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SUMMARY 
 

The concept of wireless sensor network (WSN) is where tiny devices (sensor nodes), 

positioned fairly close to each other, are used for sensing and gathering data from its 

environment and exchange information through wireless connections between these nodes 

(e.g. sensor nodes distributed through out a bridge for monitoring the mechanical stress 

level of the bridge continuously). In order to easily deploy a relatively large quantity of 

sensor nodes, the sensor nodes are typically designed for low price and small size, thereby 

causing them to have very limited resources available (e.g. energy, processing power). 

Over the years, different security (cryptographic) primitives have been proposed and 

refined aiming at utilizing modern processor’s power e.g. 32-bit or 64-bit operation, 

architecture such as MMX (Multi Media Extension) and etc. In other words, security 

primitives have targeted at high-end systems (e.g. desktop or server) in software 

implementations. Some hardware-oriented security primitives have also been proposed. 

However, most of them have been designed aiming only at large message and high speed 

hashing, with no power consumption or other resources (such as memory space) taken into 

considerations. As a result, security mechanisms for ultra-low power (<500μW) devices 

such as the wireless sensor nodes must be carefully selected or designed with their limited 

resources in mind. 
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The objective of this project is to provide implementations of security primitives (i.e. 

encryption and authentication) suitable to the WSN environment, where resources are 

extremely limited. The goal of the project is to provide an efficient building block on 

which the design of WSN secure routing protocols can be based on, so it can relieve the 

protocol designers from having to design everything from scratch. 

This project has provided three main contributions to the WSN field. 

 Provides analysis of different tradeoffs between cryptographic security strength and 

performances, which then provide security primitives suitable for the needs in a WSN 

environment. Security primitives form the link layer security and act as building 

blocks for higher layer protocols i.e. secure routing protocol. 

 Implements and optimizes several security primitives in a low-power microcontroller 

(TI MSP430F1232) with very limited resources (256 bytes RAM, 8KB flash program 

memory). The different security primitives are compared according to the number of 

CPU cycles required per byte processed, specific architectures required (e.g. 

multiplier, large bit shift) and resources (RAM, ROM/flash) required. These 

comparisons assist in the evaluation of its corresponding energy consumption, and 

thus the applicability to wireless sensor nodes. 

 Apart from investigating security primitives, research on various security protocols 

designed for WSN have also been conducted in order to optimize the security 

primitives for the security protocols design trend. Further, a new link layer security 

protocol using optimized security primitives is also proposed. This new protocol 

shows an improvement over the existing link layer security protocols. 

Security primitives with confidentiality and authenticity functions are implemented in the 

TinyMote sensor nodes from the Technical University of Vienna in a wireless sensor 

network. This is to demonstrate the practicality of the designs of this thesis in a real-world 

WSN environment. 

This research has achieved ultra-low power security primitives in wireless sensor network 

with average power consumption less than 3.5 μW (at 2 second packet transmission 

 
 
 



Chapter   1  Introduction  

Electrical, Electronic and Computer Engineering 4

interval) and 700 nW (at 5 second packet transmission interval). The proposed link layer 

security protocol has also shown improvements over existing protocols in both security and 

power consumption. 

Keywords: Wireless Sensor Network (WSN), ultra-low power, security, cryptographic 

primitives, Message Authentication Code (MAC), UMAC, OCB. 

 
 
 



OPSOMMING 
｀n Draadlose sensornetwerk (DSN) behels klein toestelle (sensornodusse) wat naby 

mekaar geplaas word. Hierdie toestelle versamel data van die omgewing en ruil die data 

met ander nodusse deur gebruik te maak van draadlose verbindings. ‘n Voorbeeld van ‘n 

draadlose sensornetwerk is sensornodusse wat oor ‘n brug versprei is om die meganiese 

stresvlakke wat daarop inwerk deurloops te monitor. Die sensornodusse word tipies 

ontwerp om goedkoop en klein te wees sodat ‘n relatiewe groot aantal in werking gestel 

kan word. Dit beteken egter dat elke sensornodus min hulpbronne beskikbaar het (bv. 

energie, verwerkingskrag).  

Verskillende sekuriteitselemente (kriptografiese elemente) was voorgestel en verbeter deur 

die jare. Die doel van die verbeterings was om moderne verwerkers se krag in te span (32-

bis en 64-bis verwerking), argitekture soos MMX (“Multimedia Extension”) te gebruik, 

ens. Die sagteware implementering van sekuriteitselemente was dus gemik op hoë-vlak 

stelsels (“desktop” of bediener rekenaars). Sommige hardeware-georienteerde 

sekuriteitselemente was ook voorgestel, maar die ontwerp van hierdie elemente 

konsentreer hoofsaaklik op hoë spoed hutsing, sonder enige ag vir kragverbryk of ander 

hulpbronne (soos geheuespasie). Sekuriteitselemente vir lae-drywing (<500μW) toestelle, 

soos die draadlose sensornodusse, moet daarom versigtig gekies word of ontwerp word 

met begrip van die beperkte hulpronne. 

Die oogmerk van hierdie projek is om die implementasie van sekuriteitselemente (syfering 

en waarmerking) wat geskik is vir die DSN (waar hulpbronne uiters beperk is) te voorsien. 

Die doel van die projek is om ‘n doeltreffende boublok te voorsien waarop die ontwerp van 

versekerde DSN roeteringsprotokolle uitgevoer kan word. Hierdie boublok het tot gevolg 

dat protokolontwerpers nie ‘n hele projek van nuuts af hoef te ontwerp nie. 

Hierdie projek bied drie bydraes tot die DSN vakgebied.  

 Bied ‘n analise van verskillende wisselwerkings tussen kriptografiese sterkte en 

werkverrigting. Hierdie analise bied sekuriteitselemente wat geskik is vir die 

behoeftes van die DSN omgewing. Sekuriteitselemente vorm die skakelvlak sekuriteit 

en dien as boublokke vir hoë-vlak protokolle (bv. die versekerde roeteringsprotokol). 

 Implementeer en optimiseer verskeie sekuriteitselemente in ‘n lae-drywing 
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mikrobeheerder (TI MSP430F1232) met beperkte hulpbronne (256 grepe RAM, 8 

kilogrepe “flash” programgeheue). Die verskillende sekuriteitselemente word 

vergelyk in terme van die aantal verwerkersiklusse wat per verwerkte greep benodig 

word, asook die spesifieke argitekture wat benodig word (bv. vermenigvuldiger, groot 

bisskuif) en hulpbronne wat benodig word (RAM, ROM/”flash”). Hierdie 

vergelykings help in die evaluasie van die ooreenstemmende energieverbruik, en 

daarom die toepaslikheid tot draadlose sensornodusse. 

 Navorsing was ook uitgerig op verskeie sekuriteitsprotokolle wat vir die DSN 

ontwerp is. Die doel van hierdie navorsing is om die sekuriteitselemente vir die 

sekuriteitsprotokol ontwerpsneiging te optimeer. ‘n Nuwe skakelvlak 

sekuriteitsprotokol wat geoptimeerde sekuriteitselemente gebruik word ook 

voorgestel. Hierdie protokol toon ‘n verbetering oor bestaande skakelvlak 

sekuriteitsprotokolle. 

 Sekuriteiteselemente met vertroulikheids- en waarmerkingsfunksies word in ‘n DSN 

geimplementeer met die “TinyMote” sensornodusse van die Technical University of 

Vienna. Hierdie nodusse word gebruik om die doelmatigheid van die ontwerpte 

stelsels van hierdie tesis in ‘n realistiese DSN omgewing te demonstreer. 

Hierdie navorsing het lae drywing sekuriteitselemente in ‘n DSN bereik. Die gemiddelde 

kragverbruik was minder as 3.5 μW (met 2 sekonde pakkie versendingsintervalle) en 700 

nW (met 5 sekonde pakkie versendingsintervalle). Die skakelvlak sekuriteitsprotokol wat 

voorgestel is toon verbeterings oor bestaande protokolle in beide sekuriteit en kragverbruik. 
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   1 
INTRODUCTION 

1.1. Background 

A wireless sensor network (WSN) is one in which tiny devices (sensor nodes), positioned 

fairly close to each other, are used to sense and gather data from their environment and to 

exchange information through wireless connections between these nodes. Apart from the 

built-in sensors, these sensor nodes also have wireless transceivers and power sources 

built-in allowing them to work autonomously. Sensor networks have been undergoing 

extensive research and studies in recent years because of their various potential 

applications, such as monitoring the safety and security of buildings or homes (intelligent 

buildings and homes), measuring traffic flows, tracking environmental pollutants, 

monitoring factory instrumentations, monitoring temperature and lightings on a farm or in 

a greenhouse. Sensor nodes can even be distributed throughout a bridge allowing them to 

continuously sense and monitor the mechanical stress level of the bridge. In order to easily 

deploy a relatively large number of sensor nodes, the sensor nodes are typically designed 

for low price, small size and long operation life, which causes them to have very limited 

resources available (e.g. energy, processing power and memory size). 

When speaking of the security of any system, it can be categorized into three main 

concerns: Confidentiality, Integrity and Authenticity (or sometimes Availability) (C.I.A.). 

Security primitives are used to achieve these basic concerns. For example, encryption 
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algorithms are used to achieve confidentiality, while cryptographic hash functions or 

message authentication codes (MAC) are used for achieving integrity and authenticity. 

Over the years, different security primitives have been proposed and refined aiming at 

utilizing modern processing power e.g. 32-bit or 64-bit systems, SIMD (Single Instruction 

Multiple Data) architecture such as MMX (Multi Media Extension) etc. In other words, 

security primitives have targeted the high-end systems (e.g. desktop or server) in software 

implementations. Several hardware-oriented security primitives have also been proposed. 

