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Chapter 2

Stability of elastostatic elements with
drilling degrees of freedom

2.1 Summary

This chapter presents a short introduction and background to finite element formulations
with drilling degrees of freedom (DOFs). Early parts of the chapter are largely given as a
background to the formulation of elements with drilling DOFs. However, this chapter also
presents a new contribution which has been made in the stability analysis of these elements.
In particular, the novel idea of using the skew-symmetric part of stress as an error estimate
has been proposed.

In particular, a numerical investigation into the effect of the penalty parameter in elements
with drilling DOFs, for which the stress tensor σ is not a priori assumed to be symmetric,
is offered. The parameter under investigation is γ, which relates the in-plane translations
to the rotations for elements with drilling DOFs. Rather than simply reporting on the
quantitative influence of γ on measures like displacement, rotation and stress, the skewness
of the nonsymmetric stress tensor is directly assessed. Results are presented for both isotropic
and orthotropic constitutive relationships.

2.1.1 A word on notation

Before starting with the presentation, some brief notes on the notation employed are called
for. Firstly, the notations employed to denote variables in this chapter, and in Chapter 3,
differ somewhat. In the present chapter, the conventional mechanical symbolic designations
are used, whereas in Chapter 3 the symbols traditionally used in the piezoelectric research
community are employed. For example in what is to follow, ε denotes the mechanical
strain tensor, which is denoted S in Chapter 3. Furthermore, in Chapter 3 the symbol
ε is reserved for the dielectric constitutive properties. To avoid confusion, the notation
employed is explained in detail in the text of each chapter and should not be assumed to be
consistent throughout this work.
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20 CHAPTER 2. STABILITY OF ELASTOSTATIC ELEMENTS WITH D-DOFS
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Figure 2.1: Flat element subject to in-plane membrane and bending actions.

Secondly, a conventional tensor notation, similar to that employed by for example Pimpinelli
[20], where “·” is reserved for the scalar inner product between tensors of given order, is used.
This notation is slightly different to that employed for example by Hughes and Brezzi [18]
or Ibrahimbegovic et al. [21].

2.2 Introduction

In this section some background is presented on finite elements with drilling degrees of
freedom (DOFs). Much of the work in the early part of this chapter is relatively widely
known, but is given here as an introduction for those readers unfamiliar with the topic.

In recent times, elements with in-plane rotational (drilling) degrees of freedom have become
quite popular. Apart from enrichment of the displacement field, which increases element
accuracy, drilling degrees of freedom allow for the modelling of, for instance, folded plates
and beam-slab intersections. Although only planar membrane elements are considered in
this chapter, the need for elements with an in-plane rotational DOFs should be seen in the
light of their application in shell analyses. Plane stress membrane elements are commonly
combined with plate elements to form flat shell elements. The membrane and plate (bending)
constituents of such a flat shell element are depicted separately in Figure 2.1. The element
possesses nodal displacements ux, uy and uz and rotations θx, θy and θz, and can be subjected
to both in-plane membrane and bending actions at each node i.

As explained for example in Zienkiewicz and Taylor [22], for in-plane actions, the states of
stress and strain can be uniquely defined in terms of the two in-plane displacements. The

 
 
 



2.2. INTRODUCTION 21

relation between in-plane forces and displacements is given by:

kmqm = fm, (2.1)

where qm = [uxi uyi]
T , represents the in-plane displacements in the x and y directions, with

corresponding forces fm =
[

fxi f yi

]T
. The components of displacement are comprised of

the displacements at each node. For the 4-node element depicted in Figure 2.1, we have
uxi = [ux1 ux2 ux3 ux4]

T , uyi = [uy1 uy2 uy3 uy4]
T , with the forces expanded similarly.

The superscript ‘m’ denotes these as in-plane membrane components. km is the membrane
stiffness matrix.

Similarly, the bending components can be expressed uniquely in terms of the out-of-plane
displacement and two rotations at each node as

kbqb = fb, (2.2)

where qb = [uzi θxi θyi]
T , with the forces and moments given by f b = [f zi mxi myi]

T .
In this case, the superscript ‘b’ indicates that these terms are bending-related, and kb is the
plate bending stiffness matrix.

In this simple illustrative example, there is no coupling between in-plane and bending actions.
What is more, up to this point it has not been necessary, at least in terms of the description
of the problem mechanics, to include the in-plane rotations (θzi).

All six degrees of freedom at each node can now be assembled as

kq = f , (2.3)

where, at each node, displacements and rotations are given as qi = [qm
i qb

i θzi]
T and the

forces and moments are assembled as f i = [fm
i fb

i mzi]
T . The stiffness matrix is in turn,

made up of the following submatrices for a 4-node element

k =





km
8×8 08×12 020×4

012×8 kb
12×12

04×20 04×4



 , (2.4)

where no stiffness is associated with the rotational degree of freedom.

Difficulties arise if any number of flat shell elements employing this formulation, connected
at a node, are co-planar (or nearly so) [22]. Examples of this type of assemblage include
flat shell segments, as well as straight boundaries of singly curved shells. When the local
coordinate directions of these elements happen to coincide with the global coordinates, the
equilibrium equations corresponding to terms with θzi reduce to 0=0, which does not present
special difficulties. However, if the local and global coordinates differ the global stiffness
matrix becomes singular, and detection of this singularity could present difficulties. If it is
not possible to assemble stiffness matrices in local coordinates (and simply delete all 0=0
equations), an arbitrary stiffness k′θz , can be inserted at these points only. Both of these
procedures lead to programming difficulties in general codes, due to the subjective nature of
‘nearly co-planar’ detection.

 
 
 



22 CHAPTER 2. STABILITY OF ELASTOSTATIC ELEMENTS WITH D-DOFS

There are several problems (apart from the rank deficiency) associated with this type of
element. The ordinary membrane part of the stiffness matrix employing an isoparametric
formulation is usually very stiff, especially in bending. This problem can be alleviated by
employing a mixed or hybrid element, or an element with an enhanced strain formulation. A
more serious problem is that of possible incompatible in-plane rotation which could occur in
an assembly, for example in beam-slab connections, or at the intersection of a folded plate.

These issues can be addressed if suitable membrane elements with drilling degrees of freedom
(DOFs) are formulated, implemented and superimposed on an appropriate plate element to
form a shell element with 6 DOFs per node. Since most general and commercial finite element
codes make provision for 6 DOFs per node in any case, this improvement is largely cost free
in terms of computational and implementational effort [22]. Furthermore, the resulting
membrane elements are generally more accurate due to an enrichment of the displacement
field [21, 23, 24].

2.3 Historical development of elements with drilling

DOFs

In this section a brief history of the development of elements with drilling DOFs is presented.
Distinction will be made between vertex (or ω) rotations which need not be directly related
to the continuum mechanics definition of in-plane rotation, and drilling (or Ω) rotations
that are. In a finite element setting, the Ω drilling degree of freedom may be physically
interpreted as a true rotation of the vertex bisecting the angle between adjacent edges of the
finite element. The continuum mechanics definition of the in-plane rotation field Ωz is

Ωz =
1

2

(

∂uy

∂x
− ∂ux

∂y

)

, (2.5)

where ux and uy are the components of the in-plane displacement field in the x and y
directions, respectively.

Compilations of early (unsuccessful) efforts to develop elements with drilling DOFs are pre-
sented by Frey [25] and Bergan and Felippa [26] as well as, among others, [27, 28]. Several
early attempts to develop membrane elements with drilling DOFs failed, for example [29, 30].
These repeated failures prompted Irons and Ahmad [31] to view as futile the task of con-
structing elements with drilling degrees of freedom.1

However in the mid-80’s, Allman [32] and Bergan and Felippa [26] achieved a previously
unattained level of success. Instead of the cubic functions previously used, they employed a
quadratic displacement function for the normal component of displacement.

The interpolation used by Allman (referred to as Allman interpolations) is depicted in Figure
2.2. Specifically the interpolation consists of a quadratic function for the component of
displacement normal to the element side, and a linear form for the tangential component of
displacement.

1To be fair though, some of the theory used to develop current elements was not known to them at the
time [26].
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Figure 2.2: Displacement of an element side 1−2.

According to Allman [32] (who introduced the term ‘vertex rotations’), the relation between
vertex rotation, ω, and normal displacement is given by

−ω2 + ω1 =
∂un

∂s
|l −

∂un

∂s
|0, (2.6)

where ω1 and ω2 are the vertex rotations at nodes 1 and 2, respectively. It can be shown
that this reduces to

ω1 − ω2 = − 8

l12
un12 . (2.7)

The interpolation of un can therefore be written in terms of nodal vertex rotations as

un = (1 − s

l12
)un1 +

s

l12
un2 −

s

2
(1 − s

l12
)(ω1 − ω2). (2.8)

Clearly, these vertex rotations are not the same as the true rotations for plane elasticity,
defined in (2.5), but related to them in an indeterminate way only [25].

Since then, many papers on the subject have appeared. Cook [33] showed that the Allman
element can be obtained by applying a coordinate transformation to a higher order element
with mid-side nodes. This technique was extended to elements other than triangles, resulting
in rank deficient quadrilateral elements. MacNeal and Harder [24] refined this element by
developing a method to suppress the rank deficiency.

Other noteworthy developments are credited to Jetteur, Jaamei and Frey [25, 34, 35, 36] and
to Taylor and Simo et al. [37, 38, 39].

More recently, Hughes and Brezzi [18], presented a rigorous mathematical framework in
which to formulate elements with independent rotational interpolations. They argue that,
utilising the formulation of Reissner [40], formulations employing ‘convenient’ displacement,
rotation and stress interpolations are doomed to failure. Instead, they propose a modified
variational principle, with improved stability properties in the discrete form.

Early finite element interpolations employing the formulation of Hughes and Brezzi were
presented by Hughes et al. [41] and Ibrahimbegovic et al. [21, 42]. These elements depend

 
 
 



24 CHAPTER 2. STABILITY OF ELASTOSTATIC ELEMENTS WITH D-DOFS

on a problem-dependent penalty parameter γ, which relates the in-plane translations to the
in-plane rotations. The value of γ has been the topic of a number of studies [18, 21, 43, 44, 44].
For linear elastic isotropic Dirichlet problems, the formulation is reported to be relatively
insensitive to the value of γ [18, 21, 45], and it was proposed that γ = µ, with µ the shear
modulus. For different conditions (e.g. orthotropy or elastodynamics), a greater sensitivity
to the value of γ is to be expected. For dynamic problems, for example, Hughes et al. [44]
propose γ = µ/10.

Independent from work on drilling degrees of freedom, the developments in mixed/hybrid
membrane finite elements have been equally important during recent years. Since the as-
sumed stress finite element presented by Pian [46], numerous formulations have been pro-
posed. A compilation is presented by Pian [47]. Eventually, assumed stress formulations
were combined with drilling degrees of freedom in a single element formulation, e.g. see
Aminpour [48, 49], Sze and Ghali [50], and Geyer and Groenwold for quadrilateral 8β and
9β drill families [43].

Since then, the development of membrane finite elements with drilling DOFs has been signif-
icant. Sze and co-workers [51, 50] developed elements with in-plane rotations and assumed
stress fields. Groenwold and Stander [52, 53] applied the 5-point quadrature presented
by Dovey [54] to drilling degree of freedom membranes, which improved the element be-
haviour through the introduction of a ‘soft’ higher order deformation mode. Later Geyer
and Groenwold [43] also developed assumed stress finite elements with drilling DOFs. Re-
cently Pimpinelli developed an assumed strain quadrilateral element with drilling degrees of
freedom [20].

In this chapter the effect of the parameter γ, which relates the in-plane translations and
rotations, is numerically investigated. The chapter is set out as follows: Firstly in Section
2.4, the framework developed by Hughes and Brezzi [18], within which elements with drilling
DOFs are formulated, is presented. The finite element interpolations employed are then
detailed in Section 2.5. Next, stability requirements for the Dirichlet elastostatic problem
due to Hughes and Brezzi are briefly discussed in Section 2.6. In Section 2.7, stability
and consistency requirements are numerically verified for constant stress states. Numerical
results are presented in Section 2.8, while concluding remarks are presented in Section 2.9.

2.4 Variational formulation of elements with drilling

DOFs

The focus of this chapter is the element sensitivity to the problem dependant parameter γ,
and not the variational formulation of the elements. It would therefore not be appropriate to
present details of the variational formulation of elements with drilling DOFs here, especially
since that information can be found in the references presented in Section 2.3. Instead, only
the functionals from which the elements used in this study are derived (as introduced in
[18]), are presented.

This presentation is merely to illustrate the framework wherein these elements are formu-
lated, as well as to act as an introduction to show how this framework for the elastostatic

 
 
 



2.4. VARIATIONAL FORMULATION OF ELEMENTS WITH DRILLING DOFS 25

problem was extended for piezoelectricity in Chapter 3.

We proceed, as in [20], by defining Ω̄ as a closed and bounded domain occupied by a body
in three dimensional space. The interior part of Ω̄ is denoted by Ω and it’s boundary by
∂Ω, Ω ∪ ∂Ω = Ω̄. The measure of Ω is V and the measure of ∂Ω is S. V is the vector space
associated with the Euclidean point space and L the space of all linear applications of V
into V , which possesses inner product A ·B = tr(AtB), A,B ∈ L and At the transpose of
A (see [20]). Reference will also be made to subsets of L, namely S and W which contain,
respectively symmetric and skew-symmetric tensors in L.

The boundary ∂Ω, is split into two parts, ∂Ωu and ∂Ωt such that ∂Ωu ∪ ∂Ωt = ∂Ω and
∂Ωu ∩ ∂Ωt = ∅. On ∂Ωu displacements ū are prescribed, while on ∂Ωt the traction t̄ is
prescribed.2 The discussion is limited to linear elastic problems and discussion of boundary
conditions is omitted.3

In the most general case, the stress tensor, σ ∈ L (which is not a priori assumed to be
symmetric), the displacement vector field u, the skew-symmetric infinitesimal rotational
tensor, ψ ∈ W , and the strain tensor ε ∈ S are taken as dependent variables. The variational
formulation requires the rotations ψ, strains ε and stresses σ, together with the displacement
generalised derivatives ∇u, belong to the space of square-integrable functions over the region
Ω.

The Euclidean decomposition of a second-rank tensor is used, e.g.,

σ = symm σ + skew σ, (2.9)

where

symm σ =
1

2
(σ + σt), (2.10)

skew σ =
1

2
(σ − σt). (2.11)

The problem under consideration is now constructed as follows: Given f , the body force
vector, find u, ψ, σ and ε such that:

div σ + f = 0, (2.12)

skew σ = 0, (2.13)

ψ = skew∇u, (2.14)

ε = symm∇u, (2.15)

symm σ = c ε, (2.16)

for all x ∈ Ω. Equations (2.12) through (2.16) represent respectively, the linear and ro-
tational momentum balance equations, the definition of rotation in terms of displacement

2It is of course possible to have part of the boundary with both displacements and tractions prescribed,
as often used to simulate symmetry boundary conditions [55]. However, at no point are both forces and
displacements in coincident directions prescribed.

3Boundary conditions may be incorporated in the standard manner, e.g. see [16, 21, 56, 57], and will be
dealt with in more detail in Chapter 3.
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Hγ(u,ψ, skewσ, symmσ, ε)

H̃γ(u,ψ, symmσ, ε)

H(u,ψ, skewσ, symmσ, ε)π(u,ψ, skewσ)

πγ(u,ψ, skewσ)

π̃γ(u,ψ)

Πγ(u,ψ, skewσ, symmσ)

Π(u,ψ, skewσ, symmσ)

Π̃γ(u,ψ, symmσ)

symmσ = csymm∇u ε = symm∇u

skewσ = γ(skew∇u−ψ)

∑

γ

where fγ =
∑

γ(f) = f −
∫

Ω
1
2γ |skewσ|2dΩ

Figure 2.3: Relationship among functionals. (Figure from [18].)

gradient, the compatibility condition for strain in terms of displacement gradient and the
constitutive equations. The tensor of elastic stiffness is represented by c.

Reissner [40] presented a variational formulation for the boundary value problem reflected
in (2.12) to (2.16). However, this formulation is inappropriate for numerical applications.
The problems associated with Reissner’s formulation are summarised, and addressed in the
ground-breaking paper of Hughes and Brezzi [18]. Upon concluding their paper, a graphical
illustration of the relationships between the various functionals employed in their study is
given. These relations are repeated in Figure 2.3.

The functionals denoted H are used as a basis for Hu-Washizu type variational formula-
tions, while those denoted Π are used to construct Hellinger-Reissner like formulations. The
simplest functionals which ultimately result in ‘irreducible’ displacement-based formulations
are denoted π.

In particular, the functional denoted H is given explicitly by Hughes and Brezzi [18] as

H(u,ψ, skewσ, symmσ, ε) =
1

2

∫

Ω

cε · εdV +

∫

Ω

(symm∇u− ε) · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV −
∫

Ω

f · udV + Boundary Terms, (2.17)

where symmσ acts as a Lagrange multiplier enforcing the compatibility conditions and skewσ
enforces the relationship between ψ and u.

It can be shown that the functional H can be used to derive a Hellinger-Reissner like func-
tional Π by substituting ε = s σ into (2.17), where s = c−1 is the compliance tensor. Since
ε does not appear in the functional, the compatibility conditions are enforced in a strong
sense a priori. This connection is not illustrated in the original figure, see Figure 2.3. The
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functional Π is now given as

Π(u,ψ, skewσ, symmσ) = −1

2

∫

Ω

ssymmσ · symmσdV +

∫

Ω

symm∇u · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV −
∫

Ω

f · udV + Boundary Terms. (2.18)

A similar Π functional to that found in, for example [43, 58], is presented. This functional is
slightly different to the one suggested by Reissner [40] and used by Hughes and Brezzi as a
basis for their theory [18]. However, it results in the same Euler-Lagrange equations as the
one suggested by Reissner and Hughes and Brezzi.

