Biological activities of extracts and isolated compounds from *Bauhinia galpinii* (Fabaceae) and *Combretum vendae* (Combretaceae) as potential antidiarrhoeal agents

# Ahmed Aroke Shahid

BSc (Chemistry) (ABU), MSc (Chemistry) (UNILAG)

A dissertation submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy (PhD)

in the

Phytomedicine Programme, Department of Paraclinical Sciences,

Faculty of Veterinary Science



Promoter: Prof. Jacobus N. Eloff Co-promoters: Dr. Nivan Moodley (CSIR) Prof. Vinny Naidoo Dr. Lyndy McGaw

January 2012



#### Declaration

The research work described in the thesis was conducted in the Phytomedicine Programme in the Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria under the supervision of Professor JN. Eloff, Dr. N. Moodley, Prof. V. Naidoo and Dr. LJ. McGaw

The results presented herewith were generated from my own experiments, except where the work of others are quoted and referenced. There is no part of this work that has been submitted to any other University.

Aroke Shahid, Ahmed



#### Dedication

This work is dedicated to the memory of the following: My Father (Late Mr. Ahmed Aninya Aroke), my brothers (Late Salihu Aroke and Late Ibrahim Onimisi Ahmed), Late Olukemi Ore Udom (A friend and colleague who started her PhD, but could not finish the programme before death) and my dear sister (Late Mrs. Husseinatu Ohunene Abubakar).



#### Acknowledgements

This Ph.D. study would not have been possible without the support and encouragement of many people. I will thank my mum Mrs Omeneke Aminatu Ahmed who has been the pillar of my life. The love of my wife Mrs Rabiatu Isoyiza Ahmed and my children Enehu Mazidah, Onize Nusrah, Ometere Shamsiyah, Eneze Azeemah and Ava'ami AbdulAleem have been essential to my success. I thank you all for your understanding and endurance during my absence. I also wish to thank my siblings Mr. Aroke Haruna, Mr. Umar Omeiza Aroke and his wife Rukkayat, Mrs. Zulaiha Mubarak, Dr. Halidu Aroke Ahmed, Mrs. Khaltum Khamilu and Aisha Ahmed for their enormous support. I am also deeply indebted to my friends who stuck by me through the years: Dr. Muhammed Awwalu Usman, Engr. Yakubu Adajah, Mr. Yahaya Ohida Yusuf, Mr. Tijani Muhammed Isah, Abdulmumuni Enesi Umar, Dr. Muhammed Onujagbe Onoda, Mrs. Ukachi Ezenwa Igbo, Dr. Caroline Anyakorah, Dr. Oluwatoyin Taiwo and Dr. Chima Cartney Igwe among others. Financial support was a crucial element of my ability to devote so much time to this research. Major support that keeps me and my family afloat during the study was provided by a study leave with pay provide by Federal Institute of Industrial Research Oshodi (FIIRO), Lagos, Nigeria. The University of Pretoria has provided support through University bursary, National Research Foundation (NRF) of South Africa provide fund for the research, Faculty of Veterinary Science also provide research fund through the research committee (RESCOM), and Department of Paraclinical Science also provide research fund.

I am extremely grateful to my supervisor, Prof. J. N. Eloff (overall supervisor) and my co-supervisors, Dr. Nivan Moodley (characterization of isolated compounds), Prof. Vinny Naidoo (isolated organ studies), and Dr. Lyndy J. McGaw (cellular toxicology) for allowing me to tap from the wealth of their knowledge and also giving me much of their time and energy through the duration of this study. I have a great respect and appreciated the instruction and assistance I received from each and every one of you. I sincere thank the Secretary to Phytochemical Programme, Tharien de Winnaar for all her assistance in coordinating the purchase of materials and other important aspects of this project.

I feel honoured to have opportunity to do some of the work at Bioscience, CSIR South Africa and lucky to meet with Dr. Vinesh Maharaj, Dr. Jacqueline Ndlebe, and Ms. Teresa Faleschini who are friends as well as crucial resources of information, techniques and instructions. I express my gratitude to CSIR for allowing me to use her NMR spectroscopic facilities.

At the UPBRC where I got my isolated organ part, the assistance of Dr. Tamsyn Pulleer, Mrs. Stephanie Keulder and Mrs. Ilse Janse van Rensburg were highly appreciated. The ability to collect plant material was essential to this project, and for that I want to recognize the help and outstanding collaboration of Ms Magda Nel of the Manie van der Schyff Botanical Garden and Ms Elsa van Wyk (Curator of the HGW Schweickert Herbarium of the University of Pretoria) for assistance in collection, identification and authentication of the plant samples. My appreciation also goes to Ms Lita Pauw of the Phytomedicine Programme for allowing me access her stored



plant samples. I also appreciated working in harmony with all other students of the Phytomedicine Programme, most especially Mr. Thanyani Ramandwa, Ms Bellonah Sakong, Ms Salaelo Raphatlelo, Ms Imelda Ledwaba and Mrs Edwina Muleya. I thank you all for you co-operation and immeasurable assistance.



