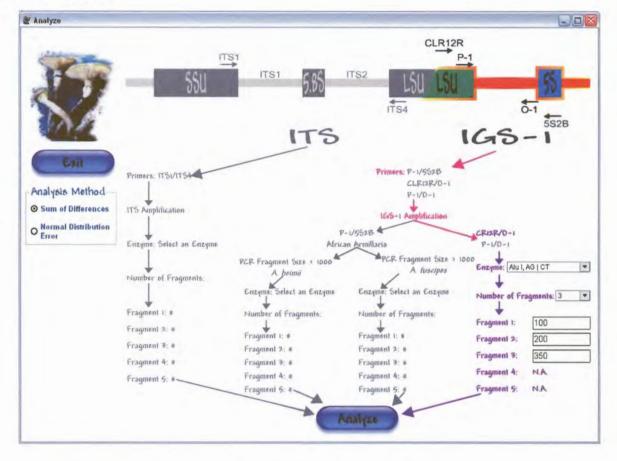
|                 | Region U | Primer U   | Length U               | Enzyme U | No. of<br>fragments U | Fr. length   |
|-----------------|----------|------------|------------------------|----------|-----------------------|--------------|
|                 | ¥        | ¥          | Exact match            | Ţ        | J.                    | Closest      |
|                 | 1        | ተ          | 1                      | 1        | 1                     | ŕ            |
|                 | IGS-1    | P-1/5S2B   | >1000 bp.<br><1000 bp. | Name     | 1 to 5                | >50 < 700 bp |
| Possible values | IGS-1    | P-1/O-1    | N/A                    | Name     | 1 to 5                | >50 < 700 bp |
|                 | IGS-1    | CLR12R/O-1 | N/A                    | Name     | 1 to 5                | >50 < 700 bp |
|                 | ITS      | N/A        | N/A                    | Name     | 1 to 5                | >50 < 700 bp |
| ype of variable | Cat      | Cat        | Cat                    | Cat      | Num                   | Num          |
|                 | Region   | Primer     | Length                 | Enzyme   | No. of<br>fragments   | Fr. lengths  |




## DESCRIPTION OF THE USER GRAPHICAL INTERFACE

#### **REQUIREMENTS:**

System: Windows® 95, Windows® 98, Windows® 2000, Windows® XP Additional: Microsoft® Word Best viewed at: 1152 x 864 pixels, 32 bit colour


### GENERAL MENU:



The General (start) menu gives the five options:

- Analysis: RFLP profile analysis function of the application.
- *Add data*: RFLP profiles, enzymes or references can be added, edited or removed from the database.
- List all RFLP profiles: IGS-1 or ITS RFLP profiles are listed from the database and can be printed to a Microsoft® Word file.
- *References*: Lists all references from the database and exports references to a Microsoft® Word file if required.
- *Exit:* Exits the programme.

## **ANALYSIS WINDOW**



User RFLP profiles are analysed by following the steps outlined below:

- 1) ITS or IGS-1 rDNA region is selected by moving the mouse-pointer over the required region. The activated region change colours when selected.
- A primer-pair is selected by moving the mouse-pointer over one of the primer-pairs; change in colour indicates the selected primer-pair.
- Choosing primer pair P-1 / 5S2B will activate options for the PCR fragment size of the African A. fuscipes (> 1000 bp.) or A. heimii (< 1000 bp.).</li>
- 4) An enzyme is selected from a drop-down menu that lists all enzymes and their restriction sequences from the database.
- 5) The number of fragments (between 1 and 5) to be entered are selected from a drop-down menu.
- Boxes for the fragment sizes of the RFLP profile open after Step 4. Only fragment sizes between 50 and 700 bp. are accepted.
- 7) The Analyze button is pressed to execute the analysis.

One of two analysis algorithms, sum of differences and normal distribution error, can be selected by the user for the analysis.