Finally, as shown in Figure 2.3, the functional π can be derived by either substituting the
compatibility conditions into H or by substituting symmσ = c symm∇u into Π. The π
functional can then be trivially shown to be

π(u,ψ, skewσ) =
1

2

∫

Ω

csymm∇u · symm∇udV +

∫

Ω

(skew∇u−ψ) · skewσdV

−
∫

Ω

f · udV + Boundary Terms. (2.19)

The functionals which have been presented thus far are not appropriate for numerical im-
plementation. The Π functional suggested by Reissner in particular, was shown to have
stability problems in the discrete form [18]. The variational problem of Reissner was mod-
ified in order to preserve the stability of the discrete problem by the addition of the term
1
2γ

∫

Ω
|skewσ|2 dV [18], as depicted in Figure 2.3. The resulting Hu-Washizu type functional

Hγ, after the modification is thus given by

Hγ(u,ψ, skewσ, symmσ, ε) =
1

2

∫

Ω

cε · εdV +

∫

Ω

(symm∇u− ε) · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV − 1

2γ

∫

Ω

|skewσ|2dV −
∫

Ω

f · udV

+ Boundary Terms. (2.20)

The corresponding Hellinger-Reissner-like functional Πγ can be shown to be

Πγ(u,ψ, skewσ, symmσ) = −1

2

∫

Ω

ssymmσ · symmσdV +

∫

Ω

symm∇u · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV − 1

2γ

∫

Ω

|skewσ|2dV −
∫

Ω

f · udV

+ Boundary Terms, (2.21)

and the equivalent π functional including skewσ can be written as

πγ(u,ψ, skewσ) =
1

2

∫

Ω

csymm∇u · symm∇udV +

∫

Ω

(skew∇u−ψ) · skewσdV

− 1

2γ

∫

Ω

|skewσ|2dV −
∫

Ω

f · udV + Boundary Terms. (2.22)
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Finally, it is possible, and indeed attractive for the skew-symmetric part of the stress tensor
to be eliminated from the functionals by substituting skewσ = γ(skew∇u − ψ), which
appears as one of the Euler-Lagrange equations in the foregoing three functionals. The
resulting Hu-Washizu like functional can be shown to be

H̃γ(u,ψ, symmσ, ε) =
1

2

∫

Ω

cε · εdV +

∫

Ω

(symm∇u− ε) · symmσdV

+
γ

2

∫

Ω

|skew∇u−ψ|2dV −
∫

Ω

f · udV + Boundary Terms. (2.23)

Pimpinelli [20] used a slightly modified version of the H̃γ functional to derive a numerical
model based on the minimisation of his modified Hu-Washizu like functional. His element is
based in the framework of the assumed strain method of Simo and Rifai [59]. The Hellinger-
Reissner like equivalent, using the base functional Πγ is found to be

Π̃γ(u,ψ, symmσ) = −1

2

∫

Ω

ssymmσ · symmσdV +

∫

Ω

symm∇u · symmσdV

+
γ

2

∫

Ω

|skew∇u−ψ|2dV −
∫

Ω

f · udV + Boundary Terms. (2.24)

Finally, the resulting ‘irreducible’ functional with only displacement and in-plane rotations
as independent variables is

π̃γ(u,ψ) =
1

2

∫

Ω

csymm∇u · symm∇udV +
γ

2

∫

Ω

|skew∇u−ψ|2dV

−
∫

Ω

f · udV + Boundary Terms. (2.25)

It can be shown that for each of the elements implemented in this chapter, the patch test is
passed for any γ > 0 [18]. However, the parameter γ is problem dependent [18, 21], and its
sensitivity is detailed in this chapter.

Since not all of the elements resulting from the formulations just highlighted are implemented
here, Figure 2.4 depicts the links between the various functionals in relation to this study.
The functionals contained in the top row are those based on Reissner’s work [40], and
were shown to have stability issues in discrete form. They therefore do not form part
of this investigation. Also, although recently Pimpinelli [20] proposed an assumed strain
quadrilateral element with drilling degrees of freedom, based on a functional similar to H̃γ,
elements based on Hu-Washizu like functionals are beyond the scope of this study. The
elements considered in this study are based on the functionals enclosed by the solid line.
Details of the variational formulations and numerical implementations of these elements can
be found in many references, including [18, 21, 43] and are therefore not repeated here.

2.5 Finite element interpolation

In this section, the finite element interpolations employed in the elements arising from the
variational formulations pointed out in the foregoing are presented. For the sake of brevity,
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Hγ(u,ψ, skewσ, symmσ, ε)

H̃γ(u,ψ, symmσ, ε)

H(u,ψ, skewσ, symmσ, ε)π(u,ψ, skewσ)

πγ(u,ψ, skewσ)

π̃γ(u,ψ)

Πγ(u,ψ, skewσ, symmσ)

Π(u,ψ, skewσ, symmσ)

Π̃γ(u,ψ, symmσ)

Functionals considered in this study.

Hu-Washizu type functionals beyond the scope of this work.

Reissner type functionals possibly with problems in discrete form.

Figure 2.4: Applications of functionals proposed by Hughes and Brezzi in discrete form.

we refrain from giving the elemental stiffness matrices here, as they are easily derived through
application of stationary principles to the functionals presented in the previous section.4

It is required that the three distinct independent interpolation fields arising from the trans-
lations, rotations and the assumed stress field are interpolated.5 The standard element
displacement gradient operators follow [43, 53].

Consider a 4-node quadrilateral element with degrees of freedom as depicted in Figure 2.5.
The reference surface of the element is defined by

x =
4
∑

I=1

N e
I (r, s)xI , (2.26)

where x represents coordinates (x, y) and NI(r, s) are the isoparametric shape functions [60]

N e
I (r, s) =

1

4
(1 + rIr)(1 + sIs) ; I = 1, 2, 3, 4. (2.27)

The independent rotation field is interpolated as a standard bilinear field over each element:

θz ≡ ψh =
∑

e

4
∑

I=1

N e
I (r, s)ψi. (2.28)

The in-plane displacement approximation is taken as an Allman-type interpolation

(

ux

uy

)

= uh =
∑

e

4
∑

I=1

N e
I (r, s)uI +

∑

e

8
∑

I=5

NSe
I (r, s)

lJK

8
(ψK − ψJ)nJK , (2.29)

4Once again, these can be found in many references, including [21, 43, 52, 53].
5Since Hu-Washizu functionals are not considered, interpolation of strain or enhanced strain is not nec-

essary.
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Figure 2.5: Four node element with drilling degrees of freedom.

where lJK and nJK are the length and the outward unit normal vector on the element side
associated with the corner nodes J and K, i.e.

nJK =

{

n1

n2

}

=

{

cosαJK

sinαJK

}

, (2.30)

and
lJK = ((xK − xJ)2 + (yK − yJ)2)1/2. (2.31)

In the above, a FORTRAN-like definition of adjacent corner nodes is employed:

J = I − 4 ; K = mod(I, 4) + 1. (2.32)

In Equation (2.29) the serendipity shape functions are defined by

NSe
I (r, s) =

1

2
(1 − r2)(1 + sIs) ; I = 5, 7, (2.33)

NSe
I (r, s) =

1

2
(1 + rIr)(1 − s2) ; I = 6, 8. (2.34)

Employing matrix notation and defining

symm ∇ue = Be
IuI + Ge

IψI , (2.35)

where uI and ψI are nodal values of the displacement and the rotation fields, respectively.
The Be

I matrix in Equation (2.35) has the standard form

Be
I =





N e
I,x 0
0 N e

I,y

N e
I,y N e

I,x



 ; I = 1, 2, 3, 4, (2.36)

 
 
 



2.5. FINITE ELEMENT INTERPOLATION 31

where NI,x = ∂NI
∂x

. The part of the displacement interpolation associated with the rotation
defines

Ge
I =

1

8













(

lIJ cosαIJNS
e
L,x − lIK cosαIKNS

e
M,x

)

(

lIJ sinαIJNS
e
L,y − lIK sinαIKNS

e
M,y

)







lIJ cosαIJNS
e
L,y − lIK cosαIKNS

e
M,y

+
lIJ sinαIJNS

e
L,x − lIK sinαIKNS

e
M,x



















, (2.37)

where

I = 1, 2, 3, 4; M = I + 4; L = M − 1 + 4int(1/I);

K = mod(M, 4) + 1; J = L− 4, (2.38)

and

NSL,x =
∂NSL

∂x
.

Terms associated with the skew-symmetric part of the displacement gradient are now con-
sidered. Denoting

skew ∇ue − ψe = be
IuI + ge

IψI , (2.39)

where

be
I = < −1

2
N e

I,y

1

2
N e

I,x > ; I = 1, 2, 3, 4, (2.40)

and

ge
I = [− 1

16
(lIJ cosαIJNS

e
L,ylIK cosαIKNS

e
M,y)

+
1

16
(lIJ sinαIJNS

e
L,xlIK sinαIKNS

e
M,x) −N e

I ] ; I = 1, 2, 3, 4, (2.41)

with indices J, K, L, M again defined by (2.38)

For the assumed stress field, the global stresses are directly interpolated by the stress pa-
rameters βi, i.e.

symm σh =
∑

e

P eβe, (2.42)

where P e is the interpolation matrix in terms of the local coordinates and βe is the stress
parameter vector. The stress field assumed in (2.42) may, without loss of generality, be
expressed for an individual element as:

symm σe = Pβ = symm σe
c + symm σe

h = [Ic P h]

{

βc

βh

}

, (2.43)

where the superscript e is dropped on P ∗ and β
∗

for reasons of clarity. In (2.43), I c allows
for the accommodation of constant stress states required to pass the patch test. The higher
order stress field is represented by

symm σe
h = P hβh = P h2βh2 + P h3βh3, (2.44)
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where P h2βh2 and P h3βh3 are introduced for reasons of clarity. We select

P h2βh2 + P h3βh3 =





η 0
0 ξ
0 0





{

β4

β5

}

+





−ξ 0 η2

0 −η −ξ2

η ξ 0











β6

β7

β8







. (2.45)

Combined with Ic, P h2 yields the usual formulation for a 5-parameter stress field, as was
for instance also used by Di and Ramm [61], for their 5β elements. P h3 represents the
additional terms required for elements with drilling degrees of freedom. This formulation is
similar to the unconstrained field used by Sze and Ghali [50]. However, (2.42) represents
an unconstrained interpolation field, which is not necessarily optimal. Constraints may be
enforced by a suitable transformation matrix (e.g. see [61]). Here, the rational constraints
proposed by Pian and Sumihara [62] are opted for, viz.

symm σe
h = P hβh = T 0P h2βh2 + T 0P h3βh3, (2.46)

with

T 0 =





a2
1 a2

3 2a1a3

b21 b23 2b1b3
a1b1 a3b3 a1b3 + a3b1



 , (2.47)

and




a1 b1
a2 b2
a3 b3



 =
1

4





−1 1 1 −1
1 −1 1 −1

−1 −1 1 1













x1 y1

x2 y2

x3 y3

x4 y4









. (2.48)

While normalized transformation of the higher order part of the stress field is probably more
accurate [43], the rational approach of Pian and Sumihara is simpler, in particular if element
equilibrium is enforced.

Finally, 9 stress parameters may also be used, even though this is one more than the optimal
number of stress parameters. In this case, the higher order stress field becomes

P h3βh3 =





−ξ 0 η2 0
0 −η 0 −ξ2

η ξ 0 0



















β6

β7

β8

β9















. (2.49)

2.6 Stability analysis

After Hughes and Brezzi, the simplest form of the functionals considered in Section 2.4,
namely functional π̃γ(u,ψ) given by (2.25) is considered. The variational equation which
results from variations on (2.25) is

0 =δπ̃γ =

∫

Ω

c symm∇u · symm∇δudV

+ γ

∫

Ω

(skew∇u−ψ) · (skew∇δu− δψ)dV −
∫

Ω

f · δudV.

(2.50)
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Hughes and Brezzi then rewrite (2.50) as follows: Find {u,ψ} such that

Bγ(u,ψ; δu, δψ) = f({δu, δψ}), (2.51)

for arbitrary variations δu and δψ, where Bγ(u,ψ; δu, δψ) is in symmetric bilinear form,
and where f({v,ω}) is continuous. It is now possible to prove that Bγ is U -elliptic [18],
viz. there exists a constant ηU > 0, such that

Bγ(u,ψ; δu, δψ) ≥ ηU ||{δu, δψ}||2U , ∀ {δu, δψ} ∈ U, (2.52)

where U ≡ V × W , and V and W are appropriate spaces of displacement and rotation
functions. For the Dirichlet problem and isotropy (see Hughes and Brezzi [18] for details),
this results in

γ ≤ µ, (2.53)

with µ the shear modulus. The equality or upper bound represented by (2.53) was selected
by a number of authors. In Section 2.8, this bound is further reflected on from a numerical
point of view. Incidentally, the numerical approach was already suggested by Hughes and
Brezzi, who remark that ‘numerical experimentation will be useful in finding optimal values
for γ.’

2.7 Consistency and stability

It is well known that the elements with drilling DOFs considered herein all pass the patch
test; they are also of adequate rank. Hence they are unconditionally convergent. This is
true for any value of γ > 0 [18, 52].

This leads to the observation that the symmetry condition of the stress tensor should exactly
be achieved for problems characterized by constant states of strain, viz. skew ∇u−ψ = 0.
Numerical experimentation reveals that this is, to machine precision, indeed the case for
pure extension and pure shear patch tests, as well as the modified pure shear patch depicted
in Figure 2.6.

2.8 Numerical experiments

In this section, numerical results for the elements highlighted in the foregoing are presented.
The integration schemes employed on individual partition matrices are as given in [63].
The penalty matrix, relating displacements and in-plane rotations, is evaluated using a 1
point integration rule. The remaining partition stiffness terms are calculated using a 3 × 3
integration rule, although a reduced order (5 or 8 point) scheme could also be used. The
following denotation is used:

• Q4X denotes drill elements without assumed stress interpolation. Unless otherwise
stated, the mixed formulation, with functional represented by (2.22), is used.
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Figure 2.6: Modified shear patch test
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Figure 2.7: Cook’s membrane

• 8β and 9β respectively indicates assumed stress drill elements with 8 and 9 stress
interpolation parameters (see (2.45) and (2.49)). Unless otherwise stated, results are
presented for the displacement formulation, this time represented by (2.24).

2.8.1 Cook’s membrane

The popular swept and tapered cantilever beam subjected to a uniformly distributed tip
load, as originally proposed by Cook, is depicted in Figure 2.7. Results as a function of
parameter γ, are depicted in Figures 2.8 and 2.9, for respectively a 4×4 and a 32×32 mesh.
At γ = µ there is a distinct change in slope of the beam tip displacement and rotation curves.
The maximum value of skewσ over all elements, denoted τ0 in the figures, is also reported
(normalized with respect to it’s value at γ = µ). The value of τ0 clearly increases sharply as
γ increases above µ, and it is obvious that γ ≤ µ is required. However, the equality is not
necessarily optimal, γ = µ/10, µ/100, or even µ/1000, may be more accurate.
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Figure 2.8: Cook’s membrane: Effect of γ on displacement, rotation and skew σ for the 4×4
mesh

2.8.2 Cantilever beam subjected to end shear

A further popular test problem is the shear loaded cantilever beam depicted in Figure 2.10.
For the penalty γ, a similar trend is observed to that of Cook’s membrane above (Figure
2.11). Again the effect of γ is not nearly as pronounced on rotation and displacement as on
the skew part of the stress tensor, and values of γ < µ seem suitable, rather than γ = µ.

2.8.3 Orthotropic membrane cantilever

Next the orthotropic cantilever, depicted in Figure 2.12, is considered. Even though only
one layer is considered, the strain variation becomes quite complex for non-zero ply angle
arrangements [43].

Numerical results for the parameter γ are presented in Figures 2.13 and 2.14, for a ply
arrangement of respectively 0 and 30 degrees. The displacement and rotation results are
normalized with respect to solutions computed using a refined finite element mesh. For 0
degrees, the displacement based and stress based elements are almost identical (which is not
surprising, since the mesh is regular).

For the 30 degrees orientation, the displacement and rotation prediction of the stress based
element is superior, while this element also predicts a lower value of skewσ. On the scale
of the graphs, it is not very obvious how sensitive the displacement results are to the value
of γ, however, results may differ by some 5% as a result of different values of γ. For this
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Figure 2.9: Cook’s membrane: Effect of γ on displacement, rotation and skew σ for the
32 × 32 mesh

problem, it is clear that γ = µ12 is no longer ideal; values of γ = µ12/103 or even µ12/104

seem superior.

For the irregular distorted mesh, results are depicted in Figure 2.15. While the mesh dis-
tortion is probably a bit extreme, the effect of γ is illustrated clearly. Element performance
starts to degrade from roughly γ = µ/10000, and the degradation is quite pronounced. For
this problem, the loss in accuracy of displacements, rotations as well as skewσ due to high
values of γ is significant.

2.9 Conclusions

In this chapter, the formulation of finite elements with drilling DOFs has briefly been out-
lined. Thereafter, a numerical investigation into the effect of the penalty parameter in
elements with drilling degrees of freedom, for which the stress tensor σ is not a priori as-
sumed to be symmetric, has been presented. The parameter under investigation is γ, which
relates the in-plane translations to the rotations.

Rather than only reporting on the quantitative influence of the penalty parameter γ on
measures like displacement, rotation and stress, the skewness of the nonsymmetric part
of the stress tensor σ, is directly assessed. Results are presented for both isotropic and
orthotropic constitutive relationships.

It is shown that, in general, values smaller than γ = µ, with µ the shear modulus, are
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Figure 2.10: Cantilever beam under shear load

desirable, even though the formulation is convergent for all values of γ. Values of γ/µ = 10−1

or 10−2 seem to result in accurate solutions. However, in implementing elements with drilling
degrees of freedom based on the procedure suggested by Hughes and Brezzi [18], the skewness
of the nonsymmetric part of the stress tensor σ, may directly be used to quantitatively assess
the validity of selected values of γ.
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Figure 2.13: Orthotropic membrane cantilever: Effect of γ for a 0 degree ply arrangement
(regular mesh)
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Chapter 3

Piezoelectric elements with drilling
degrees of freedom

3.1 Summary

In this chapter, several new planar four node piezoelectric elements with drilling degrees of
freedom are presented. Firstly, two families of variational formulations accounting for piezo-
electricity and in-plane rotations are derived. The first family retains the skew-symmetric
part of the stress tensor, while in the second, the skew part of stress is eliminated from the
functional. The performance of the finite elements derived from the variational formulations
presented in this chapter are then investigated. The resulting new elements are shown to be
accurate and robust in comparison with a number of existing elements, for several benchmark
test problems.

3.1.1 Another brief word on notation

As explained in Section 2.1.1, the symbolic designation traditionally used by researchers
working in piezoelectric finite element development, e.g. see [64, 65, 66] is now reverted to.
In particular, the symbols used to denote mechanical quantities and properties are different
to those employed in Chapter 2. Once again, the symbols are defined during the course of
the chapter.

We continue to employ the same tensor notation as that introduced in Chapter 2, which is
similar to that employed by, for example, Pimpinelli [20] and Cannarozzi and Ubertini [66].

3.2 Introduction

In recent years, the use of smart materials has become widespread and almost commonplace.
The technology employed in piezoelectric applications in particular, has reached a mature
level, and piezoelectric materials are frequently used in engineering applications.
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Piezoelectric materials transfer electric energy to mechanical energy and vice versa, and
can therefore be used as either actuators or sensors, or both. Applications include ultra-
sonic transducers for sonar and medical purposes, compact ultrasonic piezoelectric motors,
structural monitoring and/or active damping elements, and even ignition systems.

Analytical closed-form solutions to problems involving piezoelectric materials are often dif-
ficult to compute, unless geometries and boundary conditions are relatively simple, see for
example Heyliger [67] and Kapuria et al. [68]. A general numerical method for the solu-
tion of piezoelectric problems is therefore essential. (Analytical solutions are, however, very
useful as benchmark problems.)

The finite element method has become a standard modelling utility for various physical
processes, including piezoelectricity. Development of piezoelectric finite elements has pro-
gressed significantly since the early paper of Allik and Hughes [69]. In fact, Benjeddou
[70] presented a survey article in which over 100 recent papers from the open literature are
reviewed, indicating the research interest in the field.

The original implementation of Allik and Hughes, and many of the finite elements since, (see
Benjeddou for examples), have been based on formulations interpolating for only kinematic–
like variables, i.e. displacement and electric potential. These elements are often stiff, inac-
curate and sensitive to mesh distortion. To alleviate these problems, mixed and hybrid vari-
ational formulations have been developed (see for example Yang [71]), with original contri-
butions in variational formulations for piezoelectric media credited to EerNisse and Holland
[72, 73]. Various hybrid and mixed finite elements have since been developed, with notable
contributions by Cannarozzi and Ubertini [66] and Sze and co-workers [64, 65, 74, 75, 76].