# Table of Contents

|                                                                              | Page number |
|------------------------------------------------------------------------------|-------------|
| Abstract                                                                     | xiv         |
| List of abbreviations                                                        | xvi         |
| List of figures                                                              | xix         |
| List of tables                                                               | xxi         |
| List of appendix                                                             | xxii        |
| CHAPTER ONE                                                                  |             |
| Gastrointestinal disorders in diarrhoea diseases mechanisms and medicinal    | plants      |
| potentiality as therapeutic agents                                           |             |
| 1.0. Introduction                                                            | 1           |
| 1.1. Plant metabolites as potential therapeutic agent                        | 2           |
| 1.2. Aims                                                                    | 3           |
| 1.3. Specific objectives                                                     | 4           |
| 1.4. Hypothesis                                                              | 4           |
| CHAPTER TWO                                                                  |             |
| 2.0 Literature review                                                        |             |
| 2.1. Diarrhoea as a disease                                                  | 5           |
| 2.2. Pathophysiology of Diarrhoea                                            | 6           |
| 2.3. Detailed pathophysiology of diarrhoea                                   | 8           |
| 2.3.1. Inflammation in diarrhoea                                             | 8           |
| 2.3.2. Oxidative damage in diarrhoea                                         | 11          |
| 2.3.3. Enteric nervous system in diarrhoea                                   | 15          |
| 2.3.4. Cystic fibrosis transmembrane conductance regulator (CFTR) regulation | 16          |
| 2.4. Specific Agents of Diarrhoea                                            | 16          |
| 2.4.1. Bacterial causes of diarrhoea                                         | 16          |
| 2.4.1.1. Escherichia coli                                                    | 16          |
| 2.4.1.2. Staphylococcus aureus                                               | 17          |
| 2.4.1.3. Campylobacter jejuni                                                | 18          |
| 2.4.1.4. <i>Shigella</i> spp                                                 | 18          |
| 2.4.1.5. Vibrio cholerae                                                     | 18          |
| 2.4.1.6. Bacillus cereus                                                     | 19          |
| 2.4.1.7. Yersinia enterocolitica                                             | 19          |
| 2.4.1.8. Listeria monocytogenes                                              | 20          |



| 2.4.1.9. Clostridium spp                                                                       | 20 |
|------------------------------------------------------------------------------------------------|----|
| 2.4.1.10. Salmonella typhimurium                                                               | 20 |
| 2.4.1.11. Enterococcus faecalis                                                                | 21 |
| 2.5. Fungal induced diarrhoea symptoms                                                         | 21 |
| 2.5.1. Candida albicans                                                                        | 21 |
| 2.6. Viral induced diarrhoea                                                                   | 21 |
| 2.6.1. Rotavirus                                                                               | 21 |
| 2.6.2. Norovirus                                                                               | 22 |
| 2.6.3. Hepatitis A virus                                                                       | 22 |
| 2.6.4. Human immunodeficiency virus (HIV)                                                      | 22 |
| 2.7. Protozoa induced diarrhoea                                                                | 22 |
| 2.7.1. Giardia intestinalis                                                                    | 22 |
| 2.7.2. Entamoeba histolytica                                                                   | 23 |
| 2.7.3. Cryptosporidium parvum                                                                  | 23 |
| 2.7.4. Cyclospora cayetanensis                                                                 | 23 |
| 2.8. Parasitic induced diarrhoea                                                               | 23 |
| 2.8.1. Trichinella spiralis                                                                    | 23 |
| 2.9. Immune disordered induced diarrhoea                                                       | 24 |
| 2.9.1. Compromised immune system                                                               | 24 |
| 2.9.2. Hyperactive immune system                                                               | 24 |
| 2.10. Antibiotic therapy induced diarrhoea                                                     | 24 |
| 2.10.1. Antibiotic toxicity                                                                    | 24 |
| 2.10.2. Alteration of digestive functionality                                                  | 25 |
| 2.10.3. Overgrowth of pathogenic microorganisms                                                | 25 |
| 2.11. Diabetic complications induced diarrhoea                                                 | 25 |
| 2.12. Food allergy induced diarrhoea                                                           | 26 |
| 2.13. Potential mechanisms in the control of diarrhoea                                         | 26 |
| 2.13.1. Oxidative damage and antioxidants in diarrhoeal management                             | 26 |
| 2.13.2. Inflammation and anti-inflammatory agents in diarrhoea management                      | 26 |
| 2.13.3. Enteric nervous system in diarrhoea symptoms and treatment                             | 26 |
| 2.14. Plants as potential source of therapeutic agents in alleviating diarrhoeal symptoms      | 28 |
| 2.14.1. Anti-infectious mechanisms of plant secondary metabolites against diarrhoeal pathogens | 28 |
| 2.14.2. Antioxidative mechanisms of plant phytochemical as potential antidiarrhoeal agents     | 29 |
| 2.14.3. Anti-inflammatory mechanisms of plant phytochemical in diarrhoea management            | 29 |
| 2.14.4. Antidiarrhoeal mechanisms of plant phytochemical                                       | 30 |
| 2.15. Classification of phytochemicals with antidiarrhoea potential                            | 30 |
| 2.15.1. Terpenoids                                                                             | 30 |



