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In this two-part study, developments in finite element technology and the application thereof
to topology optimization are investigated. Ultimately, the developed finite elements and
corresponding topology optimization procedures are aimed at, but not restricted to, aiding
the design of piezoelectrically driven compliant mechanisms for micropositioning applica-
tions. The objective is to identify and exploit existing, or to develop new, finite element
technologies to alleviate the numerical instabilities encountered in topology optimization.
Checkerboarding and one-node connected hinges are two commonly encountered examples
which can directly be attributed to inadequacies or deficiencies in the finite element solution
of structural problems using 4-node bilinear isoparametric finite elements (denoted Q4). The
numerical behaviour leading to checkerboard layouts stems from an over-stiff estimation of
a checkerboard patch of Q4 elements. The numerical model of a one-node connected hinge
using Q4 elements, on the other hand, possesses no (or very little) stiffness in rotation about
the common node.

In the first part of the study, planar finite elements with in-plane rotational (drilling) degrees
of freedom are investigated. It is shown that the skew-symmetric part of the stress tensor
can directly be used to quantitatively assess the validity of the penalty parameter v, which
relates the in-plane translations to the rotations. Thereafter, the variational formulations
used to develop these planar finite elements with drilling degrees of freedom are extended to
account for the piezoelectric effect. Several new piezoelectric elements that include in-plane
rotational degrees of freedom (with and without assumed stress and electric flux density)
are implemented, evaluated and shown to be accurate and stable.
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Furthermore, the application of alternative reduced order integration schemes to quadratic
serendipity (QQ8) and Lagrangian (Q9) elements is investigated. Reduced or selective reduced
integration schemes are often used to enhance element accuracy by ‘softening’ higher order
deformation modes. However, application of reduced integration schemes to Q8 and Q9
elements is usually accompanied by element rank deficiencies. It is shown how the application
of five and eight point modified integration schemes preserve the accuracy benefits of reduced
integration, while preventing element rank deficiencies.

In the second part of the investigation, the salient features of elements with drilling degrees
are utilized in two schemes to prevent, or improve the modelling of, one-node connected
hinges. In principle, the first scheme uses the rotations computed at interior nodes to
detect excessive rotations at suspect nodes. The second scheme essentially replaces planar
elements forming a one-node hinge, where appropriate, with a more realistic beam model of
the material layout while other elements in the mesh are modelled using planar elements as
usual.

Next, the dependence of optimal topologies on element formulation is demonstrated. At-
tention is especially paid to plate and shell applications. It is shown that Mindlin-Reissner
based elements, which employ selective reduced integration on shear terms, are not reliable
in topology optimization problems. Conversely, elements based on an assumed natural strain
formulation are shown to be stable and capable of reproducing thin plate topology results
computed using shear-rigid elements. Furthermore, it is shown that an ad hoc treatment of
rotational degrees of freedom in shell problems is sensitive to the related adjustable param-
eter, whereas optimal topologies, using a proper treatment of drilling degrees of freedom are
not.

Finally, the use of reduced order integration schemes as a strategy to reduce the stiffness of
a checkerboard patch of elements is considered. It is demonstrated that employing the five
and eight point integration schemes, used to enhance the accuracy of Q8 and Q9 elements,
also significantly reduce the stiffness of a checkerboard patch of elements, thereby reducing
the probability of observing checkerboard layouts in optimal topologies.

v



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Acknowledgements

It is my great pleasure and a tremendous honour to be able to acknowledge all the wonderful
people who have contributed to the completion of this thesis. Looking back over the years I
have spent at university, I can only now fully appreciate how privileged I have been to have
received so much support and encouragement in perusing my interests.

Firstly to my Ph.D. supervisor, Prof. Albert Groenwold, I wish to extend my immeasurable
thanks and appreciation for the enthusiasm, patients, encouragement, advice and wisdom,
which you have so generously shared during the years we have worked together. It has been
a real education, not only in structural optimisation, but in life. Thank you for being my
guide on this adventure. I sincerely hope that our paths will cross frequently!

I would also like to thank my co-supervisor, Dr. Philip Loveday for the faith you have shown
in me, and for the patience you exercised in the time while I was completing my write-up.
Thanks also for the dedication and vigour with which you have approached each undertaking
I have consulted you on. I am grateful to be working with you now, and hope to do so for
many years to come.

I would also like to express my gratitude to the faculty of the Department of Mechanical
Engineering at the University of Pretoria who have helped shape my life. I would especially
like to acknowledge Prof. Jan Snyman, not only for the technical guidance you have provided
during my Masters and Ph.D. studies, but for brightening up life with the many colourful
tales of your travels and other exploits. It has been an honour to have known you. Also,
to Prof. Schalk Kok who was always willing to share his seemingly boundless knowledge.
Thank you. Also, to my friends and colleagues at CSIR, thank you for your support and
encouragement over the past year and a half.