Independent of the development of piezoelectric finite elements, many advances have been
made in the development of elastic finite elements. One of the significant contributions has
been the addition of in-plane rotations, or drilling degrees of freedom (DOFs). Drilling DOFs
are particularly important in shell elements, since the result is a shell element with six DOFs
per node, which allows for the modelling of beam-slab connections and folded plates. An
introduction into, and a brief history of, elements with drilling DOFs and their variational
formulation can be found in Chapter 2, and will therefore not be repeated here.

The aim of this chapter is to combine the theory, developed for elastic elements with drilling
DOFs, with some recent advances in piezoelectric finite element technology. The result is
two new families of accurate, piezoelectric finite elements with drilling DOFs.

We endeavour to, not only improve on element accuracy, but importantly, improve on the
modelling capabilities of existing piezoelectric finite elements. In fact, the piezoelectric
elements developed herein are used in a topology optimization environment, together with
elastic elements possessing drilling DOFs, see Chapter 5 and [77]. Their accuracy can also
be exploited in fracture analyses. Aside from the improved accuracy, these elements can
be employed to calculate through-thickness phenomena in thick piezoelectric shells. The
variational formulations can also be used to generate three dimensional solid elements with
drilling DOFs. These solid elements would possess three displacement, three rotational and
one potential DOF per node.

The remainder of this chapter is set out as follows. In Section 3.3, the equations governing
the linear electroelastic problem are presented. Section 3.4 introduces a number of new
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variational formulations accounting for piezoelectricity and in-plane rotations. In Section
3.5 the interpolations used in the finite element implementations are briefly highlighted.
Section 3.6 details the finite element implementation of our variational formulations. The
partitioned submatrices arising from the finite element implementations are presented in
Section 3.7. Section 3.8 contains the results of a numerical evaluation of the new elements.
Finally, in Section 3.9 some closing remarks are offered.

3.3 Governing equations

In this section, the equations governing the linear electroelastic problem are presented in
strong form. Let Ω̄ be a closed and bounded domain occupied by a body in three dimensional
space. The interior part of Ω̄ is denoted by Ω and it’s boundary by ∂Ω, Ω ∪ ∂Ω = Ω̄. The
measure of Ω is V and the measure of ∂Ω is S. V is the vector space associated with the
Euclidean point space and L the space of all linear applications of V into V , which possesses
inner product A ·B = tr(AtB), A,B ∈ L and At the transpose of A (see Pimpinelli [20]).
Reference will also be made to subsets of L, namely S and W which contain, respectively
symmetric and skew-symmetric tensors in L.

The boundary ∂Ω, is split into four parts, ∂Ωu, ∂Ωt, ∂Ωφ and ∂Ωd such that ∂Ωu∪∂Ωt =∂Ωφ∪
∂Ωd = ∂Ω and ∂Ωu ∩ ∂Ωt =∂Ωφ ∩ ∂Ωd = ∅. On ∂Ωu displacements ū are prescribed, while
on ∂Ωt the traction t̄ is prescribed. Similarly, on ∂Ωφ the prescribed potentials are φ̄ and on
∂Ωd the density of the electric charge d̄ is prescribed.

The Euclidean decomposition of second-rank tensors is frequently employed, e.g.

T = symmT + skewT , (3.1)

where

symmT =
1

2
(T + T t), (3.2)

skewT =
1

2
(T − T t). (3.3)

The linear electroelastic problem is governed by the following conditions at all points x ∈ Ω̄.

3.3.1 Constitutive equations

There exist four equivalent versions of the electroelastic constitutive equations, depending on
the choice of independent variables (see for example Ikeda [78]). The constitutive equations,
in terms of strain and electric field are:

T = cES − etE,

D = eS + εSE,
(3.4)

where T and S are the stress and strain tensors, D is the electric flux density, also referred
to as electric displacement (see for example Wu et al. [65]), and E denotes the electric
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field. Furthermore, cE is a fourth order tensor of elastic stiffness, measured at constant
electric field as indicated by the subscript ‘E’. εS is the second order permittivity tensor at
constant strain, and e is a third order electroelastic, or piezoelectric, coupling tensor. Both
cE and εS are symmetric and positive definite. As described by Cannarozzi and Ubertini
[66], e is such that the product eta is a second order symmetric tensor for each vector a,
with et defined as A · eta = eA · a, and A a symmetric second order tensor. Incidentally,
the constitutive relations in terms of strain and electric field were used in the original finite
element implementations [69].

Since the derivation of the other forms of the constitutive equations, through Legendre
transformation, are well known (see for example [66, 78]) they will simply be stated here
without further elaboration.

In terms of strain S and electric flux density D, the relations are

T = cDS − htD,

E = −hS + χSD,
(3.5)

and the constitutive terms are computed as

cD = cE + etε−1
S e, h = ε−1

S e, χS = ε−1
S . (3.6)

Rewriting in terms of stress T and electric field E, get

S = sET + dtE,

D = dT + εTE,
(3.7)

with

sE = c−1
E , d = ec−1

E , εT = εS + ec−1
E e

t. (3.8)

Finally, with stress T and electric flux density D selected as independent variables, the
result is

S = sDT + gtD,

E = −gT + χTD,
(3.9)

with

sD = (cE + etε−1
S e)

−1, g = ε−1
S esD, χT = ε−1

S − ε−1
S esDe

tε−1
S . (3.10)

The tensors cD, sE, sD, χS, χT and εT are all symmetric and positive definite, and h, d
and g are third order tensors with the same properties as e. In the presentation of the
constitutive equations a condensed notation, assuming symmetric stress and strain tensors
is used for the sake of clarity. That is to say, in (3.4), (3.5), (3.7) and (3.9), T ≡ symmT
and S ≡ symmS. This is of importance, since the stress tensor in the formulations to follow
are not a priori assumed to be symmetric.
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3.3.2 Compatibility conditions

The strain-displacement and electric field-potential relationships, together with the displace-
ment and electric potential boundary conditions are, respectively

S = symm∇u in Ω, (3.11)

E = −∇φ in Ω, (3.12)

u = ū on ∂Ωu, (3.13)

φ = φ̄ on ∂Ωφ, (3.14)

where u is the displacement vector field, and φ represents the scalar electric potential field.

3.3.3 Equilibrium conditions

The static force equilibrium equations and Gauss’s Law in differential form, together with
the boundary conditions, are given by:

divT + f = 0 in Ω, (3.15)

divD − q = 0 in Ω, (3.16)

symmT n = t̄ on ∂Ωt, (3.17)

D · n = −d̄ on ∂Ωd, (3.18)

where f is a distributed body force, q is a distributed electric charge in Ω, and n is the unit
outward normal vector on ∂Ω. Usually q is taken as zero [71], but for completeness it will
be included in the presentation to follow.

3.3.4 Rotational momentum balance conditions and definition of
infinitesimal rotation

In the current formulation, the stress tensor T is not a priori assumed to be symmetric, and
in-plane rotations are included. The following two additional conditions need to be satisfied:

skewT = 0 in Ω, (3.19)

ψ = skew∇u in Ω, (3.20)

where (3.19) represents the rotational momentum balance conditions and (3.20) is the defi-
nition of infinitesimal rotations in terms of displacement gradient.

3.4 Variational formulation

Hughes and Brezzi [18] presented a general framework within which to construct variational
formulations for problems which include rotational freedom. This framework is outlined in
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Section 2.4. The most general type is their Hu-Washizu-like variational formulation account-
ing for rotations and nonsymmetric stress tensors. The variational framework of Hughes and
Brezzi is now generalised to account for the piezoelectric effect.

In the functionals to follow, unless otherwise stated, u, φ,E and D are the displacement,
electric potential, electric field and electric flux density fields, respectively. The nonsym-
metric stress tensor is denoted T ∈ L. The skew-symmetric infinitesimal spin or rotation
tensor is ψ ∈ W , and S ∈ S is the symmetric strain tensor. Where applicable, they are suf-
ficiently regular and square integrable functions of x. In particular, the rotations ψ, strains
S, stresses T , electric field E, electric flux density D, as well as the generalised derivatives
∇u and ∇φ belong to the space of square integrable functions over Ω.

3.4.1 Hu-Washizu-like variational formulations

A Hu-Washizu-like variational formulation is now proposed. It is also shown how this leads
to a Hellinger-Reissner-like functional, as well as functionals in an irreducible form. The aim
is not to present a rigorous mathematical study of the presented formulations. Rather, in the
latter part of this chapter, a numerical study of the discrete finite element implementation
is presented.

Two formulation families are proposed. The first, designated here as M-Type, retains the
skew-symmetric part of the stress tensor. Since part of the stress tensor is always retained,
even in its simplest or irreducible form, M-Type functionals will result in a mixed formulation,
even in the ‘irreducible’ form. In the second family, denoted K-Type, the skew-symmetric
part of stress is eliminated. The result is an irreducible form which requires only kinematic–
like interpolations, i.e. displacement and electric potential.

M-Type formulation based on functional ΠH
M

The following Hu-Washizu-like functional is proposed:

ΠH
M(u,ψ, symmT , skewT ,S, φ,D,E) =

1

2

∫

Ω

cE S · S dV −
∫

Ω

e S ·E dV

− 1

2

∫

Ω

εS E ·E dV +

∫

Ω

(symm∇u− S) · symmT dV +

∫

Ω

(skew∇u−ψ) · skewT dV

+

∫

Ω

(∇φ+E) ·D dV − 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV +

∫

Ω

q φ dV

−
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS −
∫

∂Ωφ

(φ− φ̄)(D · n) dS,

(3.21)

where the subscript ‘M ’ emphasises that the functional is of M-type and the superscript
‘H’ that it is a Hu-Washizu-like functional. The term 1

2
γ−1

∫

Ω
|skewT |2 dV was shown to

preserve the ellipticity of the discrete problem in linear elastostatics [18]. In (3.21), the term
Tn in the boundary term on ∂Ωu was found to be the Lagrange multiplier which enforces
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the prescribed displacements, where T ≡ symmT + skewT . The condition of stationarity
gives rise to the following variational equation:

δΠH
M = 0 =

∫

Ω

cES · δS dV −
∫

Ω

eS · δE dV −
∫

Ω

etE · δS dV −
∫

Ω

εSE · δE dV

+

∫

Ω

(symm∇u− S) · symmδT dV +

∫

Ω

symmT · symm∇δu− symmT · δS dV

+

∫

Ω

(skew∇u−ψ) · skewδT dV +

∫

Ω

skewT · skew∇δu− skewT · δψ dV

+

∫

Ω

(∇φ+E) · δD dV +

∫

Ω

D · ∇δφ+D · δE dV −
∫

Ω

γ−1skewT · skewδT dV

−
∫

Ω

f · δu dV +

∫

Ω

qδφ dV −
∫

∂Ωt

t̄ · δu dS +

∫

∂Ωd

d̄δφ dS

−
∫

∂Ωu

[(u− ū) · (δTn) − (Tn) · δu] dS

−
∫

∂Ωφ

[

(φ− φ̄)(δD · n) − (D · n)δφ
]

dS.

(3.22)

Applying the Gauss-Green identities, given by

∫

Ω

u · divT dV = −
∫

Ω

T · ∇u dV +

∫

∂Ω

u · Tn dS (3.23)
∫

Ω

φ divD dV = −
∫

Ω

D · ∇φ dV +

∫

∂Ω

φ(D · n) dS, (3.24)

and gathering like terms results in

0 =δΠH
M =

∫

Ω

(cE S − et E − symmT ) · δS dV −
∫

Ω

(e S + εS E −D) · δE dV

+

∫

Ω

(symm∇u− S) · symmδT dV +

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV

−
∫

Ω

skewT · δψ dV +

∫

Ω

(∇φ+E) · δD dV −
∫

Ω

(divT + f) · δu dV

−
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(T n− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δT n) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS.

(3.25)

All of the necessary Euler-Lagrange equations appear in (3.25). The variation δψ enforces
skewT = 0 in Ω, while skewδT enforces compatibility between rotations and the skew part
of the displacement gradient.
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K-Type formulation based on functional ΠH
K

The skew-symmetric part of the stress tensor can be eliminated using the Euler-Lagrange
equation γ−1skewT = skew∇u−ψ in Ω, which appears in (3.25) as demonstrated by Hughes
and Brezzi [18], to obtain the K-type Hu-Washizu-like functional:

ΠH
K(u,ψ, symmT ,S, φ,D,E) =

1

2

∫

Ω

cE S · S dV −
∫

Ω

e S ·E dV

− 1

2

∫

Ω

εS E ·E dV +

∫

Ω

(symm∇u− S) · symmT dV +

∫

Ω

(∇φ+E) ·D dV

+
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV −
∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS

+

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS −
∫

∂Ωφ

(φ− φ̄)(D · n) dS.

(3.26)

Note that in this case, the stress term T , in the Lagrange multiplier enforcing the dis-
placement boundary conditions on ∂Ωu is calculated as T = symmT + skewT , where
skewT = γ(skew∇u−ψ). The first variation (and gathering like terms) results in

δΠH
K = 0 =

∫

Ω

(cES − etE − symmT ) · δS dV −
∫

Ω

(eS + εSE −D) · δS dV

+

∫

Ω

(symm∇u− S) · symmδT dV −
∫

Ω

(γ(skew∇u−ψ)) · δψ dV

+

∫

Ω

(∇ψ +E) · δD dV −
∫

Ω

−(symmT + γ(skew∇u−ψ)) · (∇δu) + f · δu dV

−
∫

Ω

−D · ∇δφ− qδφ dV −
∫

∂Ωt

t̄ · δu dS +

∫

∂Ωd

d̄δφ dS

−
∫

∂Ωu

[(u− ū) · (δTn) − (Tn) · δu] dS −
∫

∂Ωφ

[

(φ− φ̄)(δD · n) − (D · n)δφ
]

dS.

(3.27)

After applying the Gauss-Green identities, the following result is achieved:

δΠH
K = 0 =

∫

Ω

(cE S − et E − symmT ) · δS dV −
∫

Ω

(e S + εS E −D) · δE dV

+

∫

Ω

(symm∇u− S) · symmδT dV −
∫

Ω

(γ(skew∇u−ψ)) · δψ dV

+

∫

Ω

(∇φ+E) · δD dV −
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV

+

∫

∂Ωt

(T n− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δT n) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS,

(3.28)

which again contains all the necessary Euler equations. Here, the variation δψ simultane-
ously enforces skewT = 0 in Ω and compatibility between rotations and the skew part of
displacement gradient.
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In the remainder of this section, it is demonstrated how these two Hu-Washizu like functionals
can be used to derive (two) irreducible functionals, (two) fully mixed Hellinger-Reissner like
functionals and (four) degenerate Hellinger-Reissner like functionals.

The two preceding formulations were presented in some detail. For brevity, the presenta-
tion of the variational formulations of the remaining proposed functionals will be abbre-
viated. Only the functional and the final resulting variational equations containing the
Euler-Lagrange equations will be presented.

3.4.2 Irreducible formulations

In order to simplify the formulation for finite element implementation, the irreducible forms
emanating from ΠH

M and ΠH
K are now derived. In the context of this work, by ‘irreducible’ it

is implied that the fewest independent variables for a given functional family are used. Of
course, u and φ are the only independent variables required to fully describe the electroelastic
problem since all other variables can be derived from these.1 However, the ‘irreducible’ finite
elements with drilling DOFs presented herein also require the in-plane rotation field ψ to
be included as an independent variable. Furthermore, the M-type functionals intentionally
retain skewT , even in irreducible form.

M-Type formulation based on functional ΠM

The irreducible form resulting from ΠH
M can be derived by substituting the mechanical and

electrical compatibilities (3.11) and (3.12) respectively into ΠH
M . Therefore, S = symm∇u,

and E = −∇φ are substituted into (3.21).

The resulting functional, which retains the skew-symmetric part of stress as an independent
variable, together with displacements, electric potentials and in-plane rotations, is:

ΠM(u,ψ, skewT , φ) =
1

2

∫

Ω

cE symm∇u · symm∇u dV +

∫

Ω

e symm∇u · ∇φ dV

− 1

2

∫

Ω

εS ∇φ · ∇φ dV +

∫

Ω

(skew∇u−ψ) · skewT dV − 1

2
γ−1

∫

Ω

|skewT |2 dV

−
∫

Ω

f · u dV +

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄ φ dS,

(3.29)

where both u and φ are admissible, and therefore satisfy the essential boundary conditions.
Since the aforementioned substitution effectively eliminates strain and electric field as inde-
pendent variables, the compatibility between strain and displacement gradient and electric
field and potential gradient are enforced in a strong sense. Furthermore the symmetric part
of stress as well as electric flux density are also eliminated from the functional upon this sub-
stitution. Therefore the constitutive relations in (3.4) are also assumed to hold in a strong

1Not the fully story, stress and electric flux density or strain and electric field (or combinations) could
also theoretically be used as the independent variables.
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sense [16, 55]. After some algebra, the first variation of ΠM reduces to

δΠM = 0 =

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV −
∫

Ω

skewT · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(T n− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS,

(3.30)

which again contains all the necessary Euler-Lagrange equations.

K-Type formulation: Functional ΠK

The K-type equivalent irreducible functional is derived using similar substitutions of the
compatibility conditions, this time into ΠH

K . The emerging functional, with only displace-
ments, in-plane rotations and electric potential as independent variables, can be shown to
be:

ΠK(u,ψ, φ) =
1

2

∫

Ω

cEsymm∇u · symm∇u dV +

∫

Ω

esymm∇u · ∇φ dV

− 1

2

∫

Ω

εS∇φ · ∇φ dV +
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV

+

∫

Ω

qφ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS,

(3.31)

where both u and φ are again admissible functions. Once again, the constitutive and compat-
ibility conditions are enforced in a strong sense. After applying the Gauss-Green identities
and grouping like terms, the resulting variational equation is given by:

δΠK = 0 = −
∫

Ω

γ(skew∇u−ψ) · δψ dV −
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV

+

∫

∂Ωt

(Tn− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS.

(3.32)

Recognising γ(skew∇u−ψ) as the skew-symmetric part of stress, once again all the necessary
Euler equations are contained in (3.32).

3.4.3 Fully mixed Hellinger-Reissner-like formulations

Strain S and electric field E can both be eliminated from the Hu-Washizu-like functionals
by substituting the constitutive relations in (3.9) into functionals ΠH

M and ΠH
K , resulting in

fully mixed Hellinger-Reissner-like functionals. Of course, since strain and electric field are
eliminated from the functional, their compatibility conditions are assumed a priori.
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M-Type formulation based on functional ΠTD
M

The constitutive relations in terms of stress T and electric flux density D are substituted
into ΠH

M , and the functional ΠTD
M is introduced. The superscripts ‘T ’ and ‘D’ represent the

additional independent variables (supplemental to the kinematic variables):

ΠTD
M (u,ψ, symmT , skewT , φ,D) = −1

2

∫

Ω

sD symmT · symmT dV −
∫

Ω

g symmT ·D dV

+
1

2

∫

Ω

χT D ·D dV +

∫

Ω

symm∇u · symmT dV +

∫

Ω

∇φ ·D dV

+

∫

Ω

(skew∇u−ψ) · skewT dV − 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV

+

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS

−
∫

∂Ωφ

(φ− φ̄)(D · n) dS.

