

SECURITY PRIMITIVES FOR ULTRA-LOW POWER

SENSOR NODES IN WIRELESS SENSOR

NETWORKS

by

An-Lun (Alan) Huang

Submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Computer Engineering)

in the

Faculty of Engineering, the Built Environment and Information Technology

UNIVERSITY OF PRETORIA

October 2005

SECURITY PRIMITIVES FOR ULTRA-LOW POWER SENSOR NODES IN

WIRELESS SENSOR NETWORKS
by

An-Lun (Alan) Huang

Study leader: Prof. W. T. Penzhorn

Department: Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

Degree: M. Eng (Computer)

SUMMARY

The concept of wireless sensor network (WSN) is where tiny devices (sensor nodes),

positioned fairly close to each other, are used for sensing and gathering data from its

environment and exchange information through wireless connections between these nodes

(e.g. sensor nodes distributed through out a bridge for monitoring the mechanical stress

level of the bridge continuously). In order to easily deploy a relatively large quantity of

sensor nodes, the sensor nodes are typically designed for low price and small size, thereby

causing them to have very limited resources available (e.g. energy, processing power).

Over the years, different security (cryptographic) primitives have been proposed and

refined aiming at utilizing modern processor’s power e.g. 32-bit or 64-bit operation,

architecture such as MMX (Multi Media Extension) and etc. In other words, security

primitives have targeted at high-end systems (e.g. desktop or server) in software

implementations. Some hardware-oriented security primitives have also been proposed.

However, most of them have been designed aiming only at large message and high speed

hashing, with no power consumption or other resources (such as memory space) taken into

considerations. As a result, security mechanisms for ultra-low power (<500μW) devices

such as the wireless sensor nodes must be carefully selected or designed with their limited

resources in mind.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 3

The objective of this project is to provide implementations of security primitives (i.e.

encryption and authentication) suitable to the WSN environment, where resources are

extremely limited. The goal of the project is to provide an efficient building block on

which the design of WSN secure routing protocols can be based on, so it can relieve the

protocol designers from having to design everything from scratch.

This project has provided three main contributions to the WSN field.

 Provides analysis of different tradeoffs between cryptographic security strength and

performances, which then provide security primitives suitable for the needs in a WSN

environment. Security primitives form the link layer security and act as building

blocks for higher layer protocols i.e. secure routing protocol.

 Implements and optimizes several security primitives in a low-power microcontroller

(TI MSP430F1232) with very limited resources (256 bytes RAM, 8KB flash program

memory). The different security primitives are compared according to the number of

CPU cycles required per byte processed, specific architectures required (e.g.

multiplier, large bit shift) and resources (RAM, ROM/flash) required. These

comparisons assist in the evaluation of its corresponding energy consumption, and

thus the applicability to wireless sensor nodes.

 Apart from investigating security primitives, research on various security protocols

designed for WSN have also been conducted in order to optimize the security

primitives for the security protocols design trend. Further, a new link layer security

protocol using optimized security primitives is also proposed. This new protocol

shows an improvement over the existing link layer security protocols.

Security primitives with confidentiality and authenticity functions are implemented in the

TinyMote sensor nodes from the Technical University of Vienna in a wireless sensor

network. This is to demonstrate the practicality of the designs of this thesis in a real-world

WSN environment.

This research has achieved ultra-low power security primitives in wireless sensor network

with average power consumption less than 3.5 μW (at 2 second packet transmission

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 4

interval) and 700 nW (at 5 second packet transmission interval). The proposed link layer

security protocol has also shown improvements over existing protocols in both security and

power consumption.

Keywords: Wireless Sensor Network (WSN), ultra-low power, security, cryptographic

primitives, Message Authentication Code (MAC), UMAC, OCB.

OPSOMMING
｀n Draadlose sensornetwerk (DSN) behels klein toestelle (sensornodusse) wat naby

mekaar geplaas word. Hierdie toestelle versamel data van die omgewing en ruil die data

met ander nodusse deur gebruik te maak van draadlose verbindings. ‘n Voorbeeld van ‘n

draadlose sensornetwerk is sensornodusse wat oor ‘n brug versprei is om die meganiese

stresvlakke wat daarop inwerk deurloops te monitor. Die sensornodusse word tipies

ontwerp om goedkoop en klein te wees sodat ‘n relatiewe groot aantal in werking gestel

kan word. Dit beteken egter dat elke sensornodus min hulpbronne beskikbaar het (bv.

energie, verwerkingskrag).

Verskillende sekuriteitselemente (kriptografiese elemente) was voorgestel en verbeter deur

die jare. Die doel van die verbeterings was om moderne verwerkers se krag in te span (32-

bis en 64-bis verwerking), argitekture soos MMX (“Multimedia Extension”) te gebruik,

ens. Die sagteware implementering van sekuriteitselemente was dus gemik op hoë-vlak

stelsels (“desktop” of bediener rekenaars). Sommige hardeware-georienteerde

sekuriteitselemente was ook voorgestel, maar die ontwerp van hierdie elemente

konsentreer hoofsaaklik op hoë spoed hutsing, sonder enige ag vir kragverbryk of ander

hulpbronne (soos geheuespasie). Sekuriteitselemente vir lae-drywing (<500μW) toestelle,

soos die draadlose sensornodusse, moet daarom versigtig gekies word of ontwerp word

met begrip van die beperkte hulpronne.

Die oogmerk van hierdie projek is om die implementasie van sekuriteitselemente (syfering

en waarmerking) wat geskik is vir die DSN (waar hulpbronne uiters beperk is) te voorsien.

Die doel van die projek is om ‘n doeltreffende boublok te voorsien waarop die ontwerp van

versekerde DSN roeteringsprotokolle uitgevoer kan word. Hierdie boublok het tot gevolg

dat protokolontwerpers nie ‘n hele projek van nuuts af hoef te ontwerp nie.

Hierdie projek bied drie bydraes tot die DSN vakgebied.

 Bied ‘n analise van verskillende wisselwerkings tussen kriptografiese sterkte en

werkverrigting. Hierdie analise bied sekuriteitselemente wat geskik is vir die

behoeftes van die DSN omgewing. Sekuriteitselemente vorm die skakelvlak sekuriteit

en dien as boublokke vir hoë-vlak protokolle (bv. die versekerde roeteringsprotokol).

 Implementeer en optimiseer verskeie sekuriteitselemente in ‘n lae-drywing

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 6

mikrobeheerder (TI MSP430F1232) met beperkte hulpbronne (256 grepe RAM, 8

kilogrepe “flash” programgeheue). Die verskillende sekuriteitselemente word

vergelyk in terme van die aantal verwerkersiklusse wat per verwerkte greep benodig

word, asook die spesifieke argitekture wat benodig word (bv. vermenigvuldiger, groot

bisskuif) en hulpbronne wat benodig word (RAM, ROM/”flash”). Hierdie

vergelykings help in die evaluasie van die ooreenstemmende energieverbruik, en

daarom die toepaslikheid tot draadlose sensornodusse.

 Navorsing was ook uitgerig op verskeie sekuriteitsprotokolle wat vir die DSN

ontwerp is. Die doel van hierdie navorsing is om die sekuriteitselemente vir die

sekuriteitsprotokol ontwerpsneiging te optimeer. ‘n Nuwe skakelvlak

sekuriteitsprotokol wat geoptimeerde sekuriteitselemente gebruik word ook

voorgestel. Hierdie protokol toon ‘n verbetering oor bestaande skakelvlak

sekuriteitsprotokolle.

 Sekuriteiteselemente met vertroulikheids- en waarmerkingsfunksies word in ‘n DSN

geimplementeer met die “TinyMote” sensornodusse van die Technical University of

Vienna. Hierdie nodusse word gebruik om die doelmatigheid van die ontwerpte

stelsels van hierdie tesis in ‘n realistiese DSN omgewing te demonstreer.

Hierdie navorsing het lae drywing sekuriteitselemente in ‘n DSN bereik. Die gemiddelde

kragverbruik was minder as 3.5 μW (met 2 sekonde pakkie versendingsintervalle) en 700

nW (met 5 sekonde pakkie versendingsintervalle). Die skakelvlak sekuriteitsprotokol wat

voorgestel is toon verbeterings oor bestaande protokolle in beide sekuriteit en kragverbruik.

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CSMA-MPS Carrier Sense Multiple Access with Minimum Preamble

Sampling

CTR Counter mode

DoS Denial of Service attack

ECB Electronic Codebook

KDF Key Derivation Function

MAC Message Authentication Code

MANET Mobile Ad-Hoc Network

MMX Multi Media Extension

OCB Offset Codebook

OTP One time pad

PDF Pad Derivation Function

PRF Pseudo Random Function

PRG Pseudo Random Generator

SAFER Secure And Fast Encryption Routine

SIMD Single Instruction Multiple Data

SNEP Sensor Network Encryption Protocol

SPINS Security Protocols for Sensor Networks

STEM Sparse Topology and Energy Management

TDMA Time Division Multiple Access

TEA Tiny Encryption Algorithm

WEP Wired Equivalent Privacy

WSN Wireless Sensor Network

μTESLA Micro Timed, Efficient, Streaming, Loss-tolerant

Authentication

CONTENTS

PAGE

1 INTRODUCTION ... 12

1.1. Background.. 12

1.2. Problem Statement... 13

1.2.1. The Need for Confidentiality and Authenticity in Wireless Sensor Networks13

1.3. Overview of Current Literature ... 14

1.4. Contributions ... 15

2 WIRELESS SENSOR NETWORKS... 17

2.1. Wireless Sens or Network versus Mobile Ad-Hoc Networks 17

2.2. Properties of Wireless Sensor Network... 21

2.2.1. Limited Computational Power .. 22

2.2.2. Limited Memory.. 22

2.2.3. Limited Energy Resources .. 22

2.2.4. Small Data Packet Size.. 25

2.2.5. Wireless Communication .. 25

2.2.6. Susceptible to Physical Capture .. 26

2.3. Existing Wireless Sensor Networks .. 26

2.3.1. PicoRadio .. 26

2.3.2. WiseNET ... 27

2.3.3. EYES ... 27

2.3.4. TinyMote from the Technical University of Vienna 28

2.3.5. Crossbow Smart Dust WSN .. 28

2.4. Comparisons between TinyMote and MICA2/MICA2DOT................................... 29

2.5. Conclusions ... 33

3 SECURITY IN WIRELESS SENSOR NETWORK.. 34

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 9

3.1. Trust Models.. 34

3.2. Threat Models.. 35

3.3. Security Requirements... 36

3.3.1. Confidentiality and Authenticity ... 36

3.3.2. Availability .. 39

3.4. Conclusions ... 41

4 CRYPTOGRAPHIC CIPHERS.. 42

4.1. TEA ... 42

4.1.1. Cryptanalysis of TEA .. 44

4.2. SAFER K-64 ... 45

4.2.1. Cryptanalysis of SAFER K-64 .. 50

4.3. TREYFER ... 50

4.3.1. Cryptanalysis of TREYFER .. 51

4.4. Other Block Ciphers .. 51

4.4.1. AES.. 52

4.4.2. RC5.. 53

4.5. Block Cipher Modes of Operation .. 54

4.5.1. Cipher Block Chaining (CBC) .. 54

4.5.2. Counter (CTR) Mode .. 57

4.5.3. Offset Codebook (OCB).. 60

4.6. RC4.. 65

4.6.1. Cryptanalysis of RC4 .. 66

4.7. Conclusions ... 66

5 UMAC... 68

5.1. Standard UMAC.. 68

5.1.1. NH ... 70

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 10

5.1.2. Pseudo Random Generator (PRG)... 72

5.1.3. Pseudo Random Function (PRF) ... 72

5.2. Refined UMAC ... 73

5.2.1. Key Derivation Function (KDF) ... 74

5.2.2. Pad Derivation Function (PDF)... 75

5.2.3. UHASH ... 75

6 LINK LAYER SECURITY PROTOCOLS .. 77

6.1. Sensor Network Encryption Protocol (SNEP) .. 77

6.1.1. Confidentiality ... 77

6.1.2. Authenticity ... 78

6.2. TinySec.. 80

6.2.1. Confidentiality ... 80

6.2.2. Authenticity ... 81

6.3. Other Link layer Securities.. 82

7 IMPLEMENTATIONS... 84

7.1. Implementation Environment .. 84

7.1.1. TinyMote Network Behavior... 87

7.1.2. TinyMote Packet Structure.. 90

7.1.3. TinyMote Power Consumption ... 91

7.2. Block Ciphers .. 93

7.2.1. XTEA .. 93

7.2.2. SAFER K-64 ... 94

7.2.3. TREYFER ... 94

7.2.4. OCB Mode... 95

7.3. RC4 Stream Cipher.. 96

7.4. UMAC ... 97

7.4.1. UMAC-Block Cipher .. 97

7.4.2. UMAC-RC4 .. 100

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 11

7.5. Conclusions ... 101

8 RESULTS AND DISCUSSIONS.. 102

8.1. Power Consumption in the MSP430 Microcontroller ... 102

8.2. Cryptographic Ciphers... 103

8.2.1. Observation and Analysis.. 106

8.3. UMAC ... 107

8.3.1. UMAC-XTEA ... 107

8.3.2. UMAC-RC4 .. 108

8.4. OCB-XTEA... 109

8.5. Security Primitives Implementations .. 110

8.5.1. Observation and Analysis.. 114

8.6. Secure Link Layer Protocol... 115

8.6.1. Block Cipher Based... 115

8.6.2. RC4 Stream Cipher Based... 118

8.6.3. Observation and Analysis.. 118

8.7. Security Primitives Power Consumption... 119

8.8. Improvements to Existing WSN Link Layer Securities .. 120

8.9. Conclusions ... 122

9 CONCLUSION AND FUTURE WORK... 123

REFERENCES .. 126

ADDENDUM A .. 132

LIST OF FIGURES... 132

LIST OF TABLES.. 134

 1
INTRODUCTION

1.1. Background

A wireless sensor network (WSN) is one in which tiny devices (sensor nodes), positioned

fairly close to each other, are used to sense and gather data from their environment and to

exchange information through wireless connections between these nodes. Apart from the

built-in sensors, these sensor nodes also have wireless transceivers and power sources

built-in allowing them to work autonomously. Sensor networks have been undergoing

extensive research and studies in recent years because of their various potential

applications, such as monitoring the safety and security of buildings or homes (intelligent

buildings and homes), measuring traffic flows, tracking environmental pollutants,

monitoring factory instrumentations, monitoring temperature and lightings on a farm or in

a greenhouse. Sensor nodes can even be distributed throughout a bridge allowing them to

continuously sense and monitor the mechanical stress level of the bridge. In order to easily

deploy a relatively large number of sensor nodes, the sensor nodes are typically designed

for low price, small size and long operation life, which causes them to have very limited

resources available (e.g. energy, processing power and memory size).

When speaking of the security of any system, it can be categorized into three main

concerns: Confidentiality, Integrity and Authenticity (or sometimes Availability) (C.I.A.).

Security primitives are used to achieve these basic concerns. For example, encryption

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 13

algorithms are used to achieve confidentiality, while cryptographic hash functions or

message authentication codes (MAC) are used for achieving integrity and authenticity.

Over the years, different security primitives have been proposed and refined aiming at

utilizing modern processing power e.g. 32-bit or 64-bit systems, SIMD (Single Instruction

Multiple Data) architecture such as MMX (Multi Media Extension) etc. In other words,

security primitives have targeted the high-end systems (e.g. desktop or server) in software

implementations. Several hardware-oriented security primitives have also been proposed.

However, most of them have been designed aiming only at large messages and high-speed

processing, with no power consumption or other resources (such as memory space) taken

into consideration. As a result, security mechanisms for ultra-low power devices such as

wireless sensor nodes must be carefully selected or designed with their limited resources in

mind. Ultra-low power at the moment is typically referring to power consumption less than

500μW.

1.2. Problem Statement

Many available WSN systems lack even the link layer security features or, in those cases

where the security features are implemented, they are too resource intensive. In other

words, data communicated in a WSN lacks basic security mechanisms such as

confidentiality (privacy) and authenticity, which is a major problem in certain applications.

The objective of this thesis is to provide implementations of security primitives (i.e.

encryption and authentication) suitable to the WSN environment, where resources are

extremely limited. The goal is to provide an efficient building block on which the design of

WSN secure routing protocols can be based, so that it can relieve the protocol designers

from having to design everything from scratch.

1.2.1. The Need for Confidentiality and Authenticity in Wireless Sensor Networks

As pointed out in [7], many WSN applications have had to compromise on the security of

the sensor network due to the constrained sensor node resources. To many sensor networks,

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 14

information confidentiality may not be too much of an issue e.g. sensor readings

monitoring the habitats of a lake or temperature at different parts of a factory. However,

information authenticity and integrity are needed in most WSN [7] [9], and they may be

crucial to prevent catastrophic losses due to malicious attacks. For example, it would be

undesirable to allow any person to modify sensor readings on the status of valves in a

factory, and thereby causing incorrect system responses due to this wrong sensor reading.

On the other hand, as sensor networks become more widely used, many other applications

will need both information confidentiality and authenticity. For example, although people

may not be concerned with others obtaining sensor readings monitoring habitat of a lake,

they are more likely to be concerned if their personal living environment or the readings in

a health monitoring application become known by others. Furthermore, sensor networks

deployed in a military environment would also require confidentiality apart from

authenticity of the information.

1.3. Overview of Current Literature

Wireless sensor network routing protocols, because of the extremely limited resources

available, have been designed without a strong sense of security. Perrig et. al. [1] have

proposed a security protocol named SPINS (Security Protocols for Sensor Networks) to

provide data confidentiality, data authentication (both two-party and broadcast

authentication) and data freshness. In other words, SPINS provides security for the link

layer protocols. SPINS adopted a block cipher as its cryptographic primitive on which all

of its operations are based (i.e. encryption, authentication and random number generation).

However, as pointed out by Menezes et. al. in [2], this is not a very good implementation;

the randomness of the random number generator that is based on a block cipher may lead

to unexpected security problems. Another link layer security system, TinySec [6], was

proposed several years after SPINS, also by UC Berkeley but by a different group of

researchers. TinySec uses a different block cipher to provide authenticity and

confidentiality. Karlof and Wagner [3] have conducted a study of different attacks on a

variety of WSN routing protocols. They have shown that it is also not enough to apply link

layer security protocols (i.e. SPINS or TinySec) directly to an existing routing protocol as a

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 15

security patch. According to Karlof and Wagner [3], it is unlikely a sensor network routing

protocol can be made secure by incorporating security mechanisms after the rest of the

design has been completed. Therefore, it is important to design a routing protocol with

security in mind right from the beginning, which is beyond the scope of this paper. This

paper is aimed at providing the security primitives needed to allow such secure routing

protocols to be built on, or in other words, providing security at the link layer.

Ganesan et. al. [4] have showed comparisons of a variety of security algorithms with

respect to their performance costs such as number of clock cycles, processing time and

required code size. These comparisons are performed on a wide range of platforms, thus

providing a good indication when choosing security algorithms for low-end embedded

devices. Ganesan et. al. in [4] have provided a good guidance to several well-known

security algorithms on a wide-range of microprocessors and microcontroller architectures.

However, all algorithms in [4] are studied from a software implementations perspective; no

hardware implementations of security algorithms have been studied (i.e. a security

algorithm on a dedicated piece of hardware). Law et. al. in [5] have proposed further

improvements over SPINS in [1] by categorizing WSNs into different “profiles”. It also

used a different block cipher than the one used in SPINS, and was implemented on a Texas

Instrument MSP430 microcontroller. Similar to the studies in [4], Law et. al. in [5] have

also only concentrated on implementations of security algorithms from a software

perspective with a microcontroller. Apart from focusing mainly on software

implementations for microcontrollers, most current studies have also been focusing only on

block ciphers.

1.4. Contributions

This dissertation provides three main contributions to the WSN field.

• Provides an analysis of different tradeoffs between cryptographic security strength

and performance, which can then be used to select security primitives suitable for

the needs of a WSN environment. Security primitives form the link layer security

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 16

and act as building blocks for higher layer protocols i.e. secure routing protocol.

• Implements and optimizes several security primitives in a low-power

microcontroller (TI MSP430F1232) with very limited resources (256 bytes RAM,

8KB flash program memory). The different security primitives are compared

according to the number of CPU cycles required per byte processed, specific

architectures required (e.g. multiplier, large bit shift) and resources (RAM,

ROM/flash) required. These comparisons assist in the evaluation of its

corresponding energy consumption, and thus the applicability to wireless sensor

nodes.

• Apart from investigating security primitives, research on various security protocols

designed for WSN have also been conducted in order to optimize the security

primitives for the security protocols design trend. Further, a new link layer security

protocol using optimized security primitives is also proposed. This new protocol

shows an improvement over the existing link layer security protocols.

Security primitives with confidentiality and authenticity functions are implemented in the

TinyMote [12] sensor nodes (equipped with MSP430F1232 MCU) in a WSN. This is to

demonstrate the practicality of the designs of this thesis in a real-world WSN environment.

The remaining of this dissertation is organized as follows: chapter 2 and 3 discuss and

provide a background understanding on the existing WSNs and security concerns of WSNs;

chapter 4 discusses various cryptographic ciphers and their applicability to the WSN

environment; chapter 5 discusses the UMAC authentication algorithm; chapter 6 discusses

several types of existing link layer security protocols in WSNs; chapter 7 shows how

different cryptographic ciphers are adapted and implemented in this dissertation; chapter 8

and chapter 9 provide the results and analysis of the implementations.

 2
WIRELESS SENSOR NETWORKS

Wireless technologies are becoming more advanced and mature with many off-the-shelf

wireless chips available in the market. On the other hand, microcontrollers are also

becoming smaller and consuming less power. It is therefore inevitable for the combination

of the two technologies, in addition with sensor technologies, to result in wireless sensor

networks. In order to deploy a fairly large-scale network of sensor nodes, the cost of

individual nodes must be minimized. As a result, sensor nodes are often very resource

constrained: small code size/memory space, limited computation power and limited energy

resources. This has made security concerns in WSN very different from traditional network

security systems. This chapter discusses these properties found in wireless sensor networks.