To the Structural Optimization Research Group (SORG), and some honorary members,
especially Albert, Schalk, Nico, Carl, Cheng, Derren, Lize, Antoinette, Michael, Sannelie,
Christiaan, Gerhard, Jaco and Neo. Also, to all my friends especially Justin and Jonathan.
The heated debates over a cup of steaming coffee, the cheap beer from various establishments
in Hatfield, working together on assignments until late, stories of weekend adventures, chess
and go tournaments, etc. are what made my varsity days the best of my life. Thank you for
sharing in my life and for letting me share in yours.



4
B/
L UNIVERSITEIT VAN PRETORIA
¥ UNIVERSITY OF PRETORIA
Qe VYUNIBES

ITHI YA PRETORIA

Financial support provided by
— the South African National Research Foundation (NRF), who provided funding via
the THRIP initiative (project number 2769), as well as general studentship funding,
— the Council for Scientific and Industrial Research (CSIR), and
— the University of Pretoria,
is most gratefully acknowledged.

Thanks go also to Prof. Krister Svanberg, for supplying me with his MMA implementation.

I would also like to acknowledge my family-in-law. Mr. and Mrs. Bredenkamp, thank you
for letting me stay with you for so long and for treating me like a son. Also to Louis and
Janine, thank you for making me part of your family. Lastly, but certainly not least, I would
like to thank my family. Thank you Mom and Dad for all the sacrifices you've made to give
your children every opportunity to succeed. Thanks also to my brothers, Mark, Gavin and
Anthony and to my sister Sharon, and family, for always being there during the tough times
and for supporting all my ventures. I love you all!

vi



NIVERSITEIT VAN PRETO
NIVERSITY OF PRETO
UNIBESITHI YA PRETO

1A
1A
1A

(e@e:

R
R
R

To Michele, my wife, my love and my best friend.

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove.
O no, it is an ever fixed mark
That looks on tempests and is never shaken;
It is the star to every wand’ring barque,
Whose worth’s unknown although his height be taken.
Love’s not time’s fool, though rosy lips and cheeks
Within his bending sickle’s compass come;
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
I never writ, nor no man ever loved.
— William Shakespeare

Shell, these words are as true now as they were the day I first recited them to you, over 13
years ago. I truly love you and I dedicate this thesis to you.

Vil



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Contents

Summary

Acknowledgements

List of Figures

List of Tables

1 Introduction

1.1
1.2

1.3
1.4

Structural topology optimization . . . . . .. .. ... ... .00
Background to the study . . . . . . . . ..o oo
1.2.1 Topology optimization . . . . . . .. . .. .. ... ... .......
1.2.2  The finite element method . . . . . . . .. .. ... ...
Objectives of the study . . . . . . . . . .. ... oo

Thesis overview and list of contributions . . . . . . . . . . . . . . ... ...

PART 1: FINITE ELEMENT DEVELOPMENT AND TECHNOLOGY

2 Stability of elastostatic elements with drilling degrees of freedom

2.1

2.2
2.3
24
2.5
2.6
2.7
2.8

SUMMATY . . . . o o o
2.1.1 A word on notation . . . . . .. ...
Introduction . . . . . . ...
Historical development of elements with drilling DOFs . . . . . .. ... ..
Variational formulation of elements with drilling DOFs . . . . . .. . . . ..
Finite element interpolation . . . . . . .. . .. ... ... L.
Stability analysis . . . . . . ..o
Consistency and stability . . . . . .. ... ... 0oL
Numerical experiments . . . . . . . . . . . . ...

2.8.1 Cook’s membrane . . . . . . ...

1X

iii

xiv

xxi

© 00 N O D=



IVERSITEIT VAN PRETO
ITY OF PRETO
ITHI YA PRETO

1A
1A
1A

R
2.8.2 Cantilever beam subjected to end shear . . . . . . . .. ... ... ..
2.8.3 Orthotropic membrane cantilever . . . . . . . . ... .. ... ....