#### **ANALYSIS RESULT WINDOW**

| Analyze                                                          |                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and the second second                                            | Analysis                                                                               | s Result                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A COLORES                                                        | Nante:                                                                                 | A. borealis                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V.                                                               | Referen                                                                                | CE: Harrington TC and Wingfi<br>Mycologia 87: 280-288.                                                                                                                   | eld BD. 1995. A PCR-based id                                                                                                                                                            | entification method for species of Armillaria.                                                                                                                                                                                                                                                                                                                                                                                |
| 6.1.8                                                            | PCR:                                                                                   | IGS-1 Primers: CLR12                                                                                                                                                     | R/O-1 PCR Fragment                                                                                                                                                                      | Size N.A.                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                  | Enzyme                                                                                 | Alu I                                                                                                                                                                    | ,                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nput                                                             |                                                                                        | of Fragments: 3                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR: IGS-1                                                        | Profile                                                                                |                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  |                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| rimers: CLR12R/0-1                                               | Fragme                                                                                 |                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR Fragment Size: N.A                                            | 310                                                                                    | 200 104                                                                                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| zyme: Alu I                                                      |                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| umber of Fragments: 3                                            | SCORE                                                                                  | SPECIES                                                                                                                                                                  | RFLP PROFILE                                                                                                                                                                            | reference                                                                                                                                                                                                                                                                                                                                                                                                                     |
| agment 1: 350                                                    | 44.00                                                                                  | A. borealis                                                                                                                                                              | 310, 200, 104                                                                                                                                                                           | Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                  |                                                                                        |                                                                                                                                                                          | 005 000 100                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  | 45.00                                                                                  | A. borealis (a)                                                                                                                                                          | 305, 200, 100                                                                                                                                                                           | Pérez Sierra A, Whitehead DS and Whitehe                                                                                                                                                                                                                                                                                                                                                                                      |
| agment 2: 200                                                    | 45.00<br>70.00                                                                         | A. tabescens (b)                                                                                                                                                         | 305, 200, 100<br>320, 240, 100                                                                                                                                                          | Pérez Sierra A, Whitehead DS and Whitehe<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                                                              |
| agment 2: 200<br>agment 3: 100                                   | and any book of the second                                                             | and a second                                                           |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| agment 2: 200<br>agment 3: 100                                   | 70.00                                                                                  | A. tabescens (b)                                                                                                                                                         | 320, 240, 100                                                                                                                                                                           | Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                                                                                                          |
| agment 2: 200<br>agment 3: 100<br>agment 4: N.A.                 | 70.00<br>75.00                                                                         | A. tabescens (b)<br>A. cepistipes (b)                                                                                                                                    | 320, 240, 100<br>310, 200, 135                                                                                                                                                          | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                                                                  |
| agment 2: 200<br>agment 3: 100<br>agment 4: N.A.                 | 70.00<br>75.00<br>75.00                                                                | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina                                                                                                                       | 320, 240, 100<br>310, 200, 135<br>310, 200, 135                                                                                                                                         | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                          |
| agment 2: 200<br>agment 3: 100<br>agment 4: NA,<br>agment 5: NA. | 70.00<br>75.00<br>75.00<br>75.00                                                       | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina<br>A. ostoyae                                                                                                         | 320, 240, 100<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135                                                                                                       | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                  |
| agment 2: 200<br>agment 3: 100<br>agment 4: N.A.                 | 70.00<br>75.00<br>75.00<br>75.00<br>75.00                                              | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina<br>A. ostoyae<br>A. ostoyae                                                                                           | 320, 240, 100<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135                                                                                      | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>White EE, Dubetz CP, Cruickshank MG and                                                                                                                                                                                                                       |
| agment 2: 200<br>agment 3: 100<br>agment 4: NA,<br>agment 5: NA. | 70.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00                                     | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina<br>A. ostoyae<br>A. ostoyae<br>A. borealis (a)                                                                        | 320, 240, 100<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135                                                                     | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>White EE, Dubetz CP, Cruickshank MG and<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                               |
| agment 2: 200<br>agment 3: 100<br>agment 4: NA.<br>agment 5: NA. | 70.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>77.00                   | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina<br>A. ostoyae<br>A. ostoyae<br>A. borealis (a)<br>A. gallica                                                          | 320, 240, 100<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>317, 209, 135                                                    | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>White EE, Dubetz CP, Cruickshank MG and<br>Harrington TC and Wingfield BD, 1995<br>Terashima K, Kawashima Y, Cha JY and M                                                                                                                                     |
| agment 2: 200<br>agment 3: 100<br>agment 4: NA,<br>agment 5: NA. | 70.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>77.00<br>79.00          | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina<br>A. ostoyae<br>A. ostoyae<br>A. borealis (a)<br>A. gallica<br>A. cepistipes<br>A. cepistipes (b)                    | 320, 240, 100<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>317, 209, 135<br>309, 199, 137<br>305, 200, 135                  | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>White EE, Dubetz CP, Cruickshank MG and<br>Harrington TC and Wingfield BD, 1995<br>Terashima K, Kawashima Y, Cha JY and M<br>Kim M-S, Klopfenstein NB, McDonald GI, A                                                                                         |
| agment 2: 200<br>agment 3: 100<br>agment 4: NA.<br>agment 5: NA. | 70.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>77.00<br>79.00<br>80.00          | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina<br>A. ostoyae<br>A. ostoyae<br>A. borealis (a)<br>A. gallica<br>A. cepistipes<br>A. cepistipes (b)<br>A. borealis (b) | 320, 240, 100<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>317, 209, 135<br>309, 199, 137<br>305, 200, 135<br>305, 200, 135 | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>White EE, Dubetz CP, Cruickshank MG and<br>Harrington TC and Wingfield BD, 1995<br>Terashima K, Kawashima Y, Cha JY and M<br>Kim M-S, Klopfenstein NB, McDonald GI, A<br>Pérez Sierra A, Whitehead DS and Whitehe                                             |
| agment 2: 200<br>agment 3: 100<br>agment 4: NA.<br>agment 5: NA. | 70.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>77.00<br>79.00<br>80.00<br>80.00 | A. tabescens (b)<br>A. cepistipes (b)<br>A. gemina<br>A. ostoyae<br>A. ostoyae<br>A. borealis (a)<br>A. gallica<br>A. cepistipes<br>A. cepistipes (b)                    | 320, 240, 100<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>310, 200, 135<br>317, 209, 135<br>309, 199, 137<br>305, 200, 135                  | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>White EE, Dubetz CP, Cruickshank MG and<br>Harrington TC and Wingfield BD, 1995<br>Terashima K, Kawashima Y, Cha JY and M<br>Kim M-S, Klopfenstein NB, McDonald GI, A<br>Pérez Sierra A, Whitehead DS and Whitehe<br>Pérez Sierra A, Whitehead DS and Whitehe |