However, most of them have been designed aiming only at large messages and high-speed 

processing, with no power consumption or other resources (such as memory space) taken 

into consideration. As a result, security mechanisms for ultra-low power devices such as 

wireless sensor nodes must be carefully selected or designed with their limited resources in 

mind. Ultra-low power at the moment is typically referring to power consumption less than 

500μW. 

1.2. Problem Statement 

Many available WSN systems lack even the link layer security features or, in those cases 

where the security features are implemented, they are too resource intensive. In other 

words, data communicated in a WSN lacks basic security mechanisms such as 

confidentiality (privacy) and authenticity, which is a major problem in certain applications. 

The objective of this thesis is to provide implementations of security primitives (i.e. 

encryption and authentication) suitable to the WSN environment, where resources are 

extremely limited. The goal is to provide an efficient building block on which the design of 

WSN secure routing protocols can be based, so that it can relieve the protocol designers 

from having to design everything from scratch. 

1.2.1. The Need for Confidentiality and Authenticity in Wireless Sensor Networks 

As pointed out in [7], many WSN applications have had to compromise on the security of 

the sensor network due to the constrained sensor node resources. To many sensor networks, 
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information confidentiality may not be too much of an issue e.g. sensor readings 

monitoring the habitats of a lake or temperature at different parts of a factory. However, 

information authenticity and integrity are needed in most WSN [7] [9], and they may be 

crucial to prevent catastrophic losses due to malicious attacks. For example, it would be 

undesirable to allow any person to modify sensor readings on the status of valves in a 

factory, and thereby causing incorrect system responses due to this wrong sensor reading. 

On the other hand, as sensor networks become more widely used, many other applications 

will need both information confidentiality and authenticity. For example, although people 

may not be concerned with others obtaining sensor readings monitoring habitat of a lake, 

they are more likely to be concerned if their personal living environment or the readings in 

a health monitoring application become known by others. Furthermore, sensor networks 

deployed in a military environment would also require confidentiality apart from 

authenticity of the information. 

1.3. Overview of Current Literature 

Wireless sensor network routing protocols, because of the extremely limited resources 

available, have been designed without a strong sense of security. Perrig et. al. [1] have 

proposed a security protocol named SPINS (Security Protocols for Sensor Networks) to 

provide data confidentiality, data authentication (both two-party and broadcast 

authentication) and data freshness. In other words, SPINS provides security for the link 

layer protocols. SPINS adopted a block cipher as its cryptographic primitive on which all 

of its operations are based (i.e. encryption, authentication and random number generation). 

However, as pointed out by Menezes et. al. in [2], this is not a very good implementation; 

the randomness of the random number generator that is based on a block cipher may lead 

to unexpected security problems. Another link layer security system, TinySec [6], was 

proposed several years after SPINS, also by UC Berkeley but by a different group of 

researchers. TinySec uses a different block cipher to provide authenticity and 

confidentiality. Karlof and Wagner [3] have conducted a study of different attacks on a 

variety of WSN routing protocols. They have shown that it is also not enough to apply link 

layer security protocols (i.e. SPINS or TinySec) directly to an existing routing protocol as a 
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security patch. According to Karlof and Wagner [3], it is unlikely a sensor network routing 

protocol can be made secure by incorporating security mechanisms after the rest of the 

design has been completed. Therefore, it is important to design a routing protocol with 

security in mind right from the beginning, which is beyond the scope of this paper. This 

paper is aimed at providing the security primitives needed to allow such secure routing 

protocols to be built on, or in other words, providing security at the link layer. 

Ganesan et. al. [4] have showed comparisons of a variety of security algorithms with 

respect to their performance costs such as number of clock cycles, processing time and 

required code size. These comparisons are performed on a wide range of platforms, thus 

providing a good indication when choosing security algorithms for low-end embedded 

devices. Ganesan et. al. in [4] have provided a good guidance to several well-known 

security algorithms on a wide-range of microprocessors and microcontroller architectures. 

However, all algorithms in [4] are studied from a software implementations perspective; no 

hardware implementations of security algorithms have been studied (i.e. a security 

algorithm on a dedicated piece of hardware). Law et. al. in [5] have proposed further 

improvements over SPINS in [1] by categorizing WSNs into different “profiles”. It also 

used a different block cipher than the one used in SPINS, and was implemented on a Texas 

Instrument MSP430 microcontroller. Similar to the studies in [4], Law et. al. in [5] have 

also only concentrated on implementations of security algorithms from a software 

perspective with a microcontroller. Apart from focusing mainly on software 

implementations for microcontrollers, most current studies have also been focusing only on 

block ciphers. 

1.4. Contributions 

This dissertation provides three main contributions to the WSN field. 

• Provides an analysis of different tradeoffs between cryptographic security strength 

and performance, which can then be used to select security primitives suitable for 

the needs of a WSN environment. Security primitives form the link layer security 

 
 
 



Chapter   1  Introduction  

Electrical, Electronic and Computer Engineering 16

and act as building blocks for higher layer protocols i.e. secure routing protocol.  

• Implements and optimizes several security primitives in a low-power 

microcontroller (TI MSP430F1232) with very limited resources (256 bytes RAM, 

8KB flash program memory). The different security primitives are compared 

according to the number of CPU cycles required per byte processed, specific 

architectures required (e.g. multiplier, large bit shift) and resources (RAM, 

ROM/flash) required. These comparisons assist in the evaluation of its 

corresponding energy consumption, and thus the applicability to wireless sensor 

nodes. 

• Apart from investigating security primitives, research on various security protocols 

designed for WSN have also been conducted in order to optimize the security 

primitives for the security protocols design trend. Further, a new link layer security 

protocol using optimized security primitives is also proposed. This new protocol 

shows an improvement over the existing link layer security protocols. 

Security primitives with confidentiality and authenticity functions are implemented in the 

TinyMote [12] sensor nodes (equipped with MSP430F1232 MCU) in a WSN. This is to 

demonstrate the practicality of the designs of this thesis in a real-world WSN environment. 

The remaining of this dissertation is organized as follows: chapter 2 and 3 discuss and 

provide a background understanding on the existing WSNs and security concerns of WSNs; 

chapter 4 discusses various cryptographic ciphers and their applicability to the WSN 

environment; chapter 5 discusses the UMAC authentication algorithm; chapter 6 discusses 

several types of existing link layer security protocols in WSNs; chapter 7 shows how 

different cryptographic ciphers are adapted and implemented in this dissertation; chapter 8 

and chapter 9 provide the results and analysis of the implementations. 

 
 
 



   2 
WIRELESS SENSOR NETWORKS 

Wireless technologies are becoming more advanced and mature with many off-the-shelf 

wireless chips available in the market. On the other hand, microcontrollers are also 

becoming smaller and consuming less power. It is therefore inevitable for the combination 

of the two technologies, in addition with sensor technologies, to result in wireless sensor 

networks. In order to deploy a fairly large-scale network of sensor nodes, the cost of 

individual nodes must be minimized. As a result, sensor nodes are often very resource 

constrained: small code size/memory space, limited computation power and limited energy 

resources. This has made security concerns in WSN very different from traditional network 

security systems. This chapter discusses these properties found in wireless sensor networks. 

A brief overview of existing wireless sensor networks and a comparison between the 

commercialized sensor node MICA2 and the TinyMote is also provided. The TinyMote is 

the sensor node used in this paper. 

2.1. Wireless Sens or Network versus Mobile Ad-Hoc Networks 

Before sensor network security are discussed in detail, it is important to first identify what 

a wireless sensor network (WSN) is and what it is not! First of all, a WSN should not be 

considered as an equivalent to a mobile ad-hoc network. When referring to mobile ad-hoc 

networks (also known as MANET), the nodes involved are often heterogeneous devices in 

nature and are usually mobile with no fixed position [8]. This means that the network 
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topology is highly dynamic with nodes joining, leaving or roaming in the network. These 

nodes may also be connected to the ad-hoc network for only a short amount of time. For 

example, an ad-hoc network may be temporarily formed at a conference meeting where the 

nodes involved are devices such as PDAs, cell phones, laptops or tablets (tablet PC). This 

kind of ad-hoc network is also known as spontaneous networking [23]. The nodes involved 

in an ad-hoc network may be any devices ranging from customized ad-hoc devices to cell 

phones or PDAs.  

On the other hand, a wireless sensor network often has a more closed architecture with 

specific design goals and purpose e.g. measuring temperature at different places within a 

building. As a result, the nodes involved in a wireless sensor network are mainly identical 

in hardware (homogeneous) and are designed aiming at an extremely low-cost for a large 

amount of deployment. As pointed out by Akyildiz et. al. in [10], the number of sensor 

nodes in a WSN can be several orders of magnitude higher than the number of nodes in an 

ad-hoc network. Due to the extremely low-cost nature of WSN nodes, these nodes are 

usually even more resource constrained than most ad-hoc network nodes, with less 

memory and computation power in order to achieve lower cost and longer battery life. 

WSN are also usually immobile and with different traffic patterns to an ad-hoc network [9]. 

One or more base stations often exist in WSN. Base stations are more powerful nodes with 

rich computational, memory, energy and radio resources. A base station may exist in the 

form of a PC or server and it is where the sensor data flows to and is stored. It is therefore 

also known as the sink node. Base stations may act as a gateway between a WSN and 

another network; therefore base stations may be connected to outside TCP/IP networks. 

These resourceful nodes are sometimes also known as rich uncles [5]. Table 2.1 provides a 

summary of comparisons between MANET and WSN. 
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Table 2.1. A comparison between mobile ad-hoc network and wireless sensor network. 

Mobile Ad-Hoc Network (MANET) Wireless Sensor Network (WSN) 

Open architecture allowing heterogeneous 

devices (nodes) (e.g. PDA, cell phone and 

laptop). 