2.9 Conclusions . . . . . . .

Piezoelectric elements with drilling degrees of freedom

3.1 Summary ...
3.1.1 Another brief word on notation . . . . ... .. .. ... ... ....

3.2 Imtroduction . . . . . . ..

3.3 Governing equations . . . . . ... ..o
3.3.1 Constitutive equations . . . . . .. . .. ... . L
3.3.2 Compatibility conditions . . . . . . . ... ... ... ... ... ...
3.3.3 Equilibrium conditions . . . . . .. ... o000

3.3.4 Rotational momentum balance conditions and definition of infinitesi-
mal rotation . . . . . . . L

3.4 Variational formulation . . . . . . . .. ...
3.4.1 Hu-Washizu-like variational formulations . . . . . . . ... ... ...
3.4.2 TIrreducible formulations . . . . . ... ...
3.4.3 Fully mixed Hellinger-Reissner-like formulations . . . . . . . . . . ..
3.4.4  Degenerate Hellinger-Reissner-like formulations . . . . .. .. .. ..
3.4.5 Relationships between the functionals . . . . . . . .. ... ... ...

3.5 Finite element interpolations . . . . . . .. ... ... oo

3.6 Finite element implementation . . . . . . . .. . ... ... ... ... .. ..
3.6.1 Irreducible piezoelectric elements with drilling DOFs . . . . . . . ..
3.6.2  Fully mixed piezoelectric element with drilling DOFs . . . . . . . ..

3.6.3 Degenerate assumed flux density piezoelectric element with drilling
DOFs . . . .

3.6.4 Degenerate assumed stress piezoelectric elements with drilling DOFs .
3.7 Partitioned stiffness matrices . . . . .. ..o
3.8 Numerical evaluation . . . . . . ... ... .. ... ... ..
3.81 Effectof~v . . . . ..
3.8.2 Eigenvalue analysis . . . . . .. ... oo
3.83 Patchtest . . ... .. .. ...
3.84 Two element beam . . . . . .. ... ...
3.8.5 Ten element beam . . . . . .. ... ... ... ..
3.8.6 Cook’smembrane . . . . . . .. .. ...

3.8.7 Piezoelectric bimorph beam . . . . . .. ... .00



IVERSITEIT VAN PRETO
ITY OF PRETO
ITHI YA PRETO

x1

3.9 Conclusions . . . . . . . .. e 89
Modified reduced order quadratures for quadratic membrane elements 91
4.1 Summary ... e 91
4.2 Introduction . . . . . . . .. L 91
4.3 Derivation of numerical integration schemes . . . . . . ... ... ... ... 94
4.3.1 Afivepointrule . ... .. ... 96
4.3.2 Aneight pointrule . . . . ... oL 97
4.4 Numerical evaluation . . . . . . ... ... oo 98
4.4.1 Eigenvalue analysis . . . . . .. .. ... oo 98
4.4.2 Effect of element aspect ratio . . . . . ... ... 99
4.4.3 Cantilever beam in pure bending . . . . . . .. .. .. ... .. 101
4.4.4 A near mechanism . . . .. ... 103
4.4.5 Highly constrained square plate . . . . . . ... .. .. ... ... .. 104
4.4.6 Cook’s membrane . . . . .. ..o 104
4.5 Conclusion . . . . . . ..o 107
PART 2: APPLICATIONS OF FINITE ELEMENT TECHNOLOGY IN TopoLoGY OPTI-
MIZATION 115
New schemes to deal with problematic material layouts 117
5.1 Summary . ... 117
5.2 Imtroduction . . . . . . . ... 118
5.3 Elements with drilling degrees of freedom . . . . . . . .. ... ... ... .. 120
5.4 Problem formulations . . . . . . ... .. 120
5.4.1 The minimum compliance topology optimization problem using SIMP 121
5.4.2 Comments on checkerboarding . . . . . . . . .. .. ... ... .... 123
5.4.3 Compliant mechanism design using topology optimization and SIMP 124
5.4.4 Mirror scanning design using topology optimization and SIMP . . . . 125
5.5 Schemes to prevent checkerboarding and one-node hinges . . . . . . . .. .. 132
5.5.1 Scheme I: A modified scheme based on NoHinge . . . . . . . .. . .. 132
5.5.2  Scheme II: A new scheme to improve checkerboard, one-node hinge
and diagonal member modelling . . . . . ... ..o 0L 133
5.6 Numerical examples and applications . . . . . . . . ... .. ... ... .. 137
5.6.1 Application of Scheme I . . . . . . ... ... ... ... .. ..... 138
5.6.2 Application of Scheme IT . . . . . . . . .. ... ... ... ...... 139
5.6.3 Discussion of results . . . . .. ... 143