The Result window gives a list of species, in the order of the best to the worst match with the user RFLP profile, together with all their information. Detailed information pertaining to a specific species record (name, full reference, PCR region, primer pairs, PCR fragment sizes, enzyme used, number of fragments and fragment sizes) is displayed after selecting the record from the table. The table can also be exported to a Microsoft® Word file using the Print button. The Back button will take the user to the analysis window, which will still contain all the selected and entered data; these can be changed and the analysis repeated. The Exit button returns the user to the General window.



## ADD DATA - RFLP PROFILE WINDOW

| Last and a second     | RFLP Profile                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                              |                                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| and the second second | FELP Profile                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                              |                                                                                                           |
|                       | Name: A. mei                                                                                                                                                                                                                                                    | llog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                              |                                                                                                           |
| NA.                   | Reference: Otieno                                                                                                                                                                                                                                               | o W, Pérez Sierra A, Termorshuizen A. 2<br>ellia sinensis) in Kenya. <i>Mycologia</i> 95:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               | ization of Armi                                                                                                                                                                                                       | <i>llaria</i> isolates from tea                              |                                                                                                           |
|                       | PCE ITS                                                                                                                                                                                                                                                         | Printer: ITS1/ITS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CR Fragment                                                                                                                                                                                                                                                   | Size NIA                                                                                                                                                                                                              |                                                              |                                                                                                           |
|                       |                                                                                                                                                                                                                                                                 | Frimer: 1131/1134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cr ragment                                                                                                                                                                                                                                                    | DILE IN.A.                                                                                                                                                                                                            |                                                              |                                                                                                           |
| FLP Profile           | Enzymie: Alu I                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                              |                                                                                                           |
|                       | Number of Frag                                                                                                                                                                                                                                                  | ments: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                              |                                                                                                           |
|                       | Profile                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                              |                                                                                                           |
|                       |                                                                                                                                                                                                                                                                 | in the strength of the strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                     |                                                              |                                                                                                           |
| Concession 1          | -Fragment 1 -Fr                                                                                                                                                                                                                                                 | agment 2 Fragment 3 Fragment 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                              |                                                                                                           |
| Enzymes               |                                                                                                                                                                                                                                                                 | agment 2 Fragment 3 Fragment 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               | Max                                                                                                                                                                                                                   | 1 Malaine                                                    | Delete                                                                                                    |
| Enzymes               |                                                                                                                                                                                                                                                                 | agment 2 Fragment 3 Fragment 4<br>235 190 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               | Hav                                                                                                                                                                                                                   | Update                                                       | Deletit                                                                                                   |
|                       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PCR                                                                                                                                                                                                                                                           | PRIMER                                                                                                                                                                                                                | PCR FRAG SIZE                                                | Oviete<br>ENZ                                                                                             |
| Enzymes               | 320                                                                                                                                                                                                                                                             | 235 190 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       | PCR FRAG SIZE                                                |                                                                                                           |
|                       | 320<br>NAME<br>A. mellea                                                                                                                                                                                                                                        | 235     190     150       REFERENCE     Otieno W, Pérez Sierra A, Termo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITS                                                                                                                                                                                                                                                           | PRIMER                                                                                                                                                                                                                |                                                              |                                                                                                           |
| References            | 320<br>NAME                                                                                                                                                                                                                                                     | 235 190 150   REFERENCE   Otieno W, Pérez Sierra A, Termo<br>Chillali M, Idder-Ighili H, Agustain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITS<br>ITS                                                                                                                                                                                                                                                    | PRIMER<br>ITS1/ITS4                                                                                                                                                                                                   | N.A.                                                         | Alul                                                                                                      |