(3.33)

After applying the Gauss-Green identities, the result of the first variation is

δΠTD
M = 0 = −

∫

Ω

(sD symmT + gt D − symm∇u) · symmδT dV

+

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV

+

∫

Ω

(−g symmT + χT D + ∇φ) · δD dV −
∫

Ω

skewT · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(T n− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωu

(u− ū) · (δT n) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS,

(3.34)

where the Euler equation sD symmT + gt D = symm∇u weakly enforces the relationship
between strain derived from compatibility conditions (3.11), and strain based on stress and
electric flux density from constitutive equations (3.9). Similarly, −g symmT+χT D = −∇φ
enforces weakly the relationship between compatibility (3.12) and constitutive equations
(3.9) for electric field.

K-Type formulation: Functional ΠTD
K

The corresponding K-type fully-mixed functional can be derived by either making the sub-
stitutions of constitutive equations described previously to arrive at the ΠTD

M functional,
or through elimination of the skew-symmetric part of stress by substitution of skewT =
γ(skew∇u − ψ) which appears as one of the Euler equations in (3.34) into ΠTD

M . In either

 
 
 



52 CHAPTER 3. PIEZOELECTRIC ELEMENTS WITH DRILLING DOFS

case, the resulting functional is

ΠTD
K (u,ψ, symmT , φ,D) = − 1

2

∫

Ω

sDsymmT · symmT dV −
∫

Ω

gsymmT ·D dV

+
1

2

∫

Ω

χTD ·D dV +

∫

Ω

symm∇u · symmT dV +

∫

Ω

∇φ ·D dV

+
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV +

∫

Ω

qφ dV

−
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS −
∫

∂Ωu

(u− ū) · (Tn) dS

−
∫

∂Ωφ

(φ− φ̄)(D · n) dS.

(3.35)

Once again, like terms are collected after taking the first variation, and apply the Gauss-
Green identities to arrive at the variational equation:

δΠTD
K = 0 = −

∫

Ω

(sDsymmT + gtD − symm∇u) · symmδT dV

+ (−gsymmT + χTD + ∇φ) · δD dV −
∫

Ω

γ(skew∇u−ψ) · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωu

(u− ū) · (δTn) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS.

(3.36)

Again, the variation on ψ simultaneously enforces compatibility between the skew-symmetric
part of the displacement gradient and the rotation field, and the symmetry conditions for
stress. Once again all weak relationships necessary, are contained in (3.36).

3.4.4 Degenerate Hellinger-Reissner-like formulations

It is also possible to derive functionals with only stress T or electric flux densityD assumed,
additionally to u and φ, using the remaining forms of the constitutive equations, given in
(3.5) and (3.7). Since only stress or electric flux density are assumed, these functionals will
be referred to as degenerate.

M-Type formulation: Functional ΠD
M

If strain (and the symmetric part of stress) are eliminated from ΠH
M by substituting S =

symm∇u, and if electric field is eliminated by substituting the second equation of (3.5) into
ΠH

M , the M-type Hellinger-Reissner like functional which results is:
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ΠD
M(u,ψ, skewT , φ,D) =

1

2

∫

Ω

cD symm∇u · symm∇u dV −
∫

Ω

h symm∇u ·D dV

+
1

2

∫

Ω

χS D ·D dV +

∫

Ω

(skew∇u−ψ) · skewT dV +

∫

Ω

∇φ ·D dV

− 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV +

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS

+

∫

∂Ωd

d̄ φ dS −
∫

∂Ωφ

(φ− φ̄)(D · n) dS,

(3.37)

where the displacement field u is admissible. In this case, the compatibility between strain
and displacement gradient S = symm∇u, as well as the constitutive relationship between
stress and stain and electric flux density, symmT = cDS −htD are assumed to be enforced
in a strong sense.

Yet again, the first variation is computed, and after applying integration by parts, the
resulting variational statement is

δΠD
M = 0 =

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV

−
∫

Ω

(hsymm∇u− χSD − ∇φ) · δD dV −
∫

Ω

skewT · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS.

(3.38)

Once again (3.38) enforces all the necessary relations in a weak sense. In particular the
arbitrary variation on D weakly enforces the relationship between electric field in terms of
potential gradient and electric field in terms of its constitutive definition in (3.5).

K-Type formulation: Functional ΠD
K

Once again, the skew-symmetric part of stress can be eliminated from ΠD
M by substituting

the Euler equation in terms of the skew-stress, which appears in (3.38), to produce ΠD
K .

Alternatively, ΠD
K can be derived from ΠH

K by making the appropriate substitutions, described
in the derivation of ΠD

M . The K-type functional with displacement, electric potential, in-
plane rotations and electric flux density as independent variables is found to be:
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ΠD
K(u,ψ, φ,D) =

1

2

∫

Ω

cDsymm∇u · symm∇u dV −
∫

Ω

hsymm∇u ·D dV

+
1

2

∫

Ω

χSD ·D dV +

∫

Ω

∇φ ·D dV +
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV

−
∫

Ω

f · u dV +

∫

Ω

qφ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS

−
∫

∂Ωφ

(φ− φ̄)(D · n) dS,

(3.39)

where u is again admissible. Following the same process as previously, after taking the
first variation, applying the Gauss-Green identities, and collecting like terms, the resulting
variational statement is given by

δΠD
K = 0 = −

∫

Ω

(hsymm∇u− χSD − ∇φ) · δD dV −
∫

Ω

γ(skew∇u−ψ) · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS,

(3.40)

which yet again contains all the necessary Euler-Lagrange equations.

M-Type formulation: Functional ΠT
M

If on the other hand, electric field (and electric flux density) are eliminated from ΠH
M by

substituting E = −∇φ, and if strain is eliminated by substituting the first equation of (3.7)
into ΠH

M , a functional with symmT assumed is achieved.

ΠT
M(u,ψ, symmT , skewT , φ) = −1

2

∫

Ω

sE symmT · symmT dV +

∫

Ω

d symmT · ∇φ dV

− 1

2

∫

Ω

εT ∇φ · ∇φ dV +

∫

Ω

symm∇u · symmT dV +

∫

Ω

(skew∇u−ψ) · skewT dV

− 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV +

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS

+

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS,

(3.41)

where φ is admissible. In this instance, the constitutive equation D = dsymm + εTE and
compatibility condition E = −∇φ require enforcement in a strong sense. Yet again, after
some calculations, the first variation ultimately results in
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δΠT
M = 0 =

∫

Ω

−(sEsymmT − dt
∇φ− symm∇u) · symmδT dV −

∫

Ω

skewT δψ dV

+

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT −
∫

Ω

(divT + f) · δu dV

−
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δTn) dS.

(3.42)

The variational statement in (3.42) once yet again weakly enforces all necessary relationships.
In this instance, variations on symmT weakly enforces the relationship between strain derived
from displacement gradient and strain contained in the constitutive equations in (3.7).

K-Type formulation: Functional ΠT
K

Finally, the K-type counterpart of (3.41) can be constructed by either eliminating the skew
symmetric part of stress from ΠT

M or by making the appropriate substitutions in ΠH
K (see

Figure 3.1 and Section 3.4.5 for details).

ΠT
K(u,ψ, symmT , φ) = − 1

2

∫

Ω

sEsymmT · symmT dV +

∫

Ω

dsymmT · ∇φ dV

− 1

2

∫

Ω

εT ∇φ · ∇φ dV +

∫

Ω

symm∇u · symmT dV

+
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV +

∫

Ω

qφ dV

−
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS −
∫

∂Ωu

(u− ū) · (Tn) dS,

(3.43)

where φ is admissible. Following the same process as before, the first variation can be shown
to reduce to

δΠT
K = 0 =

∫

Ω

−(sEsymmT − dt
∇φ− symm∇u) · symmδT dV

−
∫

Ω

γ(skew∇u−ψ) · δψ dV −
∫

Ω

(divT + f) · δu dV

−
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δTn) dS,

(3.44)

which once yet again weakly enforces all necessary conditions.
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ΠH(u,ψ, symmT ,S, φ,D,E) ΠH
M (u,ψ, symmT , skewT ,S, φ,D,E) ΠH

K(u,ψ, symmT ,S, φ,D,E)

ΠM (u,ψ, skewT , φ)Π(u,ψ, φ) ΠK(u,ψ, φ)

ΠD
M (u,ψ, skewT , φ,D)ΠD(u,ψ, φ,D) ΠD

K(u,ψ, φ,D)

ΠT
M (u,ψ, symmT , skewT , φ)ΠT (u,ψ, symmT , φ) ΠT

K(u,ψ, symmT , φ)

ΠTD
M (u,ψ, symmT , skewT , φ,D)ΠTD(u,ψ, symmT , φ,D) ΠT D

K (u,ψ, symmT , φ,D)
E = −gsymmT + χTD

S = sDsymmT + gtD

skewT = γ(skew∇u−ψ)
P

M

E = −∇φ

S = symm∇u

S = sEsymmT + dtE

E = −∇φ

S = symm∇u

E = −hS + χSD

D = eS + εSE

E = −∇φ

and where fM =
P

M (f) = f −
R

Ω

1

2γ
|skewT |2dΩ

S = symm∇u

where

symmT = cES − etE

symmT = cES − etE

where

E = −∇φ

D = eS + εSE

where
S = symm∇u

E = −∇φ

S = symm∇u

Figure 3.1: Relationships between the functionals.
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In all, ten new functionals have been introduced in this section. At this point, a summary
of the relationships between the functionals is appropriate, since not all of the relationships
have explicitly been detailed in the foregoing.

3.4.5 Relationships between the functionals

In Figure 3.1 the relations between the various functionals are graphically depicted for the
piezoelectricity problem. This figure is similar to Figure 2.3 presented in Section 2.4 for the
elastostatic problem.

In total, 15 functionals are represented in Figure 3.1 arranged in five rows and three columns.
The top row contains the Hu-Washizu like functionals while the irreducible functionals are
represented in the second row. Rows three and four contain the degenerate Hellinger-Reissner
like functionals. Finally, the fully mixed functionals are presented in the fifth row from the
top (see Figure 3.2). The three families of functionals are contained in different columns.
The Reissner like functionals (not explicitly presented in this chapter) are contained in the
first column (from the left), the middle column contains the M-type functional while the
K-type functionals are represented in the column on the right hand side.

As indicated in Figure 3.1, the only difference between the Reissner like functionals and
the M-type functionals is the additional term

∫

Ω
1
2γ
|skewT |2 dV . Furthermore, K-Type

functionals can be derived from M-Type functionals by making the substitution skewT =
γ(skew∇u−ψ). These relations are indicated by the arrows above the respective columns.

In the preceding text, it has been shown that the irreducible, degenerate Hellinger-Reissner
and fully mixed Hellinger-Reissner functionals can be derived from the Hu-Washizu like
functional by making the substitutions as indicated by the arrows on the far right of Figure
3.2.

Finally it can also be shown that, within any of the three families (columns), both the
degenerate and fully mixed Hellinger-Reissner like functionals can be used as a basis to
derive the irreducible functionals. Specifically, if symmT = cE symm∇u + et ∇φ and
D = e symm∇u−εS ∇φ are substituted into the fully mixed functionals, the corresponding
irreducible functionals result. Similarly, if symmT = cE symm∇u + et ∇φ is substituted
into the degenerate functionals including stress, or ifD = e symm∇u−εS ∇φ is substituted
into the degenerate functionals including electric flux density, the irreducible functionals also
result. These relations are shown on the far left of Figure 3.1.

In this work, not all of the finite elements resulting from variational formulations of the 15
functionals depicted in Figure 3.1 have been implemented numerically. Figure 3.2 depicts
the relations between the functionals in terms of their finite element implementation in this
study.

As explained in Chapter 2, elastostatic formulations resulting from the functional of Reiss-
ner [40] are not suitable for implementation in discrete form, due to stability issues [18].
Numerical experiments confirmed that this is also the case for the piezoelectric problem.
Furthermore, assumed strain (and electric field) finite elements are beyond the scope of this
study. The Hu-Washizu like functionals in the top row of Figure 3.2 are therefore not im-
plemented. The eight elements based on the remaining functionals are all implemented, and
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ΠTD(u,ψ, symmT , φ,D) ΠTD

K
(u,ψ, symmT , φ,D)ΠTD

M
(u,ψ, symmT , skewT , φ,D)

ΠH(u,ψ, symmT ,S, φ,D,E) ΠH

M
(u,ψ, symmT , skewT ,S, φ,D,E) ΠH

K
(u,ψ, symmT ,S, φ,D,E)

ΠM (u,ψ, skewT , φ)Π(u,ψ, φ) ΠK(u,ψ, φ)

ΠD

M
(u,ψ, skewT , φ,D)ΠD(u,ψ, φ,D) ΠD

K
(u,ψ, φ,D)

ΠT

M
(u,ψ, symmT , skewT , φ)ΠT (u,ψ, symmT , φ) ΠT

K
(u,ψ, symmT , φ)

Hu-Washizu like
functionals

Irreducible
functionals

Degenerate Hellinger-
Reissner like functionals

Fully mixed Hellinger-
Reissner like functionals

Reissner like functionals possibly with problems in discrete form, and therefore not implemented.
Hu-Washizu like functionals whose finite element implementation is beyond the scope of this study.
Functionals implemented as finite elements in this study.

Figure 3.2: Relationships between the functionals in terms of their finite element implementation.
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will be the focus of the remainder of this chapter.

3.5 Finite element interpolations

In this section the interpolations, used in the finite element implementation arising from
the functionals presented in Section 3.4, are briefly discussed. The scalar potential and the
independent rotation fields are interpolated as

φh =
∑

e

4
∑

i=1

N e
i (ξ, η)φi, (3.45)

ψh =
∑

e

4
∑

i=1

N e
i (ξ, η)ψi, (3.46)

respectively, with N e
i the standard bilinear shape functions. The in-plane displacement

approximation is taken as an Allman-type interpolation field, after Ibrahimbegovic et al.
[21]

{

u1

u2

}

= uh =
∑

e

4
∑

i=1

N e
i (ξ, η)ui +

ljk
8

∑

e

8
∑

i=5

NSe
i (ξ, η)(ψk − ψj)njk, (3.47)

with NSi the Serendipity shape functions. The hierarchical bubble shape function is not
included. Furthermore, ljk and njk denote the length and the outward unit normal vector
on the element side associated with the corner nodes j and k (see Figure 3.3), i.e.

njk =

{

n1

n2

}

=

{

cosαjk

sinαjk

}

, (3.48)

and
ljk = ((xk − xj)

2 + (yk − yj)
2)1/2. (3.49)

The indices in the above are explicitly given in Section 2.5.

The skew-symmetric stress field is chosen constant over the element, i.e.

skew T h =
∑

e

T e
0 . (3.50)

Using matrix notation, symm∇ue and skew∇ue are respectively given by

symm∇ue = Be
iui +Ge

iψi, (3.51)

and
skew∇ue = be

iui + ge
iψi. (3.52)

The operators arising from this interpolation are also summarised in Section 2.5, and are
therefore not repeated here. The ‘membrane locking correction’, due to Taylor [38] is used,
i.e. element strains are modified to become

symm∇ũe = Be
iui +

(

Ge
i −

1

Ωe

∫

Ωe
Ge

i dV

)

ψi. (3.53)
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Figure 3.3: A planar 4-node piezoelectric element with drilling rotations.

For interpolations of stress and electric flux density, the necessary (but not sufficient) con-
ditions for element stability are:

nβT ≥ nu −mu, (3.54)

nβD ≥ nφ −mφ, (3.55)

where nβT and nβD are the number of assumed stress and electric flux density modes, re-
spectively. Furthermore, nu and nφ are the number of displacement and potential modes,
respectively. The number of rigid body displacement modes is mu, and mφ represents the
single (constant potential) distribution resulting in zero field. The equality conditions in
(3.54) and (3.55) represent the optimal number of parameters in both cases.

For our planar elements with drilling degrees of freedom (DOFs), nu = 12, and nφ = 4. The
single potential distribution resulting in zero field means mφ = 1, and usually membrane
elements possess three rigid body modes (mu = 3). The optimal number of parameters
required is therefore nβT = 9 for stress and nβD = 3 for flux density. One more than
optimal, i.e. nβD = 4, parameters are required for interpolation of the electric flux density in
order to ensure the element is invariant [65]. Stability is achieved if no spurious zero energy
modes appear, viz. if rank sufficiency of the mechanical stiffness and dielectric stiffness
matrices is maintained [66].

Sze et al. [50, 51] presented a rank sufficient elastic element with drilling DOFs using only
8 interpolating stress modes, which appears to be one less than the optimal prescribed in
(3.54). However, nβT = 8 seems adequate, since mu in (3.54) is in fact equal to 4 and not 3.
The additional so-called θ1–mode (in which rotations at each node are equal) is intrinsic to
the reduced displacement interpolation. The strain corresponding to this state is zero.

Geyer and Groenwold [43] also presented a family of membrane elements with drilling DOFs,
some of which employ only 8 stress modes for interpolation and retain stability. Elements
with both 8 and 9 stress interpolating modes are tested.
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The assumed electric flux density vector is interpolated using

Dh =
∑

e

[

Ie
Dc Ae

DP
e
Dh

]

{

βe
Dc

βe
Dh

}

, (3.56)

where Ie
Dc is a 2 × 2 identity matrix to account for the constant flux density case and

βe
Dc are the corresponding parameters. Ae

D is a transformation matrix [65, 76, 79], and
P e

Dh represents the interpolation of the higher order part of charge density with βe
Dh the

corresponding parameters. Ae
D and P e

Dh are given explicitly as

Ae
D =

[

a1 a3

b1 b3

]

, (3.57)

where for each element, ai and bi are based on the nodal coordinates x and y and are given
by





a1 b1
a2 b2
a3 b3



 =
1

4





−1 1 1 −1
1 −1 1 −1

−1 −1 1 1













x1 y1

x2 y2

x3 y3

x4 y4









. (3.58)

The interpolation based on the local ξ − η coordinates is given by

P e
Dh =

[

η 0
0 ξ

]

. (3.59)

The interpolation for electric flux density Dh can therefore be given explicitly by

Dh =
∑

e

[

1 0 a1η a3ξ
0 1 b1η b3ξ

]{

βe
Dc

βe
Dh

}

. (3.60)

The assumed symmetric part of stress is similarly interpolated as

symmT h =
∑

e

[

Ie
Tc Ae

TP
e
Thn

]

{

βe
Tc

βe
Th

}

, (3.61)

where Ie
Tc is a 3×3 identity matrix accounting for a constant stress state, with corresponding

stress parameters βe
Tc. A

e
T is a transformation matrix given by

Ae
T =





a2
1 a2

3 2a1a3

b21 b23 2b1b3
a1b1 a3b3 a1b3 + a3b1



 . (3.62)

There are many other constraint matrices, (see for example Di and Ramm [61]), which can
be used, but are not considered here for the sake of brevity. Two different higher order stress
interpolations are implemented. The first has 8 (i.e. 5 non-constant) βT –parameters and
the other 9 (6 non-constant). The element with the 8 βT –parameters has a higher order
interpolation matrix given by

P e
Th5 =





η 0 −ξ 0 η2

0 ξ 0 −η −ξ2

0 0 η ξ 0



 , (3.63)
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which is similar to the field used by Sze and Ghali [50]. The element containing 9 βT –
parameters has a matrix given by

P e
Th6 =





η 0 −ξ 0 η2 0
0 ξ 0 −η 0 ξ2

0 0 η ξ 0 0



 . (3.64)

Alternative interpolations are given by Geyer and Groenwold [43].