IVERSITEIT VAN PRETO
ITY OF PRETO
ITHI YA PRETO

5.7 Conclusions . . . . . . . 143

Effect of element formulation on membrane, plate and shell topology op-

timization problems 145
6.1 Summary . . . . ... 145
6.2 Introduction . . . . . . . ... 146
6.3 Topology optimization problem formulation . . . . .. ... ... ... ... 149
6.3.1 Material parameterization . . . . . . ... ... ... 149
6.3.2 Layer models . . . . .. .. .. 152
6.3.3 Problem formulation and sensitivities . . . . . . .. .. ... ... 153
6.3.4 Design update and filtering strategies . . . . . . .. .. ... ... .. 153
6.4 Finite element formulations . . . . . . .. ... 0oL 154
6.4.1 Membrane elements . . . . ... ... Lo 155
6.4.2 Plateelements. . . . . . ... 158
6.4.3 Membrane-bending components . . . . . .. ... 160
6.4.4 Warp correction and local-global transformation . . . . . ... .. .. 161
6.4.5 Shell element denotation . . . . . ... .. ... ... ... 161
6.5 Numerical Examples . . . . . . . . ... L 162
6.5.1 Membrane example . . . . . .. ..o 163
6.5.2 Analysis of membrane results . . . . .. ..o 164
6.5.3 Plate examples . . . . . . ... 165
6.5.4 Analysis of plate results . . . . . . ... 169
6.5.5 Shell examples . . . . . . ... 170
6.5.6 Analysis of shell results . . . . . . . . . ... ... ... ... 171
6.6 Conclusions . . . . . . . .. e 171

Effect of reduced order integration schemes on the stiffness of checkerboard

patterns in topology optimization 177
7.1 Summary . . ... e 177
7.2 Introduction . . . . . . . . .. 177
7.3 Modified reduced order quadrature integration rules . . . . . . . . .. .. .. 179
7.3.1 Numerical integration schemes . . . . . . . .. ... ... .. .. ... 179
7.3.2 Afive-pointrule . . . ... .. 180
7.3.3 Aneight-point rule . . . . ... 181
7.4 Elements with drilling degrees of freedom . . . . . . . .. ... ... ... .. 182
7.5 On the stiffness of a checkerboard patch of elements . . . . . . ... ... .. 183

xil



&, e e

7.5.1 Topology optimization using homogenization . . . . . . . . .. .. .. 183
7.5.2 Effective properties of a checkerboard . . . . . . ... ... ... ... 185
7.6 Numerical results . . . . . . . .. L 187
7.6.1 Effect of element formulation on local x field . . . . . . .. ... ... 188

7.6.2 Effect of element selection and integration scheme on effective proper-
ties of a checkerboard . . . . . . . . .. ..o 189

7.6.3 Effect of integration scheme on strain energy density of quadratic ele-
ments . . . ... . e e e e 191
7.6.4 Effect of integration scheme on penalty bounds p; and p; . . . . . . . 196
7.7 Conclusions . . . . . . .. 197
8 Conclusion 203
8.1 PART I: Development of finite element technology . . . . . . . .. ... ... 204
8.2 PART II: Application of F.E. to topology optimization . . . ... ... ... 205
8.3 Suggested future work . . . .. ..o 207
Bibliography 209
A A brief introduction to topology optimization 223
A.1 Implementional issues . . . . . . . . . . . ... 225
A.1.1 Meshdependency . . . . . . . . . ... 225
A.1.2 Checkerboarding, one-node connected hinges . . . . . . . ... .. .. 228
A.1.3 Other complications . . . . . .. .. ... ... 230
A.2 Compliant mechanism design . . . . . . . ... .. ... ... ... .. 230
B Additional plate and shell results 233
B.1 Additional membrane results . . . . . . .. ... 233
B.1.1 MBBbeam . .. .. ... . .. ... 233
B.2 Additional plate results . . . . . . ... 235
B.2.1 Simply supported square plate with centre point load . . . . . . . . . 235
B.2.2 Clamped square plate with centre point load . . . . . . . . .. .. .. 242
B.2.3 Corner supported square plate with centre point load . . . . . . . .. 248
B.2.4 Corner supported square plate with distributed load . . . . . . . . .. 254
B.3 Additional shell results . . . . . . . .. ... ... 258
B.3.1 Cylindrical shell . . . . . .. ... o o 258
B.3.2 Pretwisted beam . . . . .. ... oo 262

xiil



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10
2.11
2.12
2.13

2.14

2.15

3.1
3.2

3.3
3.4

Three categories of structural optimization. . . . . . . . ... .. .. ... ..