| 2.15.2. Alkaloids                                                                              | 33 |  |
|------------------------------------------------------------------------------------------------|----|--|
| 2.15.3. Phenolic                                                                               | 35 |  |
| 2.16. Ethnobotany and scientific investigation of plant species used traditionally in treating | ıg |  |
| diarrhoea in South Africa                                                                      | 38 |  |
| 2.17.Conclusion                                                                                | 38 |  |
| CHAPTER THREE                                                                                  |    |  |
| Plant selection, collection, extraction and analysis of selected species                       |    |  |
| 3.1. Introduction                                                                              | 39 |  |
| 3.2. Solid-liquid extraction                                                                   | 40 |  |
| 3.3. Liquid-liquid fractionation                                                               | 41 |  |
| 3.4. Thin layer chromatography (TLC)                                                           | 41 |  |
| 3.4.1. Phytochemical fingerprints                                                              | 41 |  |
| 3.5. Materials and Methods                                                                     | 42 |  |
| 3.5.1. Selection of South Africa medicinal plants for antidiarrhoeal screening                 | 42 |  |
| 3.5.2. Collection of plant materials                                                           | 42 |  |
| 3.5.3. Preparation of plant material and optimization of phenolic-enriched extraction process  | 42 |  |
| 3.5.4. Phytochemical profiling                                                                 | 44 |  |
| 3.6. Quantification of the phenolic constituents of the extracts                               | 45 |  |
| 3.6.1. Determination of total phenolic constituents                                            | 45 |  |
| 3.6.2. Determination of total tannin                                                           | 45 |  |
| 3.6.3. Determination of proanthocyanidin                                                       | 45 |  |
| 3.6.4. Determination of condensed tannin                                                       | 46 |  |
| 3.6.5. Determination of hydrolysable tannin (gallotannin)                                      | 46 |  |
| 3.6.6. Determination of total flavonoids and flavonol                                          | 46 |  |
| 3.6.7. Determination of anthocyanin                                                            | 47 |  |
| 3.7. Results                                                                                   | 47 |  |
| 3.7.1. Yield of extractions and fractionations processes                                       | 47 |  |
| 3.7.2. Phytochemical screening (fingerprints)                                                  | 48 |  |
| 3.7.3. Phenolic composition of the crude extracts                                              | 52 |  |
| 3.8. Discussion                                                                                | 57 |  |
| 3.8.1. Yield                                                                                   | 57 |  |
| 3.8.2. Thin layer chromatogram                                                                 | 57 |  |
| 3.8.3. Phenolic constituents of the crude extract                                              | 58 |  |
| 3.9. Conclusion                                                                                | 60 |  |
| CHAPTER FOUR                                                                                   |    |  |
| Antimicrobial activities of the plant extracts against potential diarrhoeal pathogens          |    |  |

4.0. Introduction

61



| 4.1. Q  | ualitative antimicrobial (Bioautography) assay                                         | 62 |
|---------|----------------------------------------------------------------------------------------|----|
| 4.2. Q  | uantitative antimicrobial activity (Minimum inhibitory concentration (MIC)) assay      | 63 |
| 4.3.Sel | ection of microorganisms used in the study                                             | 63 |
| 4.4. M  | laterial and Methods                                                                   | 64 |
| 4.4.1.  | Microorganism strains                                                                  | 64 |
| 4.4.2.  | Culturing of the Bacteria                                                              | 64 |
| 4.4.3.  | Bioautography against some pathogenic microorganisms                                   | 64 |
| 4.4.4.  | Determination of Minimum Inhibitory Concentration (MIC) against the bacteria pathogens | 64 |
| 4.4.5.  | Determination of Minimum Inhibitory Concentration (MIC) against the fungal pathogens   | 65 |
| 4.5. R  | esults                                                                                 | 65 |
| 4.5.1.  | Microbial bioautography                                                                | 65 |
| 4.5.2.  | Minimum inhibitory concentration against bacteria                                      | 70 |
| 4.5.3.  | Minimum inhibitory concentration (MIC)                                                 | 73 |
| 4.6. D  | iscussion                                                                              | 75 |
| 4.6.1.  | Antimicrobial bioautography                                                            | 75 |
| 4.6.2.  | Minimum inhibitory concentration (MIC)                                                 | 75 |
| 4.7. C  | onclusion                                                                              | 77 |
| CHAPT   | IRER FIVE                                                                              |    |
| Free ra | adical scavenging and antioxidant activities of the extracts and fractions as          |    |
| antidia | nrhoeal mechanism                                                                      |    |
| 5.1. In | troduction                                                                             | 79 |
| 5.1.1.  | Superoxide ion                                                                         | 81 |
| 5.1.2.  | Hydrogen peroxide                                                                      | 81 |
| 5.1.3.  | Hydroxyl radical                                                                       | 81 |
| 5.1.4.  | Peroxyl radical                                                                        | 82 |
| 5.1.5.  | Hypochlorous acid                                                                      | 82 |
| 5.1.6.  | Nitric oxide                                                                           | 82 |
| 5.2. A  | ntioxidant assays                                                                      | 83 |
| 5.2.1.  | Antioxidant bioautography                                                              | 83 |
| 5.2.2.  | The chemistry of some common antioxidant assays                                        | 83 |
| 5.2.2.1 | . Hydroxyl radical                                                                     | 83 |
| 5.2.2.2 | . Hydrogen peroxide scavenging                                                         | 84 |
| 5.2.2.3 | . Superoxide scavenging capacity                                                       | 84 |
| 5.2.2.4 | . DPPH                                                                                 | 84 |
| 5.2.2.5 | . ABTS                                                                                 | 85 |
| 5.2.2.6 | . Ferric reducing antioxidant power (FRAP)                                             | 85 |
| 5.3.    | Materials and Methods                                                                  | 85 |