3.6 Finite element implementation

For simplicity, in this section the boundary terms are neglected, but may be included in the
usual manner. The body charge, q, terms are also neglected, as is usually done [71]. In what
is to follow, uh, symmT h, skewT h, φh,Dh represent the interpolations for displacement, sym-
metric and skew-symmetric stress, electric potential and electric flux density, respectively.
The fields uh and φh satisfy the necessary boundary conditions, and ψh denotes the inter-
polated rotation field.

In our paper [80], due to space considerations, only two elements derived from the foregoing
variational formulations are presented. In this section however, all of eight new elements are
presented.

3.6.1 Irreducible piezoelectric elements with drilling DOFs

Firstly the two simplest (irreducible) finite elements are presented. The element originating
from the functional ΠM is denoted P4dM, while the K-type element derived from ΠK is
denoted P4dK.

P4dM element based on ΠM

We proceed by writing the discrete form of the first variation of ΠM in a matrix-like form,
similar to the notation used in [18, 21], as

0 =

∫

Ωh
(symm∇δuh)t · cE · (symm∇uh) dV +

∫

Ωh
(∇δφh)t · e · (symm∇uh) dV

+

∫

Ωh
(symm∇δuh)t · et · (∇φh) dV −

∫

Ωh
(∇δφh)t · εS · (∇φh) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV +

∫

Ωh
(skew∇δuh)t · skewT h

− (δψh)t · skewT h dV − γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.65)

Employing the interpolations and operators presented in Section 3.5, (3.65) can be written
in matrix notation, as:
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



Ke
uu Ke

uφ he

[Ke
uφ]t −Ke

φφ 0

[he]t 0 −γ−1Ωe











a

φ

T e
0







=







f

0
0







; a =

{

u

ψ

}

. (3.66)

The skew symmetric part of the stress tensor can be eliminated on the element level using
static condensation, so that the system of equations necessary to solve the problem are

[

Ke
M

]

{

a

φ

}

=

{

f

0

}

, (3.67)

where

Ke
M =

[

Ke
uu + γ

Ωe
he[he]t Ke

uφ

[Ke
uφ]t −Ke

φφ

]

. (3.68)

Individual partitioned stiffness matrix terms are given in Section 3.7. Both K e
uu and Ke

uφ

are evaluated using a 5-point numerical integration scheme, while he and Ke
φφ employ a

standard 4-point scheme. The top left (12 × 12) portion of the stiffness matrix represents
the mechanical part. The 12 × 4 partition, denoted Ke

uφ, represents the piezoelectric part,
and the bottom right portion, −Ke

φφ, the 4 × 4 dielectric part of the stiffness matrix.

The skew part of the stress tensor (constant over each element) can be recovered as a post-
processing step, and is given by

T e
0 = γ

[he]ta

Ωe
. (3.69)

P4dK element based on ΠK

The element arising from the irreducible K-type functional is now derived. To this end, the
discrete form of δΠK can be written using the same notation as

0 =

∫

Ωh
(symm∇δuh)t · cE · (symm∇uh) dV +

∫

Ωh
(∇δφh)t · e · (symm∇uh) dV

+

∫

Ωh
(symm∇δuh)t · et · (∇φh) dV −

∫

Ωh
(∇δφh)t · εS · (∇φh) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.70)

The condensed matrix form of (3.70) can be directly written as:

[

Ke
K

]

{

a

φ

}

=

{

f

0

}

, (3.71)

where the expanded stiffness matrix is explicitly given by:

[

Ke
K

]

=

[

Ke
uu + P e Ke

uφ

[Ke
uφ]t −Ke

φφ

]

. (3.72)
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The individual partitioned stiffness matrices are again given in Section 3.7. In particular,
the matrix P e, which represents the second last term in (3.70), is evaluated using a single
point integration scheme.

3.6.2 Fully mixed piezoelectric element with drilling DOFs

The matrix form of the two fully-mixed finite elements can be derived similarly. The two
elements are denoted P4dMnTD and P4dKnTD, originating from the M- and K-type fully
mixed functionals, respectively. The n in the element denotation reflects the number of
stress β parameters.

P4dMnTD element based on ΠTD
M

Considering first the M-type element based on ΠTD
M , the discrete form of the first variation

of the functional can be written as:

0 = −
∫

Ωh
(symmδT h)t · sD · (symmT h) dV −

∫

Ωh
(δDh)t · g · (symmT h) dV

−
∫

Ωh
(symmδT h)t · gt · (Dh) dV +

∫

Ωh
(δDh)t · χT · (Dh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (δDh) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV

+

∫

Ωh
(skew∇δuh)t · skewT h − (δψh)t · skewT h dV

− γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.73)

The discrete version of the formulation can again be rewritten in matrix form as













0 0 he Ke
uT 0

0 0 0 0 Ke
φD

[he]t 0 −γ−1Ωe 0 0

[Ke
uT ]t 0 0 −KTDe

TT −KTDe
TD

0 [Ke
φD]t 0 −[KTDe

TD ]t KTDe
DD



































a

φ

T e
0

βTDe
T

βTDe
D























=























f

0
0
0
0























. (3.74)

This matrix form can be further condensed by eliminating T e
0 , βTDe

T and βTDe
D using static

condensation to arrive at:

[

KTDe
M

]

{

a

φ

}

=

{

f

0

}

, (3.75)
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where the stress and electric flux density β-parameters can be shown to be

{

βTDe
T

βTDe
D

}

=

[

KTDe
TT KTDe

TD

[KTDe
TD ]t −KTDe

DD

]−1 [
[Ke

uT ]t 0

0 [Ke
φD]t

]{

a

φ

}

, (3.76)

T e
0 is again given by (3.69), and the stiffness matrix for this element can be written as

KTDe
M =

[

γ
Ωe
he[he]t 0
0 0

]

+

[

Ke
uT 0
0 Ke

φD

] [

KTDe
TT KTDe

TD

[KTDe
TD ]t −KTDe

DD

]−1 [
[Ke

uT ]t 0

0 [Ke
φD]t

]

.

(3.77)
Again, individual partitioned stiffness matrix terms are given in Section 3.7. The partitioned
submatrices Ke

uT , KTDe
TT and KTDe

TD are calculated using a 5-point integration scheme, while
Ke

φD and KTDe
DD are evaluated using a 4-point scheme. The number of stress parameters in

βe
T (either 8 or 9) is denoted n in the element designation P4dMnTD.

P4dKnTD element based on ΠTD
K

Focusing now on the K-type fully mixed element, the discrete form of the variational equation
derived from ΠTD

K can be derived as:

0 = −
∫

Ωh
(symmδT h)t · sD · (symmT h) dV −

∫

Ωh
(δDh)t · g · (symmT h) dV

−
∫

Ωh
(symmδT h)t · gt · (Dh) dV +

∫

Ωh
(δDh)t · χT · (Dh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (δDh) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.78)

The matrix form of the discrete variational equation becomes









P e 0 Ke
uT 0

0 0 0 Ke
φD

[Ke
uT ]t 0 −KTDe

TT −KTDe
TD

0 [Ke
φD]t −[KTDe

TD ]t KTDe
DD

















a

φ

βTDe
T

βTDe
D









=









f

0
0
0









. (3.79)

The stiffness matrix can be compacted by condensing βTDe
T and βTDe

D out on the element
level, resulting in:

[

KTDe
K

]

{

a

φ

}

=

{

f

0

}

, (3.80)
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with the β-parameters, given by (3.76) and the stiffness matrix given by

KTDe
K =

[

P e 0
0 0

]

+

[

Ke
uT 0
0 Ke

φD

] [

KTDe
TT KTDe

TD

(KTDe
TD )t −KTDe

DD

]−1 [
[Ke

uT ]t 0

0 [Ke
φD]t

]

.

(3.81)

Once again, individual stiffness sub-matrices are given explicitly in Section 3.7. The inte-
gration schemes used are as given previously, and again the number of stress β-parameters
n, is included in the element designation.

3.6.3 Degenerate assumed flux density piezoelectric element with
drilling DOFs

The degenerate assumed flux density piezoelectric elements with drilling DOFs, emanating
from functions ΠD

M and ΠD
K , denoted P4dMD and P4dKD, respectively are now detailed.

P4dMD element based on ΠD
M

Considering the M-type degenerate element formulation with assumed electric flux density,
the discrete version of the resulting variational equation can be written as

0 =

∫

Ωh
(symm∇δuh)t · cD · (symm∇uh) dV −

∫

Ωh
(δDh)t · h · (symm∇uh) dV

−
∫

Ωh
(symm∇δuh)t · ht · (Dh) dV +

∫

Ωh
(δDh)t · χS · (Dh) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (Dh) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV +

∫

Ωh
(skew∇δuh)t · skewT h

− (δψh)t · skewT h dV − γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.82)

This equation can once again be rewritten in matrix form using the element operators,
detailed in Section 3.4.4, as









KDe
uu 0 he −Ke

uD

0 0 0 Ke
φD

[he]t 0 −γ−1Ωe 0

−[Ke
uD]t [Ke

φD]t 0 KDe
DD























a

φ

T e
0

βDe
D















=















f

0
0
0















. (3.83)

The expanded matrix form given in (3.83) can be written in terms of only kinematic-like
variables by condensing out all additional terms as
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[

KDe
M

]

{

a

φ

}

=

{

f

0

}

, (3.84)

where the electric flux density β-parameters are

βDe
D = [KDe

DD]−1[(Ke
uD)t − (Ke

φD)t]

{

a

φ

}

, (3.85)

and the condensed stiffness matrix is given by

KDe
M =

[

KDe
uu + γ

Ωe
he[he]t 0

0 0

]

−
[

Ke
uD

−Ke
φD

]

[KDe
DD]−1

[

(Ke
uD)t − (Ke

φD)t
]

. (3.86)

The sub-matrices KDe
uu and Ke

uD are both evaluated using a 5-point integration scheme,
while KDe

DD is computed using a standard 4-point scheme. Expressions for these matrices
are explicitly given in Section 3.7.

P4dKD element based on ΠD
K

The K-type equivalent variational equation with assumed electric flux density can be calcu-
lated as

0 =

∫

Ωh
(symm∇δuh)t · cD · (symm∇uh) dV −

∫

Ωh
(δDh)t · h · (symm∇uh) dV

−
∫

Ωh
(symm∇δuh)t · ht · (Dh) dV +

∫

Ωh
(δDh)t · χS · (Dh) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (Dh) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.87)

The matrix form of (3.87) becomes





KDe
uu + P e 0 −Ke

uD

0 0 Ke
φD

−[Ke
uD]t [Ke

φD]t KDe
DD











a

φ

βDe
D







=







f

0
0







. (3.88)

Again, the matrix form in (3.88) is simplified to include only kinematic variables as

[

KDe
K

]

{

a

φ

}

=

{

f

0

}

, (3.89)
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where the same electric flux density β-parameters as (3.85) result. In this case, the simplified
stiffness matrix is

KDe
K =

[

KDe
uu + P e 0

0 0

]

−
[

Ke
uD

−Ke
φD

]

[KDe
DD]−1

[

(Ke
uD)t − (Ke

φD)t
]

, (3.90)

with individual stiffness matrix terms presented in Section 3.7. The same integration schemes
as used previously are again employed here to evaluate individual sub-matrices.

3.6.4 Degenerate assumed stress piezoelectric elements with drilling
DOFs

Finally, the assumed stress degenerate mixed elements are presented. These elements are
denoted P4dMnT and P4dKnT, and arise from ΠT

M and ΠT
K , respectively. Again, the n

in the element designation denotes the number of stress parameters employed. Of course
‘assumed stress’ refers specifically to the assumed symmetric part of stress since all M-type
elements contain an assumed skew-symmetric stress.

P4dMnT element based on ΠT
M

The assumed stress degenerate Hellinger-Reissner like variational equation in discrete form
is given by

0 = −
∫

Ωh
(symmδT h)t · sE · (symmT h) dV +

∫

Ωh
(∇δφh)t · d · (symmT h) dV

+

∫

Ωh
(symmδT h)t · dt · (∇φh) dV −

∫

Ωh
(∇δφh)t · εT · (∇φh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV +

∫

Ωh
(skew∇δuh)t · skewT h

− (δψh)t · skewT h dV − γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.91)

Yet again, the expression in (3.91) can be rewritten in matrix form as









0 0 he Ke
uT

0 −KTe
φφ 0 Ke

φT

[he]t 0 −γ−1Ωe 0

[Ke
uT ]t [Ke

φT ]t 0 −KTe
TT























a

φ

T e
0

βTe
T















=















f

0
0
0















. (3.92)

The matrix form in (3.92) is again rewritten in simplified form as
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[

KTe
M

]

{

a

φ

}

=

{

f

0

}

, (3.93)

where the stress β-parameters are found to be

βT
M = [KTe

TT ]−1[(Ke
uT )t + (Ke

φT )t]

{

a

φ

}

. (3.94)

Finally, the condensed stiffness matrix is written as

KTe
M =

[

γ
Ωe
he[he]t 0
0 −KTe

φφ

]

+

[

Ke
uT

Ke
φT

]

[KTe
TT ]−1

[

(Ke
uT )t (Ke

φT )t
]

. (3.95)

The submatrices KTe
TT and Ke

φT are evaluated with a 5-point integration scheme, while the

term KTe
φφ employs a 4-point scheme. Expressions for these terms are contained in Section

3.7.

P4dKnT element based on ΠT
K

The last element implementation is based on the assumed stress K-type Hellinger-Reissner
like functional. The first variation of ΠT

K can be expressed in discrete form as

0 = −
∫

Ωh
(symmδT h)t · sE · (symmT h) dV +

∫

Ωh
(∇δφh)t · d · (symmT h) dV

+

∫

Ωh
(symmδT h)t · dt · (∇φh) dV −

∫

Ωh
(∇δφh)t · εT · (∇φh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.96)

This expression can once yet again be written in matrix form as





P e 0 Ke
uT

0 −KTe
φφ Ke

φT

[Ke
uT ]t [Ke

φT ]t −KTe
TT











a

φ

βTe
T







=







f

0
0







. (3.97)

The matrix form of (3.97) is finally simplified to

[

KTe
K

]

{

a

φ

}

=

{

f

0

}

, (3.98)

where the condensed stress β-parameters are given by (3.94), and the simplified element
stiffness matrix is given by
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KTe
K =

[

P e 0
0 −KTe

φφ

]

+

[

Ke
uT

Ke
φT

]

[KTe
TT ]−1

[

(Ke
uT )t (Ke

φT )t
]

. (3.99)

The components of the stiffness matrix are yet again presented in Section 3.7.

3.7 Partitioned stiffness matrices

In Section 3.6 expressions for the individual partitioned sub-matrices were omitted. For
the convenience of the reader, it was chosen instead to present all partitioned sub-matrices
together for easier reference. The partitioned stiffness matrices are therefore all given here
in matrix form by:

Ke
uu

(5) =

∫

Ωe
[Be

u Ge
u]

tcE[Be
u Ge

u] dV, (3.100)

Ke
uφ

(5) =

∫

Ωe
[Be

u Ge
u]

tet[Be
φ] dV, (3.101)

Ke
φφ

(4) =

∫

Ωe
[Be

φ]
tεS[Be

φ] dV, (3.102)

he (4) =

∫

Ωe
[be ge]t dV, (3.103)

KDe
uu

(5) =

∫

Ωe
[Be

u Ge
u]

tcD[Be
u Ge

u] dV, (3.104)

Ke
uD

(5) =

∫

Ωe
[Be

u Ge
u]

tht[P e
D] dV, (3.105)

Ke
φD

(4) =

∫

Ωe
[Be

φ]
t[P e

D] dV, (3.106)

KDe
DD

(4) =

∫

Ωe
[P e

D]tχS[P e
D] dV, (3.107)

Ke
φT

(5) =

∫

Ωe
[Be

φ]
td[P e

T ] dV, (3.108)

KTe
φφ

(4) =

∫

Ωe
[Be

φ]
tεT [Be

φ] dV, (3.109)

Ke
uT

(5) =

∫

Ωe
[Be

u Ge
u]

t[P e
T ] dV, (3.110)

KTe
TT

(5) =

∫

Ωe
[P e

T ]tsE[P e
T ] dV, (3.111)

KTDe
TD

(5) =

∫

Ωe
[P e

T ]tgt[P e
D] dV, (3.112)

KTDe
TT

(5) =

∫

Ωe
[P e

T ]tsD[P e
T ] dV, (3.113)

KTDe
DD

(4) =

∫

Ωe
[P e

D]tχT [P e
D] dV, (3.114)
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and finally,

P e (1) = γ

∫

Ωe
[be ge]t[be ge] dV. (3.115)

The superscript in parentheses (·) represents the number of integration points used to perform
the numerical integration over the element area. (The elements are assumed to be homo-
geneous and have constant area profile through the thickness. Analytical through thickness
integration is thus employed.)

3.8 Numerical evaluation

In this section, the developed piezoelectric finite elements are assessed numerically and com-
pared with existing elements. The effect of selected parameters are also quantified. Unlike
in our paper where, for brevity, only the two elements were reported on, in this section the
performance of all eight new elements is evaluated. The elements used in the comparison
are denoted as follows:

Elements without drilling DOFs

Existing elements from literature were implemented, against which our new elements are
benchmarked. These existing elements are denoted as follows:

• P4 – A standard, planar 4 node, quadrilateral piezoelectric element without drilling
DOFs. Only the displacement u and the potential φ interpolated for, see for example
[69].

• P4D – A mixed 4 node element with only electric flux density D assumed additionally
to displacement and electric potential, as proposed in [76]. The same electric flux
density interpolation (with four β-parameters) as in Section 3.5 is employed.

• P4T – A mixed 4 node element with only stress T assumed additionally to displacement
and electric potential, as proposed in [76]. In this case, an interpolation with only five
stress β-parameters is required. The standard stress interpolation of, for instance Di
and Ramm [61] is employed.

• P4TD – A mixed 4 node element with both stress T and electric flux densityD assumed
additionally to displacement and electric potential, as proposed in [65]. An interpo-
lation for electric flux density with four β parameters and five stress β-parameters is
employed.

‘Irreducible’ elements with drilling DOFs:

• P4dM – A 4 node element with drilling DOFs, derived from functional ΠM in (3.29),
and with stiffness matrix given by (3.68).
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• P4dK – A 4 node element with drilling DOFs, derived from functional ΠK in (3.31),
and with stiffness matrix given by (3.72).

‘Degenerate’ Hellinger-Reissner like elements:

• P4dMD – A 4 node assumed electric flux density element with drilling DOFs, derived
from functional ΠD

M in (3.37), and with stiffness matrix given by (3.86).

• P4dKD – A 4 node assumed electric flux density element with drilling DOFs, derived
from functional ΠD

K in (3.39), and with stiffness matrix given by (3.90).

• P4dMnT – A 4 node assumed stress element with drilling DOFs, derived from func-
tional ΠT

M in (3.41), and with stiffness matrix given by (3.95), and number of stress
parameters given by n.

• P4dKnT – A 4 node assumed stress element with drilling DOFs, derived from func-
tional ΠT

K in (3.43), and with stiffness matrix given by (3.99), and number of stress
parameters given by n.

Fully mixed Hellinger-Reissner like elements:

• P4dMnTD – A fully mixed 4 node element, based on functional ΠTD
M given in (3.33),

with stiffness matrix given in (3.77). The number of stress interpolation parameters is
given by n.