Schematic of the process of structural topology optimization. . . . . . . . . . 4
Schematic of thesis layout. . . . . . .. . ... .. ... ... ... 12
Flat element subject to in-plane membrane and bending actions. . . . . . . . 20
Displacement of an element side 1—2. . . . . . . . . .. ... ... ... ... 23
Relationship among functionals. . . . . . . . . .. ... ... L. 26
Applications of functionals proposed by Hughes and Brezzi in discrete form. 29
Four node element with drilling degrees of freedom. . . . . . . . ... .. .. 30
Modified shear patch test . . . . . . . . ... ... L 34
Cook’s membrane . . . . . . . ... 34
Cook’s membrane: Effect of v on displacement, rotation and skew o for the

4dx4dmesh . . . .. e 35
Cook’s membrane: Effect of v on displacement, rotation and skew o for the
32x32mesh . . . .. 36
Cantilever beam under shear load . . . . . . . . ... ... ... ... ..., 37
Cantilever beam: Effect of v on tip displacement and skew o . . . . . . . . . 38
Orthotropic membrane cantilever . . . . . . . . . . ... ... ... ..... 38
Orthotropic membrane cantilever: Effect of v for a 0 degree ply arrangement
(regular mesh) . . . . . ... 39
Orthotropic membrane cantilever: Effect of v for a 30 degree ply arrangement
(regular mesh) . . . . . . ... 39
Orthotropic membrane cantilever: Effect of « for a 30 degree ply arrangement
(distorted mesh) . . . . . . .. 40
Relationships between the functionals. . . . . . .. ... ... ... ..... 56
Relationships between the functionals in terms of their finite element imple-
mentation. . . . . .. L L. L 58
A planar 4-node piezoelectric element with drilling rotations. . . . . . . . . . 60

Effect of v on eigenvalues (normalised with respect to their values at v/c33 = 1). 73

XV



3.5
3.6
3.7
3.8
3.9

3.10

3.11

3.12

3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4

4.5

4.6
4.7
4.8
4.9

4.10
4.11
4.12

4.13

4.14

4.15

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Effect of v on skew part of stress and other accuracy measures. . . . . . . . .
Ten element piezoelectric cantilever beam subjected to pure bending.

Mesh for piezoelectric patch test. . . . . . . .. .. ... ... .. ... ...
Two element piezoelectric cantilever beam subjected to pure bending. . . . .

Two element piezoelectric beam subjected to pure bending: Effect of distor-
BION ON UA. . . . .« o v e e e

Two element piezoelectric beam subjected to pure bending: Effect of distor-
tlon on ga. . . . . .

Four element piezoelectric beam subjected to pure bending: Effect of distor-
BN ON UA. . . . . o o e e

Four element piezoelectric beam subjected to pure bending: Effect of distor-
tion on 4. . . . . L

Piezoelectric Cook’s membrane. . . . . . .. .. ... ... 0L
Cook’s membrane: y-displacement at C' (uyc). . . . . . . . . . ... L.
Cook’s membrane: Electric potential at C' (¢yc). . - . . . . . . . . ...

Bimorph based on MacNeal’s elongated beam. . . . . . .. .. .. ... ...

Typical spurious mode of Q8 employing a 4 point Gauss-Legendre scheme.
5 Point integration scheme. . . . . . . . . . .. ..o oL
8 Point integration scheme. . . . . . . . ..o 0oL

A13 of Q8 with different integration schemes (plane stress, |J| = 1, F = 1,
v=1/3). . e

A15 of Q9 element for different integration schemes (plane stress, |J| = 1,
E=1v=1/3). . . .

Effect of aspect ratio on A3 of Q8 for different integration schemes. . . . . .
Effect of aspect ratio on A3 of Q9 for different integration schemes. . . . . .
Distorted cantilever beam. . . . . . . . . ... ...

Distorted cantilever beam: Effect of distortion d on vg for various integration
schemes with Q8 elements. . . . . . . . .. .. ... ... ...

Near mechanism with point load. . . . . . .. ... ... ... .. ... ...
Incremental displacement v at A. . . . . . . .. ... .. L.

Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements
and 4 point integration scheme (mesh size 6 x 6, F =24, v =0.2). . .. ..

Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements
and 9 point integration scheme (mesh size 6 x 6, £ =24, v =0.2). . .. ..

Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements
and 8 point integration scheme (mesh size 6 x 6, £ =24, v =0.2). . . ...

Cook’s membrane . . . . . . . .

XVvi



4.16
4.17

5.1
5.2
5.3

5.4
9.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

IVERSITEIT VAN PRETO
ITY OF PRETO
ITHI YA PRETO

1A
1A
1A

Effect of weight on v for Cook’s membrane (Q8, 1x1 mesh). . . . ... ..
Effect of weight on v for Cook’s membrane (Q9, 1x1 mesh). . . . .. ...

Checkerboard, diagonal member and one node hinge material layouts. . . . .
The minimum compliance problem for the MMB beam. . . . . . . . .. ...