A brief overview of existing wireless sensor networks and a comparison between the

commercialized sensor node MICA2 and the TinyMote is also provided. The TinyMote is

the sensor node used in this paper.

2.1. Wireless Sens or Network versus Mobile Ad-Hoc Networks

Before sensor network security are discussed in detail, it is important to first identify what

a wireless sensor network (WSN) is and what it is not! First of all, a WSN should not be

considered as an equivalent to a mobile ad-hoc network. When referring to mobile ad-hoc

networks (also known as MANET), the nodes involved are often heterogeneous devices in

nature and are usually mobile with no fixed position [8]. This means that the network

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 18

topology is highly dynamic with nodes joining, leaving or roaming in the network. These

nodes may also be connected to the ad-hoc network for only a short amount of time. For

example, an ad-hoc network may be temporarily formed at a conference meeting where the

nodes involved are devices such as PDAs, cell phones, laptops or tablets (tablet PC). This

kind of ad-hoc network is also known as spontaneous networking [23]. The nodes involved

in an ad-hoc network may be any devices ranging from customized ad-hoc devices to cell

phones or PDAs.

On the other hand, a wireless sensor network often has a more closed architecture with

specific design goals and purpose e.g. measuring temperature at different places within a

building. As a result, the nodes involved in a wireless sensor network are mainly identical

in hardware (homogeneous) and are designed aiming at an extremely low-cost for a large

amount of deployment. As pointed out by Akyildiz et. al. in [10], the number of sensor

nodes in a WSN can be several orders of magnitude higher than the number of nodes in an

ad-hoc network. Due to the extremely low-cost nature of WSN nodes, these nodes are

usually even more resource constrained than most ad-hoc network nodes, with less

memory and computation power in order to achieve lower cost and longer battery life.

WSN are also usually immobile and with different traffic patterns to an ad-hoc network [9].

One or more base stations often exist in WSN. Base stations are more powerful nodes with

rich computational, memory, energy and radio resources. A base station may exist in the

form of a PC or server and it is where the sensor data flows to and is stored. It is therefore

also known as the sink node. Base stations may act as a gateway between a WSN and

another network; therefore base stations may be connected to outside TCP/IP networks.

These resourceful nodes are sometimes also known as rich uncles [5]. Table 2.1 provides a

summary of comparisons between MANET and WSN.

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 19

Table 2.1. A comparison between mobile ad-hoc network and wireless sensor network.

Mobile Ad-Hoc Network (MANET) Wireless Sensor Network (WSN)

Open architecture allowing heterogeneous

devices (nodes) (e.g. PDA, cell phone and

laptop).

Closed architecture with specific design

goals in mind therefore homogeneous

devices (nodes).

Requires no interaction with the

environment.

Requires interaction with the environment.

Dynamic topology (mobile nodes). Both fixed (static nodes) and dynamic

topologies exist.

Point-to-point communications. Broadcast communication paradigm.

May not be using any base station. Base station exists.

Nodes often have more resources available

(memory, computation power, energy).

Nodes have less resources compared to ad-

hoc networks.

Operational lifetime varies, often less than

that of a WSN.

Need to operate for a longer period of time

(<6 months).

The concept of an ad-hoc network has been around for longer than the concept of a

wireless sensor network and so there is more literature on ad-hoc networks. Although both

ad-hoc network security and WSN security need to be designed with resource constraints

in mind, in many cases the security designs for ad-hoc network are still too heavy for the

resources available in WSN in terms of memory usage and per packet processing overhead

[9]. An example would be the secure routing protocol designed for ad-hoc network in [11],

which is still too resource intensive to be implemented in WSN. WSN in general have

fixed topologies, however, some sensor networks (e.g. EYES [21] and PicoRadio [31])

share some of the properties of a MANET i.e. they are ad-hoc and mobile. The security

primitives in this paper are implemented and demonstrated on a fixed topology WSN,

where sensor nodes are immobile. Figure 2.1 is a representation of a typical WSN

architecture.

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 20

Figure 2.1. Representation of a wireless sensor network architecture.

Base stations (sink nodes) are often connected to each other via low latency, high

bandwidth, and long distance RF links. A base station may also act as a gateway to be

connected to a wired outside network (e.g. Ethernet). On the other hand, sensor node RF

links have lower power consumptions which increase the sensor node’s operating life due

to the limited energy resources in sensor nodes.

Base station/sink node

Sensor node
Low power RF link

High bandwidth RF link

Outside network

High bandwidth wired link

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 21

2.2. Properties of Wireless Sensor Network

When designing security functions for WSN, there are many properties of WSN that need

to be considered which are not present in conventional networks. Therefore, security

primitives and protocols that are used in conventional networks may not be suitable for

direct use in a WSN environment. As mentioned in the previous section, even security

protocols designed for the already resource constrained ad-hoc network may not be

suitable for WSN. Some of the properties of WSN and their consequences to security

functions are noted in this section.

Figure 2.2. Functional diagram of a wireless sensor node.

Figure 2.2 shows the functional diagram of a typical wireless sensor node. In some sensor

nodes the ambient environment can provide power to the sensor node, usually by

converting light or acoustic noise into electricity. Therefore ambient environments not only

provide sensor readings, but may also form an energy source. Some sensor nodes may also

be equipped with application specific integrated circuits (ASICs) or digital signal

processors (DSPs) to perform certain functions that may be too resource intensive for the

general purpose microcontroller (e.g. cryptographic functions). Reconfigurable hardware

(e.g. field programmable grid arrays (FPGAs)) may also exist to provide low level protocol

functions that would otherwise be too resource intensive for the microcontroller.

Sensors Microcontroller Communications
interface

Power
source

ASIC/DSP

Ambient environment

Other
sensor nodes

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 22

2.2.1. Limited Computational Power

In order to achieve large-scale deployment of sensor nodes, a low-cost processing unit (e.g.

a low-cost microcontroller) is often selected when designing sensor nodes. Furthermore,

computational power is also often sacrificed in order to achieve lower power consumption.

As a result, asymmetric encryption (public key cryptography) is not appropriate for WSN

as it typically requires several times more computation than symmetric encryption, which

violates the aim of conserving power [5] [9].

2.2.2. Limited Memory

Due to their low-cost and low-power nature, microcontrollers chosen for WSN purposes

have very limited code memory and RAM. One example is TinyMote [12], which has only

256 bytes of RAM and 8Kbytes of flash. As a result, cryptographic functions requiring

large code size or a lot of RAM are not suitable for WSN. For example, the block cipher

AES needs large look-up tables which takes up code space; the stream cipher RC4 needs at

least 256 bytes for a look-up table in RAM to provide the byte swapping mechanisms.

Furthermore, the difference between microcontroller word sizes will also greatly influence

the code size required [4]. For example, certain 8-bit microcontrollers may require up to

50% more code space when compared to a 16-bit microcontroller [4].

2.2.3. Limited Energy Resources

The most common power sources for WSN are the batteries. WSN need to be able to

operate for a long time without human intervention, therefore every milliamp need to be

used wisely. Power conservation can be said to be of highest importance in sensor

networks. As sensor nodes may be deployed at places which are difficult to reach due to

terrain obstacles, it is important for the sensor nodes to conserve energy so that it may last

for a relatively long period of time (ranging from 6 months up to 10 years!).

When speaking of the ultra-low power consumption of sensor nodes, it is important to first

understand what is meant by ultra-low power. The following table gives an overview on

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 23

the ranges between different devices’ power consumptions.

Table 2.2. An overview of different devices’ power consumptions.

Application Power source Power range

Desktop computer Power grid 150W – 500W

Laptop High capacity battery 10W – 120W

Mobile devices Battery 5W – 10W

Handheld devices Battery 100mW – 5W

Wireless sensors (including

ad-hoc network nodes)

Tiny batteries 1mW – 100mW

Ultra-low power wireless

sensors

Tiny batteries or energy

scavenging

1μW – 500μW

As shown in Table 2.2, ultra-low power typically refers to power below 500μW. Energy

scavenging is when energy is “scavenged” from the environment; for example converting

energy from ambient acoustic noise, vibration, heat or light into electrical energy (Figure

2.2). Sensor nodes that are powered solely by power scavengers are called self-powered.

Self-powered sensor nodes are autonomous and are suitable to be placed at locations that

may be inaccessible after deployment [20].

Power consumption in WSN can be divided into three domains [10]: communication, data

processing and sensing.

2.2.3.1. Power consumption in communication

Wireless transceiver is the major source of power consumption in WSN. Modern wireless

transceivers are designed for lower and lower current consumptions and are now in the

range of tens of milliamps. However, this power consumption is still too high for the ultra-

lower power WSN environment, which as mentioned above, requires less than hundreds of

micro-watts. As a result, in order to reduce power consumption due to communication,

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 24

sensor nodes have often been designed with low operational duty cycle and short data

packet size.

A low duty cycle is one in which the sensor node (including the transceiver) is switched off

or to a sleep mode when it is not transmitting any data, which allows the sensor node to

remain in a power conserving mode most of the time. For example, the Intel mote [13] is

aimed at maintaining an operational duty cycle of less than 1%. Ideally, in order to

maximize efficiency and prevent wasted power, transmission or reception of data should

take place right after the sensor node has woken up i.e. sensor nodes should be

synchronized. This is the responsibility of a medium access control protocol1 (a link layer

protocol). Some example medium access control protocols are WiseMAC [15], STEM [16],

BitMAC [17] and CSMA-MPS [18].

Transceivers have both wakeup and active power consumption. Most sensor nodes have

been adopting low bit rate transceivers of up to 115Kbps, because the data volume is very

small in WSN. However, recent research ([18] [19]) has shown that high bit rate (greater

than 1Mbps) with short transmit and receive turn-around time can greatly reduce power

consumption in communication. This is especially true for medium access control

protocols that need to constantly switch between short intervals of transmit (TX) and

receive (RX) mode (e.g. CSMA-MPS [18], STEM [16]); therefore reducing the transmit

and receive turn-around time essentially reduces the start-up time and thereby also the

wakeup power consumed.

2.2.3.2. Power consumption in data processing

In order to reduce power consumption, the time taken for local data processing at every

node should be kept minimal. This also helps to achieve the aim of a low duty cycle.

Different low-power microcontrollers are used in sensor nodes, for example MSP430 (16-

1 The abbreviation for Medium Access Control is also MAC. Do not confuse this with the Message

Authentication Code abbreviation MAC. Since this dissertation discusses security issues of

WSN, MAC in this paper will only be used as message authentication code.

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 25

bit) in TinyMote [12], AVR ATmega 128 (8-bit) in Crossbow MICA motes [14] and ARM

(16/32-bit) in Intel motes [13]. It is worth noting that different microcontroller word sizes

will influence performance on different operations [4]. For example, a larger word size will

benefit large bit size shift operations. As a result, encryption algorithms such as RC5

perform better in a 16-bit architecture than in an 8-bit architecture. On the other hand, RC4,

which was designed for efficient byte operations, performs better in an 8-bit architecture

[4]. The most common ways to conserve power consumed by microcontrollers is to switch

between the different low-power modes provided by the microcontroller. However, as

pointed out in [10], other low power techniques such as dynamic voltage scaling and CPU

organization strategies still need to be explored. Similarly to wireless transceivers,

microcontrollers also need wakeup time from the power saving sleep mode; therefore

faster wakeup time will benefit power saving because sensor nodes need to frequently

switch between sleep mode and active mode.

2.2.3.3. Power consumption in sensing

Sensor nodes may be used to collect various types of ambient data such as lighting,

temperature, humidity, sound etc. Most sensor nodes have sensors designed as modular

sensor boards allowing easy expansion [14][13]; therefore different sensor applications

will have different power consumptions.

2.2.4. Small Data Packet Size

As discussed in the previous section, one of the most power consuming components in a

sensor node is the RF transceiver. In order to reduce the usage of the transceiver, the size

of packets sent wirelessly must be kept minimal [6] [7]. As packet size becomes smaller,

the wakeup power for the transceiver becomes more important because the time needed to

transmit a packet may be comparable to the transceiver wakeup time.

2.2.5. Wireless Communication

Wireless communication makes it possible for eavesdropping on a communication if it was

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 26

sent in plaintext. Physical jamming of the RF signal can also occur with wireless

communication. However, it is possible to avoid such attacks by using frequency hopping

and spread spectrum communication [9].

2.2.6. Susceptible to Physical Capture

Sensor nodes are often widely scattered across a large area, therefore it may be physically

captured by an attacker. This characteristic, together with the characteristic that shared

symmetric keys are often used in WSN, leads to the disadvantage that once a node is

compromised, it means the secret key for the whole network is known. Law et. al. [5]

consider tamper-resistant sensor nodes to be a must in WSN in order to protect the

symmetric keys in all sensor nodes. However, Shi et. al. [9] and Karlof and Wagner [3] on

the other hand consider that because sensor nodes are targeted for low cost, tamper-

resistant hardware is unlikely to prevail.

2.3. Existing Wireless Sensor Networks

2.3.1. PicoRadio

PicoRadio [31] is a project at the Berkeley Wireless Research Centre (BWRC). It is

designed to be a low-power self-configuring ad hoc network that covers a wide range of

applications. Applications range from environmental monitoring, smart homes, warehouse

inventories, health monitoring and drug administration in hospitals to interactive toys. In

order to achieve low power, the PicoRadio project is aimed at addressing a complete

system design throughout all protocol layers.

PicoRadio relies on dual radio transceivers: a main radio and a wakeup radio. The wakeup

radio is an ultra-low-power transceiver that runs at 100% duty cycle. It monitors the

wakeup channel for beacons to wakeup the main radio; therefore the main radio can remain

switched off most of the time, thus saving energy. The power consumption goal for the

ultra-low-power radio is 1 μW, however, this has not yet been realized. In the medium

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 27

access control protocol, because wakeup radio runs at 100% duty cycle, the sensor nodes

require no synchronization as they can be woken up at any time. The main radio is a multi-

channel transceiver which allows different channels to be used for communication to

reduce collision, which also reduces power for retransmission.

2.3.2. WiseNET

Wireless Sensor Networks (WiseNET) [32] is a long-term research project at the Swiss

Centre for Electronics and Micro-technology (CSEM). The main objective is to develop a

low-power wireless ad hoc network with distributed sensor nodes combining sensing and

signal processing capabilities.

Much of the design emphasis in WiseNET has been in the lower layers: in the medium

access control protocol and the low voltage ultra-low power radio transceiver. The

WiseMAC medium access control protocol is a novel design that combined concepts from

time division multiple access (TDMA) and carrier sense multiple access (CSMA) protocols.

A low voltage ultra-low power radio transceiver has also been designed for sensor network

applications. The current consumption of the receiver is typically 2 mA at 0.9 V supply

voltage. The average power consumption is 25 μW at a duty cycle of about 1.5%.

2.3.3. EYES

The EYES project [21] is a three year European research project to develop the

architecture and the technology to enable the creation of sensors that can be networked

together and support a large variety of mobile sensor applications. It is aimed at supporting

various devices such as laptops, PDAs, mobile phones etc. As a result, the EYES network

overlaps with both the fields of wireless sensor networks (WSN) and mobile ad hoc

networks (MANET). In the EYES approach, two distinct abstraction layers are defined.

One is the sensor and networking layer containing nodes and communication protocols up

to the network layer. The other one is the distributed service layer containing lookup

services and information services.

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 28

The EYES prototype wireless node has the following specifications: 16-bit 8 MHz

microcontroller; 60 KB flash, 2 KB RAM; additional 1MB serial RAM; 868.35 MHz radio;

and a bandwidth of 115.2 Kbps. EYES nodes use an operating system called PEEROS [35]

(PreEmptive Eyes Real-Time Operating System), which requires about 10KB of code

memory. The 16-bit microcontroller used is the Texas Instrument MSP430x149 [33],

which is the same microcontroller series used in TinyMote [12]. The security primitives in

this paper are implemented on TinyMote nodes.

2.3.4. TinyMote from the Technical University of Vienna

TinyMote [12] is a sensor node developed by the Technical University of Vienna (TUV).

At the moment only medium access control protocols have been designed for TinyMote

nodes, so the nodes have only been set up as a simple multi-node sensor network without a

complex networking protocol. All security primitive experiments, comparisons and

adaptations of this paper are based on TinyMote nodes.

The medium access control protocol, CSMA-MPS (carrier sense multiple access with

minimum preamble sampling), combines design concepts from protocols WiseMAC and

STEM [16]. CSMA-MPS has been shown to be more efficient than either WiseMAC or

STEM, particularly when it is used with a high bit rate transceiver (greater than 1 Mbps)

(refer to section 2.2.3.1 for more explanations). As a result, the average power

consumption in TinyMote nodes due to radio communication is less than 50% of the total

power consumption. A total power consumption of less than 200μW can be achieved (at 2

second sensor sampling interval); resulting in few years of battery life (two AA batteries).

TinyMote nodes have the following specifications: 16-bit 1MHz microcontroller; 8 KB

flash; 256 bytes of RAM; 2.4 GHz radio and 1 Mbps of bandwidth. The 16-bit

microcontroller used is the Texas Instrument MSP430F1232 [33].

2.3.5. Crossbow Smart Dust WSN

Crossbow [14] is a company that manufactures the Mica series of commercialized sensor

nodes. The Mica nodes inherit much of their design concepts from the UC Berkeley Smart

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 29

Dust nodes. MICA nodes also use the 8-bit Atmel AVR [34] microcontrollers and run the

TinyOS operating system. MICA nodes use separate sensor board modules for different

sensor requirements. The sensor board modules vary from light, temperature, humidity and

acoustic to acceleration and GPS.

The medium access control protocol and the networking protocol are integrated into one

protocol called the XMesh (previously known as Surge Time Sync or ReliableRoute). This

is a network time synchronized protocol (within 1ms). The average battery life of MICA

nodes ranges from a few months to less than 2 years (1.5 years at a 6-minute sampling

interval). A typical MICA2 node has the following specifications: 8-bit 8MHz

microcontroller (ATMega128L); 128KB flash (code); 512KB flash (data logging); 4KB

EEPROM (configuration); 4KB RAM; ISM radio bands and a bandwidth of 38.4 Kbaud.

2.4. Comparisons between TinyMote and MICA2/MICA2DOT

In the previous section, several other existing sensor networks are briefly discussed.

However, it is also important to have an understanding of how other available WSN differs

from the TinyMote WSN platform used in this paper. The MICA2/MICA2DOT nodes are

popular commercially available sensor nodes found in Crossbow Smart Dust WSN [14].

The tables below summarize comparisons between TinyMote and MICA2/MICA2DOT

sensor networks. Both sensor networks have no security primitives implemented.

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 30

Table 2.3. Comparisons between TinyMote and MICA2/MICA2DOT sensor nodes.

 Power consumption RF current consumption

5s 10s RX TX (-5dBm) TX (0 dBm)
TinyMote

141μW 70μW 24mA 15mA 19mA

1 min 3 min 6 min RX TX (maximum power)
MICA2/

MICA2DOT
1.83mW 850.5μW 529.2μW

8mA

(MICAz –

19.7mA)

25mA (MICAz – 17.4mA)

(a)

 Memory
word

size

RF data

rate

RF

range

TinyMote

8KB

flash

(code)

256 byte

flash

(config)

256 byte RAM
16-

bit
1 Mbps

100m

(LOS)

MICA2/

MICA2DOT

128KB

flash

(code)

512KB

flash

(code)

4KB

EEPROM

(config)

4KB

RAM
8-bit

38.4 Kbaud

(MICAz –

256 Kbps

304.8m

(1000 ft)

(LOS)

(b)

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 31

Processor

frequency
OS

MAC2

protocol

Networking

protocol

Typical

operation

life

TinyMote

1MHz @

2.0V

(1MIPS)

none CSMA-MPS
under

development

5.5 years

@ 5s

sampling

interval

MICA2/

MICA2DOT

8MHz @

2.7V

(8MIPS)

TinyOS XMesh

XMesh

(Surge Time

Sync)

<1.5

years @

6min

sampling

interval

(c)

 Sensors
Power

source

TinyMote

Light,

temperature,

humidity.

(currently fixed

sensor design)

Battery,

solar cell

with ultra

capacitor

MICA2/

MICA2DOT

Light,

temperature,

humidity,

acceleration,

GPS, acoustic.

(expandable

sensor boards)

Battery

(d)

2 MAC refers to Medium Access Control

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 32

It is observed that TinyMote WSN is aimed at lower level, less complex applications:

• Most sensors are fixed on board.

• No operating system, little memory space allowing essentially no user applications

(low flexibility).

• Designed for difficult physical access of sensor nodes after deployment. Long

operation life (up to 9 years).

• Lower costs per node (component-wise).

On the other hand, MICA2/MICA2DOT WSN can be observed as aiming at a higher level,

more complex applications:

• Large varieties of sensors available.

• Large memory space together with the use of an operating system (TinyOS) allows

multiple user applications (highly flexible).

• Allows remote sensor node data logging with data base.

• Physical access to sensor nodes should be relatively easy. Approximately 1 year

battery life.

• Higher costs per node (component-wise).

Chapter 2 Wireless Sensor Networks

Electrical, Electronic and Computer Engineering 33

2.5. Conclusions

In this chapter the key properties of a wireless sensor network (WSN) and how it differs

from a mobile ad-hoc network (MANET) is discussed. Some of the existing WSNs are also

briefly discussed. Therefore this chapter provides an understanding of the WSN and where

its constraints such as memory and energy resources may lie.

 3
SECURITY IN WIRELESS SENSOR NETWORK

Security in any network system does not simply involve only one or two layers, but rather

needs to be viewed across all layers as a whole. The security issues for a conventional

network differ greatly to the security issues in WSNs because of the extremely limited

resources available in sensor nodes. This chapter provides an overview of security

considerations in the context of the WSN.