Closed architecture with specific design 

goals in mind therefore homogeneous 

devices (nodes). 

Requires no interaction with the 

environment. 

Requires interaction with the environment. 

Dynamic topology (mobile nodes). Both fixed (static nodes) and dynamic 

topologies exist. 

Point-to-point communications. Broadcast communication paradigm. 

May not be using any base station. Base station exists. 

Nodes often have more resources available 

(memory, computation power, energy). 

Nodes have less resources compared to ad-

hoc networks. 

Operational lifetime varies, often less than 

that of a WSN. 

Need to operate for a longer period of time 

(<6 months). 

 

The concept of an ad-hoc network has been around for longer than the concept of a 

wireless sensor network and so there is more literature on ad-hoc networks. Although both 

ad-hoc network security and WSN security need to be designed with resource constraints 

in mind, in many cases the security designs for ad-hoc network are still too heavy for the 

resources available in WSN in terms of memory usage and per packet processing overhead 

[9]. An example would be the secure routing protocol designed for ad-hoc network in [11], 

which is still too resource intensive to be implemented in WSN. WSN in general have 

fixed topologies, however, some sensor networks (e.g. EYES [21] and PicoRadio [31]) 

share some of the properties of a MANET i.e. they are ad-hoc and mobile. The security 

primitives in this paper are implemented and demonstrated on a fixed topology WSN, 

where sensor nodes are immobile. Figure 2.1 is a representation of a typical WSN 

architecture. 
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Figure 2.1. Representation of a wireless sensor network architecture. 

 

Base stations (sink nodes) are often connected to each other via low latency, high 

bandwidth, and long distance RF links. A base station may also act as a gateway to be 

connected to a wired outside network (e.g. Ethernet). On the other hand, sensor node RF 

links have lower power consumptions which increase the sensor node’s operating life due 

to the limited energy resources in sensor nodes.  

Base station/sink node

Sensor node 
Low power RF link

High bandwidth RF link

Outside network 

High bandwidth wired link

 
 
 



Chapter   2  Wireless Sensor Networks  

Electrical, Electronic and Computer Engineering 21

2.2. Properties of Wireless Sensor Network 

When designing security functions for WSN, there are many properties of WSN that need 

to be considered which are not present in conventional networks. Therefore, security 

primitives and protocols that are used in conventional networks may not be suitable for 

direct use in a WSN environment. As mentioned in the previous section, even security 

protocols designed for the already resource constrained ad-hoc network may not be 

suitable for WSN. Some of the properties of WSN and their consequences to security 

functions are noted in this section. 

 

Figure 2.2. Functional diagram of a wireless sensor node. 

 

Figure 2.2 shows the functional diagram of a typical wireless sensor node. In some sensor 

nodes the ambient environment can provide power to the sensor node, usually by 

converting light or acoustic noise into electricity. Therefore ambient environments not only 

provide sensor readings, but may also form an energy source. Some sensor nodes may also 

be equipped with application specific integrated circuits (ASICs) or digital signal 

processors (DSPs) to perform certain functions that may be too resource intensive for the 

general purpose microcontroller (e.g. cryptographic functions). Reconfigurable hardware 

(e.g. field programmable grid arrays (FPGAs)) may also exist to provide low level protocol 

functions that would otherwise be too resource intensive for the microcontroller. 

Sensors Microcontroller Communications 
interface 

Power 
source 

ASIC/DSP

Ambient environment 

Other 
sensor nodes
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2.2.1. Limited Computational Power 

In order to achieve large-scale deployment of sensor nodes, a low-cost processing unit (e.g. 

a low-cost microcontroller) is often selected when designing sensor nodes. Furthermore, 

computational power is also often sacrificed in order to achieve lower power consumption. 

As a result, asymmetric encryption (public key cryptography) is not appropriate for WSN 

as it typically requires several times more computation than symmetric encryption, which 

violates the aim of conserving power [5] [9]. 

2.2.2. Limited Memory 

Due to their low-cost and low-power nature, microcontrollers chosen for WSN purposes 

have very limited code memory and RAM. One example is TinyMote [12], which has only 

256 bytes of RAM and 8Kbytes of flash. As a result, cryptographic functions requiring 

large code size or a lot of RAM are not suitable for WSN. For example, the block cipher 

AES needs large look-up tables which takes up code space; the stream cipher RC4 needs at 

least 256 bytes for a look-up table in RAM to provide the byte swapping mechanisms. 

Furthermore, the difference between microcontroller word sizes will also greatly influence 

the code size required [4]. For example, certain 8-bit microcontrollers may require up to 

50% more code space when compared to a 16-bit microcontroller [4]. 

2.2.3. Limited Energy Resources 

The most common power sources for WSN are the batteries. WSN need to be able to 

operate for a long time without human intervention, therefore every milliamp need to be 

used wisely. Power conservation can be said to be of highest importance in sensor 

networks. As sensor nodes may be deployed at places which are difficult to reach due to 

terrain obstacles, it is important for the sensor nodes to conserve energy so that it may last 

for a relatively long period of time (ranging from 6 months up to 10 years!). 

When speaking of the ultra-low power consumption of sensor nodes, it is important to first 

understand what is meant by ultra-low power. The following table gives an overview on 
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the ranges between different devices’ power consumptions. 

Table 2.2. An overview of different devices’ power consumptions. 

Application Power source Power range 

Desktop computer Power grid 150W – 500W 

Laptop High capacity battery 10W – 120W 

Mobile devices Battery 5W – 10W 

Handheld devices Battery 100mW – 5W 

Wireless sensors (including 

ad-hoc network nodes) 

Tiny batteries 1mW – 100mW 

Ultra-low power wireless 

sensors 

Tiny batteries or energy 

scavenging 

1μW – 500μW 

 

As shown in Table 2.2, ultra-low power typically refers to power below 500μW. Energy 

scavenging is when energy is “scavenged” from the environment; for example converting 

energy from ambient acoustic noise, vibration, heat or light into electrical energy (Figure 

2.2). Sensor nodes that are powered solely by power scavengers are called self-powered. 

Self-powered sensor nodes are autonomous and are suitable to be placed at locations that 

may be inaccessible after deployment [20]. 

Power consumption in WSN can be divided into three domains [10]: communication, data 

processing and sensing. 

2.2.3.1. Power consumption in communication 

Wireless transceiver is the major source of power consumption in WSN. Modern wireless 

transceivers are designed for lower and lower current consumptions and are now in the 

range of tens of milliamps. However, this power consumption is still too high for the ultra-

lower power WSN environment, which as mentioned above, requires less than hundreds of 

micro-watts. As a result, in order to reduce power consumption due to communication, 
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sensor nodes have often been designed with low operational duty cycle and short data 

packet size.  

A low duty cycle is one in which the sensor node (including the transceiver) is switched off 

or to a sleep mode when it is not transmitting any data, which allows the sensor node to 

remain in a power conserving mode most of the time. For example, the Intel mote [13] is 

aimed at maintaining an operational duty cycle of less than 1%. Ideally, in order to 

maximize efficiency and prevent wasted power, transmission or reception of data should 

take place right after the sensor node has woken up i.e. sensor nodes should be 

synchronized. This is the responsibility of a medium access control protocol1 (a link layer 

protocol). Some example medium access control protocols are WiseMAC [15], STEM [16], 

BitMAC [17] and CSMA-MPS [18]. 

Transceivers have both wakeup and active power consumption. Most sensor nodes have 

been adopting low bit rate transceivers of up to 115Kbps, because the data volume is very 

small in WSN. However, recent research ([18] [19]) has shown that high bit rate (greater 

than 1Mbps) with short transmit and receive turn-around time can greatly reduce power 

consumption in communication. This is especially true for medium access control 

protocols that need to constantly switch between short intervals of transmit (TX) and 

receive (RX) mode (e.g. CSMA-MPS [18], STEM [16]); therefore reducing the transmit 

and receive turn-around time essentially reduces the start-up time and thereby also the 

wakeup power consumed. 

2.2.3.2. Power consumption in data processing 

In order to reduce power consumption, the time taken for local data processing at every 

node should be kept minimal. This also helps to achieve the aim of a low duty cycle. 

Different low-power microcontrollers are used in sensor nodes, for example MSP430 (16-

                                                 
1 The abbreviation for Medium Access Control is also MAC. Do not confuse this with the Message 

Authentication Code abbreviation MAC. Since this dissertation discusses security issues of 

WSN, MAC in this paper will only be used as message authentication code. 
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bit) in TinyMote [12], AVR ATmega 128 (8-bit) in Crossbow MICA motes [14] and ARM 

(16/32-bit) in Intel motes [13]. It is worth noting that different microcontroller word sizes 

will influence performance on different operations [4]. For example, a larger word size will 

benefit large bit size shift operations. As a result, encryption algorithms such as RC5 

perform better in a 16-bit architecture than in an 8-bit architecture. On the other hand, RC4, 

which was designed for efficient byte operations, performs better in an 8-bit architecture 

[4]. The most common ways to conserve power consumed by microcontrollers is to switch 

between the different low-power modes provided by the microcontroller. However, as 

pointed out in [10], other low power techniques such as dynamic voltage scaling and CPU 

organization strategies still need to be explored. Similarly to wireless transceivers, 

microcontrollers also need wakeup time from the power saving sleep mode; therefore 

faster wakeup time will benefit power saving because sensor nodes need to frequently 

switch between sleep mode and active mode. 

2.2.3.3. Power consumption in sensing 

Sensor nodes may be used to collect various types of ambient data such as lighting, 

temperature, humidity, sound etc. Most sensor nodes have sensors designed as modular 

sensor boards allowing easy expansion [14][13]; therefore different sensor applications 

will have different power consumptions. 