• P4dKnTD – A fully mixed 4 node element, based on functional ΠTD
M given in (3.35),

with stiffness matrix given in (3.81). The number of stress interpolation parameters is
given by n.

In the test problems to follow, unless otherwise stated, the material constants of PZT-4
given by Sze et al. [64] are employed so that our piezoelectric elements may be compared to
theirs. To this end, the following material constants are used:

c11 = 139 × 103, c33 = 113 × 103, c13 = 74.3 × 103, c55 = 25.6 × 103 (in N/mm2)

e15 = 13.44 × 106, e31 = −6.98 × 106, e33 = 13.84 × 106 (in pC/mm2)

ε11 = 6.00 × 109, ε33 = 5.47 × 109 (in pC/(GVmm)).

The units of length, force, stress, charge, electric displacement and electric potential, re-
spectively, are taken as mm, N, N/mm2, pC, pC/mm2 and GV. This unusual unit choice
alleviates the ill effects resulting from the poor scaling of the global stiffness matrix. The
poling direction in the test problems to follow, unless otherwise stated, is taken as the global
y–direction. The constitutive equations which result are






















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










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
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



=













c11 c13 0 0 −e31

c13 c33 0 0 −e33

0 0 c55 −e15 0
0 0 e15 ε11 0
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


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
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


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





















. (3.116)
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Figure 3.4: Effect of γ on eigenvalues (normalised with respect to their values at γ/c33 = 1).

Constants used in the analytical solutions of some of the tests to follow, are given by





s11 s13 g31

s13 s33 g33

−g31 −g33 β33



 =





c11 c13 −e31

c13 c33 −e33

e31 e33 ε33





−1

. (3.117)

3.8.1 Effect of γ

The elements developed in the foregoing are dependant on the problem-dependent penalty
parameter γ. The effect of γ has been the focus of a number of recent studies, see Chapter 2
and [43, 58, 81] for examples. For linear elastic isotropic Dirichlet problems, the formulation
is reported to be relatively insensitive to the value of γ [18, 21, 45], and it was proposed
that γ = µ, the shear modulus. Under different conditions, e.g. orthotropy (as in the case
of piezoelectric materials) or dynamic problems, a greater sensitivity to γ is expected. For
dynamic problems, for example, Hughes et al. [82] propose a value of γ = µ/10.

To determine an appropriate value for γ, an eigenvalue analysis of an undistorted (square)
P4dM element is performed. Although results are only reported for the P4dM element,
the trends depicted in Figures 3.4 and 3.5 are typical for all of our new elements. Figure
3.4 depicts the effect of γ on the non-zero eigenvalues, arranged in descending order. The
eigenvalues are normalised with respect to their values at γ = c33. It is clear that the ‘softer’
modes are most sensitive to γ at values of γ/c33 < 1. For values of γ/c33 > 1, on the other
hand, the ‘harder’ modes are significantly more sensitive, in particular λ1 and λ2, indicative
of a locking-like phenomena. This results from the terms in the stiffness matrix containing
γ dominating the response.

In order to determine the effect of γ on the accuracy of the current formulations, a represen-
tative test problem is studied for an array of γ values. The 10 element cantilever, depicted
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Figure 3.6: Ten element piezoelectric cantilever beam subjected to pure bending.

Figure 3.6, is selected for this study. In Figure 3.5 some accuracy measures are plotted as a
function of γ/c33.

Figure 3.5 shows how the accuracy of uyB, the y–displacement at point B and of φC , the
electric potential at C (see Figure 3.6), decrease at values of γ/c33 > 1. Also plotted is an
indication of the error on the skew-symmetric part of stress, T0 as suggested in Chapter 2
and [58]. The plotted values are normalised with respect to principle stresses at points D and
E. T0D and T0E are the constant skew-symmetric part of stress in the elements containing
points D and E, respectively. T2D is the second (compressive) principle stress calculated
at D and T1E is the first principle stress at E. Since the skew-symmetric part of stress
should be zero, both T0D/T2D and T0E/T1E should in turn be zero. Notably, the error on
the skew-symmetric stress increases with larger values of γ/c33. To avoid operating in the
regime where the gradient change of the accuracy measures occurs, it is suggested that a
value of γ/c33 = 10−2 be used.

 
 
 



3.8. NUMERICAL EVALUATION 75

1
2
3
4
5
6
7
8

x
0.2
0.44
0.44
0.2
0.24
0.38
0.36
0.28

y
0.
0.

0.12
0.12
0.02
0.03
0.08
0.08

Coordinates:

1

5

2

34

8 7

6
y

x

Vertex

Figure 3.7: Mesh for piezoelectric patch test.

3.8.2 Eigenvalue analysis

Since a reduced order integration scheme is employed during stiffness calculations and a
nonstandard γ value is used, element rank sufficiency needs to be verified by means of an
eigenvalue analysis. The eigenvalues of 2 × 2, undistorted (square) elements are computed.
(Eigenvalue analyses should in general be carried out on undistorted elements, since distor-
tion may actually suppress zero energy modes due to the inaccuracies of an approximate
integration scheme.)

In the case of planar piezoelectric elements, the mechanical partition of the stiffness ma-
trix should contain only 3 zero eigenvalues corresponding to the 3 rigid body modes. An
eigenvalue analysis of the dielectric part of the element stiffness matrix should reveal a single
zero eigenvalue, corresponding to the constant potential distribution resulting in zero electric
field. For the sake of brevity, the eigenvalues are not reported here. It was, however verified
that each element possesses the proper number of non-zero eigenvalues.

3.8.3 Patch test

The patch test is a standard method to test for element convergence, as well as any possible
implementation or programming errors. The test is performed with the geometry and mesh
suggested by Sze et al. [64], as shown in Figure 3.7. Kinematic (displacement and potential)
terms on the boundary are prescribed, corresponding to:

ux = s11σ0x, uy = s13σ0y, φ = g31σ0y, (3.118)

with σ0 a stress parameter. The corresponding stress and electric displacement can be shown
to be constant, and are given by

Txx = σ0, Tyy = Txy = Dx = Dy = 0. (3.119)

Compliance with the conditions above was verified for each of the elements used in this
study. A force patch test, with prescribed boundary forces corresponding to (3.119), was
also conducted.
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Figure 3.8: Two element piezoelectric cantilever beam subjected to pure bending.

3.8.4 Two element beam

The two element beam bending test is used to quantify the effect of distortion on element
accuracy. Figure 3.8 depicts a cantilever beam of length L=10 and height h=2, modelled
using two elements with a common distortion e. The electric potential of all nodes at y = −1
is prescribed to be zero. The exact solution for this problem was presented by Sze et al.
[64]. The analytical solutions to this problem include:

ux = −s11σ0xy, uy =
s13σ0

2

(

h2

4
− y2

)

+
s11

2
σ0x

2, φ =
g31σ0

2

(

h2

4
− y2

)

, Tx = −σ0y,

Ty = Txy = Dx = Dy = 0, M =

∫ h/2

−h/2

yTxdy = −h
3σ0

12
= −hF.

Figure 3.9 depicts the relative error of the y–displacement at point A, i.e. uyA/uyExact − 1,
for the various elements being tested. Considering the irreducible elements, the superior
accuracy and stability of the P4dM and P4dK elements over the standard P4 elements is
clear. The displacement accuracy of the assumed flux density elements are similar to that
of the irreducible, and are actually slightly less accurate than the irreducible elements. Al-
though the elements with 8 β-parameters perform slightly better than the elements with
9 β-parameters, the assumed stress elements surprisingly severely overestimate the tip dis-
placements for the non-distorted mesh. The P4TD fully mixed elements without drilling
degrees of freedom achieve an accuracy comparable to the elements developed by Sze et al.
[64]. It is also demonstrated that the P4dM8TD and P4dK8TD elements are accurate and
stable, even at extreme mesh distortions. In fact, for this problem these elements perform
slightly better than the stabilised plane element developed by Sze et al. [64], as shown in
Figure 3.9.

Figure 3.10 depicts the absolute error on the electric potential at point A, φA. In contrast to
the displacement results, the elements without drilling DOFs all achieve a better accuracy
on electric potential than the elements of the same family with drilling DOFs. However,
considering the irreducible elements (which are the least numerically expensive and are the
easiest to implement) the accuracy gained on the displacement is far more significant than
that lost on electric potential. Unfortunately Sze et al. [64] did not report on this quantity,
so comparison with their element was not possible. Having said than, the parabolic ‘through-
thickness’ potential distribution of the exact solution can, of course, not be captured using
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bilinear potential interpolations with the current mesh. The result is that for a regular mesh,
zero electric field is predicted and therefore relatively large errors on displacement accrue
due to the inherent coupling (as is apparent with the assumed stress elements).

This test is therefore repeated with a mesh consisting of two elements along the length (as
before), but this time with two elements through the thickness (four elements in total).
Although the effects of the mesh distortion are more pronounced for the aspect ratio of the
elements in this test, this in our opinion, is a more reasonable mesh for this problem, since
the physics of the problem can be approximated by all elements used in the comparison.
That is to say, the parabolic potential distribution can be approximated using the bilinear
potential interpolations of the aforementioned elements.

The displacement results are depicted in Figure 3.11. A significant improvement is achieved
for the assumed stress degenerate elements, especially at zero distortion. All the elements
with assumed stress (degenerate and full-mixed) perform similarly well. Once again the
superior accuracy of our new irreducible elements with drilling DOFs over the standard P4
elements is noted. Our new elements also perform better than the existing P4D assumed
flux density elements.

Figure 3.12 depicts the absolute error on φA for our four element beam problem. For this
measure, a marked improvement is once again noted for the degenerate assumed stress ele-
ments with drilling DOFs. For this mesh, the standard P4T element only out-performs our
new elements at extreme mesh distortions (e > 2). The electric potential of all fully mixed el-
ements (with and without drilling DOFs) achieve similar accuracy. Although the irreducible
and assumed flux density exhibit a slightly superior accuracy on electric potential when
compared to the assumed stress and fully mixed elements, this slight accuracy improvement
comes at the expense of a significant loss of accuracy on displacement accuracy.

3.8.5 Ten element beam

The same beam geometry as used in the two and four element test (with identical boundary
conditions) is modelled, but this time with ten irregular elements as shown in Figure 3.6.
Displacements and electric potentials are evaluated at points A, B and C and stresses and
electric flux densities are calculated directly at points D and E. This problem was used by
Wu et al. [65] to verify the accuracy of their P4TD element. Results are presented in Table
3.1.

Again, considering the irreducible elements used in this comparison, the the superior accu-
racy with respect most fields of the elements with drilling DOFs relative to P4 is evident.
Our assumed flux density degenerate elements significantly out-perform the standard P4D
elements on almost all measures. The performance of the assumed stress elements with and
without drilling DOFs is similar, as is the performance of the fully mixed elements. In fact,
the performance of the assumed stress family of elements is similar to the family of fully
mixed elements with the notable exception of electric flux density accuracy. The inclusion
of the independent interpolation for electric flux density therefore appears to significantly
improve the accuracy of electrical quantities (potential and electric flux density).
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Figure 3.9: Two element piezoelectric beam subjected to pure bending: Effect of distortion on vA.
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Figure 3.10: Two element piezoelectric beam subjected to pure bending: Effect of distortion on φA.

 
 
 



80
C

H
A

P
T

E
R

3
.

P
IE

Z
O

E
L
E

C
T

R
IC

E
L
E

M
E

N
T

S
W

IT
H

D
R

IL
L
IN

G
D

O
F
S

Distortion e

P4dM
P4dK
P4
Exact

43.532.521.510.50
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

R
e
la

t
iv

e
u

y
A

e
r
r
o
r

(a) Elements with u and φ assumed.

R
e
la

t
iv

e
u

y
A

e
r
r
o
r

0.2

0

-0.2

-0.4

-0.6

-0.8

0
-1

0.5 1 1.5 2

Distortion e

2.5 3 3.5 4

Exact
P4D
P4dKD
P4dMD

(b) Elements with u, φ and D assumed.

R
e
la

t
iv

e
u

y
A

e
r
r
o
r

0.6

0.4

0.2

0

-0.2

-0.4

-0.6
0 0.5 1 1.5

Distortion e

2 2.5 3 3.5 4

Exact
P4T
P4dK8T
P4dM8T
P4dK9T
P4dM9T

(c) Elements with u, φ and T assumed.

Exact
P4TD
P4dK8TD
P4dM8TD
P4dK9TD
P4dM9TD

43.532.5

Distortion e

21.510.50
R

e
la

t
iv

e
u

y
A

e
r
r
o
r

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(d) Elements with u, φ, D and T assumed.

Figure 3.11: Four element piezoelectric beam subjected to pure bending: Effect of distortion on vA.
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(d) Elements with u, φ, D and T assumed.

Figure 3.12: Four element piezoelectric beam subjected to pure bending: Effect of distortion on φA.
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Table 3.1: Ten element piezoelectric cantilever subject to pure bending.
Relative Relative Relative Relative Relative Absolute Absolute
% error % error % error % error % error error error
uxB uyB φC TxD TxE DyD DyE

P4 -40.4175 -36.1072 -48.1191 -21.3819 -5.2331 90.1438 -10.0964
P4dM -3.4094 -1.3680 -5.3626 9.2982 18.1271 97.7308 -102.4166
P4dK -3.4102 -1.3691 -5.3643 9.2977 18.1313 97.7287 -102.3594

P4D -50.1581 -44.4320 -68.7544 -28.2890 -14.1054 32.5175 67.5230
P4dMD -8.5244 -6.7333 -6.7703 7.5064 18.6191 -5.0939 7.6408
P4dKD -8.5248 -6.7340 -6.7723 7.5049 18.6171 -5.0934 7.6520

P4T 1.0322 2.9902 7.5749 -7.1865 -6.9662 174.6776 -218.2058
P4dM8T 0.4151 2.2293 7.2564 -5.5496 -2.1303 183.0845 -231.3944
P4dK8T 0.4148 2.2295 7.2527 -5.5553 -2.1301 183.0898 -231.3809
P4dM9T 0.4814 2.2079 7.1959 -10.0337 -2.0298 130.5465 -225.8105
P4dK9T 0.4812 2.2082 7.1938 -10.0357 -2.0308 130.6023 -225.7964

P4TD -5.7885 -4.0462 1.7121 0.7077 0.4331 -6.6586 7.4355
P4dM8TD -6.4972 -4.8806 1.2997 1.9039 7.1635 -4.7693 8.3963
P4dK8TD -6.4976 -4.8809 1.2964 1.8987 7.1609 -4.7642 8.4026
P4dM9TD -6.4364 -4.8969 1.0597 -0.9267 7.1655 -4.3515 8.4282
P4dK9TD -6.4368 -4.8971 1.0582 -0.9300 7.1626 -4.3471 8.4343
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Figure 3.13: Piezoelectric Cook’s membrane.

3.8.6 Cook’s membrane

The final pathological test of element accuracy under mechanical actuation is depicted in
Figure 3.13. The geometry and loading is similar to the popular Cook’s membrane consisting
of a swept and tapered beam with distributed tip load. The lower surface is prescribed to have
a voltage of 0V. Since no analytical solution exists for this problem, the predicted solutions
are compared to a finite element approximation with a sufficiently fine mesh. The best
known values of uyC and φC , computed by performing a detailed finite element analysis with
a refined mesh, are 2.109×10−4mm and 1.732×10−8GV, respectively. Figure 3.14 depicts
the magnitude of the relative error on uyC , the y–displacement of point C, for different
mesh refinements on a log scale. The accuracy of the irreducible and assumed flux density
elements with drilling DOFs compared to their standard P4 and P4D counterparts is once
again illustrated. In this case, the assumed stress elements achieve a far greater accuracy
than the other elements, with the P4T element achieving the best displacement accuracy
of all elements. All of the fully mixed elements with and without drilling DOFs perform
similarly well.

Figure 3.15 depicts the magnitude of the relative error on φC , the electric potential at
point C. The accuracy of electric potential within the four individual element families
is similar, and a far less marked distinction between elements with and without drilling
DOFs is apparent. Invariably upon comparing Figures 3.14 and 3.15, elements with superior
displacement accuracy exhibit poorer potential accuracy and vice versa. Furthermore, the
respective elements’ loss of accuracy on electric potential appears to be less substantial than
the accuracy gained on displacement accuracy.

Table 3.2 presents the relative percentage errors on the first principle stress at point A, T1A

and the magnitude of the electric flux density at B, |DB|. The best known values for T1A

and |DB| are 0.21613 N/mm2 and 22.409 pC/mm2, respectively. In this case, the irreducible
elements with drilling DOFs achieve the best approximations for both T1A and |DB| with
the exception of |DB| for the 2 × 2 discretisation. Again, the accuracy of the elements
with drilling DOFs within the irreducible and assumed flux density families is illustrated.
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Furthermore, as before the assumed stress and fully mixed families achieve similar accuracies
regardless of whether drilling DOFs are included or not. Our new elements with 9 stress
β-parameters appear to perform very well.

Table 3.2: Relative percentage error on stress and electric displacement for Cook’s membrane.
2 × 2 mesh 4 × 4 mesh 8 × 8 mesh

T1A |DB| T1A |DB| T1A |DB|
P4 -44.6706 -80.3136 -19.8108 -68.3021 -3.7775 -33.9002
P4dM -9.2049 -38.4155 -0.7867 -9.7136 -0.7298 -6.7096
P4dK -9.1978 -38.4299 -0.7834 -9.7162 -0.7291 -6.7099

P4D -50.8613 -77.1129 -20.2323 -86.1091 -3.8591 -38.5268
P4dMD -19.7603 -42.8530 -3.7775 -19.5042 -1.2428 -8.9451
P4dKD -19.7569 -42.8726 -3.7756 -19.5085 -1.2423 -8.9457

P4T -21.4767 1.0435 -6.9101 -17.2497 -2.1175 -10.3702
P4dM8T -28.7225 -4.0746 -8.2523 -24.1994 -2.3955 -12.9287
P4dK8T -28.7176 -4.0162 -8.2527 -24.1880 -2.3958 -12.9280
P4dM9T -19.8624 -1.8967 -6.2470 -25.8652 -1.8419 -11.9210
P4dK9T -19.8634 -1.8251 -6.2477 -25.8541 -1.8422 -11.9204

P4TD -20.9579 -45.4065 -6.0842 -23.5878 -1.6060 -10.6112
P4dM8TD -35.3104 -48.9795 -7.3783 -25.3382 -2.1842 -11.6869
P4dK8TD -35.3060 -48.9936 -7.3791 -25.3460 -2.1843 -11.6889
P4dM9TD -18.2960 -47.2924 -4.7375 -25.4509 -1.3131 -11.6292
P4dK9TD -18.2993 -47.3067 -4.7382 -25.4583 -1.3132 -11.6312
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(b) Elements with u, φ and D assumed.
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Figure 3.14: Cook’s membrane: y–displacement at C (uyC).
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Figure 3.15: Cook’s membrane: Electric potential at C (φyC).
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Figure 3.16: Bimorph based on MacNeal’s elongated beam.

3.8.7 Piezoelectric bimorph beam

The final problem, evaluating element accuracy under electrical actuation, takes the form
of a piezoelectric bimorph beam. The physical problem consists of two identical layers of
piezoelectric material with opposite polarities, as indicated in Figure 3.16. Upon application
of an electric field in the through-thickness direction, the bimorph bends as a result of
moments caused by the layers’ opposing polarities.