3.1. Trust Models

One or more base stations often exist in WSN. Base stations are more powerful nodes with

rich computational, memory, energy and radio resources. By radio resources it means that

they have more powerful transceivers for a wider communication range and higher

bandwidth links for communication amongst other base stations. A base station may exist

in the form of a PC or server, where the sensor data flows to and is stored. Therefore they

are also known as sink nodes. Base stations may act as a gateway between WSN and

another network; therefore may be connected to an outside TCP/IP network. These

resourceful nodes are sometimes also known as rich uncles [5]. Base stations are more

expensive nodes, and are often assumed to be physically protected or have tamper-proof

hardware.

As a result, in a WSN environment, a base station usually plays the role of a central trusted

Chapter 3 Security in Wireless Sensor Network

Electrical, Electronic and Computer Engineering 35

authority (point of trust). A point of trust base station is what the other standard sensor

nodes trust for its authenticity and accepts the keys managed by the base station. In a base

station trust model, for two nodes to communicate directly with each other, they need to

first rely on the base station to establish a shared secret key between them before

communication can take place. However, scalability may become a problem for base

stations. If every sensor node in the network has a unique secret key, then for two nodes to

communicate with each other they need to first go through the trusted base station to

establish a shared secret key. If every node needs to communicate with its neighboring

nodes, then the base station becomes a scalability bottleneck. This paper also assumes the

base station as the trusted authority in the trust model.

3.2. Threat Models

Attacks in the WSN can be categorized into insider and outsider attacks. Outsider attacks

occur when the adversary is not an authorized participant of the sensor network. The

adversary may be a passive attacker by eavesdropping wireless communications and tries

to steal confidential data. Active attack may also take place in the form of spoofing or

altering packets in order to infringe authenticity of communication; or injecting interfering

wireless signals to jam the network. Disabling a sensor node is another form of outsider

attack. The adversary can inject useless packets to drain the receiver node’s battery power

(a type of denial-of-service (DoS) attack) to disable a node. The adversary can also

physically capture or destroy a sensor node to disable it. However, it is important to note

that not all disabled nodes are a result of an attack. Catastrophic climatic change or battery

depletion can also result in a failed node, which is indistinguishable from a disabled node.

Insider attacks are essentially referring to compromised nodes. Unlike outsider attacks

which may result in disabled nodes, compromised nodes continuously disrupt or paralyze

normal operations of the sensor network. A compromised node may exist in the form of a

physically captured and reprogrammed sensor node; or it can be a different device (e.g.

laptop) with more resources such as computational power, energy resources, memory

resources and powerful radio signals. According to Shi and Perrig [9], a compromised

Chapter 3 Security in Wireless Sensor Network

Electrical, Electronic and Computer Engineering 36

node has the following properties:

1. The node runs some malicious code that is different from the code on a legitimate

node.

2. The node has compatible radio (in respect to spectrum, modulation scheme etc.) to

other legitimate sensor nodes so that it can communicate with the sensor network.

3. The node is an authorized participant in the sensor network. If the communication

is encrypted and authenticated using cryptographic primitives, then the

compromised node must be in possession of the cryptographic keys of a legitimate

node in order for communication to take place.

3.3. Security Requirements

When speaking of security requirements of any system, it is usually referring to:

confidentiality, authenticity, availability and integrity. However, due to the extremely

resource constrained nature of sensor nodes, security requirements may be very different

compared to conventional networks. As a result, with sensor networks security, the aim is

to achieve security requirements discussed in this section to make WSN robust against

outsider attacks. However, in the case of insider attack, a graceful degradation of

performance in proportion to the number of compromised nodes is aimed. For this is

because the detection of compromised nodes is not always possible; therefore it is most

likely that not all security requirements can be achieved.

3.3.1. Confidentiality and Authenticity

In WSN, data packets are communicated in a shared wireless medium, making them

susceptible to eavesdropping and injection of malicious or spoofed packets. Data

encryption protects confidentiality of data packets communicated. Authentication allows

Chapter 3 Security in Wireless Sensor Network

Electrical, Electronic and Computer Engineering 37

verification of the packet sender to be a legitimate source (source authentication), and also

verifies that the packet has not been modified (data authentication).

Encryption provides some confidentiality which protects the data packets from being

revealed to passive attackers through eavesdropping. Encryption can be achieved using

standard cryptographic primitives such as block ciphers (e.g. AES, TEA) or stream ciphers

(e.g. RC4). However, encryption alone can not completely protect the confidentiality of

data. A passive attacker can still perform traffic analysis on the encrypted data packets

(ciphertext) which may reveal sensitive information about the data. On the other hand, an

attacker can obtain the secret key used for encryption in a compromised node. If this secret

key is shared globally amongst all sensor nodes, then the attacker will now be able to

decrypt all communicated data packets in the sensor network.

Authentication ensures that the communicated data packets are from legitimate nodes and

that they have not been changed by an attacker (authenticity check) or corrupted due to bad

radio signals (integrity check). Authentication can be achieved by appending a message

authentication code (MAC) to the data packet. A message authentication code is a piece of

fixed size code that is computed from processing the data message with a key and a MAC

function.

Chapter 3 Security in Wireless Sensor Network

Electrical, Electronic and Computer Engineering 38

Figure 3.1. Representation of a data packet with MAC appended.

To verify that a received data packet is indeed from a legitimate node that has the secret

key and the data packet has not been modified by an attacker; the receiver has to compute

the received data for another MAC and compare this MAC with the one that was appended

to the data packet. If the two MACs are different, then either the data packet has been

modified by an attacker, or it has been corrupted due to bad radio signals.

Message authentication codes can be calculated in many ways. For example, using a CBC-

mode block cipher, cryptographic hash functions with HMAC, or other custom designed

MAC functions (e.g. UMAC or Message Authenticator Algorithm (MAA)). The figure

below shows different categories of MACs.

MAC function

secret/private key

data message MAC

data packet to be send with MAC appended

Chapter 3 Security in Wireless Sensor Network

Electrical, Electronic and Computer Engineering 39

Figure 3.2. MAC categories.

In many scenarios, using a public key cryptography (asymmetric encryption) for

authentication would be more desirable than using a shared secret key (symmetric

encryption). In a shared secret key environment, if one sensor node is compromised and its

secret key revealed, then the security is breached for all other nodes with the same secret

key. When using public key cryptography, a sensor node will only be able to reveal its own

private key if it is compromised. However, public key cryptography typically requires

many more orders of computational cost and packet overhead, which makes it unsuitable

for WSN even if it is used for key establishment when sensor nodes are initially installed

[9]. Another problem for using public key cryptography is that it may lead to easy denial of

service attack (DoS). Since the MAC verifying process is very computationally intensive,

therefore if an attacker continuously sends out false packets requesting nodes to verify

them, then it will greatly waste the receiving nodes’ resources only to realize that the data

packet it is a fake. As a result, public key cryptography is generally not considered for

implementing WSN securities [1][5][9]. There are other researches on the key

establishment for WSN, such as random key predistribution schemes [22], but are beyond

the scope of this paper.

3.3.2. Availability

Availability refers to when the sensor network is functional throughout its designed

MAC

Block cipher based

e.g. CBC-MAC,

OCB, IACBC

Cryptographic hash

function based

e.g. HMAC

Stream cipher based

e.g. XJ Lai’s stream

cipher MAC, CRC-

based [65]

Customized MAC

e.g. UMAC, MAA

Chapter 3 Security in Wireless Sensor Network

Electrical, Electronic and Computer Engineering 40

operation lifetime. The type of attack on network availability is often referred to as denial

of service attack (DoS). DoS attack can occur in different layers of the network, such as

physical, link and network layer. There are more different types of DoS attacks in the

routing protocols at the network layer.

In the physical layer, DoS attack is achieved by jamming or interfering with the radio

signals of the sensor network. This attack can also inject irrelevant data packets to a node

in order to drain its energy resource (i.e. battery power) for radio reception. This type of

physical layer DoS attack can be prevented by using frequency hopping and spread

spectrum communication [9].

A link layer protocol, particularly the medium access control protocol can be exploited to

achieve link layer DoS attack. For example, an attacker may cause malicious collisions or

attempt to get an unfair share of the radio resource.

Karlof and Wagner in [3] have discussed several routing protocol attacks in the network

layer. These attacks may all lead to DoS attacks.

• Spoofed, altered, or replayed routing information – This attack is to alter routing

information exchanged amongst nodes to create routing loops, attract or repel

network traffic, extend or shorten source routes, generate false error messages,

partition the network, increase end-to-end latency etc.

• Selective forwarding – The malicious node may behave like a black hole by

refusing to forward all or certain data packets it sees. However, this malicious node

often needs to include itself in an actual path of the data flow.

• Sinkhole attacks – This attack tries to lure almost all the traffic of a particular area

to go through a malicious node. This can be achieved by making the malicious

node appear as a better choice of route to the surrounding nodes for sending data

packets.

Chapter 3 Security in Wireless Sensor Network

Electrical, Electronic and Computer Engineering 41

• Sybil attack – In a Sybil attack, a single malicious node fakes multiple identities to

other nodes in the network. This can reduce the effectiveness of fault-tolerant

schemes.

• Wormholes – This attack is where the adversary tunnels data packets received in

one part of the sensor network and replay them in a different part. Wormholes can

be used to create sinkholes.

• HELLO flood attack – Many routing protocols require nodes to broadcast HELLO

packets to announce themselves to their neighboring nodes, so that their

neighboring nodes will know who is within their radio range. An malicious node

can use a high power transmitter to broadcast HELO packets and thus fooling every

node in the network into thinking that the malicious node is its neighbor.

• Acknowledgement spoofing – Some routing protocols rely on implicit or explicit

link layer acknowledgements. An adversary may spoof these acknowledgements to

convince the sender that a weak link is strong or that a disabled link is alive,

thereby causing packets sent to these links to be lost.

3.4. Conclusions

In this chapter the security concerns and security models of WSNs have been discussed. It

is clear that the security solutions for the traditional networks are not entirely applicable to

wireless sensor networks. This is because of the different characteristics and constraints

found in WSNs.

 4
CRYPTOGRAPHIC CIPHERS

Cryptographic ciphers often provide the most basic security requirements such as

confidentiality, authenticity and integrity checking in any system. However, not all

cryptographic ciphers that are suitable for conventional networks will also be suitable for

WSNs. This chapter discusses security primitives through the use of cryptographic ciphers

and their applicability to the ultra-low power WSN environment. The background of block

ciphers as well as modes of operation are investigated and discussed here. The only stream

cipher implemented in this paper, RC4, is also discussed here.

4.1. TEA

TEA (Tiny Encryption Algorithm) [36] and its related variants (XTEA, Block TEA,

XXTEA) are symmetric key block ciphers designed for modern 32-bit word architecture.

The emphasis of TEA is on small code size and easy implementation with typically few

lines of codes. It uses a large number of iterations rather than a complicated algorithm. All

TEA and its variants are based on the Feistel structure, every TEA cycle consists of two

Feistel rounds (Figure 4.1).

TEA and XTEA operate on two 32-bit words as a 64-bit data blocks with a 128-bit key,

therefore all operations are done in 32-bit words. Block TEA and XXTEA operate on

variable-length blocks of arbitrary multiples of 32 bits size. The advantage of Block TEA

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 43

and XXTEA is that it eliminates the need for using a mode of operation (CBC, OFB, CFB,

OCB etc.) on messages larger than one block. i.e. they can be applied directly to a

complete message.

Figure 4.1. One TEA cycle (two Feistel rounds) [37].

XTEA (also known as TEAN) (Figure 4.2) was proposed in response to several

weaknesses found with TEA. XTEA has the same basic operations as TEA, but the

subkeys are mixed less regularly particularly to prevent key-schedule attacks on TEA. On

the other hand, XXTEA is the updated version of Block TEA, as it prevents weaknesses

found in Block TEA.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 44

Figure 4.2. One XTEA cycle [37].

4.1.1. Cryptanalysis of TEA

TEA suffers from two types of cryptanalysis, the related-key [39] and equivalent-key [38]

attacks. The equivalent-key attack is targeted at TEA’s extremely simple key-schedule.

This results in the problem that when flipping the most significant bits of the first two 32-

bit words of the key, the encryption will not be affected. This attack has allowed hackers to

successfully run Linux operating system on the Microsoft’s Xbox gaming console. The

best related-key attack on TEA requires 223 chosen plaintexts and 232 computation time to

recover the key. XTEA is proposed by TEA designers to prevent weaknesses found in

TEA. The best attack so far on XTEA is a related-key differential attack on 27 rounds [40].

This attack requires 220.5 chosen plaintexts and has a time complexity of 2115.15 27-round

XTEA encryptions.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 45

Block TEA key can be recovered with 234 chosen ciphertext queries [41]. XXTEA was

proposed to fix the weaknesses found in Block TEA. The best attack so far on XXTEA

requires 280 chosen plaintexts on 6 rounds, and a time complexity of 2127 to recover the key

[41].

4.2. SAFER K-64

SAFER K-64 [44] (stands for Secure And Fast Encryption Routine with a Key of length 64

bits) is a non-proprietary secret (symmetric) key block cipher. The block length is 64 bits

(8 bytes) and only byte operations are used for key scheduling, encryption and decryption.

The encryption structure of SAFER K-64 is shown in the following figure.

Figure 4.3. Encryption structure of SAFER K-64.

Plaintext (8 bytes)

Mixed XOR/Byte Addition

(output transformation)

Encrypting Round 1

Encrypting Round 2

Encrypting Round r

Ciphertext (8 bytes)

K2

K1

K4

K3

K6

K5

K2r

K2r – 1

K2r + 1

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 46

The encryption/decryption algorithm consists of r rounds, typically 6 rounds are

recommended. Each round (shown in Figure 4.4) requires two 64-bit (8 bytes) subkeys and

the output transformation needs one 64-bit subkey. In total 2r + 1 subkeys are needed,

which is derived from the user-selected secret key “K1”. The output transformation

involves byte XOR and byte addition (modulo 256) of the last subkey (K2r + 1) with

output from the r-th round. The decryption structure is similar to the encryption structure

except that the output transformation now becomes the input transformation and is

executed first. The subkeys in the decryption structure are also used in a reversed order.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 47

P2P1 P3 P4 P5 P6 P7 P8

exp log log log logexp exp exp

2-PHT

2-PHT

2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT

K2i-1

K2i

2-PHT 2-PHT 2-PHT 2-PHT

C2C1 C3 C4C4 C5C5 C6 C7 C8

Figure 4.4. One encryption round structure of SAFER K-64.

As shown in the above figure of one encryption round, the 8 input bytes (64 bits) are

represented by symbols “P1” to “P8”, the output bytes are represented by symbols “C1” to

“C8”. The “♁” and “+” symbol represents byte XOR and byte addition (modulo 256)

respectively with the subkey bytes. If the input is represented by “ j ”, then the “exp” box

output is: 45(j) modulo 257, (except that this output is taken to be 0 if the modular result is

256); and the “log” box output is: log45(j), (except that this output is taken to be 128 if the

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 48

input is: j = 0). These two transformations are nonlinear and invertible, which is favorable

to a cipher algorithm. These two transformations can also be realized using two look-up

tables of 256 bytes each, thus exchanging code size for computational time (which also

saves energy). The “2-PHT” box stands for 2-point Pseudo Hadamard Transform, which is

a linear transformation to achieve diffusion of even small changes in the plaintext. The 2-

PHT consists of only three addition (modulo 256) operations.

The decryption round structure is similar to the encryption round structure. Instead of using

2-PHT, 2-IPHT (2-point inverse pseudo Hadamard Transform) is used. Both subtraction

and addition (modulo 256) operations are required in 2-IPHT. The “2-IPHT” boxes are

executed first in the decryption round, then followed by the non-linear transformations of

exponential and logarithmic operations.

The key scheduling algorithm to derive the needed keys is shown in the following figure.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 49

Figure 4.5. Key scheduling algorithm of SAFER K-64.

The key scheduling algorithm takes the user-selected key K1 to derive K2r + 1 number of

subkeys. The key biases: B2, B3, … , B2r+1 are 8-byte fixed values introduced to ensure

that the subkeys appear to be random, thereby eliminating the possibility of user-selected

weak keys. The key biases can be calculated using the following formula:

 257mod45],[Vjib = (4.1)

 where 257mod459 jiV += (4.2)

Where b[i,j] denotes the j-th byte of bias Bi. If the exponential of 45 has been implemented

as 256 bytes of look-up table as mentioned earlier, then the calculation of this formula can

be simplified. The key biases can also be directly implemented as a look-up table, which

further reduces computation time needed for setting up key biases. With 6 round SAFER

User selected 8-bytes key K1

Rotate each byte left by 3 bits

Rotate each byte left by 3 bits

Rotate each byte left by 3 bits

K2

K2r + 1

Rotate each byte left by 3 bits

Byte-by-byte mod 256 addition

B2

K3Byte-by-byte mod 256 addition

B3

K4Byte-by-byte mod 256 addition

B4

Byte-by-byte mod 256 addition

B2r + 1

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 50

K-64 (r = 6), 12 key biases (8 bytes each) are needed, therefore a look-up table of 96 bytes

is required.

4.2.1. Cryptanalysis of SAFER K-64

The best cryptanalysis on SAFER K-64 published so far, to the knowledge of the author, is

by Wu et. al. in [45]. Wu et. al. has successfully applied a truncated differential attack on

SAFER K-64 and SAFER SK-64 (with the modified key schedule) using 5 or 6 rounds.

For an attack on 5-round SAFER K-64, 238 chosen plaintexts and computation time of 246

5-round encryptions are required. For attack on a 6-round SAFER K-64, 253 chosen

plaintexts and a computation time of 261 6-round encryptions are required. This attack

cannot be applied to SAFER K-64 with 7 rounds or more. Therefore it is suggested that an

8-round SAFER K-64 should be considered invulnerable to truncated differential attacks

[45].

4.3. TREYFER

TREYFER is a 64-bit block cipher with 64-bit symmetric key and is proposed by Yuval

[42]. It is aimed at applications with extremely limited resources, e.g. smart card and is

designed to be very compact (less than 50 bytes of code on an 8051 microcontroller with

assembler language). It can be executed on a very constrained architecture, for example an

8051 microcontroller with typically 1 KB flash EPROM, 64 bytes RAM, 128 bytes

EPROM and a peak instruction rate of 1 MHz. TREYFER is designed to use only byte

operations and requires fixed bit rotations and modulo 256 additions. The algorithm is as

follows:

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 51

for (r = 0; r < NumRounds; r++){

text[8] = text[0];

for(i = 0; i < 8; i++)

 text[i+1] = (text[i+1] + Sbox[(key[i]+text[i])%256]) <<< 1;

 //rotate 1 left

 Text[0] = text[8];

}

In the above pseudo code, “text” represents the 8-byte plaintext, “Sbox” is the 256×8-bit

(256 bytes) S-box chosen at random, and “NumRounds” is the number of rounds executed

in TREYFER, which is typically 32. One of the motivations of the TREYFER design is the

use of a large number of rounds (32) to thwart any possible practical attacks in spite of the

simple round function design. The S-box was suggested by the author to be taken from

another place in the memory running non-cryptographic codes. In this way there is no need

to explicitly define a 256-byte S-box and thus code space is saved.

4.3.1. Cryptanalysis of TREYFER

An attack on TREYFER has been found by Biryukov and Wagner in [43]. It requires 232

known plaintexts, 244 TREYFER encryptions of computation times and 232 memory. This

proposed attack is also independent of the number of rounds and of the choice of the S-box.

However, round counters can be introduced into the round function of TREYFER as a

more complex key scheduling method in order to thwart such an attack. Besides this attack

proposed by Biryukov and Wagner, no other attacks on TREYFER have been published to

the knowledge of the author.

4.4. Other Block Ciphers

This section briefly discusses some other popular and secure block ciphers that are

available, but are not implemented in this paper.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 52

4.4.1. AES

AES (Advanced Encryption Standard) was published by NIST (National Institute of

Standards and Technology) to replace DES (Data Encryption Standard). Out of the many

candidates for AES, the Rijndael cipher was eventually selected to become the new AES

[26]. AES is a symmetric key block cipher with a block size of 128 bits and three key size

alternatives of 128, 192, or 256 bits.

Unlike many conventional symmetric key block ciphers, AES does not use the Feistel

structure, where typically half of the data block is used to modify the other half of the data

block before the two halves are swapped in the next round. AES processes the entire data

block (128 bits) in parallel during each round. AES typically has 10 rounds; each round has

four different stages, one of permutation and three of substitution. The encryption and

decryption functions in AES differ. The encryption and decryption speed does not vary

significantly, however, the key setup performance is slower for decryption and requires

more memory than for encryption. All AES operations can be byte operations allowing it

to be efficiently implemented on 8-bit processors. Its operations can also be defined in 32-

bit words for efficient implementation on 32-bit processors [26].

Although AES has been well studied over the years and proven to be secure, it does not

seem to be suitable for the platform which this paper is based on, or in many other WSN

environments. One of the main reasons is that although AES has been designed for low-

end 8-bit microcontroller, its baseline version still uses over 800 bytes of look-up tables. A

speed optimized AES version, which runs about 100 times faster, uses over 10 KB of look-

up tables. This memory requirement is not acceptable to many sensor node platforms. For

example, the microcontroller MSP430F1232 used in the sensor nodes (TinyMote) of this

paper has only 8KB of flash code memory in total. Apart from the large code size, AES

also requires large RAM space to store expanded subkeys, typically larger than 156 bytes.

Furthermore, because of the small packet size of WSN, a cipher with 128-bit (16 bytes)

block size may not be very efficient. For example the last cipher call may only need to

encrypt the last two bytes of the data packet, since the cipher uses 16-byte block, then the

other 14 bytes of processing are wasted.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 53

More on the performance comparisons of AES to other block ciphers is discussed in the

results and discussions chapter (section 8.2).

4.4.2. RC5

RC5 is a symmetric encryption algorithm with a block size of 32, 64, or 128 bits [26]. The

key length ranges from 0 to 2040 bits. RC5 encrypts two-word blocks, for example a 32-bit

block has a word size of 16-bit. The maximum number of RC5 rounds is 255, but typically

12 rounds encryption/decryption algorithm is suggested.

RC5 has a simple structure similar to a Feistel structure. Instead of half of a block being

updated as in the classic Feistel structure, both halves are updated in each RC5 round [26].