|                       | 320<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III                                                                                                                                                                                            | 235 190 150   REFERENCE   Otieno W, Pérez Sierra A, Termo<br>Chillali M, Idder-Ighili H, Agustain<br>Chillali M, Idder-Ighili H, Agustain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ITS<br>ITS<br>ITS                                                                                                                                                                                                                                             | PRIMER<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                                                                                      | N.A.<br>N.A.                                                 | Alu I<br>Alu I                                                                                            |
| References            | 320<br>NAME<br>A. meilea<br>A. meilea sub. sp.                                                                                                                                                                                                                  | 235 190 150 <b>FEFERENCE</b> Otieno W, Pérez Sierra A, Termc   Chillali M, Idder-Ighili H, Agustain   Chillali M, Idder-Ighili H, Agustain   Otieno W, Pérez Sierra A, Termc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ПS<br>ПS<br>ПS<br>ПS                                                                                                                                                                                                                                          | PEIMER<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                                                            | N.A.<br>N.A.<br>N.A.                                         | Alu I<br>Alu I<br>Alu I                                                                                   |
| Peterences            | A. mellea<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis                                                                                                                                                             | Exercise     Exercise       Otieno W, Pérez Sierra A, Termor     Chillali M, Idder-Ighili H, Agustain       Chillali M, Idder-Ighili H, Agustain     Otieno W, Pérez Sierra A, Termor       Otieno W, Pérez Sierra A, Termor     Chillali M, Idder-Ighili H, Guillaumi                                                                                                                                                                                                                                                                                                                                                                                                                              | ПS<br>ПS<br>ПS<br>ПS<br>ПS                                                                                                                                                                                                                                    | PRIMER<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                                                                         | N.A.<br>N.A.<br>N.A.<br>N.A.                                 | Alu I<br>Alu I<br>Alu I<br>Alu I                                                                          |
| Peterences            | 320<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes                                                                                                                                                  | Exercise     Exercise       Otieno W, Pérez Sierra A, Terrnc     Chillali M, Idder-Ighili H, Agustain       Chillali M, Idder-Ighili H, Agustain     Otieno W, Pérez Sierra A, Terrnc       Otieno W, Pérez Sierra A, Terrnc     Chillali M, Idder-Ighili H, Guillaumi       Otieno W, Pérez Sierra A, Terrnc     Chillali M, Idder-Ighili H, Guillaumi                                                                                                                                                                                                                                                                                                                                             | ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS                                                                                                                                                                                                                        | PFIMER<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                                               | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.                         | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I                                                                 |
| References            | 320<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae                                                                                                                                    | East     190     150       REFERENCE     Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Agustain     Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Termc     Chillali M, Idder-Ighili H, Guillaumi       Otieno W, Pérez Sierra A, Termc     Chillali M, Idder-Ighili H, Guillaumi       Chillali M, Idder-Ighili H, Guillaumi     Chillali M, Idder-Ighili H, Guillaumi                                                                                                                                                                                                                                                                                  | пร<br>пร<br>пร<br>пร<br>пร<br>пร<br>пร<br>пร                                                                                                                                                                                                                  | PEIMER<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                     | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.                 | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I                                                        |
| Peterences            | 320<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis                                                                                                             | 235     190     150       REFERENCE       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Guillaumi                                                                                                                                                                                 | п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п                                                                                                                                                                                            | <b>PFLMEF</b><br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                 | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I                                    |
| References            | 320<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG II<br>Armillaria SIG II<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis<br>A. cepistipes                                                                        | 235     190     150       REFERENCE       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Guillaumi                                                                                                                                                                                 | п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п                                                                                                                                                                                            | <b>PRIMER</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b>                                                             | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.         | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I                                               |
| References            | 320<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis<br>A. cepistipes<br>A. cepistipes<br>A. ectypa                                                              | 235     190     150       REFERENCE       Otieno W, Pérez Sierra A, Terrnc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Terrnc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Terrnc       Chillali M, Idder-Ighili H, Guillaumi                                                                                      | ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS                                                                                                                                                                                          | <b>PRIMER</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b>                     | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I<br>Eco R I                         |
| References            | 320<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG II<br>Armillaria SIG II<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis<br>A. cepistipes                                                                        | 235     190     150       REFERENCE       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Termc       Chillali M, Idder-Ighili H, Guillaumi       Chillali M, Idder-Ighili H, Guillaumi | ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS<br>ПS                                                                                                                                                                                    | <b>PRIMER</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b><br><b>ITS1/ITS4</b> | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I F<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I<br>Eco R I<br>Eco R I            |
| References            | 320<br>NAMC<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis<br>A. cepistipes<br>A. cepistipes<br>A. cepistipes<br>A. cepistipes<br>A. ectypa<br>A. gallica<br>A. heimii | 235     190     150       REFERENCE       Otieno W, Pérez Sierra A, Terrnc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Terrnc       Chillali M, Idder-Ighili H, Agustain       Otieno W, Pérez Sierra A, Terrnc       Chillali M, Idder-Ighili H, Guillaumi                                                                                      | ITS       ITS | <b>PRIMER</b><br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                          | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I F<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I<br>Eco R I<br>Eco R I<br>Eco R I |