2.2.4. Small Data Packet Size 

As discussed in the previous section, one of the most power consuming components in a 

sensor node is the RF transceiver. In order to reduce the usage of the transceiver, the size 

of packets sent wirelessly must be kept minimal [6] [7]. As packet size becomes smaller, 

the wakeup power for the transceiver becomes more important because the time needed to 

transmit a packet may be comparable to the transceiver wakeup time. 

2.2.5. Wireless Communication 

Wireless communication makes it possible for eavesdropping on a communication if it was 
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sent in plaintext. Physical jamming of the RF signal can also occur with wireless 

communication. However, it is possible to avoid such attacks by using frequency hopping 

and spread spectrum communication [9].   

2.2.6. Susceptible to Physical Capture 

Sensor nodes are often widely scattered across a large area, therefore it may be physically 

captured by an attacker. This characteristic, together with the characteristic that shared 

symmetric keys are often used in WSN, leads to the disadvantage that once a node is 

compromised, it means the secret key for the whole network is known. Law et. al. [5] 

consider tamper-resistant sensor nodes to be a must in WSN in order to protect the 

symmetric keys in all sensor nodes. However, Shi et. al. [9] and Karlof and Wagner [3] on 

the other hand consider that because sensor nodes are targeted for low cost, tamper-

resistant hardware is unlikely to prevail. 

2.3. Existing Wireless Sensor Networks 

2.3.1. PicoRadio 

PicoRadio [31] is a project at the Berkeley Wireless Research Centre (BWRC). It is 

designed to be a low-power self-configuring ad hoc network that covers a wide range of 

applications. Applications range from environmental monitoring, smart homes, warehouse 

inventories, health monitoring and drug administration in hospitals to interactive toys. In 

order to achieve low power, the PicoRadio project is aimed at addressing a complete 

system design throughout all protocol layers. 

PicoRadio relies on dual radio transceivers: a main radio and a wakeup radio. The wakeup 

radio is an ultra-low-power transceiver that runs at 100% duty cycle. It monitors the 

wakeup channel for beacons to wakeup the main radio; therefore the main radio can remain 

switched off most of the time, thus saving energy. The power consumption goal for the 

ultra-low-power radio is 1 μW, however, this has not yet been realized. In the medium 
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access control protocol, because wakeup radio runs at 100% duty cycle, the sensor nodes 

require no synchronization as they can be woken up at any time. The main radio is a multi-

channel transceiver which allows different channels to be used for communication to 

reduce collision, which also reduces power for retransmission. 

2.3.2. WiseNET 

Wireless Sensor Networks (WiseNET) [32] is a long-term research project at the Swiss 

Centre for Electronics and Micro-technology (CSEM). The main objective is to develop a 

low-power wireless ad hoc network with distributed sensor nodes combining sensing and 

signal processing capabilities. 

Much of the design emphasis in WiseNET has been in the lower layers: in the medium 

access control protocol and the low voltage ultra-low power radio transceiver. The 

WiseMAC medium access control protocol is a novel design that combined concepts from 

time division multiple access (TDMA) and carrier sense multiple access (CSMA) protocols. 

A low voltage ultra-low power radio transceiver has also been designed for sensor network 

applications. The current consumption of the receiver is typically 2 mA at 0.9 V supply 

voltage. The average power consumption is 25 μW at a duty cycle of about 1.5%. 

2.3.3. EYES 

The EYES project [21] is a three year European research project to develop the 

architecture and the technology to enable the creation of sensors that can be networked 

together and support a large variety of mobile sensor applications. It is aimed at supporting 

various devices such as laptops, PDAs, mobile phones etc. As a result, the EYES network 

overlaps with both the fields of wireless sensor networks (WSN) and mobile ad hoc 

networks (MANET). In the EYES approach, two distinct abstraction layers are defined. 

One is the sensor and networking layer containing nodes and communication protocols up 

to the network layer. The other one is the distributed service layer containing lookup 

services and information services. 
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The EYES prototype wireless node has the following specifications: 16-bit 8 MHz 

microcontroller; 60 KB flash, 2 KB RAM; additional 1MB serial RAM; 868.35 MHz radio; 

and a bandwidth of 115.2 Kbps. EYES nodes use an operating system called PEEROS [35] 

(PreEmptive Eyes Real-Time Operating System), which requires about 10KB of code 

memory. The 16-bit microcontroller used is the Texas Instrument MSP430x149 [33], 

which is the same microcontroller series used in TinyMote [12]. The security primitives in 

this paper are implemented on TinyMote nodes. 

2.3.4. TinyMote from the Technical University of Vienna 

TinyMote [12] is a sensor node developed by the Technical University of Vienna (TUV). 

At the moment only medium access control protocols have been designed for TinyMote 

nodes, so the nodes have only been set up as a simple multi-node sensor network without a 

complex networking protocol. All security primitive experiments, comparisons and 

adaptations of this paper are based on TinyMote nodes. 

The medium access control protocol, CSMA-MPS (carrier sense multiple access with 

minimum preamble sampling), combines design concepts from protocols WiseMAC and 

STEM [16]. CSMA-MPS has been shown to be more efficient than either WiseMAC or 

STEM, particularly when it is used with a high bit rate transceiver (greater than 1 Mbps) 

(refer to section 2.2.3.1 for more explanations). As a result, the average power 

consumption in TinyMote nodes due to radio communication is less than 50% of the total 

power consumption. A total power consumption of less than 200μW can be achieved (at 2 

second sensor sampling interval); resulting in few years of battery life (two AA batteries). 

TinyMote nodes have the following specifications: 16-bit 1MHz microcontroller; 8 KB 

flash; 256 bytes of RAM; 2.4 GHz radio and 1 Mbps of bandwidth. The 16-bit 

microcontroller used is the Texas Instrument MSP430F1232 [33]. 

2.3.5. Crossbow Smart Dust WSN 

Crossbow [14] is a company that manufactures the Mica series of commercialized sensor 

nodes. The Mica nodes inherit much of their design concepts from the UC Berkeley Smart 
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Dust nodes. MICA nodes also use the 8-bit Atmel AVR [34] microcontrollers and run the 

TinyOS operating system. MICA nodes use separate sensor board modules for different 

sensor requirements. The sensor board modules vary from light, temperature, humidity and 

acoustic to acceleration and GPS. 

The medium access control protocol and the networking protocol are integrated into one 

protocol called the XMesh (previously known as Surge Time Sync or ReliableRoute). This 

is a network time synchronized protocol (within 1ms). The average battery life of MICA 

nodes ranges from a few months to less than 2 years (1.5 years at a 6-minute sampling 

interval). A typical MICA2 node has the following specifications: 8-bit 8MHz 

microcontroller (ATMega128L); 128KB flash (code); 512KB flash (data logging); 4KB 

EEPROM (configuration); 4KB RAM; ISM radio bands and a bandwidth of 38.4 Kbaud. 

2.4. Comparisons between TinyMote and MICA2/MICA2DOT 

In the previous section, several other existing sensor networks are briefly discussed. 

However, it is also important to have an understanding of how other available WSN differs 

from the TinyMote WSN platform used in this paper. The MICA2/MICA2DOT nodes are 

popular commercially available sensor nodes found in Crossbow Smart Dust WSN [14]. 

The tables below summarize comparisons between TinyMote and MICA2/MICA2DOT 

sensor networks. Both sensor networks have no security primitives implemented. 
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Table 2.3. Comparisons between TinyMote and MICA2/MICA2DOT sensor nodes. 

 Power consumption RF current consumption 

5s 10s RX TX (-5dBm) TX (0 dBm)
TinyMote 

141μW 70μW 24mA 15mA 19mA 

1 min 3 min 6 min RX TX (maximum power) 
MICA2/ 

MICA2DOT 
1.83mW 850.5μW 529.2μW

8mA 

(MICAz – 

19.7mA) 

25mA (MICAz – 17.4mA) 

(a) 

 

 Memory 
word 

size

RF data 

rate 

RF 

range 

TinyMote 

8KB 

flash 

(code) 

256 byte 

flash 

(config)

256 byte RAM  
16-

bit 
1 Mbps 

100m 

(LOS) 

MICA2/ 

MICA2DOT 

128KB 

flash 

(code) 

512KB 

flash 

(code) 

4KB 

EEPROM 

(config) 

4KB 

RAM
8-bit

38.4 Kbaud 

(MICAz – 

256 Kbps 

304.8m 

(1000 ft) 

(LOS) 

(b) 
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Processor 

frequency
OS 

MAC2 

protocol 

Networking 

protocol 

Typical 

operation 

life 

TinyMote 

1MHz @ 

2.0V 

(1MIPS) 

none CSMA-MPS
under 

development 

5.5 years 

@ 5s 

sampling 

interval 

MICA2/ 

MICA2DOT 

8MHz @ 

2.7V 

(8MIPS) 

TinyOS XMesh 

XMesh 

(Surge Time 

Sync) 

<1.5 

years @ 

6min 

sampling 

interval 

(c) 

 

 Sensors 
Power 

source 

TinyMote 

Light, 

temperature, 

humidity. 

(currently fixed 

sensor design) 

Battery, 

solar cell 

with ultra 

capacitor 

MICA2/ 

MICA2DOT 

Light, 

temperature, 

humidity, 

acceleration, 

GPS, acoustic. 

(expandable 

sensor boards) 

Battery 

(d) 

                                                 
2 MAC refers to Medium Access Control 
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It is observed that TinyMote WSN is aimed at lower level, less complex applications: 

• Most sensors are fixed on board. 

• No operating system, little memory space allowing essentially no user applications 

(low flexibility). 

• Designed for difficult physical access of sensor nodes after deployment. Long 

operation life (up to 9 years). 