RC5 uses only three primitive operations: modulo 2n
 addition/subtraction (n is the word

size), XOR, and circular rotation. The encryption/decryption algorithm is very simple and

can be implemented in few lines of codes. These characteristics make RC5 suitable for

both hardware and software implementations. RC5 requires complex key expansion

operations on user-selected secret keys. The number of subkeys that are needed is 2r + 2,

where r is the total number of rounds.

RC5 has also been around for some years and appears to be secure. Although it was

designed to be of small size for efficient software and hardware implementation, its

smallest word size is still 16-bit. The key setup operations have been shown to be very

time consuming [5] and also require a relatively large amount of RAM space to store the

expanded subkeys [54]. Furthermore, RC5 rotation operations are data-dependent, meaning

that it has to rotate variable number of bits and often requires a large number of bit

rotations. This large number of bit rotations is especially time consuming for processors

with a word size smaller than that of the RC5 word size (e.g. 16-bit RC5 word on an 8-bit

processor).

Law et. al. [54] have compared RC5, AES and several other block ciphers on the same

family of microcontrollers (TI MSP430) as the one used in this paper. These comparisons

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 54

have shown that RC5 is not the most efficient cipher nor does it have the smallest code size.

More on the performance comparisons of RC5 with other block ciphers is discussed in the

results and discussions chapter (section 8.2).

4.5. Block Cipher Modes of Operation

Block ciphers provide encryption (confidentiality) to a fixed size block of data (e.g. 64 bits

block). In order to provide confidentiality and authenticity security primitives using block

ciphers, different block cipher modes of operation need to be used.

The easiest way of encrypting messages larger than a block is by using the electronic code

book (ECB) mode. The message is divided into smaller chunks or blocks of a fixed size.

ECB simply encrypts each plaintext block separately. However, with ECB mode, the same

plaintext block will always result in the same ciphertext block when using the same key. In

other words with a given key, every plaintext block corresponds to a unique ciphertext

block. This will allow the attacker to draw up a table to map all plaintext-ciphertext pairs

or perform statistical analysis on the ciphertext available; thereby finding out what is the

plaintext for each corresponding ciphertext.

4.5.1. Cipher Block Chaining (CBC)

CBC mode can be used to provide encryption (confidentiality) of large messages as well as

authenticity through CBC-MAC.

4.5.1.1. CBC mode for confidentiality

As shown in Figure 4.6, CBC mode divides the message to be encrypted into N number of

blocks. The first message block m1 is XORed (♁) with the initialization vector (IV) before

encryption (Ek) with key k, thereafter every next message block will be XORed with the

previous ciphertext block and then encrypted to obtain the next ciphertext block.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 55

Figure 4.6. Cipher Block Chaining (CBC) mode encryption.

Figure 4.7. Cipher Block Chaining (CBC) mode decryption.

The IV needs to be known to both sender and receiver (decryption at receiver side is shown

in Figure 4.7). IV provides the variation needed to ensure that every resulting ciphertexts

will be different even if the same plaintext is being encrypted again. As a result, IV needs

to be carefully selected with the following properties:

Ek

m1

IV

c1

Ek

m2

c2

Ek

mN

cN

cN-1

Dk

c1

IV

m1

cN-1

Dk

c2

m2

Dk

cN

mN

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 56

• IV must be random.

• Every new message must use a new, non-repeating IV.

• For maximum security, IV must not be a counter.

• IV can be a non-secret value.

CBC mode for encryption is provably secure when IVs do not repeat [46]. However, if IV

repeats, only the length (in blocks) of the longest shared prefix of the messages is revealed.

Therefore information leakage is not as bad as in the case of a repeated counter in the

counter (CTR) mode, which we will discuss in section 4.5.2. More information leakage

than a repeated IV will occur if IVs are simply taken from a counter. As a result, an IV is

often derived from encrypting a nonce (use once only value), which can be an encrypted

counter.

4.5.1.2. CBC mode for authenticity

A Message Authentication Code (MAC) is a fixed value calculated from data message

with a key. It is often appended to the end of a data packet by the sender. If the data

message has been altered, then the receiver calculated MAC will not be the same as the

appended MAC. Figure 4.8 shows the standard CBC-MAC algorithm to generate a MAC.

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 57

Figure 4.8. Standard CBC-MAC.

CBC-MAC operates exactly the same as the CBC mode encryption. Symbol k is the key

for calculating MAC and N is the number of blocks that a message is divided into. The last

output ciphertext is taken as the MAC. Therefore if a block cipher with a block size of 64-

bit is used, then the resulting MAC can range from 1 to 64 bits.

Although the standard CBC-MAC is provably secure [47], it still has several flaws: it is not

secure for variably sized messages; and if only one key is used to calculate all MACs, then

for example a 64-bit MAC will have collisions occurring after 232 messages because of the

Birthday paradox [27]. As a result, key separation to generate other keys is recommended

to overcome the Birthday attack and the use of other CBC-MAC variants (e.g. OMAC [62])

can overcome the insecure variably sized messages.

4.5.2. Counter (CTR) Mode

The counter (CTR) mode encryption and decryption operations are shown in the following

two figures (Figure 4.9 and Figure 4.10). A counter is used similar to the use of an IV as it

also provides the variation needed for every encryption to result in different ciphertexts

even if the plaintexts are the same. However, counters are simpler than IVs used in CBC

Ek

m1

Ek

m2

Ek

mN

MAC

cN-1

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 58

mode. A counter can be of any value and then incremented by 1 for each subsequent block.

For each encryption, the counter is encrypted (Ek) and then XORed with the plaintext

block (Pn). Therefore the encrypted counter is used as a one-time encryption pad. For

decryption, this same encryption pad must be XORed with the ciphertext block to recover

the plaintext block (Figure 4.10). Stream ciphers also use one-time encryption pads (also

known as one-time-pad, otp) to XOR with plaintexts to get ciphertexts, therefore CTR

mode is also a stream cipher mode. However, CTR mode cannot be used for authentication

like CBC-MAC.

Figure 4.9. Counter (CTR) mode encryption.

Figure 4.10. Counter (CTR) mode decryption.

Ek

counter

P1

C1

Ek

counter + 1

P2

C2

Ek

counter + N – 1

PN

CN

Ek

counter

P1

C1

Ek

counter + 1

P2

C2

Ek

counter + N – 1

PN

CN

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 59

The counter used in a CTR mode can be a non-secret value, but this counter value must

never repeat. Unlike a repeated IV in the CBC mode which only leaks limited information,

a repeated counter value leaks a significant amount of information. To illustrate

consequences of reusing a counter in CTR mode, consider two different plaintext blocks P1

and P2 and two encryption pads Pad1 and Pad2. If the counters used for generating the

encryption pads are the same, then Pad1 = Pad2. This results in the following: C1♁ C2 =

Pad1 ♁ P1 ♁ Pad2 ♁ P2 = P1 ♁ P2. When plaintexts have sufficient redundancy, it is

often possible to recover most or all P1 and P2 just from P1 ♁ P2 [48].

Besides the strict security requirement for a non-repeating counter, CTR mode has many

advantages compared to the commonly used CBC mode [26]:

• Hardware efficiency: Unlike other chaining modes (e.g. CBC) where the

encryption/decryption of the current block must be completed before the next block

can begin, CTR mode allows parallel encryption/decryption on multiple blocks

since it does not require previously computed blocks to perform

encryption/decryption of the next block.

• Software efficiency: Similar to the hardware efficiency, if the processor supports

parallel features (e.g. multiple pipelining, Single Instruction Multiple Data (SIMD)

instructions), then multiple blocks can be processed simultaneously.

• Preprocessing: It is possible to pre-process the encryption pads with only the

knowledge of the secret key and the counter value and store these encryption pads

in memory. When plaintexts/ciphertexts arrive, all that needs to be done is to XOR

the pre-processed encryption pads with plaintexts/ciphertexts to perform

encryption/decryption.

• Random access: Any block of plaintext/ciphertext can be processed in a random-

access fashion. This is again due to the fact that to encrypt/decrypt any block one

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 60

does not need any information from any previous blocks.

• Simplicity: Unlike for example the CBC mode, CTR mode only requires the

implementation of the encryption algorithm and not the decryption algorithm.

4.5.3. Offset Codebook (OCB)

In the recent years, the National Institute of Standards and Technology (NIST) of the US

has been reviewing new block cipher modes of operation particularly aiming at more

efficient ways to provide both encryption and authentication security primitives [49]. The

most commonly used method to provide both authentication and encryption using block

ciphers has been using CBC mode for encryption and CBC-MAC for authentication. Using

CBC requires two different keys for CBC encryption and CBC-MAC. The message also

needs to be processed twice (two-pass), one for CBC encryption and the second time for

CBC-MAC authentication. In other words, 2N block cipher calls are required, where N is

the number of blocks that the message has been divided into.

NIST has reviewed several new modes of operation that provide encryption and

authentication by processing the message only once (one-pass) plus some additional

processing overheads. Some of the more promising new modes of operation which provide

both authentication and encryption are: Integrity Aware CBC (IACBC)/Integrity Aware

Parallelizable Mode (IAPM) [51], eXtended CBC (XCBC) [50] and Offset Codebook

(OCB) [52]. OCB is a follow-on work to Jutla’s IAPM [51].

When a message has been divided into N number of blocks, then to provide both

authentication and encryption OCB requires N + 2 number of block cipher calls, and some

additional overheads. Figure 4.11 and Figure 4.12 show how OCB provides authentication

to the message and message header, and encryption only to the message. When sending a

data packet over the network, it mainly consists of header bytes and message data bytes. It

is often desirable to provide authentication to both headers and message data, but only

encryption to the message data. OCB provides authentication to both headers and message

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 61

data using one MAC, but only encryption to the message data. This is desirable in many

situations where the headers need to be authenticated but not encrypted to facilitate

efficient relaying of data packets in the network. The MAC has the size of a block length

of the block cipher used.

Figure 4.11. OCB encryption and authentication on a message.

In Figure 4.11, mN and cN are message and ciphertext block respectively. “EK(nonce)” is

the encryption of a nonce with secret key “K”. The symbol “Δ ” refers to the offset needed

for OCB, and Δ←Δ 2 means that the new offset value is replaced by the Δ2 operation.

Having offsets allow a single secret key to provide both authentication and encryption.

Offset calculations in the previous version of OCB (OCB 1.0) depended on Gray codes and

the calculation time was not constant per offset [53]. The offset calculation in OCB 2.0 is

as follows:

Ek

m1

c1

()nonceEK←Δ
Δ←Δ 2

Ek

m2

c2

Δ←Δ 2

Ek

mN

len

Pad

Ek

Checksum

MAC

Δ←Δ 2 Δ←Δ 3

cN

Auth

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 62

When offset Δ is a 64-bit block, then:

If MSB (most significant bit) = 0

Then 12 <<Δ=Δ

Else () Bx1012 ⊕<<Δ=Δ

Δ⊕Δ=Δ 23

() Δ⊕Δ=Δ 225 or Δ5 = ()Δ33

The offset operations: Δ2 , Δ3 and Δ5 are the polynomial multiplication of Δ by x,

x+1, and x2+x+1 within the field with 2128 elements [53]. The meaning of 1<<Δ is to

perform left bit-shift by 1, and the byte 0x1B is represented in 64-bit format when XORed

(⊕).

The operation “len” in Figure 4.11 is to represent any input value that is smaller than 64

bits in a 64-bit format. OCB is able to encrypt messages of arbitrary length into a

ciphertext of equivalent length. Even if the last block of plaintext message is not a full

block size, the resulting ciphertext is not padded and will have the equivalent length as the

plaintext block. Note that at the last plaintext block (mN) of OCB encryption is XORed

with the first |mN| bits of the “Pad”. The “Checksum” is the value:

()Padcmmmm NN ⊕⊕⊕⊕ −
*

1321 0K , where *0Nc means appending cN with enough 0-

bits to get a 64-bit value. The value “Auth” is the authenticator for the header bytes of the

message, which is included into the MAC. Figure 4.12 and Figure 4.13 show how header

bytes are authenticated and not encrypted. Similar to previous figure, “Θ ” is the offset for

OCB operations on headers. Figure 4.12 shows the case when the header bytes are

multiples of the block size, whereas Figure 4.13 shows the case when the header bytes are

not multiples of the block size i.e. the last header block is smaller than one block size. In

Figure 4.13, the last header block hN is appended with a 1-bit followed by enough 0-bits to

get a full block size (i.e. 64-bit in this example).

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 63

Figure 4.12. OCB authentication on message header of multiple block size (PMAC).

Ek

h1

()0KE←Θ

Θ←Θ 2
Θ←Θ 5

Θ←Θ 3

 Θ

Ek

h2

 Θ

Ek

h3

 Θ

Ek

hN

 Θ

Auth

Θ←Θ 2 Θ←Θ 2
Θ←Θ 2

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 64

Figure 4.13. OCB authentication on message header not multiple of block size

(PMAC).

The nonce used in OCB is unlike the initialization vector (IV) used in a CBC mode

encryption, it is less strict compared to an IV. An OCB nonce is a value with the size of the

block size; it also need not be secret. Furthermore, it also need not be random but it must

not be repeated. A simple counter can be used as a nonce in OCB.

Some additional properties of OCB are:

• OCB requires a single block cipher key to provide both authenticity and

confidentiality security primitives.

• Assuming the underlying block cipher is secure, OCB is provably secure.

• OCB does not involve modular 2n addition (n is the cipher block size, e.g. 64-

Ek

h1

()0KE←Θ

Θ←Θ 2
Θ←Θ 5

 Θ

Ek

h2

 Θ

Ek

h3

 Θ

Ek

hN 10*

 Θ

Auth

Θ←Θ 2 Θ←Θ 2
Θ←Θ 2
Θ←Θ 5

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 65

bit/128-bit), which is not parallelizable and can be expensive especially for

dedicated hardware [52] [53]. OCB also does not use the modular p arithmetic (p is

a fixed prime number), which is a weaker algebraic structure [53] and is also a

more expensive operation. OCB uses the less expensive GF(2n)-based approach,

which mainly uses XOR operations.

• OCB ciphertext will have the exact same length as the plaintext. Therefore it is

more appropriate for short messages because the ciphertext does not expand in size.

4.6. RC4

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It has byte-

oriented operations and generates streams of key bytes as encryption pad (one-time-pad) to

be XORed with plaintext bytes (or XOR with ciphertext to obtain plaintext). It allows

variable key length ranging from 1 to 256 bytes. The user-selected key is used to initialize

a 256-byte S-box (also known as the state vector). This S-box contains all 8-bit numbers

from 0 through 255. As a key byte is generated, the S-box is again permuted.

The following pseudo codes show how RC4 stream bytes are generated [26]. The variable

S represents the 256-byte S-box.

i, j = 0;

while (true) {

 i = (i + 1) % 256;

 j = (j + S[i]) % 256;

 SWAP (S[i], S[j]); // swaps the two bytes at two different positions in S

t = (S[i] + S[j]) % 256;

k = S[t];

}

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 66

As it can be seen, the stream cipher RC4 is very simple requiring only few lines of codes to

generate a key byte. However, the initialization of the S-box (not shown above) with user-

selected secret key requires fairly large amount of CPU cycles, which is shown in section

8.2.

4.6.1. Cryptanalysis of RC4

RC4 has been proposed and in practical use for many years and no major weaknesses have

yet been found. The best attack so far on RC4 has been targeted at its first few hundred key

bytes generated. Therefore by dumping the initial 512 key bytes generated can thwart such

attack on RC4 [66].Apart from a cryptographic cipher’s weaknesses, it is also important to

use the cryptographic cipher in a properly designed security protocol. Although RC4 itself

has shown to be secure, however, the use of RC4 in the WEP (Wired Equivalent Privacy)

protocol has been proven to be insecure [61]. WEP is a security protocol which is part of

the IEEE 802.11 (WiFi) standard.

4.7. Conclusions

Several cryptographic ciphers that are implemented in this paper have been discussed in

this chapter. Well-known conventional block ciphers such as the AES and RC5 are also

briefly discussed but not implemented in this paper.

Although TEA has been designed for 32-bit word architecture, it was chosen because of its

small code size, and its little memory requirement as it does not need to expand and store

additional subkeys. Furthermore, as it will be shown in the results and discussions chapter,

TEA in fact performs fairly well on the 16-bit microcontroller used in this paper.

The SAFER K-64 block cipher is designed for byte (8-bit) operation which makes it

suitable for many low-end microcontrollers in sensor networks. It also requires fairly small

code space, although not as small as TEA or TREYFER. The SAFER K-64 also requires

additional RAM to store the expanded subkeys. However, as it will be shown in later

Chapter 4 Cryptographic Ciphers

Electrical, Electronic and Computer Engineering 67

chapters, SAFER K-64 has the best performance in all block ciphers discussed in this

paper, making it suitable for sensor networks requiring performance (thereby even lower

power consumption) and has more memory resources.

The TREYFER block cipher is also designed for byte operation and aimed at extremely

small code size, which is the main reason for choosing TREYFER. It requires the least

code space in all block ciphers discussed in this paper. Similar to TEA, TREYFER also

does not require any key initialization process to store expanded subkeys. However, as it

will be shown in later chapter, TREYFER has the poorest performance in all block ciphers

discussed in this paper. It is therefore not strongly recommended for WSNs.

RC4 is the only stream cipher implemented in this paper. The RC4 stream cipher also

operates on byte-level and requires very small code space. As it will be shown in later

chapters, RC4 has the best performance compare all other ciphers discussed in this paper.

However, a stream cipher cannot be used as in the case of block ciphers with different

modes of operation to provide authentication. Therefore it is more difficult to provide

authentication using a stream cipher. Apart from this, RC4 has shown to be a good choice

for the resource-constrained WSN field.

Other popular block ciphers have also been analyzed in this chapter. They have been

shown to be inappropriate for WSNs in many aspects. One example is the large code space

required by AES. In the results and discussions chapter, other block ciphers have also

shown to be able to provide better performance with smaller code size.

 5
UMAC

This chapter provides a brief overview of UMAC from a practical implementation point of

view. The concept of a UMAC is discussed in the standard UMAC section and the

practical UMAC implementations in systems today is discussed in the refined UMAC

section. The detailed security definitions and the security proofs of universal hash

functions and UMAC are beyond the scope of this paper and are therefore not discussed.

5.1. Standard UMAC

UMAC is an authentication algorithm using the universal hash function family, NH. NH is

a new universal hash function family developed specifically for UMAC [55]. In simple

terms, universal hash functions are collections of hash functions that map messages into

short output strings such that the collision (pairs of different inputs with identical outputs)

probability of any given pair of messages is small. UMAC has been particularly designed

to utilize the SIMD (Single Instruction Multiple Data) parallelism of modern processors to

achieve high speed. A 64-bit hash code UMAC optimized with MMX (Multimedia

extensions) instructions can achieve a speed of more than 1 byte/cycle with messages

larger than 256 Kbytes (on a Pentium II machine with MMX) [55]. UMAC allows user to

select the underlying cryptographic primitives (e.g. cryptographic hash functions or block

ciphers). No new heuristic primitives are developed in UMAC; therefore it is secure as

long as the underlying cryptographic primitives are secure.

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 69

Figure 5.1 shows how the standard UMAC is implemented using a pseudo random

function (PRF) to authenticate messages.

Figure 5.1. UMAC.

The notations used for UMAC are defined as follows:

• key is the user selected secret key.

• w is the adopted word size.

• K1, ... ,Kn are the subkeys generated to be used in NH. All subkeys are the size of a

word, w. n is the total number of subkeys for use in NH.

• A is the subkey generated to be used in the PRF.

• PRG is the pseudo random generator used to expand the secret key into subkeys

needed for the different stages of UMAC.

PRG

(e.g. AES)

message NH
PRF

(e.g. HMAC)
variable length

(unbounded) hash

subkeys:

MAC
(fixed length)

key K1, ... ,Kn ; A

nonce

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 70

• NH is the universal hash function used in UMAC.

• PRF is the pseudo random function applied to the variable length hash code to

produce a fixed size MAC.

• nonce is a non-repeating, non-secret value that is to be sent by the message sender

to the receiver.

5.1.1. NH

The message to be authenticated needs to be represented in words of size w. For illustration

purpose, let w be 32 bits. The message is then divided into blocks of n number of words,

let n = 4 as shown in Figure 5.2. This n number of words is the amount of words that the

NH hash function will process when it is called. The actual n values range from 32 to 228

bytes, typically n = 256 (equivalent to 1024 bytes when w = 32 bits) [57].

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 71

Figure 5.2. NH hash function with word size w = 32, number of words processed n = 4.

The message words (M) are processed by the NH hash function as shown in the above

figure. The n words subkeys (K) are generated by a pseudo random generator (PRG). With

32-bit words, each message word is added (modulo 32) with the subkey word and then

multiplied (modulo 64) with the next word that is also the result of subkey and message

word addition. All multiplied (modulo 64) results of an NH call are then added (modulo 64)

to get a 64-bit hash code. Repeated NH hash function calls are performed on all message

words at n words per NH function call. The n subkeys remain the same for all NH calls;

therefore with the same secret key, subkeys only need to be generated once. The multiple

64-bit hash codes resulting from multiple NH calls are concatenated together as an

unbounded (variable length) hash code. Although this hash code is smaller than the

original data message, it is still proportional to its size.

Increasing n increases the number of words to be processed in one NH call and results in

smaller sized unbounded hash codes after NH calls. This tends to speed up MAC

M1 K1

+32

×64

+64

M2 K2

+32

M3 K3

+32

×64

M4 K4

+32

64-bit hash result

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 72

generation on large messages, but requires more memory (for subkeys K1, ... ,Kn) for

processing and could potentially slow the processor by overflowing the processor’s cache

memory.

NH operations can be optimized using SIMD instructions such as MMX (Multi Media

Extensions) instructions. NH calls are heavily used in UMAC, thus by optimizing NH calls

one can greatly optimize UMAC.