This problem is often solved using PVDF material constants and compared to the solution
of Tzou [83]. For the purpose of the current study, tests are conducted using two different
materials. To assess the element accuracy by beam solution, the Poisson’s ratio is set to
zero. Therefore the material properties for the PVDF material are [84] E1 = E2 = E3=
2×103 (N/mm2), ν12 = ν13 = ν23=0, e31 = e32=-0.046×106 (pC/mm2) and ε11 = ε33 =
ε33=0.1062×109 (pC/GVmm). The e33 coefficient is assumed to be zero [84]. In the second
case, the material properties of PZT-4, as used in the preceding problems, are used and the
solution is compared to a refined finite element solution.

Since at least two elements are required through the thickness, the meshes used here repre-
sents a bisection of the discretisation suggested by MacNeal and Harder [85]. The top surface
of the beam is subjected to 1V, and the bottom surface to -1V. The relative percentage error
on the tip displacement is reported for the two different materials and the three meshes in
Table 3.3. The beam solution for the PVDF material is 6.2100×10−5 mm, while the best
known solution for the PZT-4 material is 4.3622×10−4 mm.

The over-stiff response of the P4 and P4D elements are once again highlighted for both
regular and distorted elements. The significant improvement in performance upon addition
of the drilling DOFs within these two element families is also once again apparent.

The results for both the assumed stress and fully mixed families employing the PVDF mate-
rial are similar. Notably, elements with drilling DOFs and no assumed flux density interpola-
tion predict the exact (beam) solution for the undistorted mesh. Meanwhile the same slight
displacement error results for undistorted assumed flux density and fully mixed elements
with drilling DOFs.
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Table 3.3: Relative percentage error on vertical tip displacement of piezoelectric bimorph.
PVDF PZT-4

Regular Trapezoidal Parallel Regular Trapezoidal Parallel
P4 -75.7576 -85.7547 -88.7211 -63.2273 -80.9720 -87.5199
P4dM 0 -35.4700 -10.4663 -6.3609 -27.7086 1.9377
P4dK 0 -35.4711 -10.4666 -6.3609 -27.7102 1.9372

P4D -75.7722 -85.7599 -88.7247 -78.6452 -86.8639 -91.3582
P4dMD -0.2484 -35.5802 -10.6666 -8.3357 -32.5815 -7.8569
P4dKD -0.2484 -35.5813 -10.6669 -8.3357 -32.5825 -7.8572

P4T 0 -29.2346 -4.2227 7.0048 -19.7686 4.1441
P4dM8T 0 -33.8712 -5.0015 6.6919 -22.8712 3.8611
P4dK8T 0 -33.8721 -5.0020 6.6919 -22.8717 3.8604
P4dM9T 0 -33.8995 -5.0448 6.3358 -23.3704 3.5463
P4dK9T 0 -33.9004 -5.0453 6.3358 -23.3711 3.5457

P4TD -0.2484 -29.3670 -4.4527 -2.6514 -26.4455 -5.2251
P4dM8TD -0.2484 -33.9872 -5.2288 -2.9145 -29.0260 -5.5317
P4dK8TD -0.2484 -33.9881 -5.2292 -2.9145 -29.0263 -5.5321
P4dM9TD -0.2484 -34.0154 -5.2717 -3.2111 -29.4803 -5.8180
P4dK9TD -0.2484 -34.0163 -5.2722 -3.2111 -29.4807 -5.8184
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For this problem, the assumed stress elements perform slightly better than the fully mixed
elements for the PZT-4 material and distorted meshes, with our assumed stress elements with
drilling DOFs performing marginally better than the standard P4T element. The excellent
performance of the irreducible elements for the PZT-4 bimorph is also noted.

3.9 Conclusions

A number of variational formulations accounting for piezoelectricity and in-plane rotations
have been presented. Two new families of functionals, namely M-type, which retains the
skew-symmetric part of the stress tensor, and K-Type, in which the skew part of stress is
eliminated, are introduced.

From the M-Type Hu-Washizu-like functional an irreducible formulation with only ‘kine-
matic’ independent variables, i.e. displacement and electric potential, was developed. It
has also been shown how a ‘fully’ mixed formulation, with stress and electric flux density
assumed, can be generated. Two M-Type ‘degenerate’ Hellinger-Reissner-like functionals
with either stress or electric flux density assumed, are also given. It was also demonstrated
how the K-Type counterparts of our M-type functionals can be constructed.

Furthermore, numerical implementations of the M- and K-Type formulations are presented.
The accuracy and robustness of our elements on a number of benchmark problems was
demonstrated. The addition of drilling degrees of freedom enriches the interpolated displace-
ment field, resulting in improved element performance. This is borne out by the improved
accuracy and robustness of the P4dM and P4dK elements over the standard P4 piezoelectric
element. The improved performance of our mixed elements with drilling degrees of freedom
is generally less marked when compared to existing mixed piezoelectric elements. In fact,
it is difficult to conclusively state that any one of the elements used in this study is better
in terms of accuracy than all the others. This is so since none of the elements herein con-
sistently outperforms all the other elements on all reported accuracy measures. Our ‘fully
mixed’ elements, however, are shown to be accurate and stable, even at extreme element
distortions. They also allow for improved modelling capabilities due to the additional ro-
tational degree of freedom, e.g. compatibility with elastic elements with drilling degrees of
freedom is ensured. The results presented herein, therefore indicate that the P4dMnTD and
P4dKnTD elements are useful for modelling engineering applications.

What is more, the variational formulations constructed in this work can be used to establish
three dimensional solid piezoelectric elements with drilling degrees of freedom. Furthermore,
the planar elements derived here, when combined with piezoelectric plate elements, can be
used to calculate through-thickness phenomena in thick piezoelectric shell elements.

 
 
 



Chapter 4

Modified reduced order quadratures
for quadratic membrane elements

4.1 Summary

Reduced integration is frequently used in evaluating the element stiffness matrix of quadrati-
cally interpolated finite elements. Typical examples are the serendipity (Q8) and Lagrangian
(Q9) membrane finite elements, for which a reduced 2×2 Gauss-Legendre integration rule is
frequently used, as opposed to full 3× 3 Gauss-Legendre integration. This ‘softens’ these el-
ement, thereby increasing accuracy, albeit at the introduction of spurious zero energy modes
on the element level. This is in general not considered problematic for the ”hourglass” mode
common to Q8 and Q9 elements, since this spurious mode is non-communicable. The remain-
ing two zero energy modes occurring in the Q9 element are indeed communicable. However,
in topology optimization for instance, conditions may arise where the spurious mode associ-
ated with the Q8 element becomes activated. To effectively suppress these modes altogether
in elements employing quadratic interpolation fields, two modified quadratures are employed
herein. For the Q8 and Q9 membrane elements, the respective rules are a five and an eight
point rule. As compared to fully integrated elements, the new rules enhance element accuracy
due to the introduction of soft, higher-order deformation modes. A number of standard test
problems reveal that element accuracy remains comparable to that of the under-integrated
counterparts.

4.2 Introduction

In the earlier days of the development of the finite element method, numerical integration
schemes attracted significant attention (e.g. see [54, 86, 87, 88]), possibly due to the limita-
tions of the computing devices available at the time.

More recently, reduced integration schemes have frequently been used in combination with
stabilization methods and explicit integration in the time domain, so as to increase com-
putational efficiency when simulating computationally demanding models, e.g. nonlinear
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crash analysis, metal forming, etc. The contributions of Belytschko and others (e.g. see
[89, 90, 91, 92, 93]) are notable here. In essence they employ reduced integration schemes
in conjunction with stabilization methods to prevent spurious modes that arise as a result
of these schemes. On this subject the paper of Hughes et al. [94] is informative.

While the need for reduced integration is obvious in explicitly integrated, computationally
demanding analyses, reduced integration is also frequently employed in implicitly integrated
elastostatic or -dynamic analyses. This is normally done to alleviate locking in membrane,
plate or shell elements, or merely to improve the behavior or these elements. Typical exam-
ples are the serendipity and Lagrangian membrane elements, which are over-stiff when full
integration is used.

In the finite element method the equilibrium equations involve integration over the element
volume. This is also true for the expressions for consistent nodal loads, mass matrices,
penalty matrices, etc. For simple elements the integrand may be formed explicitly, resulting
in exact integration. However, numerical integration schemes are necessary when element
geometries are distorted, of which the Gaussian rules are possibly the best known and most
frequently employed. The effects of numerical integration schemes are summarized in a clear
manner by Cook et al. [17]:

For numerically integrated elements, full integration indicates a quadrature rule sufficient
to provide the exact integrals of all terms in the element stiffness matrix Ke if the element
geometry is undistorted. The same ‘full integration’ rule will not exactly integrate K e if the
element is distorted, or if the center nodes are offset from the element midpoints, since the
Jacobian J is no longer constant throughout the element domain.

In this work, reduced order integration refers an integration scheme of lower order (fewer
points and lower order of accuracy) than the lowest order rule which results in the exact
integration of elemental matrices for an undistorted element.

A lower-order quadrature rule, called reduced integration, may be desirable for two reasons.
Firstly, since the expense of generating the matrix Ke by numerical integration is propor-
tional to the number of sampling points, fewer points results in lower computational cost.
Secondly, a low order rule tends to soften an element, thus countering the overly-stiff be-
havior associated with assumed displacement fields. (The displacement based finite element
method is monotonically convergent from below.) Softening comes about because certain
higher-order polynomial terms happen to vanish at Gauss points of a low-order rule. Simply
stated, with fewer sampling points, some of the more complicated displacement modes offer
less resistance to deformation.

We pertinently differentiate between (a) the accuracy of an integration scheme, and (b) the
numerical accuracy of finite elements. The former indicates the error of an approximate
integration scheme as compared to the exact integral, while the latter indicates the perfor-
mance of finite elements employing these approximate numerical schemes. It is reiterated
that the numerical accuracy or performance of finite elements frequently increases when the
accuracy of the integration scheme itself decreases. This is due to the fact that some lim-
iting behavior (e.g. locking) is rendered negligible, or almost so, when reduced as opposed
to full integration is employed. While accuracy of integration of Ke decreases with reduced
integration, the element accuracy may actually increase.
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Figure 4.1: Typical spurious mode of Q8 employing a 4 point Gauss-Legendre scheme.

In summary, reduced integration may be able to simultaneously reduce cost, reduce accuracy
in the evaluation of integration expressions, and increase the accuracy of the finite element
analysis. Barring extremely expensive analyses, it is however noted that most authors agree
that reduced integration should in general not be used if reduced cost is the sole motivation.

Numerical testing of any proposed rule is mandatory. Even though solution accuracy may
be mesh dependent and problem dependent, one quadrature rule is usually superior to oth-
ers. For bilinear (Q4) and eight-node plane elements (Q8), and for eight node linear solid
elements, an order 2 Gauss rule is favored over an order 3 rule (four and eight points for
plane and solid elements, respectively).

For Q4, the order 2 Gauss rule is problem free (at least as far as spurious modes are con-
cerned). For Q8, the order 2 Gauss rule introduces a spurious mode on the element level.
For Q9 (the Lagrangian ‘bubble’ counterpart of Q8), the order 2 Gauss rule introduces 3
spurious modes on the element level. The ”hourglass” spurious mode common to the Q8
and Q9 elements, depicted in Figure 4.1, is in general not considered problematic since it is
non-communicable, viz. the spurious mode is unable to propagate in a mesh consisting of
more than one element. However, in some practical situations, conditions may arise where
this spurious mode becomes activated. One example is the SIMP (Solid Isotropic Material
with Penalization) material description, frequently used in topology optimization (e.g. see
[4]), where the elasticity tensor in adjacent elements may vary considerably. The remaining
two zero energy modes associated with the Q9 element are, however, communicable.

For illustrative purposes the general expression for the stiffness matrix K e of a single three-
dimensional finite element is considered, and can be written as (e.g. see [60])

Ke =

∫

Ω

BTCB dΩ, (4.1)

where B is the strain-displacement operator, C the matrix that defines the constitutive
relationship, and Ω the element volume. Also, dΩ = dx dy dz in the Cartesian coordinate
system, which is transformed to the natural coordinate system as dΩ = dr ds dt |J |, with |J |
the determinant of the Jacobian matrix J of the transformation. In the natural coordinate
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system,

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTCB |J | dr ds dt. (4.2)

During numerical integration, (4.2) is written as

Ke =
N
∑

n=1

WnB
T (rn, sn, tn)CB(rn, sn, tn) |J(rn, sn, tn)|, (4.3)

where (rn, sn, tn) is the nth position of the integration point, associated with weight Wn, of
any suitable integration scheme using N integration points. In (4.3) it is assumed that the
constitutive relation defined by C is not a function of the global coordinates (x, y, z). It
is desirable that (4.3) is problem free in terms of locking, (element) accuracy and spurious
modes.

For 2-D planar elements the through-thickness component is usually constant, (4.3) therefore
reduces to

Ke = h

N
∑

n=1

WnB
T (rn, sn)CB(rn, sn) |J(rn, sn)|, (4.4)

where h represents the constant element thickness and where the Jacobian, J , is of reduced
size compared to (4.3).

In this study it is attempted to effectively suppress spurious modes in quadratic finite ele-
ments altogether, using two modified quadratures proposed by Dovey [54].

This chapter is laid out as follows: Firstly, a summary of the formulation presented by
Dovey is presented since his work on reduced order integration is probably not widely known.
Numerical experiments are then performed for several well known test problems using the
modified quadrature rules, as well as the standard order 2 and order 3 Gauss-Legendre rules.
Finally, conclusions are drawn, based on the results of our numerical experiments.

For the sake of brevity, we restrict ourselves to the 2-D problem. However, the development
for quadratically interpolated 3-D brick elements is similar. In 2-D, the standard order 2
and order 3 Gauss-Legendre rules will be referred to as the 4 and 9 point Gauss-Legendre
rules.

4.3 Derivation of numerical integration schemes

In this section the work of Dovey [54] is closely followed. The same notation is used. Consider
the area integral given by

I =

∫ 1

−1

∫ 1

−1

F (r, s) dr ds, (4.5)

where F (r, s) is any polynomial function of r and s. Any polynomial expression of two
variables can be expressed in the form

F (r, s) =
∑

i,j

Aijr
isj. (4.6)
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No limits are placed on the summation indices i and j as any arbitrary polynomial is being
considered.

Let any N -point rule be written as

I∗ =
N
∑

n=1

WnF (rn, sn) , (4.7)

where I∗ represents the numerical approximation to I. Integration point n is given by (rn, sn)
and the associated weight is given as Wn.

Each term of (4.6) may be trivially integrated as follows:

∫ 1

−1

∫ 1

−1

Aijr
isj drds =

{

22Aij
(i+1)(j+1)

i, j both even,

0 otherwise.
(4.8)

Application of the quadrature rule of (4.7) to the function F (r, s) in the form of (4.6) gives
the following result, which is expressed in terms of the coefficients Aij as

I∗ = A00

N
∑

n=1

(Wn) + A10

N
∑

n=1

(Wnrn) + A01

N
∑

n=1

(Wnsn) + A20

N
∑

n=1

(

Wnr
2
n

)

+ · · · (4.9)

Two points are to be noted:

• Symmetry of the rule in each coordinate implies that the coefficients corresponding to
all odd powers will vanish in (4.9). This of course corresponds to the vanishing of the
integral of odd powers over this region.

• Symmetry with respect to both coordinates is required to ensure invariance of the rule.

Equating the coefficients of Aij between (4.8) and (4.9) gives a series of equations in the
weights Wn and the coordinates rn and sn. Evidently the number of equations that are
satisfied for a particular set of weights and coordinates indicate which polynomial terms are
integrated exactly by that particular rule. Also, the degree to which each remaining equation
is not satisfied gives the error in that polynomial term. Each equation has the form

N
∑

n=1

Wnr
i
ns

j
n =

22

(i+ 1)(j + 1)
, (4.10)

for the coefficient Aij. Clearly all equations containing odd values for either i or j are satisfied
identically for symmetric rules.

The maximum number of equations needed from (4.10) is determined by the order of the
function F (r, s) which is to be integrated. If the maximum number of equations possible
is satisfied for a particular configuration, then an optimal scheme for that configuration is
obtained. However, if less than the maximum number are satisfied, a less accurate rule
is obtained, but freedom is available for arbitrary selection of some values of weights or
coordinates. The foregoing was used by Dovey to derive a symmetrical 5 and 8 point rule,
as is briefly presented in the following.
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α

Figure 4.2: 5 Point integration scheme.

4.3.1 A five point rule

The 5-point rule is depicted in Figure 4.2. Due to symmetry, the weights Wα are identical.
The rule is indicated by

I∗ = W0F (0, 0) +WαF (±α,±α). (4.11)

The second term of (4.11) indicates four points when all combinations of positive and negative
signs are taken.

Employing (4.10) the first four equations are obtained for the appropriate terms Aij as

A00 : W0 + 4Wα = 4,
A20, A02 : 4Wαα

2 = 4/3,
A22 : 4Wαα

4 = 4/9,
A40, A04 : 4Wαα

4 = 4/5.

(4.12)

The last two of these equations are directly inconsistent and so the last is discarded. Also,
however, the first three are inconsistent if the center point is retained.

Solving the first three expressions of (4.12) leads to

α = 1/
√

3; Wα = 1 and W0 = 0, (4.13)

which is the 2 × 2 Gaussian product rule. The leading error term is defined by the last of
equations (4.12) and gives the error (I∗ − I), corresponding to the fourth power terms, r4

and s4, as
E40 = (4Wαα

4 − 4/5)A40, E04 = (4Wαα
4 − 4/5)A04. (4.14)

However, the center point may be retained by selecting a value for W0, computing Wα and α
from the first two relationships in (4.12). This implies an error in the A22 term. The scheme
is now defined by

Wα = 1 −W0/4, (4.15)

α =

(

1

3Wα

)
1
2

. (4.16)
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α

β

Figure 4.3: 8 Point integration scheme.

The scheme only has physical meaning while 0 ≤ W0 < 4. The error in the A22 term is
minimized as W0 → 0. In practice this implies that the 5-point scheme converges to the
2×2 Gaussian scheme as W0 → 0. This rule was previously used by Groenwold and Stander
for their 4-node thick shell finite element with 6 d.o.f. per node [52].

It is noted that as W0 → 4, Wα → 0 and from (4.16), α → ∞. Even though, for a
polynomial being integrated between -1 and 1, function evaluations outside of this region
may be permitted, it is preferable that for applications in the finite element method this
situation be avoided. The value of α is therefore limited to the defined region 0 ≤ α ≤ 1.
This implies from (4.15) and (4.16) that W0 be chosen such that 0 ≤ W0 ≤ 8

3
.

4.3.2 An eight point rule

The 8-point rule is depicted in Figure 4.3. This rule was previously employed for membrane
elements with in-plane rotational degrees of freedom by Stander and Wilson [95] in the
QC9(8) element, and also by Ibrahimbegovic et al. [21] in their drilling degree of freedom
membrane element. The rule is described by

I∗ = WαF (±α,±α) +Wβ [F (±β, 0) + F (0,±β)] . (4.17)

Due to symmetry, the weights Wα are identical, as are the weights Wβ. The governing
equations are given by

A00 : 4Wα + 4Wβ = 4,
A20, A02 : 4Wαα

2 + 2Wββ
2 = 4/3,

A22 : 4Wαα
4 = 4/9,

A40, A04 : 4Wαα
4 + 2Wββ

4 = 4/5.