• Lower costs per node (component-wise). 

On the other hand, MICA2/MICA2DOT WSN can be observed as aiming at a higher level, 

more complex applications: 

• Large varieties of sensors available. 

• Large memory space together with the use of an operating system (TinyOS) allows 

multiple user applications (highly flexible). 

• Allows remote sensor node data logging with data base. 

• Physical access to sensor nodes should be relatively easy. Approximately 1 year 

battery life. 

• Higher costs per node (component-wise). 
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2.5. Conclusions 

In this chapter the key properties of a wireless sensor network (WSN) and how it differs 

from a mobile ad-hoc network (MANET) is discussed. Some of the existing WSNs are also 

briefly discussed. Therefore this chapter provides an understanding of the WSN and where 

its constraints such as memory and energy resources may lie. 

 

 
 
 



   3 
SECURITY IN WIRELESS SENSOR NETWORK 

Security in any network system does not simply involve only one or two layers, but rather 

needs to be viewed across all layers as a whole. The security issues for a conventional 

network differ greatly to the security issues in WSNs because of the extremely limited 

resources available in sensor nodes. This chapter provides an overview of security 

considerations in the context of the WSN. 

3.1. Trust Models 

One or more base stations often exist in WSN. Base stations are more powerful nodes with 

rich computational, memory, energy and radio resources. By radio resources it means that 

they have more powerful transceivers for a wider communication range and higher 

bandwidth links for communication amongst other base stations. A base station may exist 

in the form of a PC or server, where the sensor data flows to and is stored. Therefore they 

are also known as sink nodes. Base stations may act as a gateway between WSN and 

another network; therefore may be connected to an outside TCP/IP network. These 

resourceful nodes are sometimes also known as rich uncles [5]. Base stations are more 

expensive nodes, and are often assumed to be physically protected or have tamper-proof 

hardware. 

As a result, in a WSN environment, a base station usually plays the role of a central trusted 
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authority (point of trust). A point of trust base station is what the other standard sensor 

nodes trust for its authenticity and accepts the keys managed by the base station. In a base 

station trust model, for two nodes to communicate directly with each other, they need to 

first rely on the base station to establish a shared secret key between them before 

communication can take place. However, scalability may become a problem for base 

stations. If every sensor node in the network has a unique secret key, then for two nodes to 

communicate with each other they need to first go through the trusted base station to 

establish a shared secret key. If every node needs to communicate with its neighboring 

nodes, then the base station becomes a scalability bottleneck. This paper also assumes the 

base station as the trusted authority in the trust model. 

3.2. Threat Models 

Attacks in the WSN can be categorized into insider and outsider attacks. Outsider attacks 

occur when the adversary is not an authorized participant of the sensor network. The 

adversary may be a passive attacker by eavesdropping wireless communications and tries 

to steal confidential data. Active attack may also take place in the form of spoofing or 

altering packets in order to infringe authenticity of communication; or injecting interfering 

wireless signals to jam the network. Disabling a sensor node is another form of outsider 

attack. The adversary can inject useless packets to drain the receiver node’s battery power 

(a type of denial-of-service (DoS) attack) to disable a node. The adversary can also 

physically capture or destroy a sensor node to disable it. However, it is important to note 

that not all disabled nodes are a result of an attack. Catastrophic climatic change or battery 

depletion can also result in a failed node, which is indistinguishable from a disabled node. 

Insider attacks are essentially referring to compromised nodes. Unlike outsider attacks 

which may result in disabled nodes, compromised nodes continuously disrupt or paralyze 

normal operations of the sensor network. A compromised node may exist in the form of a 

physically captured and reprogrammed sensor node; or it can be a different device (e.g. 

laptop) with more resources such as computational power, energy resources, memory 

resources and powerful radio signals. According to Shi and Perrig [9], a compromised 
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node has the following properties: 

1. The node runs some malicious code that is different from the code on a legitimate 

node. 

2. The node has compatible radio (in respect to spectrum, modulation scheme etc.) to 

other legitimate sensor nodes so that it can communicate with the sensor network. 

3. The node is an authorized participant in the sensor network. If the communication 

is encrypted and authenticated using cryptographic primitives, then the 

compromised node must be in possession of the cryptographic keys of a legitimate 

node in order for communication to take place. 

3.3. Security Requirements 

When speaking of security requirements of any system, it is usually referring to: 

confidentiality, authenticity, availability and integrity. However, due to the extremely 

resource constrained nature of sensor nodes, security requirements may be very different 

compared to conventional networks. As a result, with sensor networks security, the aim is 

to achieve security requirements discussed in this section to make WSN robust against 

outsider attacks. However, in the case of insider attack, a graceful degradation of 

performance in proportion to the number of compromised nodes is aimed. For this is 

because the detection of compromised nodes is not always possible; therefore it is most 

likely that not all security requirements can be achieved. 

3.3.1. Confidentiality and Authenticity 

In WSN, data packets are communicated in a shared wireless medium, making them 

susceptible to eavesdropping and injection of malicious or spoofed packets. Data 

encryption protects confidentiality of data packets communicated. Authentication allows 
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verification of the packet sender to be a legitimate source (source authentication), and also 

verifies that the packet has not been modified (data authentication). 

Encryption provides some confidentiality which protects the data packets from being 

revealed to passive attackers through eavesdropping. Encryption can be achieved using 

standard cryptographic primitives such as block ciphers (e.g. AES, TEA) or stream ciphers 

(e.g. RC4). However, encryption alone can not completely protect the confidentiality of 

data. A passive attacker can still perform traffic analysis on the encrypted data packets 

(ciphertext) which may reveal sensitive information about the data. On the other hand, an 

attacker can obtain the secret key used for encryption in a compromised node. If this secret 

key is shared globally amongst all sensor nodes, then the attacker will now be able to 

decrypt all communicated data packets in the sensor network. 

Authentication ensures that the communicated data packets are from legitimate nodes and 

that they have not been changed by an attacker (authenticity check) or corrupted due to bad 

radio signals (integrity check). Authentication can be achieved by appending a message 

authentication code (MAC) to the data packet. A message authentication code is a piece of 

fixed size code that is computed from processing the data message with a key and a MAC 

function. 
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Figure 3.1. Representation of a data packet with MAC appended. 

 

To verify that a received data packet is indeed from a legitimate node that has the secret 

key and the data packet has not been modified by an attacker; the receiver has to compute 

the received data for another MAC and compare this MAC with the one that was appended 

to the data packet. If the two MACs are different, then either the data packet has been 

modified by an attacker, or it has been corrupted due to bad radio signals. 

Message authentication codes can be calculated in many ways. For example, using a CBC-

mode block cipher, cryptographic hash functions with HMAC, or other custom designed 

MAC functions (e.g. UMAC or Message Authenticator Algorithm (MAA)). The figure 

below shows different categories of MACs. 

MAC function

secret/private key

data message MAC

data packet to be send with MAC appended
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Figure 3.2. MAC categories. 

 

In many scenarios, using a public key cryptography (asymmetric encryption) for 

authentication would be more desirable than using a shared secret key (symmetric 

encryption). In a shared secret key environment, if one sensor node is compromised and its 

secret key revealed, then the security is breached for all other nodes with the same secret 

key. When using public key cryptography, a sensor node will only be able to reveal its own 

private key if it is compromised. However, public key cryptography typically requires 

many more orders of computational cost and packet overhead, which makes it unsuitable 

for WSN even if it is used for key establishment when sensor nodes are initially installed 

[9]. Another problem for using public key cryptography is that it may lead to easy denial of 

service attack (DoS). Since the MAC verifying process is very computationally intensive, 

therefore if an attacker continuously sends out false packets requesting nodes to verify 

them, then it will greatly waste the receiving nodes’ resources only to realize that the data 

packet it is a fake. As a result, public key cryptography is generally not considered for 

implementing WSN securities [1][5][9]. There are other researches on the key 

establishment for WSN, such as random key predistribution schemes [22], but are beyond 

the scope of this paper. 

3.3.2. Availability 

Availability refers to when the sensor network is functional throughout its designed 

MAC
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operation lifetime. The type of attack on network availability is often referred to as denial 

of service attack (DoS). DoS attack can occur in different layers of the network, such as 

physical, link and network layer. There are more different types of DoS attacks in the 

routing protocols at the network layer. 

In the physical layer, DoS attack is achieved by jamming or interfering with the radio 

signals of the sensor network. This attack can also inject irrelevant data packets to a node 

in order to drain its energy resource (i.e. battery power) for radio reception. This type of 

physical layer DoS attack can be prevented by using frequency hopping and spread 

spectrum communication [9]. 

A link layer protocol, particularly the medium access control protocol can be exploited to 

achieve link layer DoS attack. For example, an attacker may cause malicious collisions or 

attempt to get an unfair share of the radio resource. 

Karlof and Wagner in [3] have discussed several routing protocol attacks in the network 

layer. These attacks may all lead to DoS attacks. 

• Spoofed, altered, or replayed routing information – This attack is to alter routing 

information exchanged amongst nodes to create routing loops, attract or repel 

network traffic, extend or shorten source routes, generate false error messages, 

partition the network, increase end-to-end latency etc. 

• Selective forwarding – The malicious node may behave like a black hole by 

refusing to forward all or certain data packets it sees. However, this malicious node 

often needs to include itself in an actual path of the data flow. 

• Sinkhole attacks – This attack tries to lure almost all the traffic of a particular area 

to go through a malicious node. This can be achieved by making the malicious 

node appear as a better choice of route to the surrounding nodes for sending data 

packets. 
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• Sybil attack – In a Sybil attack, a single malicious node fakes multiple identities to 

other nodes in the network. This can reduce the effectiveness of fault-tolerant 

schemes. 