| 5.3.1. Antioxidative profile of the crude extracts and fractions using DPPH radical solution | 86  |
|----------------------------------------------------------------------------------------------|-----|
| 5.3.2. Antioxidative assays                                                                  | 86  |
| 5.3.2.1. DPPH free radical-scavenging method                                                 | 86  |
| 5.3.2.2. ABTS free radical-scavenging method                                                 | 86  |
| 5.3.2.3. Ferric reducing antioxidant power (FRAP)                                            | 87  |
| 5.3.2.4. Hydroxyl radical scavenging assay                                                   | 87  |
| 5.3.2.5. Lipid peroxidation inhibition assay                                                 | 87  |
| 5.4. Result                                                                                  | 87  |
| 5.4.1. TLC-DPPH analyses                                                                     | 87  |
| 5.4.2. DPPH effective concentration (EC <sub>50</sub> )                                      | 90  |
| 5.4.3. ABTS effective concentration (EC <sub>50</sub> )                                      | 92  |
| 5.4.4. FRAP gradient                                                                         | 93  |
| 5.4.5. Hydroxyl radical effective concentration (EC <sub>50</sub> )                          | 94  |
| 5.4.6. Lipid peroxidation inhibition effective concentration (EC <sub>50</sub> )             | 95  |
| 5.5. Discussion                                                                              | 96  |
| 5.5.1. Qualitative antioxidant analyses (DPPH-TLC bioautography)                             | 96  |
| 5.6. Conclusion                                                                              | 98  |
| CHAPTER SIX                                                                                  |     |
| Anti-inflammatory activities of the crude extracts as antidiarrhoeal mechanisms              |     |
| 6.0. Introduction                                                                            | 100 |
| 6.1. Effect of cyclooxygenases (COX) on GIT                                                  | 101 |
| 6.2. Effects of lipoxygenase (LOX) on GIT                                                    | 101 |
| 6.3. Effects of cytokines on GIT                                                             | 102 |
| 6.4. Oxidative species as inflammatory mediator                                              | 102 |
| 6.5. Allopathic anti-inflammatory therapies and adverse effects on GIT                       | 103 |
| 6.6. Plant phytochemicals as anti-inflammatory agents                                        | 105 |
| 6.7. Mechanisms of anti-inflammatory assay models                                            | 105 |
| 6.8. Materials and Methods                                                                   | 106 |
| 6.8.1. COX assay                                                                             | 106 |
| 6.8.2. LOX assay                                                                             | 106 |
| 6.9. Results                                                                                 | 107 |
| 6.9.1. COX                                                                                   | 107 |
| 6.9.2. LOX                                                                                   | 108 |
| 6.10. Discussion                                                                             | 109 |
| 6.10.1. COX                                                                                  | 109 |
| 6.10.2. LOX                                                                                  | 109 |
| 6.11. Conclusion                                                                             | 110 |



## **CHAPTER SEVEN**

| Cytotoxicity evaluation of the crude extracts against Vero African green monkey kidney cell | lines |
|---------------------------------------------------------------------------------------------|-------|
| 7.0. Introduction                                                                           | 111   |
| 7.1. Materials and Methods                                                                  | 112   |
| 7.1.1. Preparation of plant extracts                                                        | 112   |
| 7.1.2. Cytotoxicity assay against Vero cell                                                 | 112   |
| 7.2. Results                                                                                | 113   |
| 7.3. Discussion                                                                             | 114   |
| 7.4. Conclusion                                                                             | 115   |
| CHAPTER EIGHT                                                                               |       |
| Motility modulation potential of Bauhinia galpinii and Combretum vendae phenolic-enriched   | l     |
| leaf extracts on isolated rat ileum                                                         |       |
| 8.0. Introduction                                                                           | 116   |
| 8.1. Drugs and reagents                                                                     | 117   |
| 8.2. Animal care                                                                            | 117   |
| 8.2.1. Isolated ileum preparation                                                           | 118   |
| 8.3. Contractility test                                                                     | 118   |
| 8.3.1. Spasmogen assay                                                                      | 118   |
| 8.3.2. Spasmolytic assays                                                                   | 118   |
| 8.3.2.1. Effects on acetylcholine-induced contractility                                     | 118   |
| 8.3.2.2. Effects on serotonin-induced contractility                                         | 118   |
| 8.3.2.3. Effects on KCI-induced contractility                                               | 119   |
| 8.4. Data analysis                                                                          | 119   |
| 8.5. Results                                                                                | 119   |
| 8.5.1. Effect of B. galpinii crude extract on isolated rat ileum                            | 119   |
| 8.5.2. Effect of C. vendae crude extract on isolated rat ileum                              | 122   |
| 8.6. Discussion                                                                             | 123   |
| 8.7. Conclusion                                                                             | 126   |
| CHAPTER NINE                                                                                |       |
| Isolation and characterization of antimicrobial and antioxidant compounds from              |       |
| Bauhinia galpinii and Combretum vendae                                                      |       |
| 9.0. Introduction                                                                           | 127   |
| 9.1.1. Column chromatography                                                                | 128   |
| 9.1.2. Mass spectrometry                                                                    | 128   |
| 9.2. Materials and Methods                                                                  | 128   |
| 9.2.1. Preparation of plant extracts                                                        | 128   |
| 9.2.2. Bioautography                                                                        | 128   |