(4.18)

All four equations may be satisfied and the solution is

α =
√

7/9; Wα = 9/49; β =
√

7/15; Wβ = 40/49. (4.19)
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This rule gives comparable accuracy to the 3×3 Gaussian rule. However unlike the 3×3
Gauss rule, this 8-point rule possesses leading error terms are given by:

E42 = (4Wαα
6 − 4/15)A42, E24 = (4Wαα

6 − 4/15)A24, and (4.20)

E44 = (4Wαα
8 − 4/25)A44. (4.21)

A scheme of lower accuracy, neglecting the last term of (4.18), is defined by

Wα = 1 −Wβ, (4.22)

α = (
1

9Wα

)
1
4 , (4.23)

β =

(

2/3 − 2Wαα
2

Wβ

)
1
2

. (4.24)

In this case both α and β are restricted to be between 0 and 1. This implies that Wβ be
chosen such that 0 < Wβ <

8
9
.

4.4 Numerical evaluation

For the purpose of determining accuracy, approximate area integration schemes should be
evaluated numerically [54]. Without numerical evaluation the effect of reduced integration
on for instance locking, higher order deformation modes, etc., cannot be determined.

Moreover, such evaluations should include an investigation into element eigenvalues to deter-
mine element rank. In general, it is of the utmost importance to prevent any spurious modes
or rank deficiencies [96], which could lead to unstable mechanisms on the structural level.
Even if no mechanisms appear in an assembled structure, element rank deficiency should
always be accepted cautiously. The basis for this reasoning is that no extent of numerical
testing can fully characterize an element with inherent mechanisms, and no guarantee for
well-defined behavior under all conditions can be given. (Again, computationally demanding
models may be considered an exception. However, one does of course not expect elements
with quadratic interpolations in these models.)

The derived modified quadratures, as well as the standard 4 and 9 point quadrature rules,
are now applied to various test problems in order to obtain estimates for appropriate values
of the weights W0 and Wβ.

4.4.1 Eigenvalue analysis

The results of an eigenvalue analysis of a single (square) Q8 element are tabulated in Table
4.1. (Eigenvalue analyses should in general be done for regular, undistorted elements, since
distortion may actually suppress zero energy modes due to the inaccuracies of an approximate
integration scheme.) In Table 4.1, the 9 point scheme represents full and exact integration.
As is well known, the 4 point scheme introduces a superfluous zero energy mode or mechanism
(λ13 ≈ 0). The mode associated with λ13 is depicted in Figure 4.1. With the 5 and 8 point
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4 pt. scheme 5 pt. scheme 5 pt. scheme 8 pt. scheme 8 pt. scheme 9 pt. scheme
λi − W0 = 0.01 W0 = 0.1(8/3) Wβ = 0.01 Wβ = 0.1(8/9) −
1 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00
2 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00
3 2.31873e+00 2.32416e+00 2.47404e+00 2.31933e+00 2.32434e+00 2.41527e+00
4 2.00000e+00 2.00251e+00 2.07309e+00 2.00126e+00 2.01168e+00 2.21240e+00
5 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00
6 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00
7 1.00000e+00 1.00251e+00 1.07143e+00 1.00063e+00 1.00582e+00 1.10000e+00
8 7.50000e-01 7.50209e-01 7.56048e-01 7.50629e-01 7.55908e-01 8.79436e-01
9 5.00000e-01 5.01251e-01 5.34055e-01 5.00628e-01 5.05772e-01 5.87596e-01

10 4.31271e-01 4.31475e-01 4.36678e-01 4.31294e-01 4.31482e-01 4.34735e-01
11 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01
12 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01
13 < 1.0e-15 4.17595e-04 1.18095e-02 1.25524e-03 1.15433e-02 1.70564e-01
14 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
16 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15

Table 4.1: Eigenvalues of a square Q8 serendipity element for different integration schemes
(plane stress, |J | = 1, E = 1, ν = 1/3).

schemes, the mechanism is replaced by a ‘soft’ higher order deformation mode, as borne out
by the low value for λ13. Hence a low strain energy is associated with this particular mode.

Figure 4.4 depicts the effect of the weights W0 and Wβ on the value of λ13, for respectively
the 5 and 8 point schemes. If the soft higher order mode is desired, a low value of weight
should be used, typically in the region of 10% of the maximum weight for both W0 and Wβ,
viz. W0 = 0.1(8/3) and Wβ = 0.1(8/9). Furthermore, if Wβ is chosen in the region of 40/49
for the 8 point scheme, similar values to the 9 point scheme are obtained.

For the Q9 element, a similar analysis is carried out with results tabulated in Table 4.2.
As is well known, e.g. see [17], reduced integration of this element with an order 2 Gauss
rule induces 3 zero energy modes (λ13,14,15 ≈ 0). For this element the 5 point scheme only
eliminates one of the spurious modes, and the resulting element remains rank deficient by 2.

Figure 4.5 depicts the effect of integration rule weight on λ15 for both the 5 and 8 point
schemes. For the 5 point scheme, W0 has no effect on λ15 as illustrated in Figure 4.5, or on
λ14 (not shown). For λ13, however, the weight of the 5 point rule has an effect similar to
that experienced by the Q8 element.

4.4.2 Effect of element aspect ratio

For both Q8 and Q9, the effect of element aspect ratio on the λ13 is now studied. For this
test, a single rectangular element of unit height, with variable length, and constant material
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4 pt. scheme 5 pt. scheme 8 pt. scheme 8 pt. scheme 8 pt. scheme 9 pt. scheme
λi − W0 = 0.1(8/3) Wβ = 0.01 Wβ = 0.1(8/9) Wβ = 40/49 −
1 4.82388e+00 4.81443e+00 4.82783e+00 4.86165e+00 6.25205e+00 5.58912e+00
2 4.82388e+00 4.81443e+00 4.82783e+00 4.86165e+00 6.25205e+00 5.58912e+00
3 2.31873e+00 2.32416e+00 2.31933e+00 2.32434e+00 2.41527e+00 2.41527e+00
4 2.00000e+00 2.00251e+00 2.00126e+00 2.01168e+00 2.21240e+00 2.21240e+00
5 1.37447e+00 1.37396e+00 1.37522e+00 1.38171e+00 1.75566e+00 1.56065e+00
6 1.37447e+00 1.37396e+00 1.37522e+00 1.38171e+00 1.75566e+00 1.56065e+00
7 1.00000e+00 1.00251e+00 1.00063e+00 1.00582e+00 1.10000e+00 1.10000e+00
8 7.50000e-01 7.50209e-01 7.50629e-01 7.55908e-01 8.84191e-01 8.79436e-01
9 5.00000e-01 5.01251e-01 5.00628e-01 5.05772e-01 8.84191e-01 6.80792e-01

10 4.31271e-01 4.31475e-01 4.31294e-01 4.31482e-01 8.79436e-01 6.80792e-01
11 3.01646e-01 3.01593e-01 3.02001e-01 3.05498e-01 5.87596e-01 5.87596e-01
12 3.01646e-01 3.01593e-01 3.02001e-01 3.05498e-01 4.34735e-01 4.34735e-01
13 < 1.0e-15 4.17595e-04 5.02504e-03 4.64348e-02 2.74764e-01 2.69437e-01
14 < 1.0e-15 < 1.0e-15 5.02504e-03 4.64348e-02 2.74764e-01 2.69437e-01
15 < 1.0e-15 < 1.0e-15 1.25524e-03 1.15433e-02 1.70564e-01 1.70564e-01
16 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
17 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
18 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15

Table 4.2: Eigenvalues of a square Q9 Lagrange element for different integration schemes
(plane stress, |J | = 1, E = 1, ν = 1/3).
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Figure 4.4: λ13 of Q8 with different integration schemes (plane stress, |J | = 1, E = 1,
ν = 1/3).

properties E = 1 and ν = 1/3 is used. Results are depicted in Figures 4.6 and 4.7 for Q8
and Q9 respectively.

For Q8, λ13 obtained with all of the 5 and 8 point rules converge to the eigenvalue obtained
using full 3 × 3 Gauss-Legendre integration. (While this value decreases as the aspect ratio
increases, it never reaches zero.) For Q9, similar results are obtained, although the results
reiterate that Q9 is to be integrated using the 8 point scheme. For this element, the results
for λ14 and λ15 are similar (not shown).

The foregoing illustrates that, for both Q8 and Q9, the modified integration schemes do not
induce mechanisms as element aspect ratio is increased.

4.4.3 Cantilever beam in pure bending

Figure 4.8 depicts a cantilever beam modeled using two elements with a common distortion
d. The vertical displacements vA and vB, and horizontal displacement uB are reported for the
Q8 and Q9 elements, using different integration schemes. The results are tabulated in Table
4.3. Since the Q9 element stiffness matrix becomes singular when 4 and 5 point schemes are
used, these results are not reported. For d = 0, both elements predict the exact solutions
for displacements. In addition, the Q9 element is completely insensitive to distortion using
both the 8 and 9 point schemes and predicts the exact solution in all cases. Even for the
extreme case of d = 5, the exact solution is recovered.

For the Q8 element, Figure 4.9 depicts the effect of distortion on the vertical displacement
vB for the various integration schemes. With the 4 and 5 point schemes (the latter with
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d Element Scheme Weight vA uB vB

1.0 Q8 4 − 7.50000 1.50000 7.51000
5 0.01 7.50000 1.50000 7.51002

0.1(8/3) 7.50000 1.50000 7.51045
8 0.01 7.49961 1.49992 7.50958

0.1(8/9) 7.49648 1.49929 7.50621
40/49 7.41490 1.48277 7.42211

9 − 7.44849 1.48962 7.45721
Q9 8 0.01 7.50000 1.50000 7.52250

0.1(8/9) 7.50000 1.50000 7.52250
40/49 7.50000 1.50000 7.52250

9 − 7.50000 1.50000 7.52250

2.0 Q8 4 − 7.50000 1.50000 7.47250
5 0.01 7.50000 1.50000 7.47256

0.1(8/3) 7.50000 1.50000 7.47429
8 0.01 7.49187 1.49849 7.46381

0.1(8/9) 7.43244 1.48708 7.40160
40/49 6.27595 1.25407 6.23790

9 − 6.66839 1.33307 6.63637
Q9 8 0.01 7.50000 1.50000 7.52250

0.1(8/9) 7.50000 1.50000 7.52250
40/49 7.50000 1.50000 7.52250

9 − 7.50000 1.50000 7.52250
Exact 7.50000 1.50000 7.52250

Table 4.3: Displacement results for distorted cantilever beam.
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Figure 4.5: λ15 of Q9 element for different integration schemes (plane stress, |J | = 1, E = 1,
ν = 1/3).

low value of W0), this element is notably less sensitive to the severity of the distortion as
compared to the 8 and 9 point schemes. Again, W0 = 0.1(8/3) and Wβ = 0.1(8/9) seem
suitable.

4.4.4 A near mechanism

Again, Cook at al. [17] are cited: A structure that appears to be adequately constrained
may have an instability that makes the assembled structural stiffness matrix K singular, or
near-singular. Or, unstable elements may combine to form a structure that is stable, but
unduly susceptible to certain load patterns, so that computed displacements are excessive.
Again, this situation may occur in topology optimization problems.

The situation is depicted in Figure 4.10. A 2× 2 Gauss rule is used to integrate K e in each
element. The stiff element, shown shaded, is weakly restrained by soft elements connected
to the fixed boundary allowing a singular mode to become pronounced.

Figure 4.11 depicts the incremental displacement v̂ at point A, as illustrated in Figure
4.10. The 5 and 8 point schemes yield comparable results (their respective curves are not
distinguishable on the scale of the figure. Again, suitable weights are roughly 10% of the
maximum permissible weights (viz. 0.1(8/3) for the 5 point rule and 0.1(8/9) for the 8 point
rule).
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Figure 4.6: Effect of aspect ratio on λ13 of Q8 for different integration schemes.

4.4.5 Highly constrained square plate

In this test, a highly constrained mesh is used to demonstrate that spurious modes are not
confined to meshes with few constraints, as illustrated by Bićanić and Hinton [97]. A square
6× 6 mesh is completely constrained on the boundary, and an eigenvalue analysis is carried
out on the global stiffness matrix. In Figures 4.12, 4.13 and 4.14 the lowest six eigenvectors
are depicted together with the corresponding eigenvalue, for the 4, 8 (Wβ = 0.1(8/9)) and 9
point schemes, respectively.

Modes 5 and 6 of the 4 point scheme in Figure 4.12 are spurious and are due to instabilities
caused by the reduced integration scheme. (These modes are also known as Escher modes.)
In Figure 4.13, it is shown that these spurious modes are not present when a 9 point inte-
gration scheme is used. What is more, it is shown that if the 8 point scheme is used with
Wβ = 0.1(8/9), the spurious modes are eliminated, as demonstrated in Figure 4.14.

4.4.6 Cook’s membrane

This popular test problem has been used by many authors and is depicted in Figure 4.15.
The center displacement vC for the various integration schemes is tabulated in Table 4.4,
while stresses (σmin)B and (σmax)A are presented in Table 4.5.

The displacement results reveal the over-stiff behavior of the Q8 element with a 9 point rule
and an 8 point scheme with Wβ = 40/49. All other integration schemes predict displacement
values close to the best known solution. Although the four point scheme is the most accurate,
this high accuracy of course comes at the expense of a mechanism. Figure 4.16 depicts the
effect of different values of weight on the center displacement vC for a single Q8 element.
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Element Scheme Weight 1 × 1 2 × 2 4 × 4
Q8 4 - 20.00 23.17 23.73

5 0.01 19.98 23.17 23.73
0.1(8

3
) 19.52 23.09 23.72

8 0.01 19.95 23.17 23.73
0.1(8

9
) 19.58 23.14 23.73

40/49 17.16 22.71 23.71
9 - 17.22 22.72 23.71

Q9 4 - 26.97 24.15 24.00
5 0.01 26.97 24.15 24.00

0.1(8
3
) 26.75 24.11 23.99

8 0.01 26.74 24.10 23.97
0.1(8

9
) 25.25 23.91 23.94

40/49 19.09 23.20 23.82
9 - 19.64 23.29 23.84

Best known 23.95

Table 4.4: Cook’s membrane: Center displacement vC .

1 × 1 2 × 2 4 × 4
Element Scheme Weight (σmax)A (σmin)B (σmax)A (σmin)B (σmax)A (σmin)B

Q8 4 - 0.12530 -0.26746 0.26210 -0.23356 0.24439 -0.20198
5 0.01 0.12536 -0.26700 0.26198 -0.23354 0.24438 -0.20196

0.1(8
3
) 0.12678 -0.25577 0.25881 -0.23313 0.24408 -0.20156

8 0.01 0.12553 -0.26589 0.26197 -0.23351 0.24439 -0.20196
0.1(8

9
) 0.12726 -0.25437 0.26090 -0.23312 0.24425 -0.20182

40/49 0.13451 -0.18594 0.24722 -0.22750 0.24212 -0.20075
9 - 0.13446 -0.18623 0.24727 -0.22741 0.24212 -0.20075

Q9 4 - 0.18776 -0.15703 0.27176 -0.33457 0.24523 -0.33042
5 0.01 0.18745 -0.15732 0.27178 -0.33436 0.24532 -0.33029

0.1(8
3
) 0.17950 -0.16401 0.27184 -0.32621 0.24675 -0.32073

8 0.01 0.18476 -0.15786 0.26984 -0.30335 0.24484 -0.26768
0.1(8

9
) 0.16806 -0.16181 0.26437 -0.22257 0.24657 -0.21771

40/49 0.13613 -0.16055 0.25023 -0.21037 0.24374 -0.20539
9 - 0.13736 -0.15334 0.25015 -0.20845 0.24362 -0.20633

Best known 0.2360 -0.2010 0.2360 -0.2010 0.2360 -0.2010

Table 4.5: Cook’s membrane: Stress analysis.
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Figure 4.7: Effect of aspect ratio on λ13 of Q9 for different integration schemes.
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Figure 4.8: Distorted cantilever beam.

In contrast to the Q8 element, for the Q9 element the lower order integration schemes over-
estimate the displacement, while the 9 and 8 point schemes with Wβ = 40/49 still lock.
The best scheme for the Q9 element is the 8 point scheme with Wβ = 0.1(8/9). Figure
4.17 depicts the effect of different values of weight on the center displacement uC for a Q9
element. As expected, locking of the Q9 element is to a great extent alleviated by low values
of Wβ.

The stress results generally reveal the same trend. It should be noted that for the 1 × 1
mesh, a single value of stress is calculated at points A and B, whereas in the case of the 2×2
and 4×4 meshes, the average of the stresses over the two relevant elements is calculated and
reported. This explains the non-monotonic convergence behavior between the three mesh
densities (although monotonic convergence on displacement does of course not imply that
the stresses converge monotonically over the whole domain).
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Figure 4.9: Distorted cantilever beam: Effect of distortion d on vB for various integration
schemes with Q8 elements.

4.5 Conclusion

The effect of modified reduced order quadrature rules on the presence of spurious modes
in the stiffness matrices of the Q8 serendipity and Q9 Lagrange membrane finite elements
has been investigated. For these elements, modified reduced order quadratures present an
alternative to full integration using order 3 Gauss rules, (which results in excessively stiff
behavior), and reduced integration using an order 2 Gauss rule, (which results in the intro-
duction of spurious modes on the element level). Even though the spurious mode associated
with the Q8 element is non-communicable, it remains undesirable, and may influence results
in a number of situations of practical importance, e.g. topology optimization.

The alternative 5 and 8 point schemes proposed for respectively Q8 and Q9, allow for the
elimination of spurious modes, while element accuracy is enhanced as compared to order
3 Gauss rules, through the introduction of soft higher order deformation modes. For the
respective elements, the following considerations are pointed out:

For the Q8 element, both the 5 and 8 point rules can be used for integrating the element
stiffness matrix. In each case the spurious mode is eliminated. If the weights W0 and
Wβ are both chosen to be in the order of 10% of the maximum allowable weight, a highly
accurate element is obtained. The numerical cost of the 8 point scheme is higher than the
5 point scheme, with no obvious benefits. Hence it is recommended that the Q8 element be
integrated using the 5 point rule, with W0 = 0.1(8/3) = 8/30.

For the Q9 element, the 5 point rule is inadequate since only one of the three spurious
modes is eliminated. The 8 point rule (with Wβ = 0.1(8/9) = 8/90) results in a rank
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Figure 4.10: Near mechanism with point load.

sufficient element of increased accuracy as compared to the fully integrated counterpart.
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Figure 4.11: Incremental displacement v̂ at A.
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Figure 4.12: Lowest six eigenvalues and eigenvectors (Escher modes) for constrained mesh
with Q9 elements and 4 point integration scheme (mesh size 6 × 6, E = 2.4, ν = 0.2).
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Figure 4.13: Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements
and 9 point integration scheme (mesh size 6 × 6, E = 2.4, ν = 0.2).
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Figure 4.14: Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements
and 8 point integration scheme, Wβ = 0.1(8/9) (mesh size 6 × 6, E = 2.4, ν = 0.2).
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Figure 4.15: Cook’s membrane
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Figure 4.16: Effect of weight on vC for Cook’s membrane (Q8, 1×1 mesh).
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Figure 4.17: Effect of weight on vC for Cook’s membrane (Q9, 1×1 mesh).
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