• Wormholes – This attack is where the adversary tunnels data packets received in 

one part of the sensor network and replay them in a different part. Wormholes can 

be used to create sinkholes. 

• HELLO flood attack – Many routing protocols require nodes to broadcast HELLO 

packets to announce themselves to their neighboring nodes, so that their 

neighboring nodes will know who is within their radio range. An malicious node 

can use a high power transmitter to broadcast HELO packets and thus fooling every 

node in the network into thinking that the malicious node is its neighbor. 

• Acknowledgement spoofing – Some routing protocols rely on implicit or explicit 

link layer acknowledgements. An adversary may spoof these acknowledgements to 

convince the sender that a weak link is strong or that a disabled link is alive, 

thereby causing packets sent to these links to be lost. 

3.4. Conclusions 

In this chapter the security concerns and security models of WSNs have been discussed. It 

is clear that the security solutions for the traditional networks are not entirely applicable to 

wireless sensor networks. This is because of the different characteristics and constraints 

found in WSNs. 

 

 
 
 



   4 
CRYPTOGRAPHIC CIPHERS 

Cryptographic ciphers often provide the most basic security requirements such as 

confidentiality, authenticity and integrity checking in any system. However, not all 

cryptographic ciphers that are suitable for conventional networks will also be suitable for 

WSNs. This chapter discusses security primitives through the use of cryptographic ciphers 

and their applicability to the ultra-low power WSN environment. The background of block 

ciphers as well as modes of operation are investigated and discussed here. The only stream 

cipher implemented in this paper, RC4, is also discussed here. 

4.1. TEA 

TEA (Tiny Encryption Algorithm) [36] and its related variants (XTEA, Block TEA, 

XXTEA) are symmetric key block ciphers designed for modern 32-bit word architecture. 

The emphasis of TEA is on small code size and easy implementation with typically few 

lines of codes. It uses a large number of iterations rather than a complicated algorithm. All 

TEA and its variants are based on the Feistel structure, every TEA cycle consists of two 

Feistel rounds (Figure 4.1). 

TEA and XTEA operate on two 32-bit words as a 64-bit data blocks with a 128-bit key, 

therefore all operations are done in 32-bit words. Block TEA and XXTEA operate on 

variable-length blocks of arbitrary multiples of 32 bits size. The advantage of Block TEA 
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and XXTEA is that it eliminates the need for using a mode of operation (CBC, OFB, CFB, 

OCB etc.) on messages larger than one block. i.e. they can be applied directly to a 

complete message. 

 

Figure 4.1. One TEA cycle (two Feistel rounds) [37]. 

 

XTEA (also known as TEAN) (Figure 4.2) was proposed in response to several 

weaknesses found with TEA. XTEA has the same basic operations as TEA, but the 

subkeys are mixed less regularly particularly to prevent key-schedule attacks on TEA. On 

the other hand, XXTEA is the updated version of Block TEA, as it prevents weaknesses 

found in Block TEA. 

 
 
 



Chapter   4  Cryptographic Ciphers  

Electrical, Electronic and Computer Engineering 44

 

Figure 4.2. One XTEA cycle [37]. 

 

4.1.1. Cryptanalysis of TEA 

TEA suffers from two types of cryptanalysis, the related-key [39] and equivalent-key [38] 

attacks. The equivalent-key attack is targeted at TEA’s extremely simple key-schedule. 

This results in the problem that when flipping the most significant bits of the first two 32-

bit words of the key, the encryption will not be affected. This attack has allowed hackers to 

successfully run Linux operating system on the Microsoft’s Xbox gaming console. The 

best related-key attack on TEA requires 223 chosen plaintexts and 232 computation time to 

recover the key. XTEA is proposed by TEA designers to prevent weaknesses found in 

TEA. The best attack so far on XTEA is a related-key differential attack on 27 rounds [40]. 

This attack requires 220.5 chosen plaintexts and has a time complexity of 2115.15 27-round 

XTEA encryptions. 

 
 
 



Chapter   4  Cryptographic Ciphers  

Electrical, Electronic and Computer Engineering 45

Block TEA key can be recovered with 234 chosen ciphertext queries [41]. XXTEA was 

proposed to fix the weaknesses found in Block TEA. The best attack so far on XXTEA 

requires 280 chosen plaintexts on 6 rounds, and a time complexity of 2127 to recover the key 

[41]. 

4.2. SAFER K-64 

SAFER K-64 [44] (stands for Secure And Fast Encryption Routine with a Key of length 64 

bits) is a non-proprietary secret (symmetric) key block cipher. The block length is 64 bits 

(8 bytes) and only byte operations are used for key scheduling, encryption and decryption. 

The encryption structure of SAFER K-64 is shown in the following figure. 

 

Figure 4.3. Encryption structure of SAFER K-64. 
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The encryption/decryption algorithm consists of r rounds, typically 6 rounds are 

recommended. Each round (shown in Figure 4.4) requires two 64-bit (8 bytes) subkeys and 

the output transformation needs one 64-bit subkey. In total 2r + 1 subkeys are needed, 

which is derived from the user-selected secret key “K1”. The output transformation 

involves byte XOR and byte addition (modulo 256) of the last subkey (K2r + 1) with 

output from the r-th round. The decryption structure is similar to the encryption structure 

except that the output transformation now becomes the input transformation and is 

executed first. The subkeys in the decryption structure are also used in a reversed order. 
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Figure 4.4. One encryption round structure of SAFER K-64. 

 

As shown in the above figure of one encryption round, the 8 input bytes (64 bits) are 

represented by symbols “P1” to “P8”, the output bytes are represented by symbols “C1” to 

“C8”. The “♁” and “+” symbol represents byte XOR and byte addition (modulo 256) 

respectively with the subkey bytes. If the input is represented by “ j ”, then the “exp” box 

output is: 45(j) modulo 257, (except that this output is taken to be 0 if the modular result is 

256); and the “log” box output is: log45(j), (except that this output is taken to be 128 if the 
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input is: j = 0). These two transformations are nonlinear and invertible, which is favorable 

to a cipher algorithm. These two transformations can also be realized using two look-up 

tables of 256 bytes each, thus exchanging code size for computational time (which also 

saves energy). The “2-PHT” box stands for 2-point Pseudo Hadamard Transform, which is 

a linear transformation to achieve diffusion of even small changes in the plaintext. The 2-

PHT consists of only three addition (modulo 256) operations. 

The decryption round structure is similar to the encryption round structure. Instead of using 

2-PHT, 2-IPHT (2-point inverse pseudo Hadamard Transform) is used. Both subtraction 

and addition (modulo 256) operations are required in 2-IPHT. The “2-IPHT” boxes are 

executed first in the decryption round, then followed by the non-linear transformations of 

exponential and logarithmic operations. 

The key scheduling algorithm to derive the needed keys is shown in the following figure. 
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Figure 4.5. Key scheduling algorithm of SAFER K-64. 

 

The key scheduling algorithm takes the user-selected key K1 to derive K2r + 1 number of 

subkeys. The key biases: B2, B3, … , B2r+1 are 8-byte fixed values introduced to ensure 

that the subkeys appear to be random, thereby eliminating the possibility of user-selected 

weak keys. The key biases can be calculated using the following formula: 

 257mod45],[ Vjib =  (4.1) 

 where  257mod459 jiV +=  (4.2) 

Where b[i,j] denotes the j-th byte of bias Bi. If the exponential of 45 has been implemented 

as 256 bytes of look-up table as mentioned earlier, then the calculation of this formula can 

be simplified. The key biases can also be directly implemented as a look-up table, which 

further reduces computation time needed for setting up key biases. With 6 round SAFER 
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K-64 (r = 6), 12 key biases (8 bytes each) are needed, therefore a look-up table of 96 bytes 

is required. 

4.2.1. Cryptanalysis of SAFER K-64 

The best cryptanalysis on SAFER K-64 published so far, to the knowledge of the author, is 

by Wu et. al. in [45]. Wu et. al. has successfully applied a truncated differential attack on 

SAFER K-64 and SAFER SK-64 (with the modified key schedule) using 5 or 6 rounds. 

For an attack on 5-round SAFER K-64, 238 chosen plaintexts and computation time of 246 

5-round encryptions are required. For attack on a 6-round SAFER K-64, 253 chosen 

plaintexts and a computation time of 261 6-round encryptions are required. This attack 

cannot be applied to SAFER K-64 with 7 rounds or more. Therefore it is suggested that an 

8-round SAFER K-64 should be considered invulnerable to truncated differential attacks 

[45]. 

4.3. TREYFER 

TREYFER is a 64-bit block cipher with 64-bit symmetric key and is proposed by Yuval 

[42]. It is aimed at applications with extremely limited resources, e.g. smart card and is 

designed to be very compact (less than 50 bytes of code on an 8051 microcontroller with 

assembler language). It can be executed on a very constrained architecture, for example an 

8051 microcontroller with typically 1 KB flash EPROM, 64 bytes RAM, 128 bytes 

EPROM and a peak instruction rate of 1 MHz. TREYFER is designed to use only byte 

operations and requires fixed bit rotations and modulo 256 additions. The algorithm is as 

follows: 
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for (r = 0; r < NumRounds; r++){ 

text[8] = text[0]; 

for(i = 0; i < 8; i++) 

  text[i+1] = (text[i+1] + Sbox[(key[i]+text[i])%256]) <<< 1; 

  //rotate 1 left 

 Text[0] = text[8]; 

} 

 

In the above pseudo code, “text” represents the 8-byte plaintext, “Sbox” is the 256×8-bit 

(256 bytes) S-box chosen at random, and “NumRounds” is the number of rounds executed 

in TREYFER, which is typically 32. One of the motivations of the TREYFER design is the 

use of a large number of rounds (32) to thwart any possible practical attacks in spite of the 

simple round function design. The S-box was suggested by the author to be taken from 

another place in the memory running non-cryptographic codes. In this way there is no need 

to explicitly define a 256-byte S-box and thus code space is saved. 