| 9.2.3.         | Isolation of bioactive triterpenoids from C. vendae                                | 129 |
|----------------|------------------------------------------------------------------------------------|-----|
| 9.2.4.         | Isolation of phenolic compounds from C. vendae                                     | 130 |
| 9.3.           | Isolation of compounds from <i>B. galpinii</i>                                     | 130 |
| 9.3.1.         | Isolation of bioactive triterpenoids from B. galpinii                              | 130 |
| 9.3.2.         | Isolation of phenolic compounds from <i>B. galpinii</i>                            | 130 |
| 9.4. (         | Characterization of the isolated compounds                                         | 131 |
| 9.4.1.         | NMR spectroscopy                                                                   | 132 |
| 9.4.2          | .Mass spectrometry                                                                 | 132 |
| 9.4.3.         | Ultra-violet spectroscopy                                                          | 132 |
| 9.5. F         | Results                                                                            | 132 |
| 9.5.1.         | Identification of the chemical structures of isolated compounds from C. vendae     | 132 |
| 9.5.2.         | Antimicrobial activity of isolated compounds from C. vendae                        | 135 |
| 9.5.3.         | Identification of the chemical structures of isolated compounds from B. galpinii   | 136 |
| 9.5.4.         | Antimicrobial activity of isolated compounds from B. galpinii                      | 140 |
| 9.6. I         | Discussion                                                                         | 140 |
| 9.6.1.         | Bioactive compounds from C. vendae                                                 | 140 |
| 9.6.2.         | Bioactive compounds from B. galpinii                                               | 141 |
| 9.7. (         | Conclusion                                                                         | 143 |
| CHAP           | PTER 10                                                                            |     |
| Gene           | ral conclusion and future prospects                                                |     |
| 10. I          | ntroduction                                                                        | 144 |
| 10.1.          | Identification of diarrhoeal pathogenesis and medicinal plants used as therapeutic |     |
| Agent          | ts                                                                                 | 145 |
| 10.2.          | Antimicrobial evaluation of the extracts against infectious pathogens              | 145 |
| 10.3.          | Antioxidant evaluation of the extracts                                             | 145 |
| 10.4.          | Anti-inflammatory potential of the extracts                                        | 146 |
| 10.5.          | Toxicity risk of the extracts                                                      | 146 |
| 10.6           | Motility modulatory effects of Bauhinia galpinii and Combretum vendae              | 147 |
| 10.7.          | Isolation and characterisation of bioactive compounds                              | 147 |
| CHAP           | TER 11                                                                             |     |
| References 149 |                                                                                    |     |



#### Abstract

Diarrhoea is one of the killer diseases resulting from the dehydration and loss of electrolytes through profuse and excessive excretion of loose stool. The pathoaetiologies include infections, intestinal inflammation, imbalanced intestinal oxidative homeostasis and altered motility. Treatment with oral rehydration therapy (ORT) is a key intervention especially in secretory diarrhoea as supportive therapy. Symptomatic and non-symptomatic therapies directed at treating the intestinal tissues are available. However, these conventional treatments are still not sufficient in curing diarrhoea due to their associated hazards such as the development and spread of drug-resistant pathogens, changes in normal intestinal bacteria flora and potential chronic toxicity. Therapies targeted at intestinal tissue include antimotility and antisecretory agents have adverse effects such as addictiveness, constipation and fatal ischaemic colitis. Many ethnopharmacological and ethnobotanical therapies for treating diarrhoea exist among different cultures. The aims of this study were to evaluate the biological activities of plant extracts against some diarrhoeal pathophysiologies.

A literature search in English of published articles and books that discussed ethnobotanical uses of medicinal plants in southern Africa was conducted. A list of 230 medicinal plants used in South African traditional medicines for treating diarrhoea and associated complications was created. The list included family, genus, species, biological activities and bioactive isolates as well as the remedies for diarrhoea. Twenty seven species were selected to evaluate for antimicrobial, antioxidant and anti-inflammatory activities. Safety of the plants was determined by determining the cytotoxicity of the crude extracts against Vero African green monkey kidney cell lines using a standard method. Motility effects of *Bauhinia galpinii* (BGE) and *Combretum vendae* (CVE) were determined by modulation of the contractility process of the isolated rat ileum induced by spasmogens.

Phenolic compositions of the crude extract were determined using various standard methods and finally bioactivity guided isolation of antimicrobial and antioxidant compounds from BGE and CVE were carried out using open column chromatography. Identification and characterization of the isolated compounds was achieved by NMR, EI-MS and UV spectroscopy.

The non-polar fractions had good antimicrobial activities with MIC ranged between  $19 - 1250 \mu g/ml$  while the polar fraction had moderate antimicrobial activities with MIC ranged between  $39 - 2500 \mu g/ml$ . In general the non-polar fractions had a higher antimicrobial activity.

The crude extracts contained wide range phenolic compounds with a total phenolic (74.91 $\pm$ 1.26 to 467.04 $\pm$ 15.82 mg GAE/g plant material), and total flavonoids (11.27 $\pm$ 3.37 to 176 $\pm$ 5.96 mg EQ/g plant material). The antioxidant activities were concentrated and potentiated in the polar fractions. The non-polar fractions had poor antioxidant activities with EC<sub>50</sub> values ranging from 0.21 $\pm$ 0.03 to 303.65 $\pm$ 3.84 µg/ml for DPPH radical scavenging and 0.43 $\pm$ 0.03 to 1709 $\pm$ 91.44 µg/ml for ABTS radical scavenging.

The crude extracts had selective COX-1 inhibitory activities ranging between 41.70 to 84.61% and had no COX-2 inhibitory activity. All the extracts tested had 15-LOX inhibitory capacity with  $LC_{50}$  values ranging between 0.86±0.27 and 111.44±37.28 µg/ml. The cytotoxicity results indicated a wide variation in toxic potential of the crude extracts with  $LC_{50}$  values ranging from 3.51 to 741.90µg/ml.