RFLP profile records can be added, updated or deleted within the Add Data window after pressing the RFLP Profile button. This procedure requires the following steps:

- 1) A list of all records within the database is displayed in a table.
- A specific record can be selected with the mouse-pointer by clicking on any of the items in the table; this will highlight the selection and show detailed information regarding the species.
- 3) The selected record can then be updated or deleted using the Update and Delete buttons.

| Alth.                 | RFLP Profile                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| and the loss          | -New RELP Prof                                                                                                                                                                                                                                                                                                          | ile                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |
|                       | Name:                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         | Black - G                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arial Unicode I                                              | MS - 7 -                                                                                     |
|                       | Reference:                                                                                                                                                                                                                                                                                                              | Banik MT. Volk TJ and                                                                                                                                                                                                                                                                                                                                                                 | Durdeell UU 10 -                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anal Unicode I                                               | MS • 7 •                                                                                     |
|                       | PCF                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       | burdsau HH, 1:                                                                                                                                                                          | Bold                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Underline                                                    | Italic                                                                                       |
|                       |                                                                                                                                                                                                                                                                                                                         | IGS-1                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |
| 11 N 11 N             | Primer:                                                                                                                                                                                                                                                                                                                 | CLR12R/O-1                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |
|                       | PCR Fragment S                                                                                                                                                                                                                                                                                                          | IZE: N.A.                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |
| PEL P Bunkle          | Enzyme:                                                                                                                                                                                                                                                                                                                 | Alu I, AG   CT                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |
| RFLP Profile          | Number of Frage                                                                                                                                                                                                                                                                                                         | ments: 1                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |
| Enzymes               | Fragment 1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         | Liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NI                                                           | Down                                                                                         |
| _                     |                                                                                                                                                                                                                                                                                                                         | REFERENCE                                                                                                                                                                                                                                                                                                                                                                             | PLE                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PCR FRAG                                                     | SIZE ENZ                                                                                     |
| Enzymes<br>References | 50                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         | PRIMER<br>ITS1/ITS4                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCR FRAG                                                     | SIZE ENZ                                                                                     |
|                       | 50<br>NAME<br>A. mellea                                                                                                                                                                                                                                                                                                 | Otieno W, Pérez Sierra A, T                                                                                                                                                                                                                                                                                                                                                           | Fermc ITS                                                                                                                                                                               | PRIMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                                                              |
| Peterences            | 50<br>NAME                                                                                                                                                                                                                                                                                                              | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu                                                                                                                                                                                                                                                                                                                        | Fermc ITS<br>ustain ITS                                                                                                                                                                 | PRIMER<br>ITS1/ITS4                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.A.                                                         | Alu I                                                                                        |
| _                     | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.                                                                                                                                                                                                                                                                           | Otieno W, Pérez Sierra A, T                                                                                                                                                                                                                                                                                                                                                           | Termc ITS<br>ustain ITS<br>ustain ITS                                                                                                                                                   | PRIMER<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                                                                                                                                                                                                                                                                                                                                       | N.A.<br>N.A.                                                 | Alu I<br>Alu I                                                                               |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III                                                                                                                                                                                                                                                     | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu                                                                                                                                                                                                                                                                                     | Fermc ITS<br>ustain ITS<br>ustain ITS<br>Fermc ITS                                                                                                                                      | PRIMER<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                                                                                                                                                                                                                                                                                                                          | N.A.<br>N.A.<br>N.A.                                         | Alu I<br>Alu I<br>Alu I                                                                      |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.                                                                                                                                                                                                                                   | Otieno W, Pérez Sierra A, T<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, T                                                                                                                                                                                                                                                      | Fermc ITS<br>ustain ITS<br>ustain ITS<br>Fermc ITS<br>Ilaumi ITS                                                                                                                        | РЕІМЕР.<br>ПS1/ПS4<br>ПS1/ПS4<br>ПS1/ПS4<br>ПS1/ПS4                                                                                                                                                                                                                                                                                                                                                                                                                    | N.A.<br>N.A.<br>N.A.<br>N.A.                                 | Alu I<br>Alu I<br>Alu I<br>Alu I                                                             |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis                                                                                                                                                                                                                    | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Gui                                                                                                                                                                                                                   | Fermc ITS<br>ustain ITS<br>ustain ITS<br>Fermc ITS<br>Ilaumi ITS<br>Ilaumi ITS                                                                                                          | PEIMER<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4<br>ITS1/ITS4                                                                                                                                                                                                                                                                                                                                                                                                | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.                         | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I                                                    |
| Peterences            | 50<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes                                                                                                                                                                                                           | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui                                                                                                                                                                                | Termc ITS<br>ustain ITS<br>ustain ITS<br>Termc ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS                                                                                            | PFLMEP.       ITS1/ITS4       ITS1/ITS4       ITS1/ITS4       ITS1/ITS4       ITS1/ITS4       ITS1/ITS4       ITS1/ITS4       ITS1/ITS4                                                                                                                                                                                                                                                                                                                                | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.                         | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I                                           |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae                                                                                                                                                                                     | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui                                                                                                                                             | Fermic ITS<br>Justain ITS<br>Justain ITS<br>Fermic ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Justain ITS                                                                         | PFLMEP.       ITS1/ITS4                                                                                                                                                                                                                                                                                                | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.         | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I                                  |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis                                                                                                                                                                      | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Agu                                                                                                          | Fermic ITS<br>Justain ITS<br>Justain ITS<br>Fermic ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Justain ITS<br>Ilaumi ITS                                                                         | PRIMER       ITS1/ITS4                                                                                                                                                                                                                                                 | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I                       |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis<br>A. cepistipes                                                                                                                                                     | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Gui                                                                       | Fermic ITS<br>Justain ITS<br>Justain ITS<br>Fermic ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Justain ITS<br>Ilaumi ITS<br>Ilaumi ITS                                                           | PRIMEE       ITS1/ITS4                                                                                                                                                                                 | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I<br>Eco R I            |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Armillaria SIG III<br>Armillaria sp.<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis<br>A. cepistipes<br>A. cepistipes<br>A. cepistipes<br>A. ectypa                                                                                                      | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui                                    | Fermic ITS<br>Justain ITS<br>Justain ITS<br>Fermic ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS                                              | PRIMEE       ITS1/ITS4                                                                 | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I<br>Eco R I<br>Eco R I |
| Peterences            | 50<br>NAME<br>A. mellea<br>A. mellea sub. sp.<br>Amillaria SIG III<br>Armillaria SIG III<br>Armillaria SIG III<br>Armillaria SIG III<br>Armillaria SIG III<br>Armillaria SIG<br>A. borealis<br>A. cepistipes<br>A. ostoyae<br>A. borealis<br>A. cepistipes<br>A. cepistipes<br>A. cepistipes<br>A. gallica<br>A. heimii | Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Agu<br>Otieno W, Pérez Sierra A, 1<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Agu<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui<br>Chillali M, Idder-Ighili H, Gui | Fermic ITS<br>Justain ITS<br>Justain ITS<br>Fermic ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Ilaumi ITS<br>Justain ITS<br>Justain ITS<br>Justain ITS | PRIMEE       ITS1/ITS4       ITS1/ITS4 | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | Alu I<br>Alu I<br>Alu I<br>Alu I<br>Cfo I<br>Cfo I<br>Cfo I<br>Eco R I<br>Eco R I<br>Eco R I |

New RFLP profiles are added to the database by pressing the New button (see screen on previous page).

- 1) Data are entered by the user or selected from pull-down-menus.
- 2) The Add button will add the data to the database and the next record can then be entered.
- 3) The Done button will close the Add function and the new records are displayed in the table.

The procedure outlined above is also applicable to adding, updating and removing enzymes and reference records.