4.3.1. Cryptanalysis of TREYFER 

An attack on TREYFER has been found by Biryukov and Wagner in [43]. It requires 232 

known plaintexts, 244 TREYFER encryptions of computation times and 232 memory. This 

proposed attack is also independent of the number of rounds and of the choice of the S-box. 

However, round counters can be introduced into the round function of TREYFER as a 

more complex key scheduling method in order to thwart such an attack. Besides this attack 

proposed by Biryukov and Wagner, no other attacks on TREYFER have been published to 

the knowledge of the author. 

4.4. Other Block Ciphers 

This section briefly discusses some other popular and secure block ciphers that are 

available, but are not implemented in this paper. 
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4.4.1. AES 

AES (Advanced Encryption Standard) was published by NIST (National Institute of 

Standards and Technology) to replace DES (Data Encryption Standard). Out of the many 

candidates for AES, the Rijndael cipher was eventually selected to become the new AES 

[26]. AES is a symmetric key block cipher with a block size of 128 bits and three key size 

alternatives of 128, 192, or 256 bits. 

Unlike many conventional symmetric key block ciphers, AES does not use the Feistel 

structure, where typically half of the data block is used to modify the other half of the data 

block before the two halves are swapped in the next round. AES processes the entire data 

block (128 bits) in parallel during each round. AES typically has 10 rounds; each round has 

four different stages, one of permutation and three of substitution. The encryption and 

decryption functions in AES differ. The encryption and decryption speed does not vary 

significantly, however, the key setup performance is slower for decryption and requires 

more memory than for encryption. All AES operations can be byte operations allowing it 

to be efficiently implemented on 8-bit processors. Its operations can also be defined in 32-

bit words for efficient implementation on 32-bit processors [26].  

Although AES has been well studied over the years and proven to be secure, it does not 

seem to be suitable for the platform which this paper is based on, or in many other WSN 

environments. One of the main reasons is that although AES has been designed for low-

end 8-bit microcontroller, its baseline version still uses over 800 bytes of look-up tables. A 

speed optimized AES version, which runs about 100 times faster, uses over 10 KB of look-

up tables. This memory requirement is not acceptable to many sensor node platforms. For 

example, the microcontroller MSP430F1232 used in the sensor nodes (TinyMote) of this 

paper has only 8KB of flash code memory in total. Apart from the large code size, AES 

also requires large RAM space to store expanded subkeys, typically larger than 156 bytes. 

Furthermore, because of the small packet size of WSN, a cipher with 128-bit (16 bytes) 

block size may not be very efficient. For example the last cipher call may only need to 

encrypt the last two bytes of the data packet, since the cipher uses 16-byte block, then the 

other 14 bytes of processing are wasted. 
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More on the performance comparisons of AES to other block ciphers is discussed in the 

results and discussions chapter (section 8.2). 

4.4.2. RC5 

RC5 is a symmetric encryption algorithm with a block size of 32, 64, or 128 bits [26]. The 

key length ranges from 0 to 2040 bits. RC5 encrypts two-word blocks, for example a 32-bit 

block has a word size of 16-bit. The maximum number of RC5 rounds is 255, but typically 

12 rounds encryption/decryption algorithm is suggested. 

RC5 has a simple structure similar to a Feistel structure. Instead of half of a block being 

updated as in the classic Feistel structure, both halves are updated in each RC5 round [26]. 

RC5 uses only three primitive operations: modulo 2n
 addition/subtraction (n is the word 

size), XOR, and circular rotation. The encryption/decryption algorithm is very simple and 

can be implemented in few lines of codes. These characteristics make RC5 suitable for 

both hardware and software implementations. RC5 requires complex key expansion 

operations on user-selected secret keys. The number of subkeys that are needed is 2r + 2, 

where r is the total number of rounds. 

RC5 has also been around for some years and appears to be secure. Although it was 

designed to be of small size for efficient software and hardware implementation, its 

smallest word size is still 16-bit. The key setup operations have been shown to be very 

time consuming [5] and also require a relatively large amount of RAM space to store the 

expanded subkeys [54]. Furthermore, RC5 rotation operations are data-dependent, meaning 

that it has to rotate variable number of bits and often requires a large number of bit 

rotations. This large number of bit rotations is especially time consuming for processors 

with a word size smaller than that of the RC5 word size (e.g. 16-bit RC5 word on an 8-bit 

processor).  

Law et. al. [54] have compared RC5, AES and several other block ciphers on the same 

family of microcontrollers (TI MSP430) as the one used in this paper. These comparisons 
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have shown that RC5 is not the most efficient cipher nor does it have the smallest code size. 

More on the performance comparisons of RC5 with other block ciphers is discussed in the 

results and discussions chapter (section 8.2). 

4.5. Block Cipher Modes of Operation 

Block ciphers provide encryption (confidentiality) to a fixed size block of data (e.g. 64 bits 

block). In order to provide confidentiality and authenticity security primitives using block 

ciphers, different block cipher modes of operation need to be used. 

The easiest way of encrypting messages larger than a block is by using the electronic code 

book (ECB) mode. The message is divided into smaller chunks or blocks of a fixed size. 

ECB simply encrypts each plaintext block separately. However, with ECB mode, the same 

plaintext block will always result in the same ciphertext block when using the same key. In 

other words with a given key, every plaintext block corresponds to a unique ciphertext 

block. This will allow the attacker to draw up a table to map all plaintext-ciphertext pairs 

or perform statistical analysis on the ciphertext available; thereby finding out what is the 

plaintext for each corresponding ciphertext. 

4.5.1. Cipher Block Chaining (CBC) 

CBC mode can be used to provide encryption (confidentiality) of large messages as well as 

authenticity through CBC-MAC. 

4.5.1.1. CBC mode for confidentiality 

As shown in Figure 4.6, CBC mode divides the message to be encrypted into N number of 

blocks. The first message block m1 is XORed (♁) with the initialization vector (IV) before 

encryption (Ek) with key k, thereafter every next message block will be XORed with the 

previous ciphertext block and then encrypted to obtain the next ciphertext block. 
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Figure 4.6. Cipher Block Chaining (CBC) mode encryption. 

 

 

Figure 4.7. Cipher Block Chaining (CBC) mode decryption. 

 

The IV needs to be known to both sender and receiver (decryption at receiver side is shown 

in Figure 4.7). IV provides the variation needed to ensure that every resulting ciphertexts 

will be different even if the same plaintext is being encrypted again. As a result, IV needs 

to be carefully selected with the following properties: 
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• IV must be random. 

• Every new message must use a new, non-repeating IV. 

• For maximum security, IV must not be a counter. 

• IV can be a non-secret value. 

CBC mode for encryption is provably secure when IVs do not repeat [46]. However, if IV 

repeats, only the length (in blocks) of the longest shared prefix of the messages is revealed. 

Therefore information leakage is not as bad as in the case of a repeated counter in the 

counter (CTR) mode, which we will discuss in section 4.5.2. More information leakage 

than a repeated IV will occur if IVs are simply taken from a counter. As a result, an IV is 

often derived from encrypting a nonce (use once only value), which can be an encrypted 

counter. 

4.5.1.2. CBC mode for authenticity 

A Message Authentication Code (MAC) is a fixed value calculated from data message 

with a key. It is often appended to the end of a data packet by the sender. If the data 

message has been altered, then the receiver calculated MAC will not be the same as the 

appended MAC. Figure 4.8 shows the standard CBC-MAC algorithm to generate a MAC. 
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Figure 4.8. Standard CBC-MAC. 

 

CBC-MAC operates exactly the same as the CBC mode encryption. Symbol k is the key 

for calculating MAC and N is the number of blocks that a message is divided into. The last 

output ciphertext is taken as the MAC. Therefore if a block cipher with a block size of 64-

bit is used, then the resulting MAC can range from 1 to 64 bits.  

Although the standard CBC-MAC is provably secure [47], it still has several flaws: it is not 

secure for variably sized messages; and if only one key is used to calculate all MACs, then 

for example a 64-bit MAC will have collisions occurring after 232 messages because of the 

Birthday paradox [27]. As a result, key separation to generate other keys is recommended 

to overcome the Birthday attack and the use of other CBC-MAC variants (e.g. OMAC [62]) 

can overcome the insecure variably sized messages. 

4.5.2. Counter (CTR) Mode 

The counter (CTR) mode encryption and decryption operations are shown in the following 

two figures (Figure 4.9 and Figure 4.10). A counter is used similar to the use of an IV as it 

also provides the variation needed for every encryption to result in different ciphertexts 

even if the plaintexts are the same. However, counters are simpler than IVs used in CBC 
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mode. A counter can be of any value and then incremented by 1 for each subsequent block. 

For each encryption, the counter is encrypted (Ek) and then XORed with the plaintext 

block (Pn). Therefore the encrypted counter is used as a one-time encryption pad. For 

decryption, this same encryption pad must be XORed with the ciphertext block to recover 

the plaintext block (Figure 4.10). Stream ciphers also use one-time encryption pads (also 

known as one-time-pad, otp) to XOR with plaintexts to get ciphertexts, therefore CTR 

mode is also a stream cipher mode. However, CTR mode cannot be used for authentication 

like CBC-MAC. 

 

Figure 4.9. Counter (CTR) mode encryption. 