The BGE extracts had dual activities as spasmolytic by stimulating the spontaneous contractility and also agonised contractions induced by spasmogens but it inhibited K<sup>+</sup> induced contraction. CVE had spasmodic activities through a multiple mechanisms inhibiting contractions induced by spasmogens and K<sup>+</sup> in a dose-dependent manner.

Several bioactive xompoundswere isolated from the *Combretum vendae* leaves, There were triterpenoids (ursol-12-en-28-oic acid, mixtures of corosolic acid and maslinic acid, and asiatic acid and arjunolic acid) as well as bibenzyls combretastatin B5-O-2'- $\beta$ -D-glucopyranoside, combretastatin B1-O-2'- $\beta$ -D-glucopyranoside and a flavonoid (apigenin)..

From *Bauhinia galpinii* the following bioactive compounds were isolated and characterized:  $\beta$ -3 ethoxy sitosterol, one new flavone (5, 7, 4' 5' tetrahydroxy-2'-methoxyflavone (isoetin 2'-methyl ether) or 5, 7, 2' 5' tetrahydroxy-4'-methoxyflavone (isoetin 4'-methyl ether)), 3, 5, 7, 3', 4'-pentahydroxyflavone and 3, 5, 7, 3', 4', 5'-hexahydroxyflavone, guercetin-3-O- $\beta$ -galactopyranoside and myricetin-3-O- $\beta$ -galactopyranoside

The extraction protocol used in this work potentiated the antimicrobial activities in the non-polar fractions while antioxidant activities were potentiated in the polar fractions. This indicated that using polar solvents as extractant for treating infectious diarrhoea may not be quite effective unless some other antidiarrhoeal mechanisms are involved. Therefore, mixture of organic solvent (ethanol) and water can be recommended for broad-based activity.

Bauhinia galpinii extracts had a dual- mechanism of action (prokinetic and relaxant) on gastro-intestinal motility, depending on the prevalent patho-physiological condition and *Combretum vendae* mediated spasmolytic effects on isolated rat ileum through multiple inhibitions of a wide range of contractile stimuli. Hence, the presence of multiple acting spasmolytic activities in the plant extract might be contributing towards its effectiveness in treating diarrhoea and abdominal spasm. The uses of these plants in traditional medicine need to be monitored closely because of the selective inhibition of COX-1 and its associated GIT injury, and the high toxicity potential of some of the extracts.

Further work evaluating the antidiarrhoea mechanisms, identification and isolation of bioactive compounds, sub-acute and acute toxicity of the plant extracts is recommended.

Key words: Antimicrobial, antioxidant, anti-inflammatory, diarrhoeal, antispasmolytic, enteric nervous system, cytotoxicity.



#### List of Abbreviations

# A

ABTS=2.2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid AMP=Antimicrobial peptides

# В

- BAB= Bauhinia bowkeri
- BAG= Bauhinia galpinii
- BAP= Bauhinia petersiana
- BAV= Bauhinia variegata
- BGE= Bauhinia galpinii extract

## С

- Ca2+= Calcium ion
- CI= chloride ions
- CNF-1= Cytotoxic necrotising factor 1
- CNS= Central nervous system
- COB= Combretum bracteosum
- COP= Combretum padoides
- COV= Combretum vendae
- COX= Cyclooxygenase
- COW= Combretum woodii
- CVE= Combretum vendae extract

## D

DAEC= diffusively adherent *Escherichia coli* DNA DPPH=2, 2-diphenyl-1-picrylhydrazyl

## Ε

EAEC= Enteroaggregative Escherichia coli

EHEC= Enterohaemorrhagic Escherichia coli

- EIEC= Enteroinvasive Escherichia coli
- ENS= Enteric nervous system
- EPEC= Enteropathogenic Escherichia coli
- ETEC= Enterotoxigenic Escherichia coli

EUC=Euclea crispa

EUN= Euclea natalensis



F FIC= Ficus cratestoma FIG=Ficus glumosa FRAP= Ferric reducing antioxidant capacity G GIT= Gastrointestinal tract Н HIV/AIDS= Human immune deficiency virus/Acquired immune deficiency syndrome HOCI= hypochlorite HUB= Haemolytic uremic syndrome L IBS= Irritable bowel syndrome IL= Interleukin INC= Indigofera cylindrica iNOS= inducible nitric oxide synthase INT= p-iodonitrotetrazolium L LT= Heat labile enterotoxin LTB= Leukotriene B Μ MDA= Malondialdehyde MCP-1= Monocyte chemoattractant protein MIC= Minimum inhibitory concentration MPD= Maytenus peduncularis MPR= Maytenus procumbens MSE= Maytenus senegalensis MUN= Maytenus undata Ν Na<sup>+</sup>= sodium ions NAME= nitro NH<sub>2</sub>CI= Ammonium chloride NO= Nitric oxide 0 OH<sup>-</sup>= Hydroxyl radical ORT=Oral rehydration therapy