5.1.2. Pseudo Random Generator (PRG)

A PRG is used to expand the user selected secret key into subkeys needed for internal

stages of UMAC. Subkeys K1, .. ,Kn are needed for the NH hash function, whereas subkey

A is needed for pseudo random function (PRF) to produce a fixed size MAC. UMAC

allows any PRG, but typically a block cipher (e.g. AES) is used. A block cipher takes the

user selected secret key to encrypt a block of pre-defined value known as the index value.

The resulting ciphertexts from encrypting different index values are used as the subkeys.

The block cipher may have to be called several times to obtain enough ciphertexts as

subkeys.

5.1.3. Pseudo Random Function (PRF)

The unbounded (variable length) hash codes obtained from NH calls are first appended

with a nonce. A pseudo random function (PRF) is then performed on it to obtain a fixed

size MAC output. HMAC-SHA1 can be used as a PRF, but any PRF is allowed. With

HMAC-SHA1, the subkey A generated by the PRG is needed.

A non-repeating nonce is also needed for PRF to ensure that every MAC generated is

different even if the data messages are the same. The nonce in UMAC has similar

properties as the nonce used in OCB. It can be a simple non-secret incrementing counter

that is sent with the data message and the appended MAC. For secure operations, the nonce

should never be repeated within the life of a single UMAC secret key. To provide

protection against replay attacks, the receiver needs to check that no nonce value is used

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 73

twice. This can be easily achieved when the nonce is a counter.

Although HMAC-SHA1 itself alone can be used to generate a MAC, UMAC using

HMAC-SHA1 as PRF is more efficient since the input to HMAC-SHA1 is already a lot

smaller than the original data message size.

5.2. Refined UMAC

After the release of the standard UMAC, UMAC authors have further refined UMAC and

achieved three main goals [56] [57]:

1. Improved UMAC performance on short messages.

2. Minimize the use of underlying cryptographic primitives.

3. Selective-assurance verifiability is achieved. For example if a 64-bit MAC is

computed, the receiver can choose to verify only the first 32 bits at nearly twice the

speed of verifying the full 64-bit MAC.

Figure 5.3 shows the functional diagram of the refined UMAC [57].

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 74

Figure 5.3. Refined UMAC.

At first glance, the standard UMAC (Figure 5.2) appears to be very different than the

refined UMAC (Figure 5.3). However, as will be discussed now, the differences are in fact

fairly subtle. The key derivation function (KDF) contains the pseudo random generator

(PRG) in standard UMAC. Whereas the pseudo random function (PRF) (e.g. HMAC-

SHA1) is replaced by the keyed hash function UHASH and the pad derivation function

(PDF).

5.2.1. Key Derivation Function (KDF)

The user selected secret key is expanded into more subkeys using the KDF. The subkeys

are used internally by UMAC in UHASH and the pad derivation function (PDF). KDF is

equivalent to the PRG process in the standard UMAC. Block ciphers (e.g. AES) are used in

output feed back (OFB) mode to produce the required subkey bits. The OFB mode used in

KDF first encrypts a pre-defined index value, and then takes the resulting ciphertext output

as the next block to be encrypted. This chain of ciphertext outputs is used as the required

subkeys.

message UHASH fixed length
hash code

subkeys
MAC

(fixed length)

key

nonce

KDF PDF subkey encryption pad

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 75

5.2.2. Pad Derivation Function (PDF)

The PDF is needed to generate the one-time encryption pad to be XORed with the fixed

size hash code to produce the MAC. This one-time-pad (also known as otp) is obtained by

applying the PDF to a nonce with a subkey generated by the KDF. A block cipher is

typically used in the PDF to encrypt the nonce. The resulting ciphertext bytes are used as

the one-time-pad. The nonce is defined the same as in the standard UMAC.

5.2.3. UHASH

UHASH is a keyed hash function, which takes an arbitrary length input data message, and

produces as output a fixed length hash code. Figure 5.4 shows the function diagram of the

UHASH.

Figure 5.4. UHASH with word size w = 32.

UHASH consists of three layers. The first layer is the NH hash function, which is used to

compress input messages into strings many times smaller than the input message. The NH

in layer one is the same as the NH defined previously.

The second layer is a polynomial-based hash function that takes the unbounded (variable

message

L1-Hash
(NH)

L2-Hash
(polynomial-
based hash)

L3-Hash
(inner-product

hash)

one word
(i.e. 4 bytes)

fixed 16
bytes

unbounded
hash

Chapter 5 UMAC

Electrical, Electronic and Computer Engineering 76

length) hash results from NH, and produces a fixed-length 16-byte output (when w = 32).

The polynomial hash function includes prime modulus operations. The security guarantee

assured by polynomial hashing degrades linearly with the increasing length of the message

being hashed and the prime number value. The prime modulus can be dynamically

increased to ensure that the collision probability never grows beyond a certain pre-set

bound when hashing a long message.

The third layer is an inner-product hash function that hashes the fixed 16-byte input to a

fixed length word (i.e. 4 bytes when w = 32). A 36-bit prime modulus operation is used to

improve security. Detailed discussions of layer two and layer three implementations are

beyond the scope of this paper.

These three layers (UHASH) are repeated (with some different subkeys) until enough

output MAC bytes are produced. For example, with 32-bit word size, UHASH needs to be

called twice to obtain a 64-bit MAC. This shows that each MAC word can be computed

and verified independently; therefore allowing the receiver to repeat UHASH lesser times

to compute only some prefix of a UMAC MAC, thereby achieving faster verification speed

(selective-assurance verification).

 6
LINK LAYER SECURITY PROTOCOLS

The link layer security provides the first-line security just above the physical layer (where

medium access control resides). All other higher level securities rely on the secureness of

link layer securities. There are however, only very few link layer security protocols that

have been proposed for WSNs. This chapter provides a review of the available link layer

security protocols for WSN.

6.1. Sensor Network Encryption Protocol (SNEP)

One of the early studies on the security concerns for WSNs at the link layer is by Perrig,

Szewczyk et. al. [1]. They proposed a security protocol called SPINS (Security Protocols

for Sensor Networks), which contains two sub-protocols called: SNEP (Sensor Network

Encryption Protocol) and μTESLA. SPINS was designed for the UC Berkeley SmartDust

program [24]. The prototype SmartDust sensor node on which SPINS was implemented

has the following specifications: 8-bit 4MHz microcontroller, 8 KB instruction flash, 512

bytes RAM, 916 MHz radio, 10Kbps bandwidth. The operating system running on the

nodes is called TinyOS [25], which is also developed by UC Berkeley.

6.1.1. Confidentiality

SNEP (Sensor Network Encryption Protocol) is a link layer security protocol as it provides

Chapter 6 Link Layer Security Protocols

Electrical, Electronic and Computer Engineering 78

confidentiality, authenticity and integrity. Additionally, SNEP also provides data freshness

for protection against replay attacks. All these security primitives are constructed from a

single block cipher, RC5. To achieve confidentiality, a counter (CTR) mode encryption is

used (section 4.5.2). A shared counter is known between the sender and the receiver,

therefore there is no need for transmitting the counter value with the data packet, which

saves communication overhead. The overhead for SNEP is 8 bytes per message. The use of

a counter value prevents electronic code book (ECB) attacks [26]. The aim for SNEP to

use CTR mode as opposed to cipher block chaining (CBC) mode is that, with CBC mode, a

random or secret initial vector (IV) is needed to protect against ECB attacks [1][26].

However, having to send different IVs for every transmission adds overhead to the data

packet, which increases the power consumption in the sensor node. Since the counter value

in CTR mode does not need to be random, it can be known and shared between sender and

receiver in advance. Another reason for using CTR mode is that the size of the ciphertext is

exactly the same size as the plaintext and not a multiple of the block size.

6.1.2. Authenticity

To achieve authenticity and integrity, a CBC message authentication code (CBC-MAC)

using RC5 is used (section 4.5.1). Initialization vectors (IV) are not required in the CBC

mode when it is used for generating a MAC; therefore it does not have the problem of

having to transmit large IVs wirelessly. The counter value shared between the sender and

the receiver is also used in generating the MAC. Using a counter here provides protection

against replaying of old messages.

When using SNEP, the message that will be sent from A to B looks as follows:

 () ()(){ }MECMACMEBA CencKmacKCencK),_(_),_(,:→ (6.1)

• ()ME CencK),_(, means RC5 encryption E with encryption key K_enc, using

counter value C, on message data M.

Chapter 6 Link Layer Security Protocols

Electrical, Electronic and Computer Engineering 79

• ()MEC CencK),_(, is the concatenation of counter value C with ()ME CencK),_(.

• ()()MECMAC CencKmacK),_(_ , is the message authentication code function

(CBC-MAC) with MAC key K_mac on ()MEC CencK),_(.

In the prototype sensor node for which SPINS was implemented, every node has a master

key. Both encryption key K_enc and MAC key K_mac are derived from this master key by

encrypting two different constant values with the master key to obtain two ciphertexts. The

resulting ciphertexts are used as the encryption key and the MAC key.

Another protocol designed for SPINS is the μTESLA (“micro” version of the Timed,

Efficient, Streaming, Loss-tolerant Authentication) protocol. μTESLA allows the sender to

broadcast authenticated data to the entire sensor network with potentially untrusted

receivers in it. Using symmetric MAC is insecure: If a node has been compromised with its

symmetric MAC key known to the attacker, then the compromised node can impersonate

the sender and forge messages to other receivers, therefore an asymmetric mechanism is

required. Typically asymmetric cryptography is used for this purpose, but for the case of

WSN asymmetric cryptography is too resource intensive. μTESLA allows authenticated

broadcast from symmetric cryptography only (using RC5), and introduces asymmetry with

delayed key disclosure and one-way function key chains. Authenticated broadcast is

beyond the scope of link layer security and is therefore not further discussed in this paper.

Note that the μTESLA security protocol assumes the following data flow patterns only:

node to base station, base station to node, and base station to all nodes. These

communication patterns do not include sensor node to sensor node communication, which

is found more often in mobile ad-hoc networks (MANET).

Chapter 6 Link Layer Security Protocols

Electrical, Electronic and Computer Engineering 80

6.2. TinySec

TinySec [6] is another link layer security protocol also proposed by UC Berkeley but

several years later and by different developers. It is designed to provide only link layer

security: message confidentiality, integrity and authenticity. TinySec is designed to be

implemented into the operating system TinyOS [25], which is the OS running on many

sensor nodes (e.g. Mica mote series [14]). As a result of integrating with TinyOS, the

TinySec stack can be used with simple function calls from the TinyOS application

programmers’ point of view. A representative sensor node that implements TinySec

through TinyOS is the Mica2 [14]. It has the following specifications: 8MHz 8-bit Atmel

ATMega128L microcontroller with 128KB flash for code, 4KB RAM for data, 512KB

flash for data logging, ISM (industrial, scientific and medical) radio band and 19.2Kbps

radio bandwidth.

6.2.1. Confidentiality

To provide confidentiality, TinySec adopts CBC mode encryption using the block cipher

SkipJack. Although the optimized RC5 assembler code performs better than SkipJack [6],

SkipJack is still chosen by the TinySec developers because of its lower key setup costs and

because it is patent free. Recall that in the previous section it has been discussed that CBC

mode encryption requires secret or random initial vectors (IV). TinySec uses an 8 byte IV

(Figure 6.1), but 4 of the 8 bytes are from existing header fields, therefore only 4 additional

bytes of overhead are added. In the 4 bytes overhead, 2 bytes are used as a counter for

generating non repeating IV. Although transmitting a plaintext counter as IV (non-secret

IV) does not achieve the strongest security in CBC mode encryption [26], this is a security

tradeoff which TinySec accepts due to the resource-constrained sensor nodes. The

remaining 2 bytes overhead is used to represent the source node address. This is to prevent

every node from having the same IV when the counter value starts from zero. The 2 bytes

counter together with the unique source address ensures IVs between nodes are different.

This is different than the SNEP protocol, where all nodes share the same counter value

used for CTR mode. With TinySec the counter is used to derive IV. However, a 2-byte

counter allows only 216 different IV values per node. Therefore IV reuse occurs after

Chapter 6 Link Layer Security Protocols

Electrical, Electronic and Computer Engineering 81

sending only 65536 data packets. TinySec relies on the fact that data rates for data packets

are very low (typically one packet per minute per node), therefore IV reuse will only occur

after a longer period of time, at which point a new key should have been used already and

thus IV counter can start anew again. At a data rate of one packet per minute, IV reuse will

not occur for over 45 days. Even if IV reuse has occurred, only limited information may be

revealed. This is another security tradeoff which TinySec considers to be tolerable.

Figure 6.1 shows the packet formats for TinySec with authentication and encryption

(TinySec-AE), TinySec with authentication only (TinySec-Auth) and TinyOS packet

format without TinySec security protocol. The common fields of TinyOS packets are:

destination address (Dest), active message (AM) type, and the packet length (Len). The

explanations for these fields are beyond the scope of this paper. Additional fields as

overheads of TinySec are: source address (Src), counter (Ctr) and MAC (MAC). Note that

a cyclic redundancy check (CRC) code is not used when a MAC is used. This is because

MAC also provides the integrity check originally provided by CRC.

6.2.2. Authenticity

To provide authentication and integrity, CBC-MAC is used. The additional MAC overhead

size is 4 bytes. Unlike SNEP, protection against replay attacks is not provided in TinySec.

This is because TinySec nodes do not share the same counter value; therefore in order to

detect replay attacks every node needs to maintain a table of past counter values from all

the nodes that it receives. Whereas with the shared same counter value, every node knows

exactly what counter values have already been used, thus preventing replay attacks.

TinySec developers believe that replay attack protection should be provided in layers

higher than the link layer.

Figure 6.1 shows the TinyOS packet format without security and with security (TinySec).

The grayed fields are protected by MAC, field with grid is authenticated and encrypted and

the byte size of each field is indicated in brackets.

Chapter 6 Link Layer Security Protocols

Electrical, Electronic and Computer Engineering 82

Figure 6.1. The TinySec and TinyOS packet format.

TinySec has been implemented with the programming language used for TinyOS called

nesC. The implementation requires 728 bytes of RAM and 7146 bytes of code space. Or an

alternative implementation that requires 256 bytes of RAM and 8152 bytes of code space,

and also a 6% slower block cipher operation.

6.3. Other Link layer Securities

Other link layer security ideas have also been proposed or even adopted in prototype

sensor networks. But many of them have not been documented as a proper security

protocol. One such example is the link securities in the EYES project (refer to section

2.3.3). The security designers for the EYES network have proposed profiling application

patterns [5]. The different “profiles” specify parameters that will be most suitable for the

TinySec-Auth packet format

Ctr
(2)

 Len
(1)

 MAC
(4)

Data
(0..29)

Dest
(2)

Len
(1)

AM
(1)

MAC
(4)

Data
(0..29)

CRC
(2)

Dest
(2)

Len
(1)

AM
(1)

Data
(0..29)

Grp
(1)

TinySec-AE packet format

TinyOS packet format

| IV |

Chapter 6 Link Layer Security Protocols

Electrical, Electronic and Computer Engineering 83

different application environments, instead of designing a one-size-fits-all security solution.

Example profile parameters such as the need for: data confidentiality, tamper resistance

hardware, public key cryptography and etc. The securities for EYES network assumes

public key cryptography capability because of the large 1MB serial RAM, and also adopts

symmetric block cipher. Proposed block ciphers to be used are: MISTY1, TEA and AES

(depending on the memory resources available).

 7
IMPLEMENTATIONS

In this chapter, the implementation environment and security primitives implemented in

this paper are discussed. The implementation decisions and approaches as well as the

reasons for choosing particular security primitives are also explained.

7.1. Implementation Environment

All algorithms from this paper are implemented on the MSP430 low power microcontroller

family from Texas Instruments [33]. This microcontroller family is used by sensor nodes

from the EYES project [21] and the TinyMote nodes in the Technical University of

Vienna’s WSN project [12]. TinyMote nodes are used as the WSN platform on which the

implementations of this paper are based. Figure 7.1 shows the TinyMote sensor nodes with

the antenna built into PCB (printed circuit board), and a sensor node fitted with two AA

batteries.

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 85

Figure 7.1. TinyMote with 2 AA batteries (left).

TinyMote has the following characteristics:

• Dimension: 38mm × 28mm

• Microcontroller:

 TI MSP430F1232

 16-bit RISC CPU

 200 μA at 1 MHz (1 MIPS), 2.2V

 8KB flash memory (code memory), 256 bytes RAM

• Wireless interface:

 Chipcon CC2400 [60] 2.4 GHz band

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 86

 Range: 100 m (line-of-sight)

 Data rate: 10 Kbps, 250 Kbps, 1 Mbps

 RF wakeup time: 1.23 ms

 Onboard antenna

• Sensors:

 Onboard: temperature, brightness, relative humidity

 Optional mountable sensor board (analog input 10-bit resolution)

The TinyMote is programmed by connecting it to a custom made TinyMote USB dongle,

which is in turn connected to a TI JTAG interface to a PC. The USB dongle can be either

powered either by connecting it to a USB port, or by connecting it to two AA batteries.

The programming software used is the IAR Embedded Workbench IDE (integrated

development environment) for MSP430 with C/C++ compiler version 3.21A [59]. The

IAR Embedded Workbench contains both the programmer for TinyMote and the C/C++

compiler with which the algorithms from this paper are implemented. The compiler is set

for maximum speed optimization for all code implemented in this paper.

The software running on TinyMote nodes is developed by the Technical University of

Vienna [12], and is at version 2.4.6. The security primitives that are implemented in

TinyMote nodes are first integrated into this version of the node software (written in C),

then the software is recompiled and uploaded to the nodes.

With the current design of TinyMote WSN, the sink node (base station) is a standard

TinyMote node with source address “0”. It is connected via a USB dongle to a PC, to

which the received data packets are sent. The PC is also the power source for the sink node

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 87

through the USB port. The human interface and the display of sensor information take

place at the sink node connected PC.

Figure 7.2. TinyMote connected to USB dongle.

The security model in this research is based on the base station as the point of trust (central

trusted authority). The sink node (base station) and sensor nodes are connected similar to

Figure 2.1. However, since the current design of the TinyMote WSN uses a standard

sensor node as the base station, the base station in the TinyMote WSN lacks many

characteristics often found in other WSN base stations. These include the high bandwidth

base station-to-base station communications (as shown in Figure 2.1) and rich

computational and memory resources. However, since the TinyMote base station is

connected to the PC through the USB dongle, it has no limits on its energy usage.

7.1.1. TinyMote Network Behavior

The TinyMote network behavior is depicted as a flow chart in Figure 7.3. The current

version of the node software implements the medium access control protocol CSMA-MPS

[18] and only simple routing algorithms.

The traffic pattern of the TinyMote WSN in this paper is many-to-one. Multiple sensor

nodes send sensor values to the sink node and there are no sensor node-to-sensor node

communications. The network topology is also static (the node positions are fixed).

Each sensor node periodically listens to the channel at two second intervals. It listens for

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 88

wakeup signals from its neighboring nodes and receives data packets. A node is

synchronized with its neighboring node through this periodic channel listening. The

TinyMote node also performs sensor measurements every two seconds. If sensor values

have changed significantly then a data packet with new sensor values will be sent back to

the sink node, possibly with several hops of other nodes in between. If a data packet has

failed to be delivered (or the transmitting node has not received acknowledgment from the

receiving node) after two trials, the node will then search for an alternate neighboring node

to deliver the data packet. If this third delivery trial also fails, the data packet will be

dropped and the node will enter sleep mode for 60 seconds to save power, because it is

probably not connected to the network.

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 89

Figure 7.3. TinyMote network behavior.

Start

received new

packets?

forward
packet

delivery failed?

delivery

failed twice?

search for alternate
delivery node

delivery failed?

yes

update new receiving
node information

sleep for 60s

sensor
measurement

value changed

significantly?

Channel
listening

 sleep for 2s

yes

yes

yes

no

no

no

no

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 90

7.1.2. TinyMote Packet Structure

The TinyMote packet structure is shown in Figure 7.4. The transceiver fields in Figure 7.4

(a) are added by the RF transceiver hardware. Figure 7.4 (b) shows the detailed view of the

data field from Figure 7.4 (a). The user specific fields are handled by TinyMote software in

the microcontroller. The first three fields (packet length, source address, last hop count) in

Figure 7.4 (a) are required for normal operations of the medium access control protocol

CSMA-MPS. Hop counts (HC) are values indicating how many transmissions are needed

before a data packet reaches the sink node. For example, a node with source HC = 2

indicates that the data packet it sends needs to go through another node before reaching the

sink node. The mandatory fields in Figure 7.4 (b) are required by the current version of the

TinyMote software, but are not required by the CSMA-MPS protocol; therefore it is

possible to reprogram these fields for alternative purposes.

Transceiver User specific transceiver

Preamble
(32 bits)

Sync
word

(16 bits)

Packet
length
(8 bits)

Source
address
(16 bits)

Last
HC

(8 bits)

Data
(max 11 bytes)

CRC
(16 bits)

(a)

Data
Mandatory optional

source
HC

(8 bits)

sensor
type

(8 bits)

TX slot
counter
(8 bits)

VCC
(8 bits)

VSol
(8 bits)

temperature
(16 bits)

brightness
(16 bits)

humidity
(16 bits)

(b)

Figure 7.4. TinyMote packet structure.

The meaning of different data fields in Figure 7.4 (b) are as follows:

• Source HC – hop count value of the source node (where the data packet originates).

• Sensor type – bit encoded byte indicating which types of sensor values are included

in the optional fields.

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 91

• TX slot counter – a debugging value for CSMA-MPS protocol.

• VCC – the voltage level of the source node.

• VSol – the solar cell voltage level of the source node (refer to section 7.1.3).

• Temperature – the temperature of the source node with accuracy up to one tenth of

a degree Celsius.

• Brightness – the brightness of the source node measured in LUX.

• Humidity – the relative humidity of the source node measure as a percentage (%).

Note that the CRC (Cyclic Redundancy Check) field for integrity checking will not be

needed if the authentication security primitive is implemented (e.g. MAC). This is because

an authentication code provides both authentication and an integrity check.