A reference optimal topology for the MBB beam discretized using 180x30
elements. . . . . ..

MBB beam optimal designs for a 30 x 90 mesh employing different elements.
Compliant mechanism design of a force inverter. . . . . . . .. .. ... ...

A reference optimal topology for the force inverter problem using 48x48 ele-
ments. . . .. oL e e e e

Design domain and problem definition for mirror scanning device. . . . . . .
Optimal topologies for different problem formulations. . . . . . . . . .. . ..
Four paths around node to check for quasi-monotonicity. . . . . ... .. ..
Post-processed interpretation of a 2x2 hinge. . . . . . . . ... .. ... ...
Two different beam models of a hinge. . . . . . ... ... ... ... ....
Beam replacement scheme. . . . . . . . ... Lo
Orthogonal basis vectors. . . . . . . . . .. .. ...

Patch of nine elements around element ¢,5. . . . . . . . ... ... ... ...

[lustration of the effect of the proposed scheme to overcome one-node hinges.

Application of different filters to the force inverter. . . . . . . .. ... ...
Modelling accuracy benchmark problems. . . . . . . . .. .. ... ... ...
MBB beam with various elements. . . . . . . ... ... ... ... ... ...

Mirror mechanism design using new scheme, H, Beam2, V=2V" . . . . . ..

Schematic representation of a general material layup. . . . . . .. .. .. ..
Various multilayer models with solid and design layers. . . . . . .. ... ..
Quadrilateral element with drilling degrees of freedom. . . . . . ... .. ..
Quadrilateral Mindlin-Reissner plate element. . . . . . . . . . . ... .. ..
Warped and projected shell element. . . . . . . ... ...
MBB beam geometry and constraints. . . . . . .. ... ...
Compliance and constraint function values for the MBB beam problem. . . .
Optimal topologies of MBB beam for various valuesof . . . . . . . . . . ..
Example plate problems, geometry and constraints. . . . . . . .. ... ...

Optimal topology compliance as a function of plate thickness for the simply
supported plate problem. . . . . . . . ... oL

Optimal topologies of a simply supported plate. . . . . . ... .. ... ...

xXvii

111
112

119
121

122
123
125

126
127
131
133
134
134
135
136
137
138
139
140
142
142

150
152
155
155
161
163
164
165
166



6.12

6.13

6.14

6.15
6.16

6.17
6.18

7.1
7.2
7.3
7.4

7.5

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

B.1
B.2

B.3

B4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Optimal topologies of a corner supported square plate subjected to center

point load, ribbed model, t =0.01. . . . . . . ... ... ... ... 174
Displaced shape of optimal topology computed using DK(Q analyzed using

SRI elements. . . . . . . . . . . . . 174
Optimal topologies of a corner supported square plate subjected to uniform

distributed load, ribbed model, t =0.01. . . . . . . ... ... ... ... .. 174
Corner supported cylinder geometry and constraints. . . . . . .. .. .. .. 175
Optimal topologies of a corner supported cylinder with single layer material

model. . . . .. 175
Pretwisted beam geometry and constraints. . . . . . . . . ... ... 176
Optimal topologies of a pretwisted beam with single layer material model. . 176
Modified reduced order integration schemes. . . . . . .. .. ... ... ... 180
Example base cells often used in topology optimization. . . . . . . . . .. .. 183
Checkerboard patch with average density p =1/2. . . . . . . ... ... ... 185
Local y fields for various elements resulting from mean strain field €;; = €99 =

1 and €19 = 0. . e 188
Optimal topologies of the MBB beam using symmetry and employing Q4 and

Q4X elements. . . . . ... 189
Strain energy density of fully integrated Q8 elements. . . . . . . ... .. .. 193
Variation of p* for fully integrated Q8 elements. . . . . . . .. ... .. ... 194
Strain energy density of Q8 elements with 5-point integration scheme. . . . . 195

Zoom of strain energy density of Q8 elements with 5-point integration scheme. 196

Strain energy density of Q8 elements with 8-point integration scheme. . . . . 197
Zoom of strain energy density of Q8 elements with 8-point integration scheme. 198
Effect of integration scheme setting on pj: 5-point scheme. . . . . . . . . .. 199
Effect of integration scheme setting on pj: 8-point scheme. . . . . . . . . .. 200
Effect of integration scheme setting on p3: 5-point scheme. . . . . . . . . .. 200
Effect of integration scheme setting on p3: 8-point scheme. . . . . . . .. .. 201
Convergence histories for MBB beam for various values of . . . . . . . . .. 234
Optimal topologies of a simply supported square plate subjected to center

point load, single layer model, ¢t =0.01. . . . . . . . . .. .. ... ... ... 236
Optimal topologies of a simply supported square plate subjected to center
point load, single layer model, t =0.1. . . . . . .. ... ... ... ..... 237
Optimal topologies of a simply supported square plate subjected to center
point load, ribbed model, t =0.01. . . . . . ... ... .. ... ... . ... 238