OZM= Ozoroa mucronata

OZP= Ozoroa paniculosa



#### Ρ

PG= Prostaglandin

#### R

ROS= Reactive oxygen species

RNS= Reactive nitrogen species

# S

SCB=Schotia brachypetala

SLE= Searsia leptodictya

SPD= Searsia pendulina

SPT= Searsia pentheri

ST= Heat stable enterotoxins

SYP= Syzygium paniculatum

## Т

TLC=Thin layer chromatography

TNF- $\alpha$ = Tumour necrosis factor- $\alpha$ 

Trolox= 6-hydroxy-2, 5, 7, 8-tetrahydroxyl-chroman-2-carboxylic acid

# U

UNICEF=United Nation Children Fund

# W

WHO= World Health Organization



# List of Figures Chapter 2

| Fig. 2.1. Classification of the diarrhoea and the stimulants                        | 6  |
|-------------------------------------------------------------------------------------|----|
| Fig. 2.2. Cytokines production network in the tissues                               | 8  |
| Fig. 2.3. Biosynthetic pathways for the eicosanoids                                 | 9  |
| Fig. 2.4. Intestinal epithelial TJs as a physical barrier                           | 10 |
| Fig.2.5. The integrative pathophysiology and mechanism of diarrhoeal disease        | 13 |
| Fig. 2.6. Lipid peroxidation chain reactions                                        | 14 |
| Fig. 2.7. Chemical structures of the lipid peroxidation intermediates               | 14 |
| Fig. 2.8. Mechanisms of antibiotic-induced diarrhoea                                | 25 |
| Fig. 2.9. Chemical structures of bioactive terpenoids against diarrhoeal mechanisms | 31 |
| Fig. 2.10. Chemical structures of bioactive alkaloids against diarrhoeal mechanisms | 33 |
| Fig. 2.11. Sub-classes of biologically important phenolic compounds                 | 34 |
| Fig. 2.12. Chemical structures of bioactive phenolics against diarrhoeal mechanisms | 36 |
| Chapter 3                                                                           |    |

Fig.3.1. Flow chart for the extraction, phytochemical analysis and fractionation of the crude extracts

|          |                                                                                                  | 43 |
|----------|--------------------------------------------------------------------------------------------------|----|
| Fig.3.2. | TLC phytochemical profile of the crude extracts                                                  | 48 |
| Fig.3.3. | TLC phytochemical profile of the hexane fractions                                                | 49 |
| Fig.3.4. | TLC phytochemical profile of the dichloromethane fraction                                        | 50 |
| Fig.3.5. | TLC phytochemical profile of the ethyl acetate fraction                                          | 51 |
| Fig.3.6. | Total phenolic and non-tannin constituents of the crude extract                                  | 52 |
| Fig.3.7. | Total tannin and condensed tannin constituents of the crude extracts                             | 53 |
| Fig.3.8. | Proanthocyanidin and gallotannin constituents of the crude extract                               | 54 |
| Fig.3.9. | Total flavonoid and flavonol constituents of the crude extract                                   | 56 |
|          | Chapter 4                                                                                        |    |
| Fig.4.1. | The classification of microbiological methods for biological detection                           | 63 |
| Fig.4.2. | Bioautography of the hexane fractions against S. aureus                                          | 65 |
| Fig.4.3. | Bioautography of the dichloromethane fractions against S. aureus                                 | 66 |
| Fig.4.4. | Bioautography of hexane fractions of different plant species against <i>E. faecalis</i>          | 66 |
| Fig.4.5. | Bioautography of dichloromethane fractions of different plant species against E. coli            | 67 |
| Fig.4.6. | Bioautography of dichloromethane fractions of different plant species against <i>E. faecalis</i> | 67 |
| Fig.4.7. | Bioautography of hexane of different plant speicies against C. neoformans                        | 68 |
| Fig.4.8. | Bioautography of dichloromethane fractions against C. neoformans                                 | 68 |
| Fig.4.9. | Bioautography of hexane fractions against A. fumigatus                                           | 69 |
| Fig.4.10 | . Bioautography of dichloromethane fractions against A. fumigatus                                | 69 |
| Fig.4.11 | . Bioautography of hexane fractions against <i>C. albicans</i>                                   | 70 |



| Fig.4.12. Bioautography of dichloromethane fractions against <i>C. albicans</i>                                | 70                     |
|----------------------------------------------------------------------------------------------------------------|------------------------|
| Chapter 5                                                                                                      |                        |
| Fig.5.1. Some deleterious reactions from the production of reactive free radicals in biological syste          | ems                    |
|                                                                                                                | 80                     |
| Fig.5.2. TLC-DPPH profiles of the crude extracts of extracts of different plants                               | 88                     |
| Fig.5.3. TLC-DPPH profile of the hexane fractions of different plants                                          | 89                     |
| Fig.5.4. TLC-DPPH profiles of the dichloromethane fractions of different plants                                | 89                     |
| Fig.5.5. TLC-DPPH profiles of the ethyl acetate fractions of different plants                                  | 90                     |
| Chapter 6                                                                                                      |                        |
| Fig.6.1: Roles of COX in the pathogenesis mechanism of NSAID-induced intestinal damage                         | 103                    |
| Fig.6.2: Factors involved in the pathogenesis of indomethacin-induced small intestinal lesions                 | 104                    |
| Fig.6.3: COX-1 inhibitory activity of some selected phenolic-enriched crude extracts                           | 106                    |
| Chapter 8                                                                                                      |                        |
| Fig.8.1.Schematic presentation of the contractility assay using isolated rat ileum                             | 118                    |
| Fig.8.2.Stimulatory effects B. galpinii on spontaneous contraction of isolated rat ileum                       | 119                    |
| Fig.8.3.Effects of 70% acetone crude leaf extract of B. galpinii on the acetylcholine cumulative concentration |                        |
| dependent-induced contraction in the absence and presence of atropine                                          | 119                    |
| Fig.8.4.Agonized effects of B. galpinii on serotonin-induced contraction of the isolated rat ileum             | 120                    |
| Fig.8.5.Relaxant effects of B. galpinii on KCI-induced contraction of the isolated rat ileum                   | 120                    |
| Fig.8.6.Spasmolytic effects of 70% acetone crude leaf extract of C. vendae on acetylcholine-induc              | ed contraction         |
| of the isolated rat ileum                                                                                      | 121                    |
| Fig.8.7.Spasmolytic effects of 70% acetone crude leaf extract of C. vendae on serotonin-induced of             | contraction of         |
| the isolated rat ileum                                                                                         | 121                    |
| Fig.8.8.Spasmolytic effect of the C. vendae on the depolarised KCI-induced isolated rat ileum cont             | ractions               |
|                                                                                                                | 122                    |
| Chapter 9                                                                                                      |                        |
| Fig. 0.1. Extraction, fractionation and isolation of bioactive compounds from the loof extract of Co           | mbrotum                |
| Fig.9.1. Extraction, fractionation and isolation of bioactive compounds from the leaf extract of <i>Con</i>    |                        |
| vendae<br>Fig.9.2. Extraction, fractionation and isolation of bioactive compounds from the leaf extract of Bau | 128<br>Ihinia galainii |
|                                                                                                                | • ·                    |
| Fig. 0.2 Chemical attractures isolated bioactive compounds from the last outrast of Coverdas                   | 130<br>124             |
| Fig. 9.3 Chemical structures isolated bioactive compounds from the leaf extract of <i>C. vendae</i>            | 134                    |