## LIST ALL PROFILES WINDOW

| P        | ublished IGS RFL                                                                                                                                                                                            | -P Profiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |                                                                                     |                                                                           |   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|
| ALC: NOT | Name: A. borealis                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                     |                                                                           |   |
|          |                                                                                                                                                                                                             | and Wingfield BD. 1995. A PCR-based identification method for species<br>280-288.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of Armi                                                                                          | llaria                                                                              | 1.                                                                        |   |
| NE       | PCR: IGS-1 Primer                                                                                                                                                                                           | CLR12R/O-1 PCF Fragment Size: N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                  |                                                                                     |                                                                           |   |
|          | Enzyme: Alu I                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                     |                                                                           |   |
|          | Number of Fragments: 3                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                     |                                                                           |   |
| 165      | reamber of Pragments: 3                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                     |                                                                           |   |
|          | Profile                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                     |                                                                           |   |
|          | - Fragment 1 - Fragment 2                                                                                                                                                                                   | Fragment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                     |                                                                           |   |
| ITS      | 310 200                                                                                                                                                                                                     | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                     |                                                                           |   |
|          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                     |                                                                           |   |
|          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                     |                                                                           |   |
|          | IGS-1 Digested w                                                                                                                                                                                            | ith Alu I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                     |                                                                           | n |
| Print    | IGS-1 Digested w                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240                                                                                              | 200                                                                                 | 40.4                                                                      | 1 |
| Print    | A. borealis                                                                                                                                                                                                 | Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 310, 2                                                                                           |                                                                                     |                                                                           | - |
| Print    | A borealis<br>A borealis (a)                                                                                                                                                                                | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 310, 2                                                                                           | 200,                                                                                | 135                                                                       | • |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)                                                                                                                                                           | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 310, 2<br>305, 2                                                                                 | 200,<br>200,                                                                        | 135<br>100                                                                |   |
| Print    | A borealis<br>A borealis (a)<br>A borealis (a)<br>A borealis (b)                                                                                                                                            | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999                                                                                                                                                                                                                                                                                                                                                                                                                               | 310, 2<br>305, 2<br>305, 2                                                                       | 200,<br>200,<br>200,                                                                | 135<br>100                                                                |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens                                                                                                                       | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                                                                                                                       | 310, 2<br>305, 2<br>305, 2<br>582, 2                                                             | 200,<br>200,<br>200,<br>200,<br>240                                                 | 135<br>100<br>135                                                         |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens<br>A. calvescens                                                                                                      | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K au                                                                                                                                                                                                                                                                                                                          | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2                                                   | 200,<br>200,<br>200,<br>240<br>239,                                                 | 135<br>100<br>135<br>184                                                  |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens<br>A. calvescens<br>A. capistipes                                                                                     | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar                                                                                                                                                                                                                                                             | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2<br>309, 1                                         | 200,<br>200,<br>200,<br>240<br>239,<br>199,                                         | 135<br>100<br>135<br>184<br>137                                           |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens<br>A. calvescens<br>A. cepistipes<br>A. cepistipes<br>(a)                                                             | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                  | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2<br>309, 2                                         | 200,<br>200,<br>200,<br>240<br>239,<br>199,<br>200,                                 | 135<br>100<br>135<br>184<br>137<br>183                                    |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens<br>A. calvescens<br>A. cepistipes<br>A. cepistipes (a)<br>A. cepistipes (a)                                           | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999                                                                                                                                                                                                                           | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2<br>309, 2<br>400, 2                               | 200,<br>200,<br>240<br>239,<br>199,<br>200,<br>200,                                 | 135<br>100<br>135<br>184<br>137<br>183<br>190                             |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens<br>A. calvescens<br>A. cepistipes<br>A. cepistipes<br>(a)                                                             | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Harrington TC and Wingfield BD, 1995                                                                                                                                                                                                                                                                                  | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2<br>309, 2<br>400, 2<br>310, 2                     | 200,<br>200,<br>240<br>239,<br>199,<br>200,<br>200,<br>200,                         | 135<br>100<br>135<br>184<br>137<br>183<br>190<br>135                      |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens<br>A. calvescens<br>A. cepistipes<br>A. cepistipes (a)<br>A. cepistipes (a)<br>A. cepistipes (b)                      | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K an<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K an<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999                                                               | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2<br>309, 2<br>399, 2<br>400, 2<br>310, 2<br>305, 2 | 200,<br>200,<br>240<br>239,<br>199,<br>200,<br>200,<br>200,<br>200,                 | 135<br>100<br>135<br>184<br>137<br>183<br>190<br>135<br>135               |   |
| Print    | A. borealis<br>A. borealis (a)<br>A. borealis (a)<br>A. borealis (b)<br>A. calvescens<br>A. calvescens<br>A. cepistipes<br>A. cepistipes (a)<br>A. cepistipes (a)<br>A. cepistipes (b)<br>A. cepistipes (b) | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995                                                                                                                      | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2<br>309, 2<br>309, 2<br>310, 2<br>310, 2<br>305, 2 | 200,<br>200,<br>240<br>239,<br>199,<br>200,<br>200,<br>200,<br>200,<br>245,         | 135<br>100<br>135<br>184<br>137<br>183<br>190<br>135<br>135<br>135        |   |
| Print    | A borealis<br>A borealis (a)<br>A borealis (a)<br>A borealis (b)<br>A calvescens<br>A calvescens<br>A cepistipes<br>A cepistipes (a)<br>A cepistipes (b)<br>A cepistipes (b)<br>A fuscipes                  | Harrington TC and Wingfield BD, 1995<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Kim M-S, Klopfenstein NB, McDonald GI, Arumuganathan K ar<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Harrington TC and Wingfield BD, 1995<br>Pérez Sierra A, Whitehead DS and Whitehead MP, 1999<br>Coetzee MPA, Wingfield BD, Coutinho TA and Wingfield MJ, 3 | 310, 2<br>305, 2<br>305, 2<br>582, 2<br>401, 2<br>309, 2<br>309, 2<br>310, 2<br>310, 2<br>305, 2 | 200,<br>200,<br>240<br>239,<br>199,<br>200,<br>200,<br>200,<br>200,<br>245,<br>255, | 135<br>100<br>135<br>184<br>137<br>183<br>190<br>135<br>135<br>135<br>135 |   |