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

B.5 Optimal topologies of a simply supported square plate subjected to center
point load, ribbed model, t =0.1. . . . . . . ... ... ... ... 239

B.6 Optimal topologies of a simply supported square plate subjected to center
point load, honeycomb model, t =0.01. . . . . . . ... ... ... ... ... 240

B.7 Optimal topologies of a simply supported square plate subjected to center
point load, honeycomb model, t =0.1. . . . . . ... ... ... ... ... 241

B.8 Optimal topologies of a clamped square plate subjected to center point load,
single layer model, t =0.01. . . . . . . . .. ... ... ... 243

B.9 Optimal topologies of a clamped square plate subjected to center point load,
single layer model, t =0.1. . . . . . . . .. ..o 243

B.10 Optimal topologies of a clamped square plate subjected to center point load,
ribbed model, t =0.01. . . . . . . ... 244

B.11 Optimal topologies of a clamped square plate subjected to center point load,
ribbed model, t =0.1. . . . . . ... 245

B.12 Optimal topologies of a clamped square plate subjected to center point load,
honeycomb model, t =0.01. . . . . .. .. ... ... 246

B.13 Optimal topologies of a clamped square plate subjected to center point load,
honeycomb model, t =0.1. . . . . . .. .. ..o 247

B.14 Optimal topologies of a corner supported square plate subjected to center
point load, single layer model, t =0.01. . . . . . . . . .. ... ... ..... 248

B.15 Optimal topologies of a corner supported square plate subjected to center
point load, single layer model, t =0.1. . . . . . . . . ... ... ... .... 249

B.16 Optimal topologies of a corner supported square plate subjected to center
point load, single layer model, ¢ = 0.1. Solved using MMA not OC. . . . .. 250

B.17 Optimal topologies of a corner supported square plate subjected to center
point load, ribbed model, t =0.1. . . . . . . ... ... ... 251

B.18 Optimal topologies of a corner supported square plate subjected to center
point load, honeycomb model, t =0.01. . . . . . .. ... ... ... ..... 252

B.19 Optimal topologies of a corner supported square plate subjected to center
point load, honeycomb model, t =0.1. . . . .. .. ... ... ... ..... 253

B.20 Optimal topologies of a corner supported square plate subjected to uniform
distributed load, ribbed model, t =0.1. . . . . . . . ... ... ... .. ... 254

B.21 Optimal topologies of a corner supported square plate subjected to uniform
distributed load, honeycomb model, t =0.01. . . . . . . . ... ... ..... 255

B.22 Optimal topologies of a corner supported square plate subjected to uniform
distributed load, honeycomb model, t =0.1. . . . . . ... ... ... ... .. 256

B.23 Displaced shape of optimal topology, computed using DKQ analyzed using
SRI elements. . . . . . . . . . . .. 257

Xix



F

-

4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

B.24 Displaced shape of optimal topology, computed using ANS analyzed using

SRI elements. . . . . . . . . .. . 257
B.25 Optimal topologies of corner supported cylinder with single layer material
model for various valuesof cv. . . . . . ... o 259

B.26 Convergence histories for corner supported cylinder with single layer material
model for various valuesof cv. . . . . . .. ..o 259

B.27 Optimal topologies of a corner supported cylinder with ribbed material model. 260

B.28 Optimal topologies of corner supported cylinder with ribbed material model
for various values of cv. . . . . . ... 261

B.29 Convergence histories for corner supported cylinder with ribbed material model
for various valuesof cv. . . . . . ..o 261

B.30 Optimal topologies of a corner supported cylinder with honeycomb material

model.. . . . . 262
B.31 Optimal topologies of corner supported cylinder with honeycomb material
model for various valuesof co. . . . . . .. ..o 264

B.32 Convergence histories for corner supported cylinder with honeycomb material
model for various valuesof cv. . . . . . .. ..o 264

B.33 Optimal topologies of pretwisted beam with single layer material model for
various values of av. . . . . . ... 265

B.34 Convergence histories for pretwisted beam with single layer material model
for various valuesof av. . . . . ..o 266

XX



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

List of Tables

3.1
3.2

3.3

4.1

4.2

4.3
4.4
4.5

5.1
5.2
5.3

6.1

6.2

7.1

B.1

B.2

B.3

Ten element piezoelectric cantilever subject to pure bending. . . . . . . . .. 82