Fig. 9.4 Chemical structures isolated bioactive compounds from the leaf extract of *B. galpinii* 138



# List of Tables

# Chapter 2

| Table 2.1.   | The mechanism of action and symptoms of enteric pathogenic E.coli                        | 17                             |
|--------------|------------------------------------------------------------------------------------------|--------------------------------|
| Table 2.2.   | Neurotransmitters of ENS causing intestinal secretion in diarrhoea                       | 27                             |
|              | Chapter 3                                                                                |                                |
| Table 3.1.   | Medicinal plants selected for the antidiarrhoeal investigations in this study            | 42                             |
| Table 3.2.   | The percentage yield of the crude extract and fractions (g/g dried plant material)       | 47                             |
|              | Chapter 4                                                                                |                                |
| Table 4.1.   | The minimum inhibitory concentration (MIC) of the crude extracts and fractions ag        | ainst bacterial                |
| strains test | ed                                                                                       | 72                             |
| Table 4.2    | The minimum inhibitory concentration (MIC) of the crude extracts and fractions again     | nst fungal strains             |
| tested       |                                                                                          | 74                             |
|              | Chapter 5                                                                                |                                |
| Table 5.1    | DPPH radical scavenging potential of the crude extracts and fractions expressed as       | s EC <sub>50</sub> (μg/ml)     |
|              |                                                                                          | 91                             |
| Table 5.2.   | ABTS radical scavenging potential of the crude extracts and fractions expressed a        | as EC₅₀ (µg/ml)                |
|              |                                                                                          | 92                             |
| Table 5.3.   | FRAP                                                                                     | 94                             |
| Table 5.4.   | Hydroxyl radical scavenging potential of the crude extracts and fractions expresse       | ed as EC <sub>50</sub> (µg/ml) |
|              |                                                                                          | 94                             |
| Table 5.5.   | Linoleic acid peroxidation inhibition expressed as $LC_{50}$ (µg/ml)                     | 95                             |
|              | Chapter 6                                                                                |                                |
| Table 6.1.   | Lipoxygenase inhibitory activity of the crude extracts                                   | 107                            |
|              | Chapter 7                                                                                |                                |
| Table 7.1.   | The $LD_{50}$ of the cytotoxicity assay of some medicinal plants used in South African   | traditional                    |
| medicine to  | treat diarrhoea and related ailments                                                     | 112                            |
|              | Chapter 9                                                                                |                                |
| Table 9.1:   | NMR experiments commonly applied for natural product structural elucidation              | 126                            |
| Table 9.2:   | Minimum inhibitory concentration ( $\mu$ g/ml) of the isolated compounds from the leaf e | xtract of C. vendae            |
|              |                                                                                          | 135                            |
| Table 9.2:   | Minimum inhibitory concentration ( $\mu$ g/ml) of the isolated compounds from the leaf e | xtract of <i>B. galpinii</i>   |
|              |                                                                                          | 139                            |



Page number

#### List of Appendix

Appendix 2.1. Ethnobotanical and literature information of medicinal plant species used traditionally for treating diarrhoea in South Africa 172 Appendix 9.1. 1D and 2D NMR spectra data of Ursolic acid 197 Appendix 9.2. 1D and 2D NMR spectra data of mixture of corosolic acid and maslinic acid 198 Appendix 9.3. 1D and 2D NMR spectra data of mixture of asiatic aicd and arjunolic acid 199 Appendix 9.4. 1D and 2D NMR spectra data of combretastatin B5-2'-O- glucopyranoside 200 Appendix 9.5. 1D and 2D NMR spectra data of combretastatin B1-2'-O- glucopyranoside 200 Appendix 9.6. 1D and 2D NMR spectra data of 3β-ethoxy sitosterol 201 Appendix 9.7. 1D and 2D NMR spectra data of quercetin 201 202 Appendix 9.8. 1D and 2D NMR spectra data of myricetin Appendix 9.9. 1D and 2D NMR spectra data of isoetin 2' methyl ether/ isoetin 4' methyl ether 202 203 Appendix 9.10. 1D and 2D NMR spectra data of quercetin-3-O-β-galactopyranoside Appendix 9.11. 1D and 2D NMR spectra data of myricetin-3-O-β-galactopyranoside 203