7.1.3. TinyMote Power Consumption

The TinyMote power consumption levels (with no security primitives) at different

measurement intervals and data transmission intervals are shown in Figure 7.5 and Figure

7.6. A data packet is only sent when sensor readings differs significantly, therefore the

packet transmission interval is usually longer than the measurement and channel listening

interval.

It is worth noting that the TinyMote based WSN is designed to be energy self-sufficient,

meaning the sensor network lifetime is not limited by energy resources (e.g. batteries). To

achieve this, TinyMote has been designed to be connected to a solar cell which has a solar

panel and two 10F ultra-capacitors. The ultra-capacitors are used as an energy storage

medium. They are superior to rechargeable batteries because ultra-capacitors achieve a lot

more charge-discharge cycles and thus a longer lifetime than any rechargeable batteries.

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 92

Figure 7.5. Power consumption 187 μW (channel listening: 47 μW, packet sending:

41.14μW, sensors: 98.38 μW) (2s measurement interval, 10s transmission interval).

Figure 7.6. Power consumption 70 μW (channel listening: 9.50 μW, packet sending:

41.14μW, sensors: 19.68 μW) (10s measurement interval, 10s transmission interval).

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 93

7.2. Block Ciphers

This section discusses which block ciphers are implemented in this paper, how they are

implemented and why these block ciphers and these particular configurations are chosen.

7.2.1. XTEA

XTEA (Extended Tiny Encryption Algorithm) as implemented in this paper is adapted

from the XTEA reference C code [36]. The reference XTEA C code is ported to the IAR

C/C++ compiler for MSP430. The number of XTEA cycles is fixed at 15 (30 Feistel

rounds); therefore certain XTEA internal values can be pre-computed. This results in a

slightly more optimized version of XTEA with a smaller code size and a faster execution

speed. A faster execution speed means lesser processor cycles are required and it therefore

requires lower power consumption.

One of the main reasons for choosing XTEA is its small code size (typically less than 30

lines of C codes). XTEA also requires very little RAM space because it does not require an

initialization process to generate and store subkeys like many other block ciphers. Subkeys

are mixed and generated within the XTEA rounds. XTEA is chosen instead of the even

simpler original TEA or other TEA variants because the original TEA has proven to be

insecure; Block TEA and XXTEA are designed to be more efficient on longer messages,

whereas in a WSN environment most messages are fairly short. A 15-cycle XTEA is

chosen because the best proposed attack on XTEA is on 27 rounds, which is less than 14

cycles. Therefore for a balance between security and performance, a 15-cycle (30 rounds)

XTEA is chosen.

Although XTEA operates directly on 32-bit words and requires 32-bit shifts, it requires

only short fixed number bit shifts. Furthermore, the MSP430 is a 16-bit microcontroller;

therefore operating on 32-bit words does not impose as huge a penalty as would be found

on an 8-bit microcontroller.

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 94

7.2.2. SAFER K-64

The implemented SAFER K-64 (Secure And Fast Encryption Routine with a Key of length

64 bits) in this paper is adapted from the Turbo Pascal code provided by the SAFER K-64

designer [44]. For execution speed optimization, three look-up tables are provided which

are not included in the reference Turbo Pascal code. They are namely the log, exponential

and the key bias tables. These look-up tables allow SAFER K-64 to avoid logarithmic,

exponential and modulus operations during key scheduling and round functions. A 7-round

SAFER K-64 is used in this paper.

SAFER K-64 has many advantages for implementation in a resource-constrained

environment. When using look-up tables to replace logarithmic and exponential

computations the SAFER K-64 requires only byte level XOR and addition operations,

making it suitable for any word size microcontrollers. SAFER K-64 is also a relatively

small code size block cipher. Another reason for choosing SAFER K-64 is that, although it

seems to be suitable in an embedded environment, there are not many studies on SAFER

K-64’s performance in a WSN environment; therefore it is chosen to see how it compares

against some other well known block ciphers. A 7-round SAFER K-64 is chosen because

so far the best feasible attack has been found on 5-round SAFER K-64. The authors of the

proposed attack indicate a 7 or 8-round SAFER K-64 is secure against such attack. With a

6-round SAFER K-64, although such attack is still applicable, the required encryption

computation time approaches 264 (attack computation time: 261); therefore an attack on a 6-

round is also not very feasible.

7.2.3. TREYFER

A 32-round (nominal) TREYFER is implemented in this paper. The TREYFER codes are

adapted from the C code provided by the designer [42]. In the original code, explicit

modulo 256 operations are required. However, this operation consumes a lot of processor

cycles as it requires to performing division operations. The adapted TREYFER code

avoids explicit use of modulo 256 operations and thus achieves optimization for both code

size and execution speed (33% smaller code size and 83% faster execution speed than the

original TREYFER C code). The designer of TREYFER suggested “stealing” the required

256 bytes of S-box from any other place in code memory running with TREYFER.

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 95

However, in this paper the 256 bytes S-box is explicitly defined together with the

TREYFER code.

The main reason for choosing TREYFER is its extremely small code size (even smaller

than the TEA block cipher). TREYFER also requires only byte level operations. Similar to

the TEA block cipher, TREYFER also does not require the generation and storage of

subkeys; therefore it also requires less RAM. Another reason for investigating TREYFER

is that, similarly to SAFER K-64, although it is also suitable for a resource-constrained

environment, it has not yet been properly studied in a WSN environment. The 32-round

TREYFER is chosen because it is the nominal round value used by the designer. Although

the designer suggests any round value larger than 8 should provide enough security,

however there are no attempts to cryptanalysis on TREYFER rounds smaller than 32;

therefore for security reason a 32-round TREYFER is chosen.

A feasible attack on TREYFER has been shown to be possible and is independent of the

number of rounds. However, a counter-measure against such an attack is also possible

(refer to section 4.3.1.)

7.2.4. OCB Mode

Offset Codebook (OCB) version 2.0 block cipher mode as implemented in this paper is

developed from scratch, but using snippets of C code from the OCB designer’s web site

[53] as a guideline. The only difference is that the underlying block cipher has changed

from AES (128-bit block size) to XTEA (64-bit block size).

One of the main reasons for choosing OCB is its ability to provide authentication and

encryption in only one-pass of the data message (data message processed once only), plus

two additional block cipher calls and some processing overhead for creating the sequence

offsets. Other generic modes usually require one-pass for encryption (e.g. CBC, CTR mode)

and another pass for processing of the data message for authentication (e.g. CBC-MAC).

Compared to other one-pass modes, OCB is a follow up work on XCBC [50] and is

proposed after many earlier proposed one-pass modes. As a result, OCB has been designed

with several improvements and is more efficient and less complex than many other one-

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 96

pass modes. For example, OCB uses XOR instead of large bit addition or modulo prime

number operations. OCB version 2.0 has particularly reduced the complexity of generating

sequence offsets compare to other one-pass modes, where offset generation has contributed

to most of the processing time after the block cipher operations in any one-pass modes.

Another advantage of OCB, also described in section 4.5.3, is that it is designed to be able

to authenticate a packet’s associated data (e.g. header bytes in a data packet) without

encrypting it. This allows both header bytes and data bytes in a packet to be authenticated,

while only data bytes are encrypted. This is an important feature in many networks

including WSN, because a sensor node may need to see the headers in plaintext in order to

quickly relay the data packet to the next node and return to sleep to conserve power. If the

headers are also encrypted, then in order for a node to correctly relay the packet to the next

node, it needs to first decrypt the headers, which imposes more processing time and thus

higher power consumption.

7.3. RC4 Stream Cipher

The RC4 stream cipher in this paper is not implemented on the MSP430F1232

microcontroller that is used in the TinyMote sensor nodes. It is implemented and simulated

on a MSP430F149 microcontroller. The reason for this is that RC4 requires at least 256

bytes of RAM to store its constantly changing S-box content, but MSP430F1232 has only

256 bytes of RAM. Therefore it is implemented on a MSP430F149 which has a larger

RAM space (2 KB RAM) (another WSN, the EYES [5] project, uses MSP430149 as its

node microcontroller). RC4 in this paper is adapted from the pseudo code in [26]. However,

the initialization function of the adapted RC4 has been improved by avoiding the use of

modulo key length operations, which greatly reduces the initialization processor time (76%

faster) and also with slightly smaller code size (3% smaller).

RC4 is chosen because it is an extremely fast and small size stream cipher, even though it

can not be implemented on the TinyMote platform. Therefore it is implemented in this

paper to investigate its alternative use. RC4 also only requires byte level operations,

making it suitable for any word size microcontrollers. RC4 on its own provides only

confidentiality (encryption) and it cannot be used like block cipher modes to provide

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 97

authenticity. Therefore in this paper, RC4 is used to generate pseudo random numbers

needed for UMAC operations, as an alternative to using block ciphers to generate the

needed pseudo random numbers. Lastly, although not as popular as the block cipher modes

providing authentication, there are still other proposals suggesting how stream ciphers can

be used to provide authentication, but these are not investigated in this paper.

7.4. UMAC

The UMAC implementations in this paper have been greatly modified to be more suitable

to a WSN environment. They are implemented from scratch using UMAC internet drafts

[57] as guidelines.

7.4.1. UMAC-Block Cipher

In the UMAC shown in Figure 5.3 and Figure 5.4 from section 5.2, the L2-HASH and L3-

HASH are used to further reduce the size of the unbounded (variable length) hash code

generated by L1-HASH (NH hash function). After the L2-HASH and L3-HASH the output

hash code is a fixed size. However, the output hash code size of the NH hash function is

proportional to the input message size. Therefore in a closed WSN environment where data

message size is small, fixed and known, it is possible to customize UMAC to eliminate the

need for the L2-HASH and L3-HASH. The UMAC implemented in this paper is similar to

Figure 5.3, except that only the NH hash function is needed in place of UHASH as shown

in the figure below.

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 98

Figure 7.7. customized UMAC.

The customized UMAC in this paper (Figure 7.7) uses an underlying block cipher with a

64-bit block size. Therefore the KDF (key derivation function) only needs to call the block

cipher twice to generate two 8-byte subkeys to be used in the PDF (pad derivation function)

and NH hash function. Note that the subkeys only need to be generated once, and remain

the same for the lifetime of the same secret key. One block cipher call in PDF produces 8

bytes of encryption pads to be XORed with a 4-byte (32-bit) hash code. Therefore every

PDF call produces enough encryption pads for generating two MACs. The nonce used with

PDF is realized with a simple incrementing counter.

The NH hash function is shown in the following figure (Figure 7.8).

message NH
4-byte hash

code

subkey
(8-byte)

MAC
(32-bit)

key

nonce

KDF PDF
subkey
(8-byte)

encryption pad
(8-byte)

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 99

Figure 7.8. NH hash function with word size w = 16 and number of words processed

in a NH block n = 4.

The word size processed in the NH hash function is 16-bit, and the number of words

processed in a NH block is equal to 4 words. Therefore the number of bytes processed in

one NH hash function call is 8 bytes. Word size is chosen to be 16-bit to achieve a 32-bit

hash code after two 16-bit multiplications, and also because the word size of the

microcontroller used is also 16-bit.

The data message is divided into 8-byte chunks as input for the NH hash function. The

hash result of a NH function call is added to the hash result of the previous NH function

call. Therefore, the final hash code will always be of a fixed 4-byte size. For example, to

process a 24 byte data message, three NH function calls are required, and all three hash

results are added. This method of implementing the NH hash function has also been

proposed by Yüksel [58], however, in a hardware implementation only.

The advantage of using such a customized UMAC is clear. After the initial subkeys have

been generated, to produce two MACs for any messages afterwards only requires one KDF

M1 K1

+16

×32

+32

M2 K2

+16

M3 K3

+16

×32

M4 K4

+16

32-bit hash result

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 100

call (i.e. one block cipher call) and several NH hash calls (depending on the size of the

message). Using only one block cipher call to generate every two MACs can save a

significant amount of processing time, particularly when the block cipher calls are more

expensive than NH function calls. The underlying block cipher of UMAC can also be used

to provide encryption that is not provided by UMAC.

7.4.2. UMAC-RC4

The KDF and PDF in UMAC are needed to produce subkeys and encryption pads

respectively. However, UMAC is not limited on using only block ciphers to generate

pseudo random numbers needed in KDF and PDF. In this paper, the RC4 stream cipher is

used to generate pseudo random numbers as the subkeys needed for the NH hash function

and the encryption pads needed to XOR the NH hash code. The following figure (Figure

7.9) shows how RC4 is used with an NH hash function to generate a MAC. The NH hash

function used here is the same as the one described previous in Figure 7.8. A nonce

(counter) is not needed in this implementation because a nonce is used with the block

cipher to ensure that every encryption pad produced will be different. Also, the RC4 stream

cipher is designed to continuously generate pseudo random key stream bytes as encryption

pads; therefore a nonce is not required.

Figure 7.9. UMAC with RC4.

The main advantage of incorporating UMAC into RC4 is its efficiency and simplicity. RC4

subkey
(8-byte)

key RC4
encryption pad

(8-byte)

MAC
(32-bit)

NH message 4-byte hash
code

Chapter 7 Implementations

Electrical, Electronic and Computer Engineering 101

replaces the need of KDF and PDF for generating pseudo random numbers, resulting in a

smaller code size. Apart from generating pseudo random numbers needed for UMAC, RC4

can also generate additional encryption pads to encrypt the data message; thus providing

encryption apart from the authentication by UMAC. However, since there is no nonce

being used in RC4, the message receiver of the UMAC-RC4 authenticated and RC4

encrypted messages must keep track of the sender’s RC4 S-box status in order to know

which key stream bytes are being used at the moment.

7.5. Conclusions

Adaptations and implementations of several cryptographic algorithms are discussed in this

chapter. Blocks ciphers of XTEA, SAFER K-64, and TREYFER are implemented. The

OCB mode block cipher encryption and authentication is also implemented. The only

stream cipher implemented and evaluated is the RC4 stream cipher. Furthermore, UMAC

authentication algorithm is also adapted for WSN and implemented with XTEA as its

underlying block cipher.

 8
RESULTS AND DISCUSSIONS

This chapter provides the results of the various implementations discussed in the previous

chapter. These results include the performance, power consumption and security level of

the different security primitives; and how link layer security protocols are improved

compare to existing protocols.

8.1. Power Consumption in the MSP430 Microcontroller

Different instructions may require different numbers of clock cycles, resulting in different

amounts of energy consumption per cycle. Even different instructions with the same

number of clock cycles may consume different amount of energy per cycle because of the

nature of the instruction itself. For example an instruction that accesses the main memory

(RAM) or registers will consume less energy than an instruction that accesses the flash

memory.

However, Law et. al. [54] have shown that the energy per cycle is fairly consistent for the

MSP430 microcontroller family with a mean deviation of 6%. Groβschadl et. al. [64] have

further shown that variable energy consumption per cycle has more influence on high-end

microcontrollers and DSPs. For example, Intel’s StrongARM SA-1100 has a more

complex power management strategy such as the use of conditional clocking trees, which

ensures only the presently required units in the microcontroller are clocked and other units

remain static; thereby resulting in the difference in energy consumption per cycle.

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 103

Therefore it is safe to say that the MSP430F1232 microcontroller used in this paper

running at 1 MIPS, 2.2V, and at an average current of 200 μA requires an average power

consumption of: WAV μμ 4402002.2 =× .

8.2. Cryptographic Ciphers

Table 8.1 shows the code size, look-up table size, user key size and expanded subkey size

required for each cryptographic cipher. Both code and look-up table are stored in the flash

memory and the key and expanded key are stored in RAM. The size of the standard and

optimized versions of XTEA, TREYFER and RC4 are also shown.

Table 8.1. Cryptographic ciphers memory requirements.

Code

(Flash)

Look-up table

(Flash)

Key

(RAM)

Expanded key

(RAM)

XTEA (std.) 712 bytes N/A 16 bytes N/A

XTEA (opt.) 620 bytes N/A 16 bytes N/A

SAFER K-64 850 bytes 624 bytes 8 bytes 112 bytes

TREYFER (std.) 294 bytes 256 8 bytes N/A

TREYFER (opt.) 196 bytes 256 bytes 8 bytes N/A

RC4 (std.) 512 bytes N/A 16 bytes 256 bytes

RC4 (opt.) 492 bytes N/A 16 bytes 256 bytes

The code size consists not only of the algorithm for the cipher, but also the necessary

simple code for setting up testing vectors (e.g. plaintexts and ciphertexts) to execute the

cipher.

All three block ciphers implemented in this paper are implemented and measured in ECB

(electronic codebook) mode processing an 8-byte block. This is to allow measurements to

be focused on the actual block cipher algorithm’s speed performance. However, Law et. al.

[54] have shown that the performance in a speed optimized block cipher differs very little

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 104

between generic modes of operation (e.g. CBC, CFB, CTR etc.).

Table 8.2 below shows the performance (in CPU cycles to process one byte) of each cipher.

Key setup is the number of cycles required to initialize expanded subkeys and is only

executed once for the lifetime of the same user selected secret key.

Table 8.2. Cryptographic ciphers CPU usage.

 Encrypt Key setup

XTEA (std.) 303 N/A

XTEA (opt.) 287 N/A

SAFER K-64 126 3578

TREYFER (std.) 6527 N/A

TREYFER (opt.) 1110 N/A

RC4 (std.) 103 47515

RC4 (opt.) 103 11154

From the tables above it can be seen that the optimized XTEA achieves smaller size (12%

smaller) and slightly faster execution speed (5.3% faster) than the standard XTEA code

size. XTEA does not require setting up expanded subkeys; therefore there is no additional

RAM or CPU usage needed for storing and setting up subkeys.

Both SAFER K-64 and TREYFER are the only cryptographic ciphers that require look-up

tables. It can be seen that SAFER K-64 requires the most total memory usage. However,

SAFER K-64 is also the fastest block cipher compared to the other two block ciphers. If a

6-round SAFER K-64 is used, then the execution speed is comparable to the stream cipher

RC4 (6-round SAFER K-64: 110 CPU cycles per byte).

The optimized TREYFER is approximately 33% smaller in size and significantly faster

(83% faster) than the standard TREYFER. When used in a real-life application, the 256

bytes TREYFER look-up table values can be derived from other parts of the same

application in memory running with TREYFER. It can be seen from the above tables that,

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 105

although TREYFER has the smallest code size, it also requires the highest CPU usage.

The optimized RC4 is only slightly smaller (3% smaller code) than the standard RC4 code

size. However, with optimized RC4, a significant CPU usage saving is obtained in key

initialization (76% faster). RC4 does not require a look-up table in flash, but it requires 256

bytes of S-box in RAM for generating key streams. Stream cipher RC4 is the fastest and

requires the least flash memory space.

Table 8.3 shows additional block cipher memory requirements and CPU usage conducted

by Law et. al. in [54] (compiler also set for speed optimization). The code size contains

both code and look-up tables of the block cipher. CPU usage for encryption is also

measured in CPU cycles per byte (on an 8-byte block), and key setup is measured in

number of CPU cycles needed. MISTY1 is another royalty-free 128-bit key, 64-bit block

cipher; it is not further discussed in this paper. Note that the version of AES used by Law

et. al. in [54] has been optimized for speed, sacrificing the storage space with larger code

size.

Table 8.3. Additional cryptographic ciphers memory requirements and CPU usage.

Code

(Flash)

Expanded Key

(RAM)

Encrypt

(CBC)
Key setup

RC5 6312 bytes 152 bytes 620 40556

AES 15842 bytes 240 bytes 400
1313 (encrypt)

5034 (decrypt)

MISTY1 8492 bytes 64 bytes 490 584

There are three differences between the implementation environment in this dissertation

and the implementation environment in [54].

1. The block ciphers in [54] are implemented on the same microcontroller family

(MSP430) as the one used in this paper. The only difference is that the

microcontroller used in [54] has larger memory resources and a built-in hardware

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 106

multiplier. However, none of the block ciphers in Table 8.3 requires intensive

multiplication operations.

2. The development software used in [54] is the IAR C/C++ compiler version 2.20A,

which is older than the version used in this paper. However, the performance

differences between the two compiler versions are very slight, especially when the

compiler is set to optimize for code speed.

3. The block ciphers in Table 8.3 are implemented in CBC mode, which has higher CPU

usage than the ECB mode results in this paper (Table 8.2). However, it is also shown

in [54] that the performance differences between different modes are minimal,

particularly when the compiler is to compile codes for speed optimization. Note that

with the speed optimized codes in this compiler, CBC mode produces code

approximately 3 KB bigger than ECB mode.

Therefore despite some minor differences, the results from Law et. al. (Table 8.3) still

provide good comparisons against the results obtained in this paper (Table 8.1 and Table

8.2).

8.2.1. Observation and Analysis

From the above performance results and memory requirements, it can be seen that the

stream cipher RC4 requires the least flash memory and CPU usage to encrypt one byte;

however, it requires the most RAM and fairly high CPU usage for key initialization. Also,

being a stream cipher, RC4 cannot be easily adapted with block cipher modes of operation

to provide authentication besides encryption. On the other hand, if an efficient stream

cipher authentication algorithm and a microcontroller with sufficient RAM is used, RC4

will be a very good choice as a low-power security solution to provide both encryption and

authentication. Another advantage of RC4 is that because it produces one keystream byte

at a time, it can be customized to the exact packet size of different WSN applications.

The SAFER K-64 block cipher is the fastest block cipher compared to all other block

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 107

ciphers. However, it requires more flash and RAM memory than XTEA and TREYFER.

TREYFER requires the least flash memory, but it performs poorly and requires the most

CPU cycles to encrypt one byte. XTEA appears to be a good compromise between speed

performance and code size. Therefore XTEA is suitable for an extremely memory

constrained environment, while still providing fairly low power consumption. SAFER K-

64 is well suited for environments with slightly more memory where it can be used to

achieve even lower power consumption (less CPU usage). However, note that the security

of XTEA is higher than the SAFER K-64 because of its 128-bit key length compared to the

SAFER K-64’s 64-bit key length.