Relative percentage error on stress and electric displacement for Cook’s mem-
brane. . . . . . 84

Relative percentage error on vertical tip displacement of piezoelectric bimorph. 88

Eigenvalues of a square Q8 serendipity element for different integration schemes

(plane stress, |J| =1, E=1,v=1/3). . . . .. ... ... ... ..... 99
Eigenvalues of a square Q9 Lagrange element for different integration schemes

(plane stress, |J| =1, E=1,v=1/3). . . . . . ... ... . ... ...... 100
Displacement results for distorted cantilever beam. . . . . .. .. ... ... 102
Cook’s membrane: Center displacement ve. . . . . . . . ... ... ... .. 105
Cook’s membrane: Stress analysis. . . . . .. .. ... ... ... ... 105
Normalised tip displacement of a diagonal member. . . . . . . .. ... ... 140
Normalised displacement of a one-node hinge. . . . . . . ... .. ... ... 140
Output displacement of optimal mirror mechanisms. . . . . . . . . .. .. .. 141

Percentage difference: Corner supported square plate subjected to center
point load, ribbed model, t =0.01. . . . . . .. ... ... ... ... ... 168

Percentage difference: Corner supported square plate subjected to uniform
distributed load, ribbed model, t =0.01. . . . . . . ... ... ... ... .. 169

Effective constitutive terms for different elements employing various integra-
tion schemes. . . . . . .. 192

Percentage difference: Simply supported square plate subjected to center
point load, single layer model, ¢t =0.01. . . . . . . . ... .. ... ... ... 236

Percentage difference: Simply supported square plate subjected to center
point load, single layer model, ¢t =0.1. . . . . . .. ... ... ... ... 236

Percentage difference: Simply supported square plate subjected to center
point load, ribbed model, t =0.01. . . . . . ... ... ... ... ... ... 238

xx1



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

B.4 Percentage difference: Simply supported square plate subjected to center

point load, ribbed model, t =0.1. . . . . . . ... ... ... ... 238
B.5 Percentage difference: Simply supported square plate subjected to center
point load, honeycomb model, t =0.01. . . . . . .. ... .. ... .. .... 240
B.6 Percentage difference: Simply supported square plate subjected to center
point load, honeycomb model, t =0.1. . . . . . . ... ... ... ... ... 241
B.7 Percentage difference: Clamped square plate subjected to center point load,
single layer model, t =0.01. . . . . .. .. ... 242
B.8 Percentage difference: Clamped square plate subjected to center point load,
single layer model, t =0.1. . . . . . . . ... 243
B.9 Percentage difference: Clamped square plate subjected to center point load,
ribbed model, t =0.01. . . . . . . ... 244
B.10 Percentage difference: Clamped square plate subjected to center point load,
ribbed model, t =0.1. . . . . . .. 244
B.11 Percentage difference: Clamped square plate subjected to center point load,
honeycomb model, t =0.01. . . . . . . . ... ... ... 246
B.12 Percentage difference: Clamped square plate subjected to center point load,
honeycomb model, t =0.1. . . . . . .. .. ... oo 246
B.13 Percentage difference: Corner supported square plate subjected to center
point load, single layer model, ¢t =0.01. . . . . . . . ... ... ... . .... 248
B.14 Percentage difference: Corner supported square plate subjected to center
point load, single layer model, t =0.1. . . . . . .. ... ... .. .. .... 249
B.15 Percentage difference . . . . . . .. ..o 250
B.16 Percentage difference: Corner supported square plate subjected to center
point load, ribbed model, t =0.1. . . . . . . ... ... ... ... ... ... 251
B.17 Percentage difference: Corner supported square plate subjected to center
point load, honeycomb model, t =0.01. . . . . . . ... ... ... ... ... 252
B.18 Percentage difference: Corner supported square plate subjected to center
point load, honeycomb model, t =0.1. . . . .. .. ... ... ... ..... 253
B.19 Percentage difference: Corner supported square plate subjected to uniform
distributed load, ribbed model, t =0.1. . . . . . . . . .. ... ... ... .. 254
B.20 Percentage difference: Corner supported square plate subjected to uniform
distributed load, honeycomb model, t =0.01. . . . . . . . . .. ... ... .. 255
B.21 Percentage difference: Corner supported square plate subjected to uniform
distributed load, honeycomb model, t =0.1. . . . . ... .. ... ... ... 256

xxii



	FRONT
	Title page
	Summary
	Acknowledgements
	Dedication
	Contents
	List of Figures
	List of Tables

	Chapter 1
	Part 1
	Part 2
	Back