Selected subsets of RFLP profiles can be displayed following the steps outlined below:

- 1) An rDNA region is selected using the IGS or ITS buttons.
- 2) A table with all records in the database pertaining to that region is displayed.
- 3) A specific record can be selected from the database in the table.
- 4) The Selected record is highlighted and detailed information is displayed.
- 5) A list of all the records in the database pertaining to the selected rDNA region can be exported to Microsoft® Word using the Print button.
- 6) The Exit button returns the user to the General window.

### LIST ALL REFERENCES WINDOW

|                | Reference                                                                                                       |                                    |            |                                                                                      |                   |                      |
|----------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------|--------------------------------------------------------------------------------------|-------------------|----------------------|
| and the second | Reference                                                                                                       |                                    |            |                                                                                      |                   |                      |
|                | Author(s):                                                                                                      | Banik MT, Vol                      | k TJ and H | Burdsall HH                                                                          | Year:             | 1996                 |
| In A           | Title:                                                                                                          | Armillaria spe<br>biological speci |            | Olympic Peninsula of Washington state, inclus                                        | ling confirmation | of North America     |
|                | Journal:                                                                                                        | Mycologia                          |            |                                                                                      |                   |                      |
| Print          | Volume:                                                                                                         | 88                                 |            |                                                                                      | Page:             | 492-496              |
| Ealt           | AUT                                                                                                             | HORS                               | YEAR       | TITLE                                                                                | 5                 | OURNAL               |
| -m             | Banik MT, Vo                                                                                                    | olk TJ and Burd                    | 1996       | Armillaria species of the Olympic Peni                                               | Mycologia         | -                    |
|                | Chillali M, Ido                                                                                                 | der-Ighili H, Agu                  | 1997       | Species delimitation in the African Arr                                              |                   | eral and Applied Mic |
|                | Chillali M, Ido                                                                                                 | ter-Ighili H, Guill                | 1998       | Variation in the ITS and IGS regions or                                              | Mycological Re    | esearch              |
|                | Coetzee MP                                                                                                      | A, Wingfield BE                    | 2000       | Identification of the causal agent of An                                             | Mycologia         |                      |
|                |                                                                                                                 | C and Wingfield                    |            | A PCR-based identification method fc                                                 |                   |                      |
|                |                                                                                                                 | opfenstein NB, N                   |            | Characterization of North American Ar                                                |                   |                      |
|                |                                                                                                                 | opfenstein NB, N                   |            | Use of flow cytometry, fluorescence mi                                               |                   |                      |
|                |                                                                                                                 | fingfield BD, Co                   |            | Molecular characterisation of Armillari                                              |                   | esearch (in press)   |
|                | the second se | erez Sierra A, T                   |            | Characterization of Armillaria isolates                                              |                   |                      |
|                |                                                                                                                 | A, Whitehead I                     |            | Investigation of a PCR-based method                                                  |                   | esearch              |
|                |                                                                                                                 | , Kawashima Y<br>Isall HH and Ba   |            | Identification of Armillaria species from<br>Armillaria nabsnona, a new species from |                   |                      |
|                |                                                                                                                 | ubetz CP, Cruic                    |            | DNA diagnostic for Armillaria species                                                |                   |                      |
|                | < a                                                                                                             | uber of, cluic                     | 1330       | DivA diagnostic for Affiliana species                                                | wycologia         |                      |

References stored in the database are viewed through the following steps:

- 1) A table with all records in the database is displayed.
- 2) A specific record can be selected from the database.
- 3) The selected record is highlighted and detailed information is displayed.
- 4) A list of all the reference records can be exported to Microsoft® Word using the Print button.
- 5) The Exit button returns the user to the General window.