It is observed that some of the popular block ciphers (e.g. RC5 and AES) that are found in

many traditional network security packages do not perform that well in the embedded

environment. Although AES is faster compared to RC5 and MISTY1, it however requires

very large flash memory space (more than 10 KB). Even so, it is still slower than XTEA

and SAFER K-64. Both RC5 and MISTY1 also require higher CPU usage than XTEA and

SAFER K-64 to encrypt one byte. Furthermore, RC5 also requires fairly high CPU usage

for its subkey initialization. The higher CPU usage needed for subkey initialization, the

less energy-efficient it is to change its secret key. Therefore both RC5 and AES are not

suitable for a WSN environment. Law et. al. [54] recommended using MISTY1 for a

memory constrained environment. However, the results of this paper have shown that

XTEA requires both lower CPU usage and less memory than MISTY1. SAFER K-64 also

requires less flash memory (but more RAM) and performs better compared to MISTY1.

8.3. UMAC

UMAC provides only authentication by calculating the MAC (message authentication

code). In this paper, UMAC is customized for small size data using XTEA (block cipher)

and RC4 (stream cipher) as its underlying pseudo random number generator.

8.3.1. UMAC-XTEA

The customized UMAC-XTEA can be subdivided into three components: KDF, PDF and

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 108

NH. The key derivation function (KDF) generates two subkeys (total of 16 bytes) needed

for both the PDF and the NH hash function. The pad derivation function (PDF) generates a

one-time encryption pad to be XORed with the hash code. The NH hash function processes

eight-byte blocks and produces four-byte (32-bit) hash codes. Every PDF call invokes an

XTEA cipher call, which produces an eight-bytes encryption pad; therefore one PDF call

provides encryption pads for generating two MACs.

Table 8.4 shows the number of CPU cycles needed for the different function calls within

UMAC-XTEA. The NH hash function involves 16-bit multiplication operations, which

makes the CPU cycle usage depending on the input value to the NH function. The NH

function CPU usage below is the average value across several different input values.

Furthermore, some MSP430 microcontrollers have built-in hardware multiplier (HW

multiplier) (e.g. MSP430F140). When such microcontrollers are used, the performance of

the NH hash function is improved.

Table 8.4. UMAC-XTEA CPU usage.

 KDF PDF

NH

(without HW

multiplier)

NH

(with HW

multiplier)

CPU usage 4679 2300 570 190

The flash memory required for UMAC-XTEA code in the above table is 1333 bytes. This

includes code for setting up a simulated 24 byte data packet. If a data packet is of size 24

bytes (3 blocks), then to authenticate such data packet using UMAC-XTEA requires one

PDF call and three NH hash function calls (excluding the key setup KDF call).

8.3.2. UMAC-RC4

The customized UMAC-RC4 is similar to the block cipher UMAC-XTEA. It uses the same

NH hash function to process eight-byte data blocks and to produce four-byte (32-bit) hash

codes. The key derivation function (KDF) in UMAC-RC4 only needs to generate one

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 109

eight-byte subkey for the NH. The pad derivation function (PDF) generates four-byte

encryption pads to be XORed with the hash code.

Table 8.5 shows the CPU usage (number of CPU cycles) of function calls within UMAC-

RC4. The initialization function initializes the RC4 S-box in RAM. Both initialization and

KDF only need to be executed once for the lifetime of the same secret key. The NH

functions CPU usage is the same as the previous result with UMAC-XTEA.

Table 8.5. UMAC-RC4 CPU usage.

 Initialization KDF PDF

NH

(without HW

multiplier)

NH

(with HW

multiplier)

CPU usage 11154 529 277 570 190

The flash memory required for UMAC-RC4 code in the above table is 1429 bytes. This

includes code for setting up a simulated data packet of 24 bytes. To authenticate a data

packet of size 24 bytes (3 blocks), with UMAC-RC4 requires one PDF call and three NH

hash function calls (excluding RC4 initialization and key setup call of KDF).

8.4. OCB-XTEA

OCB (Offset Codebook) is a block cipher mode that provides both encryption and

authentication. OCB is capable of authenticating associated data (e.g. header bytes)

without encrypting it. The customized OCB-XTEA in this paper is divided into two

components: PMAC and OCB_ENC. PMAC authenticates header bytes (associated data)

into 8-byte (64-bit) authentication tags. OCB_ENC encrypts and authenticates the data

bytes, and combines the data authentication tag with the header authentication tag from

PMAC to obtain a final 64-bit MAC.

In Table 8.6, results (number of CPU cycles) are obtained from simulated data packets of

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 110

size 24 bytes. The first 8 bytes are the header bytes and the last 16 bytes are message data

bytes. Therefore, the OCB-XTEA-encrypted and -authenticated data packet will have 8-

byte headers in plaintext, 16 bytes of encrypted message data, and a 64-bit MAC

authenticating both header and message data bytes.

Table 8.6. OCB-XTEA CPU usage on 24 bytes data (8-byte header, 16-byte data).

PMAC

(8-byte header)

OCB_ENC

(16-byte data)

CPU usage 4898 9790

The flash memory required for OCB-XTEA codes in the above table is 1749 bytes, which

includes code for setting up the simulated data packet of 24 bytes.

For a data packet consisting of an 8-byte header and a 16-byte data block (for a total of 3

blocks); PMAC requires one block cipher call, OCB_ENC requires two block cipher calls

for encryption, and another block cipher call for producing the final MAC. Another

additional block cipher call is required to encrypt the nonce to be used in OCB offsets.

Therefore with N blocks, N+2 block cipher calls are required. Apart from the block cipher

calls, OCB also requires several offset operations (refer to section 4.5.3), which requires a

lot less CPU cycles than the block cipher calls.

8.5. Security Primitives Implementations

To provide all security primitives: confidentiality, authenticity and integrity are needed.

Encryption provides confidentiality, while authentication using MAC provides both

message authentication and integrity checking. This section suggests several combinations

of using the abovementioned cryptographic functions to provide encryption, authentication

and integrity checking in WSN.

• OCB-XTEA – OCB block cipher mode provides both encryption and

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 111

authentication with N+2 of block cipher calls (N being the number of blocks) and

some offset operations. Only one secret key is needed in OCB for both encryption

and authentication.

• UMAC-XTEA + XTEA – UMAC-XTEA provides only authentication. However,

because block cipher XTEA is used as UMAC’s underlying pseudo number

generator, the same XTEA code can be reused to perform the encryption function.

Two different secret keys are needed for UMAC (authentication) and XTEA

encryption.

• UMAC-RC4 + RC4 – UMAC-RC4 provides only authentication. The underlying

stream cipher RC4 is used as pseudo number generator for UMAC. However, the

pseudo random bytes (keystream bytes) generated by RC4 can also be used as

encryption pad to be XORed with the message data for encryption. Only one secret

key is used for RC4 in the implementation of this paper. However, using two

different keys for two RC4 instantiation is possible.

• Generic Block Cipher modes – Generic block cipher modes have been widely used

to provide encryption and authentication (e.g. CBC-MAC). Therefore it is included

in the performance measurements for a comparison to other non-conventional

methods of providing encryption and authentication. Two different secret keys are

needed for the encryption mode and the authentication mode.

Table 8.7 shows the CPU usage (number of CPU cycles) of the suggested combinations of

cryptographic functions. A simulated data packet of 24 bytes is used, with first 8 bytes

being the header and the last 16 bytes being the data bytes. All block cipher performance

measurements are done using XTEA. The aim is to observe which cryptographic

combinations are most suitable; therefore other block ciphers can be used instead of XTEA.

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 112

Table 8.7. Encryption and Authentication CPU usage (24 bytes packet size).

Encryption &

Authentication
Key setup

OCB-XTEA 14688 N/A

UMAC-XTEA + XTEA 7446 4679

UMAC-RC4 + RC4 3635 11683

Generic block cipher modes

(XTEA)

(CBC-MAC + CTR mode)

11465 N/A

0

2000

4000

6000

8000

10000

12000

14000

16000

OCB-XTEA UMAC-XTEA

+ XTEA

UMAC-RC4

+ RC4

Generic block

cipher modes

(XTEA)

(CBC-MAC +

CTR mode)

C
PU

 c
yc

le
s Encryption &

Authentication

Key setup

Figure 8.1. Encryption and Authentication CPU usage (24 bytes packet size).

Table 8.8 and Figure 8.4 shows the performance of block cipher cryptographic functions

on a packet size of 3 blocks (24 bytes). However, different cryptographic function

combinations will perform differently with different packet sizes:

• OCB-XTEA – Requires N+2 block cipher calls (N is the number of blocks) and

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 113

additional offset operations to provide encryption and authentication. The

additional offset operations typically require a lot less CPU cycles than block

cipher calls.

• UMAC-XTEA + XTEA – Unlike OCB, the number of block calls in this

combination depends also on the header size. This is because header bytes only

need to be authenticated and not encrypted; therefore as the header increases in size

compared to the message data portion, the number of block cipher calls required

will decrease. The block cipher calls required are: (N - H) + 0.5 (where N is the

total number of blocks and H is the number header blocks). UMAC-XTEA requires

half a block cipher call and N NH function calls for authentication. N - H block

cipher calls are needed for encryption. For example, a 24 bytes (3 blocks) packet

with 8 bytes header (1 block) requires half a block cipher call plus four NH hash

function calls for UMAC-XTEA authentication; along with two XTEA calls for

encryption.

• Generic block cipher modes – When using generic block cipher modes to encrypt

and authenticate N blocks of data, 2N block cipher calls are required. However,

when authenticating N blocks of data and encrypting N - H blocks of message data,

the required number of block cipher calls is: 2(N - H) + H (N is the number of

blocks and H is the number header blocks). For example, a 24 bytes (3 blocks)

packet with an 8 bytes header (1 block) requires three block cipher calls for

authentication and two block cipher calls for encryption (five block cipher calls in

total).

Table 8.8 shows the number of block calls needed for various size data packets. WSN

packet sizes are typically less than 30 bytes. TinyMote [12] has a maximum packet size of

15 bytes (including header bytes). Therefore a comparison of packet sizes between 16-byte

to 32-byte systems is reasonable.

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 114

Table 8.8. Number of block cipher calls needed for various size data packets.

16-byte

(8-byte header,

8-byte data)

24-byte

(8-byte header,

16-byte data)

32-byte

(8-byte header,

24-byte data)

OCB-XTEA 4 5 6

UMAC-XTEA + XTEA 1.5 2.5 3.5

Generic block cipher modes

(XTEA)

(CBC-MAC + CTR mode)

3 5 7

8.5.1. Observation and Analysis

As shown in Table 8.7, the combination of the UMAC-RC4 + RC4 and the RC4 security

primitives requires the least CPU usage to provide both encryption and authentication.

Using RC4 also requires fairly little flash memory. However, RC4 needs to maintain a

256-byte S-box in RAM, which may be too much for certain extremely memory

constrained sensor node (e.g. TinyMote with only 256 bytes of RAM). Furthermore, as

mentioned in section 7.4.2, unlike block cipher modes, the stream cipher RC4 does not use

a nonce; therefore the receiver has to keep a copy of the sender’s S-box in order to produce

the same keystream bytes being used on the received data packet. If two secret keys are

used for encryption and authentication, then two RC4 instantiations are required, thus two

256-byte S-boxes will be needed at both the sender and the receiver.

When using a block cipher to provide encryption and authentication, Table 8.7 shows the

UMAC (authentication) + block cipher (encryption) has the least CPU usage when the

packet size is 24 bytes with 8-byte header. Table 8.8 also shows that UMAC-XTEA +

XTEA requires the least block cipher calls and N NH hash function calls (where N is the

number of blocks). It has also been noted that NH function calls typically need a lot fewer

CPU cycles than block cipher calls. As a result, optimized UMAC + block cipher

encryption seem to be a viable security primitives solution in the resource constrained

WSN environment.

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 115

In Table 8.8, it can be seen that OCB performs better with higher numbers of blocks when

compared to the generic block cipher modes of providing encryption and authentication.

Even when OCB and generic block cipher modes require the same number of block cipher

calls as in the case with 24-byte packet (with 8-byte header), OCB still has a higher CPU

usage (Table 8.7). This is because OCB requires additional offset operations than generic

block cipher modes. Therefore, with a smaller packet size, it is more efficient to use

generic block cipher modes than OCB to provide encryption and authentication; whereas

OCB performs better with larger packet size.

For generic block cipher mode authentication, other variants of CBC-MAC can also be

used to overcome some shortcomings of CBC-MAC (as discussed in section 4.5.1.2).

8.6. Secure Link Layer Protocol

Secure cryptographic functions on their own cannot assure the security of the network. If

the security primitives are not properly implemented in the communication protocol, then

attacks on the security flaws of the protocol may be possible even if the cryptographic

functions themselves are secure. A well known example of such an attack is in the WEP

(Wired Equivalent Privacy) protocol, which is part of the IEEE 802.11 (WiFi) standard.

The WEP protocol uses RC4 as its underlying cryptographic function, which is secure.

However, the WEP protocol itself has been found to have security flaws and thus has been

broken, allowing the secret key to be easily found [61].

This section suggests one way of implementing security primitives as a secure link layer

protocol. A detailed study of various methods for implementing security primitives in the

link layer is beyond the scope of this paper.

8.6.1. Block Cipher Based

For the suggested secure link layer protocol, the CTR (counter) mode encryption with 8-

byte counter is recommended for all the block cipher cryptographic combinations

mentioned previously. A 32-bit MAC is recommended for authentication and integrity

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 116

checking.

8.6.1.1. CTR mode

The main reason for choosing CTR mode encryption is its simplicity to implement. Unlike

the initialization vector (IV) of the CBC mode encryption, a simple incrementing counter

can be used as the counter in CTR mode encryption. The security of CBC mode encryption

is affected if a counter is used as an IV in the CBC mode (refer to section 4.5.1.1). In the

case when using UMAC-block cipher + block cipher encryption (e.g. UMAC-XTEA +

XTEA), a simple incrementing counter can be used as the nonces required by UMAC.

Therefore with CTR mode encryption, the same counter can be used for both encryption

and UMAC authentication.

The counter value in CTR mode must never be repeated within the lifetime of the same

secret key. As discussed in section 4.5.2, if the counter value is repeated, severe

information leakage occurs. In order to prevent repeated counter value, 8-byte counter is

recommended.

The counter (also being the nonce for UMAC) is a non-secret value and is transmitted

together with the data packet. Therefore if the full 8-byte counter is being transmitted with

the data packet, then it will add too much overhead and greatly increase power

consumption. As a result, only the lowest byte of the 8-byte counter should be transmitted

with the data packet. The sender and receiver (e.g. base station) in WSN is often

synchronized, therefore the receiver is expected to have the remaining higher 7 bytes of the

counter value. With the transmitted lowest counter byte, the receiver can regain

synchronization with sender if packet loss has occurred. Therefore it can be seen as a

“window” which buffers for some packet losses due to an unreliable wireless channel.

If multiple sensor nodes all start with a counter value of zero, then this counter value is in

essence repeated in all sensor nodes. This will result in the same encryption pads being

produced and used for multiple data packets, which leads to the security problem discussed

in section 4.5.2. To prevent this from happening, each node’s unique node address can be

XORed with the counter value before it is encrypted to derive the encryption pad (as

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 117

shown in Figure 8.2, where P and N are the plaintext and ciphertext block respectively). In

this way, no two sensor nodes will have the same encryption pad for encryption even if

they are using the same counter value.

Figure 8.2. Counter XORed with unique node address in the CTR mode.

8.6.1.2. 32-bit MAC

A MAC of 32 bits may seem to be insufficient from a traditional security application’s

point of view. It is however, sufficient from a practical WSN application’s point of view.

In order to forge a MAC, the attacker needs to be “on-line” and to continuously interact

with the entity verifying the MAC (e.g. a WSN base station). However, in order to

preserve energy in the WSN, communications usually only take place at intervals of a few

seconds or a few minutes. Consider the case where sensor nodes take sensor measurements

and communicate these readings every two seconds (as in a TinyMote sensor node, refer to

section 7.1.1). Then with a 32-bit MAC, there will be 232 = 4.29 × 109 possible MAC

combinations. Then in order to forge a MAC, the attacker needs to communicate all 4.29 ×

109 ÷ 2 at 2-second intervals. This means a total time of 4.29 × 109 ÷ 2 × 2 seconds is

required by the attacker, which translates to approximately 136 years!

Ek

counter

P

C

node address

encryption pad

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 118

8.6.2. RC4 Stream Cipher Based

With the UMAC-RC4 + RC4 implementation, a 32-bit MAC is also recommended.

However, as discussed in section 7.4.2, RC4 does not use a nonce (counter) to produce

different encryption pads as in the case of CTR mode. Therefore, in an unreliable

communication channel, packet loss may cause the sender and the receiver to lose

synchronization (receiver loses track on which RC4 keystream bytes are being used). To

solve this problem, every packet transmitted can be numbered with a sequence number. If

packet losses have occurred, the receiver can detect this by realizing that several sequence

numbers have been skipped, so the receiver can also skip some keystream bytes

accordingly to decrypt the received packet and regain synchronization.

8.6.3. Observation and Analysis

As a result of the 32-bit MAC and the transmitted lowest counter byte, the new TinyMote

packet with encryption and authentication is shown in Figure 8.3, as opposed to the normal

packet structure shown in Figure 7.4.

Transceiver User specific

Preamble
(32 bits)

Sync
word

(16 bits)

Packet
length
(8 bits)

Source
address
(16 bits)

Last
HC

(8 bits)

Data
(max 10 bytes)

MAC
(32 bits)

(a)

Data
Mandatory optional

source
HC

(8 bits)

sensor
type

(8 bits)

counter
(lowest
8 bits)

VCC
(8 bits)

temperature
(16 bits)

brightness
(16 bits)

humidity
(16 bits)

(b)

Figure 8.3. TinyMote packet structure with encryption and authentication.

The grayed bars are authenticated fields, and the authenticated and encrypted fields are

covered with grayed dots. Note that the counter must also be authenticated.

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 119

Comparing the above figure with the original TinyMote packet at Figure 7.4, it can be seen

that the field’s CRC, TX slot counter, and VSol have been discarded. CRCs (Cyclic

Redundancy Checks) are used for integrity checking, therefore it is no longer required

when using MAC. The TX slot counter has been used only for debugging purpose and can

be discarded. The VSol field is used specifically for measuring the solar cell voltage level. It

may also be discarded because the TinyMote sensor nodes only need one power source at a

time, thus the same VCC field can be used for indicating either battery voltage or solar cell

voltage. As a result, even with the security primitives of both encryption and authentication

implemented in TinyMote WSN, only one byte of packet overhead is imposed!

8.7. Security Primitives Power Consumption

As discussed in section 8.1, it is safe to say that energy per cycle is more or less constant

for the MSP430 microcontrollers. Therefore the energy consumption for security

primitives can be calculated from the number of CPU cycles it requires.

Consider the MSP430F1232 operating at 1 MIPS and an average power of 440 μW. The

time to complete one instruction is: 6101
1

−×
 = 1μs. With OCB-XTEA, it requires 14688

CPU cycles to encrypt and authenticate 24 bytes of data (as shown in Table 8.7). Therefore

the time needed for such operation is: 14688 cycles × 1 μs = 14.688 ms. Thus the average

power consumption for such OCB-XTEA operation is: WmsW μμ 46.6688.14440 =× .

However, if the sensor node only need to perform the security function at a 2-second

interval (i.e. packet transmitted at 2-second interval), then the average power would be:

WW μμ 23.3
2

46.6
= .

The following table and figure shows the average power consumption per second of the

different cryptographic function combinations at 2 second and 10 second packet

transmission intervals.

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 120

Table 8.9. Encryption and authentication power consumptions.

 2 second 10 second

OCB-XTEA 3.23 μW 646.27 nW

UMAC-XTEA + XTEA 1.64 μW 327.62 nW

UMAC-RC4 + RC4 799.7 nW 159.94 nW

Generic block cipher modes

(XTEA)

(CBC-MAC + CTR mode)

2.52 μW 504.46 nW

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

OCB-XTEA UMAC-XTEA

+ XTEA

UMAC-RC4

+ RC4

Generic block

cipher modes

(XTEA)

(CBC-MAC +

CTR mode)

Po
w

er
 (

nW
)

2 second

10 second

Figure 8.4. Encryption and authentication power consumptions.

8.8. Improvements to Existing WSN Link Layer Securities

The proposed security primitives and the secure link layer protocol implemented in

TinyMote sensor networks have shown several improvements when compared to existing

secure link layer protocols.

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 121

• Packet overhead – The TinySec [6] security protocol requires 5 bytes overhead per

transmitted packet to provide encryption and MAC authentication. The SNEP [1]

security protocol requires 8 bytes overhead. The proposed security protocol

requires only 1 byte overhead for each packet of the TinyMote sensor network.

Smaller overhead also means lower power consumption while transmitting data

packets.

• Power consumption – Results of the customized UMAC for a small data size have

been shown it to be more efficient than the generic use of block ciphers to provide

authentication. Therefore the resulting authentication and encryption has shown

significant reduction in power consumption compared to other security protocols

using generic block cipher modes to provide encryption and authentication.

• Synchronization – SNEP uses the CTR mode for encryption, but it does not

transmit the counter value together with the packet. It relies on the receiver to share

the same counter value with the sender. However, in an unreliable communication

channel, sender and receiver may loose synchronization due to loss of data packets.

The proposed security protocol transmits the lowest counter byte with the data

packet so that even when a few packet losses have occurred, with the received

counter value it is still possible to let the receiver regain synchronization with the

sender.

• Security – The proposed security link layer protocol for TinyMote have better

security than the existing security protocols in many aspects:

 The TinySec security protocol uses a counter as its IV (initialization vector)

for CBC mode encryption, which results in information leakage issues.

The proposed security protocol uses CTR mode and needs only simple

incrementing counter.

 With a transmitting rate of one packet per minute, TinySec IV reuse will

occur after every 45 days, which results in leaking some information on

Chapter 8 Results and Discussions

Electrical, Electronic and Computer Engineering 122

messages with repeated IV. The proposed security protocol uses an 8-byte

counter (with only the lowest byte being transmitted in the packet), which

will not repeat in a few hundred years even if packets are sent at one

second intervals.

 TinySec does not provide protection against a replay attack. The proposed

security protocol provides protection against a replay attack by

authenticating the counter (as shown in Figure 8.3). If a packet is verified

successfully, the receiver knows the packet must be sent after the

previously verified packet because it will have a larger counter value.

 SNEP also uses CTR mode for encryption. It however, does not cater for

the situation when multiple sensor nodes all start with the same counter

value. This repeated counter value give rise to serious security issues as

discussed in section 4.5.2. The proposed security protocol prevents such

problem by XORing the counter value with the sensor node’s unique node

address (as shown in Figure 8.2).

8.9. Conclusions

In this chapter the results of the various implementations are recorded. It can be seen that

although the TREYFER block cipher has been designed for small size, but has performed

poorly. OCB has been designed to improve encryption and authentication performance, but

its performance gain is observed only when processing larger data packets. On the other

hand, UMAC and XTEA have not been designed for an embedded 16-bit environment, but

have been adapted and shown to perform fairly well (as to be discussed in the next chapter).

 9
CONCLUSION AND FUTURE WORK

In this dissertation, several cryptographic ciphers, block cipher modes and authentication

algorithms have been investigated for their power consumption and code size for their

applicability in an ultra-low power wireless sensor network environment.

The well known AES and the WSN-popular RC5 block ciphers have been shown to be not

very suitable for WSN. The block cipher SAFER K-64 has been investigated for the first

time for its applicability in WSN. Compared to other block ciphers investigated for WSN

environment, SAFER K-64 achieves the best performance in CPU usage known to the

author. It, however, requires slightly more RAM. XTEA requires a fairly small amount of

flash/ROM memory and no RAM is needed for the subkeys setup. Even though XTEA is

designed for a 32-bit architecture, it performed well on the 16-bit MSP430 platform and

outperformed both AES and RC5 on the same MSP430 platform. Although TREYFER

requires the least flash memory and also does not need RAM for the subkey setup, it

requires a considerable number of CPU cycles. RC4 is the only stream cipher implemented

in this paper, but it has been shown to require the least amount of CPU usage.

Improvements have been made on XTEA, TREYFER and the initialization of RC4 to

further optimize their performance and code size.

The three types of security primitives required for use in wireless sensor networks are

encryption, authentication and integrity checking. A fairly new block cipher mode, OCB

has been implemented to study its performance in WSN. The UMAC authentication

algorithm has also been studied and implemented.

Chapter 9 Conclusion and Future Work

Electrical, Electronic and Computer Engineering 124

OCB performs better with higher numbers of data blocks to process. When it comes to

lower numbers of data blocks, using the generic block cipher modes to provide

authentication and encryption performs better than the OCB mode.

Although UMAC is originally designed for a modern 32/64-bit architecture and for

authenticating longer messages, in this paper it has been adapted and optimized for the

short message WSN environment. Security primitives using UMAC + XTEA for

authentication and XTEA (CTR mode) for encryption have been implemented and shown

to perform very well. Its power consumption is: 1.64 μW and 327.62 nW at 2 second and

10 second packet transmission intervals respectively, with a packet consisting of an 8-byte

header and an 16-byte data (24 bytes in total). It has been shown to be better than other

block cipher based security primitives such as OCB mode and the generic block cipher

modes for any number of data blocks. UMAC-RC4 has even better speed performance than

UMAC-XTEA. It however, also requires the most RAM resources.

In the proposed security link layer protocol, the use of block cipher in CTR mode with an

8-byte counter and a 32-bit MAC is proposed. The proposed security link layer protocol

has shown many improvements over the existing security link layer protocols such as the

TinySec and the SNEP security protocol.

During the code implementation and optimization, several tradeoffs between performance,

code size and RAM usage have been observed. Apart from the conventional tradeoffs

between the code size and the RAM space requirements, tradeoffs also exist between code

flexibility and code performance. Furthermore, it is also observed that repeated function

calls can be very expensive and may require a significant amount of CPU cycles. This is

accounted for by the fact that every function calls needs to setup the parameters being

passed and to push register data on to stack memory and pop the data back from stack

memory when returning from the function call. Therefore these function call performance

overheads add up quite significantly when a function needs to be called repeatedly.

This paper has achieved in providing analysis and solutions for security primitives in

wireless sensor networks. However, possible future work may include:

Chapter 9 Conclusion and Future Work

Electrical, Electronic and Computer Engineering 125

• Similar to the TinySec security protocol, the proposed security primitives in this

paper can also be packaged into a set of security primitive APIs (application

program interfaces) to allow ease of use for higher layer WSN protocol designers.

• The research on security primitives in this paper are based on a microcontroller

platform. However, cryptographic ciphers designed for hardware implementations

also exist, particularly in stream ciphers. One example is the linear-feedback-shift-

register (LFSR) based stream ciphers, which have been used in smart card

microcontrollers for encryption [63]. Therefore it is necessary to conduct further

researches into the possibility of using either ultra-low power cryptographic

hardware or existing smart card microcontrollers.

REFERENCES

[1] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J.D.Tygar, “SPINS: Security

Protocols for Sensor Networks”, Proceedings of 7th Annual International Conference

on Mobile Computing and Networks (Mobicom), pp. 189-199, Rome, Italy, 2001.

[2] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of

Applied Cryptography, 5th ed., CRC Press, 1996.

[3] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor Networks: Attacks and

Countermeasures”, Proceedings of the 1st IEEE International Workshop on Sensor

Network Protocols and Applications (SPNA), pp. 113-127, Anchorage, USA, May

2003.

[4] P. Ganesan, R. Venugopalan, P. Peddabachagari et. al., “Analyzing and Modeling

Encryption Overhead for Sensor Network Nodes”, Proceedings of the 2nd ACM

international conference on Wireless sensor networks and applications, San Diego,

USA, 2003.

[5] Y. Law, S. Dulman, S. Etalle et. al., “Assessing Security-Critical Energy-Efficient

Sensor Networks”, Department of Computer Science, University of Twente, Tech.

Rep. TR-CTIT-02-18, 2002.

[6] C. Karlof, N. Sastry and D. Wagner, “TinySec: A Link Layer Security Architecture

for Wireless Sensor Networks”, Proceedings of the 2nd ACM Conference on

Embedded Networked Sensor System (SenSys), vol. 47 issue 6, Baltimore, USA,

November 2004.

[7] S. Mahlknecht, “Energy-Self-Sufficient Wireless Sensor Networks for the Home and

Building Environment”, Doctor’s thesis, Technical University of Vienna, 2004.

[8] H. Y. Yang, H. Luo, F. Ye et. al., “Security in Mobile Ad Hoc Networks: Challenges

and Solutions”, IEEE Wireless Communications Magazine, pp. 38-47, February 2004.

[9] E. Shi and A. Perrig, “Designing Secure Sensor Networks”, IEEE Wireless

Communications Magazine, pp. 38-43, December 2004.

[10] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “A Survey on Sensor

Networks”, IEEE Communications Magazine, pp. 102-114, August 2002.

[11] Y. Chun Hu, A. Perrig, and D. Johnson, “Ariadne: A Secure On-demand Routing

Protocol for Ad Hoc Networks”, Proceedings of 8th Annual International Conference

on Mobile Computing and Networks (Mobicom), Atlanta, USA, September 2002.

[12] S. Mahlknecht and M. Rötzer, “Energy-Self-Sufficient Wireless Sensor Networks”,

 References

Electrical, Electronic and Computer Engineering 127

Technical University of Vienna, Tech. Rep., 2005.

[13] Intel Mote, http://www.intel.com/research/exploratory/motes.htm. Last accessed on

June 2005.

[14] Mica Mote, http://www.xbow.com. Last accessed on June 2005.

[15] A. El-Hoiydi, “WiseMAC, An Ultra Low Power MAC Protocol for the WiseNET

Wireless Sensor Network”, Proceedings of the 1st ACM International Conference on

Embedded Networked Sensor Systems (SenSys), Los Angeles, USA, November 2003.

[16] C. Schurgers, V. Tsiatsis, S. Ganeriwal and M. Sirvastava, “Optimizing Sensor

Networks in the Energy-Latency-Density Design Space”, IEEE Transactions on

Mobile Computing, vol. 1 no. 1, pp. 70-80, January 2002.

[17] M. Ringwald and K. Römer, “BitMAC: A Deterministic, Collision-Free, and Robust

MAC Protocol for Sensor Networks”, Proceedings of the 2nd European Workshop on

Wireless Sensor Networks, pp. 57-69, Istanbul, Turkey, January 2005.

[18] S. Mahlknecht and M. Böck. “CSMA-MPS: A Minimum Preamble Sampling MAC

Protocol for Low Power Wireless Sensor Networks”, Proceedings of IEEE

International Workshop on Factory Communication Systems, pp. 73-80, Vienna,

Austria, September 2004.

[19] S. Mahlknecht and M. Böck. “On the use of High Bit Rate Transceivers for Low Duty

Cycle Wireless Sensor Networks”, IEEE 7th Africon Conference in Africa, pp. 1235-

1238, Gaborone, Botswana, September 2004.

[20] Cryptography for Ultra-Low Power Devices, http://www.crypto.wpi.edu. Last

accessed on October 2005.

[21] EYES: Energy Efficient Sensor Networks, http://eyes.eu.org. Last accessed on June

2005.

[22] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor

Networks”, Proceedings of IEEE Symposium on Security and Privacy, pp. 197-213,

Berkeley, USA, May 2003.

[23] L. Feeney, B. Ahlgren, and A. Westerlund, “Spontaneous networking: An

Application-oriented Approach to Ad Hoc Networking”, IEEE Communications

Magazine, pp. 176–181, June 2001.

[24] SmartDust, http://robotics.eecs.berkeley.edu/~pister/SmartDust/. Last accessed on

July 2005.

[25] TinyOS, http://www.tinyos.net. Last accessed on October 2005.

[26] W. Stallings, Cryptography and Network Security Principles and Practices, 3rd ed.,

 References

Electrical, Electronic and Computer Engineering 128

Prentice Hall, 2003.

[27] B. Schneier, Applied Cryptography : protocols, algorithms, and source code in C, 2nd

ed., John Wiley & Sons, 1995.

[28] J.D. Golić, V. Bagini, and G. Morgari, “Linear Cryptanalysis of Bluetooth Stream

Cipher”, Advances in Cryptology – EUROCRYPT’02, LNCS 2332, Springer-verlag,

2002.

[29] E. Barkan, E. Biham, and N. Keller. “Instant Ciphertext-Only Cryptanalysis of GSM

Encrypted Communication”, Advances in Cryptology – CRYPTO’03, LNCS 2729,

Springer-verlag, 2003.

[30] Wireless Medium Access Control and Physical Layer (PHY) Specifications for Low-

Rate Wireless Personal Area Networks (LR-WPANs). IEEE Standard, 802.15.4-2003,

ISBN 0-7381-3677-5, May 2003.

[31] PicoRadio Project, http://bwrc.eecs.berkeley.edu/Research/Pico_Radio. Last accessed

on October 2005.

[32] C. Enz, A. El-Hoiydi, J. Decotignie and V. Peiris, “WiseNET: An Ultra Low-Power

Wireless Sensor Network Solution”, IEEE Computer Magazine, pp. 62-70, August

2004.

[33] Texas Instrument MSP430 Microcontroller, http://www.ti.com. Last accessed on

October 2005.

[34] Atmel AVR Microcontroller, http://www.atmel.com/products/avr/. Last accessed on

September 2005.

[35] J. Mulder, S. Dulman, D. van Hoesel and P. Havinga, “PEEROS - System Software

for Wireless Sensor Networks”, August 2003,

http://tobasco.ctit.utwente.nl/~dulman/docs/systemsoft.pdf. Last accessed on October

2005.

[36] M. Needham and D. Wheeler, “TEA Extensions”, Computer Laboratory, University

of Cambridge, Tech. Rep., October 1997.

[37] M. Russell. “Tinyness: An Overview of TEA and Related Ciphers”, Feburary 2004,

http://www-users.cs.york.ac.uk/~matthew/TEA/. Last accessed on June 2005.

[38] J. Kelsey, B. Schneier, and D. Wagner, “Key-schedule cryptanalysis of IDEA, G-DES,

GOST, SAFER, and Triple-DES”, Advances in Cryptology – CRYPTO’96, LNCS

1109, pp. 237-251, Springer-verlag, 1996.

[39] J. Kelsey, B. Schneier, and D. Wagner, “Related-key Cryptanalysis of 3-WAY,

Biham-DES, CAST, DES-X NewDES, RC2, and TEA”, Proceedings of the 1st

 References

Electrical, Electronic and Computer Engineering 129

International Conference on Information and Communication Security, LNCS 1334,

pp. 233-246, Springer-verlag, Beijing, China, 1997.

[40] Y. Ko, S. Hong, W. Lee et. al., “Related Key Differential Attacks on 26 Rounds of

XTEA and Full Rounds of GOST”, Proceedings of Fast Software Encryption –

FSE'04, LNCS 3017, Springer-verlag, New Delhi, India, 2004.

[41] M. Saarinen, “Cryptanalysis of Block TEA”, http://www.cc.jyu.fi/mjos/block_tea.ps.

Last accessed on October 1998.

[42] G. Yuval, “Reinventing the Travois: Encryption/MAC in 30 ROM Bytes”, Fast

Software Encryption – FSE’97, LNCS 1267, pp. 205-209, Springer-verlag, 1997.

[43] A. Biryukov, D. Wagner, “Slide Attacks”, Fast Software Encryption - FSE’99, LNCS

1636, pp.245, Springer-verlag. 1999.

[44] J. Massey, “SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm”, Fast

Software Encryption – FSE’94, LNCS 809, pp. 1-17, Springer-verlag, 1994.

[45] H. Wu, F. Bao, R. H. Deng et. al., “Improved Truncated Differential Attacks on

SAFER”, ASIACRYPT’98, LNCS 1514, pp. 133-147, Springer-verlag, 1998.

[46] M. Bellare, A. Desai, E. Jokipii, et. al., “A Concrete Security Treatment of Symmetric

Encryption: Analysis of the DES Modes of Operation”, Proceedings of 38th Annual

Symposium on Foundations of Computer Science (FOCS 97), Miami, USA, 1997.

[47] M. Bellare, J. Kilian, and P. Rogaway. The Security of the Cipher Block Chaining

Message Authentication Code. Journal of Computer and System Sciences, 61(3):362 –

399, December 2000.

[48] E. Dawson and L. Nielsen, “Automated Cryptanalysis of XOR Plaintext Strings”,

Cryptologia, pp. 165-181, April 1996.

[49] NIST web page on different modes of operation,

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/. Last accessed on

September 2005.

[50] V. Gligor and P. Donescu, “Fast Encryption and Authentication: XCBC Encryption

and XECB Authentication Modes”, Fast Software Encryption – FSE’01, LNCS 2355,

pp. 92-108, Springer-verlag, 2001.

[51] C. Jutla, “Encryption Modes with Almost Free Message Integrity”, Advances in

Cryptology – EUROCRYPT’01, LNCS 2045, Springer-verlag, 2001.

[52] P. Rogaway, M. Bellare, J. Black et. al., “OCB: A Block-Cipher Mode of Operation

for Efficient Authenticated Encryption”, August 2001,

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/. Last accessed on July 2005.

 References

Electrical, Electronic and Computer Engineering 130

[53] P. Rogaway, “OCB: Background FAQ”, March 2005,

http://www.cs.ucdavis.edu/~rogaway/ocb/. Last accessed on June 2005.

[54] Y. Law, J. Doumen, and P. Hartel, “Benchmarking Block Ciphers for Wireless Sensor

Networks (Extended Abstract)”, Proceedings of 1st IEEE International Conference on

Mobile Ad Hoc and Sensor Systems, Ft. Lauderdale, USA, 2004.

[55] J. Black, S. Halevi, H. Krawczyk et. al., “UMAC: Fast and Secure Message

Authentication”, Advances in Cryptology – CRYPTO’99, LNCS 1666, pp. 216.

Springer-verlag, 1999.

[56] J. Black, S. Halevi, H. Krawczyk et. al., “Update on UMAC Fast Message

Authentication”, May 2000, http://www.cs.ucdavis.edu/~rogaway/umac/update.pdf.

Last accessed on April 2005.

[57] T. Krovetz, “UMAC: Message Authentication Code using Universal Hashing” 2000,

internet draft, http://www.ietf.org/internet-drafts/draft-krovetz-umac-07.txt. Last

accessed on April 2005.

[58] K. Yüksel, “Universal Hashing for Ultra-Low-Power Cryptographic Hardware

Applications”, Master’s thesis, Worcester Polytechnic Institute, May 2004.

[59] IAR Embedded Workbench IDE for MSP430, http://www.iar.com. Last accessed on

August 2005.

[60] Chipcon AS Inc., datasheet CC2400 (Rev. 1.3), Oct. 2004, http://www.chipcon.com.

Last accessed on July 2005.

[61] S. Fluhrer, I. Mantin and A. Shamir, “Weaknesses in the Key Scheduling Algorithm

of RC4”, Proceedings of 8th workshop on Selected Areas in Cryptography (SAC),

LNCS 2259, Springer-verlag, Toronto, Canada, 2001.

[62] T. Iwata and K. Kurosawa, “OMAC: One-key CBC MAC”, Fast Software

Encryption – FSE’03, LNCS 2887, pp. 129-153, Springer-verlag, 2003.

[63] Shrinking generator in Smart Card, http://www.maxking.com/basiccard.htm. Last

accessed on September 2005.

[64] J. Groβschadl, R. Avanzi, E. Savas et. al., “Energy-Efficient Software Implementation

of Long Integer Modular Arithmetic”, Workshop on Cryptographic Hardware and

Embedded Systems (CHES), LNCS 3659, pp. 70-90, Springer-verlag, Edinburgh, UK,

2005.

[65] X. Lai, R. Rueppel, and J. Woollven, “A Fast Cryptographic Check-sum Algorithm

based on Stream Ciphers”, Advances in Cryptology – AUSCRYPT'92, LNCS 718, pp.

339-348, Springer-verlag, 1992.

 References

Electrical, Electronic and Computer Engineering 131

[66] I. Mironov, “(Not So) Random Shuffles of RC4”, Advances in Cryptology –

CRYPTO’02, LNCS 2442, Springer-verlag, 2002.

ADDENDUM A

LIST OF FIGURES

Figure 2.1. Representation of a wireless sensor network architecture. 20

Figure 2.2. Functional diagram of a wireless sensor node. ... 21

Figure 3.1. Representation of a data packet with MAC appended. 38

Figure 3.2. MAC categories. ... 39

Figure 4.1. One TEA cycle (two Feistel rounds) [37]. .. 43

Figure 4.2. One XTEA cycle [37]. .. 44

Figure 4.3. Encryption structure of SAFER K-64. .. 45

Figure 4.4. One encryption round structure of SAFER K-64.. 47

Figure 4.5. Key scheduling algorithm of SAFER K-64. ... 49

Figure 4.6. Cipher Block Chaining (CBC) mode encryption. ... 55

Figure 4.7. Cipher Block Chaining (CBC) mode decryption. ... 55

Figure 4.8. Standard CBC-MAC. .. 57

Figure 4.9. Counter (CTR) mode encryption. ... 58

Figure 4.10. Counter (CTR) mode decryption. ... 58

Figure 4.11. OCB encryption and authentication on a message.. 61

Figure 4.12. OCB authentication on message header of multiple block size (PMAC)....... 63

Figure 4.13. OCB authentication on message header not multiple of block size (PMAC). 64

Figure 5.1. UMAC... 69

Figure 5.2. NH hash function with word size w = 32, number of words processed n = 4. . 71

Figure 5.3. Refined UMAC. .. 74

Figure 5.4. UHASH with word size w = 32. ... 75

Figure 6.1. The TinySec and TinyOS packet format... 82

Figure 7.1. TinyMote with 2 AA batteries (left). .. 85

Figure 7.2. TinyMote connected to USB dongle... 87

Figure 7.3. TinyMote network behavior.. 89

Figure 7.4. TinyMote packet structure. ... 90

Figure 7.5. Power consumption 187 μW (channel listening: 47 μW, packet sending:

41.14μW, sensors: 98.38 μW) (2s measurement interval, 10s transmission

 Addendum A

Electrical, Electronic and Computer Engineering 133

interval).. 92

Figure 7.6. Power consumption 70 μW (channel listening: 9.50 μW, packet sending:

41.14μW, sensors: 19.68 μW) (10s measurement interval, 10s transmission

interval).. 92

Figure 7.7. customized UMAC. .. 98

Figure 7.8. NH hash function with word size w = 16 and number of words processed in a

NH block n = 4. ... 99

Figure 7.9. UMAC with RC4. ... 100

Figure 8.1. Encryption and Authentication CPU usage (24 bytes packet size)................. 112

Figure 8.2. Counter XORed with unique node address in the CTR mode. 117

Figure 8.3. TinyMote packet structure with encryption and authentication...................... 118

Figure 8.4. Encryption and authentication power consumptions. 120

 Addendum A

Electrical, Electronic and Computer Engineering 134

LIST OF TABLES

Table 2.1. A comparison between mobile ad-hoc network and wireless sensor network... 19

Table 2.2. An overview of different devices’ power consumptions.................................... 23

Table 2.3. Comparisons between TinyMote and MICA2/MICA2DOT sensor nodes. 30

Table 8.1. Cryptographic ciphers memory requirements. ... 103

Table 8.2. Cryptographic ciphers CPU usage. .. 104

Table 8.3. Additional cryptographic ciphers memory requirements and CPU usage. 105

Table 8.4. UMAC-XTEA CPU usage. .. 108

Table 8.5. UMAC-RC4 CPU usage. ... 109

Table 8.6. OCB-XTEA CPU usage on 24 bytes data (8-byte header, 16-byte data). 110

Table 8.7. Encryption and Authentication CPU usage (24 bytes packet size). 112

Table 8.8. Number of block cipher calls needed for various size data packets................. 114

Table 8.9. Encryption and authentication power consumptions.. 120

	FRONT
	Title page
	Summary
	Opsomming
	List of abbreviations
	Contents

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	REFERENCES
	ADDENDUM A
	LIST OF TABLES