 

 

Figure 4.10. Counter (CTR) mode decryption. 
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The counter used in a CTR mode can be a non-secret value, but this counter value must 

never repeat. Unlike a repeated IV in the CBC mode which only leaks limited information, 

a repeated counter value leaks a significant amount of information. To illustrate 

consequences of reusing a counter in CTR mode, consider two different plaintext blocks P1 

and P2 and two encryption pads Pad1 and Pad2. If the counters used for generating the 

encryption pads are the same, then Pad1 = Pad2. This results in the following: C1♁ C2 = 

Pad1 ♁ P1 ♁ Pad2 ♁ P2 = P1 ♁ P2. When plaintexts have sufficient redundancy, it is 

often possible to recover most or all P1 and P2 just from P1 ♁ P2 [48]. 

Besides the strict security requirement for a non-repeating counter, CTR mode has many 

advantages compared to the commonly used CBC mode [26]: 

• Hardware efficiency: Unlike other chaining modes (e.g. CBC) where the 

encryption/decryption of the current block must be completed before the next block 

can begin, CTR mode allows parallel encryption/decryption on multiple blocks 

since it does not require previously computed blocks to perform 

encryption/decryption of the next block. 

• Software efficiency: Similar to the hardware efficiency, if the processor supports 

parallel features (e.g. multiple pipelining, Single Instruction Multiple Data (SIMD) 

instructions), then multiple blocks can be processed simultaneously. 

• Preprocessing: It is possible to pre-process the encryption pads with only the 

knowledge of the secret key and the counter value and store these encryption pads 

in memory. When plaintexts/ciphertexts arrive, all that needs to be done is to XOR 

the pre-processed encryption pads with plaintexts/ciphertexts to perform 

encryption/decryption. 

• Random access: Any block of plaintext/ciphertext can be processed in a random-

access fashion. This is again due to the fact that to encrypt/decrypt any block one 
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does not need any information from any previous blocks. 

• Simplicity: Unlike for example the CBC mode, CTR mode only requires the 

implementation of the encryption algorithm and not the decryption algorithm. 

4.5.3. Offset Codebook (OCB) 

In the recent years, the National Institute of Standards and Technology (NIST) of the US 

has been reviewing new block cipher modes of operation particularly aiming at more 

efficient ways to provide both encryption and authentication security primitives [49]. The 

most commonly used method to provide both authentication and encryption using block 

ciphers has been using CBC mode for encryption and CBC-MAC for authentication. Using 

CBC requires two different keys for CBC encryption and CBC-MAC. The message also 

needs to be processed twice (two-pass), one for CBC encryption and the second time for 

CBC-MAC authentication. In other words, 2N block cipher calls are required, where N is 

the number of blocks that the message has been divided into. 

NIST has reviewed several new modes of operation that provide encryption and 

authentication by processing the message only once (one-pass) plus some additional 

processing overheads. Some of the more promising new modes of operation which provide 

both authentication and encryption are: Integrity Aware CBC (IACBC)/Integrity Aware 

Parallelizable Mode (IAPM) [51], eXtended CBC (XCBC) [50] and Offset Codebook 

(OCB) [52]. OCB is a follow-on work to Jutla’s IAPM [51]. 

When a message has been divided into N number of blocks, then to provide both 

authentication and encryption OCB requires N + 2 number of block cipher calls, and some 

additional overheads. Figure 4.11 and Figure 4.12 show how OCB provides authentication 

to the message and message header, and encryption only to the message. When sending a 

data packet over the network, it mainly consists of header bytes and message data bytes. It 

is often desirable to provide authentication to both headers and message data, but only 

encryption to the message data. OCB provides authentication to both headers and message 
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data using one MAC, but only encryption to the message data. This is desirable in many 

situations where the headers need to be authenticated but not encrypted to facilitate 

efficient relaying of data packets in the network. The MAC has the size of a block length 

of the block cipher used. 

 

Figure 4.11. OCB encryption and authentication on a message. 

 

In Figure 4.11, mN and cN are message and ciphertext block respectively. “EK(nonce)” is 

the encryption of a nonce with secret key “K”. The symbol “Δ ” refers to the offset needed 

for OCB, and Δ←Δ 2  means that the new offset value is replaced by the Δ2  operation. 

Having offsets allow a single secret key to provide both authentication and encryption. 

Offset calculations in the previous version of OCB (OCB 1.0) depended on Gray codes and 

the calculation time was not constant per offset [53]. The offset calculation in OCB 2.0 is 

as follows: 
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When offset Δ  is a 64-bit block, then: 

If MSB (most significant bit) = 0 

Then 12 <<Δ=Δ  

Else ( ) Bx1012 ⊕<<Δ=Δ  

Δ⊕Δ=Δ 23  

( ) Δ⊕Δ=Δ 225  or Δ5  = ( )Δ33  

The offset operations: Δ2 , Δ3  and Δ5  are the polynomial multiplication of Δ  by x, 

x+1, and x2+x+1 within the field with 2128 elements [53]. The meaning of 1<<Δ  is to 

perform left bit-shift by 1, and the byte 0x1B is represented in 64-bit format when XORed 

(⊕ ). 

The operation “len” in Figure 4.11 is to represent any input value that is smaller than 64 

bits in a 64-bit format. OCB is able to encrypt messages of arbitrary length into a 

ciphertext of equivalent length. Even if the last block of plaintext message is not a full 

block size, the resulting ciphertext is not padded and will have the equivalent length as the 

plaintext block. Note that at the last plaintext block (mN) of OCB encryption is XORed 

with the first |mN| bits of the “Pad”. The “Checksum” is the value: 

( )Padcmmmm NN ⊕⊕⊕⊕ −
*

1321 0K , where *0Nc  means appending cN with enough 0-

bits to get a 64-bit value. The value “Auth” is the authenticator for the header bytes of the 

message, which is included into the MAC. Figure 4.12 and Figure 4.13 show how header 

bytes are authenticated and not encrypted. Similar to previous figure, “Θ ” is the offset for 

OCB operations on headers. Figure 4.12 shows the case when the header bytes are 

multiples of the block size, whereas Figure 4.13 shows the case when the header bytes are 

not multiples of the block size i.e. the last header block is smaller than one block size. In 

Figure 4.13, the last header block hN is appended with a 1-bit followed by enough 0-bits to 

get a full block size (i.e. 64-bit in this example). 
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Figure 4.12. OCB authentication on message header of multiple block size (PMAC). 
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Figure 4.13. OCB authentication on message header not multiple of block size 

(PMAC). 

 

The nonce used in OCB is unlike the initialization vector (IV) used in a CBC mode 

encryption, it is less strict compared to an IV. An OCB nonce is a value with the size of the 

block size; it also need not be secret. Furthermore, it also need not be random but it must 

not be repeated. A simple counter can be used as a nonce in OCB. 

Some additional properties of OCB are: 

• OCB requires a single block cipher key to provide both authenticity and 

confidentiality security primitives. 

• Assuming the underlying block cipher is secure, OCB is provably secure. 

• OCB does not involve modular 2n addition (n is the cipher block size, e.g. 64-
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bit/128-bit), which is not parallelizable and can be expensive especially for 

dedicated hardware [52] [53]. OCB also does not use the modular p arithmetic (p is 

a fixed prime number), which is a weaker algebraic structure [53] and is also a 

more expensive operation. OCB uses the less expensive GF(2n)-based approach, 

which mainly uses XOR operations. 

• OCB ciphertext will have the exact same length as the plaintext. Therefore it is 

more appropriate for short messages because the ciphertext does not expand in size. 

4.6. RC4 

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It has byte-

oriented operations and generates streams of key bytes as encryption pad (one-time-pad) to 

be XORed with plaintext bytes (or XOR with ciphertext to obtain plaintext). It allows 

variable key length ranging from 1 to 256 bytes. The user-selected key is used to initialize 

a 256-byte S-box (also known as the state vector). This S-box contains all 8-bit numbers 

from 0 through 255. As a key byte is generated, the S-box is again permuted. 

The following pseudo codes show how RC4 stream bytes are generated [26]. The variable 

S represents the 256-byte S-box. 

i, j = 0; 

while (true) { 

 i = (i + 1) % 256; 

 j = (j + S[i]) % 256; 

 SWAP (S[i], S[j]); // swaps the two bytes at two different positions in S 

t = (S[i] + S[j]) % 256; 

k = S[t]; 

} 
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As it can be seen, the stream cipher RC4 is very simple requiring only few lines of codes to 

generate a key byte. However, the initialization of the S-box (not shown above) with user-

selected secret key requires fairly large amount of CPU cycles, which is shown in section 

8.2. 

4.6.1. Cryptanalysis of RC4 

RC4 has been proposed and in practical use for many years and no major weaknesses have 

yet been found. The best attack so far on RC4 has been targeted at its first few hundred key 

bytes generated. Therefore by dumping the initial 512 key bytes generated can thwart such 

attack on RC4 [66].Apart from a cryptographic cipher’s weaknesses, it is also important to 

use the cryptographic cipher in a properly designed security protocol. Although RC4 itself 

has shown to be secure, however, the use of RC4 in the WEP (Wired Equivalent Privacy) 

protocol has been proven to be insecure [61]. WEP is a security protocol which is part of 

the IEEE 802.11 (WiFi) standard. 

4.7. Conclusions 

Several cryptographic ciphers that are implemented in this paper have been discussed in 

this chapter. Well-known conventional block ciphers such as the AES and RC5 are also 

briefly discussed but not implemented in this paper. 

Although TEA has been designed for 32-bit word architecture, it was chosen because of its 

small code size, and its little memory requirement as it does not need to expand and store 

additional subkeys. Furthermore, as it will be shown in the results and discussions chapter, 

TEA in fact performs fairly well on the 16-bit microcontroller used in this paper. 

The SAFER K-64 block cipher is designed for byte (8-bit) operation which makes it 

suitable for many low-end microcontrollers in sensor networks. It also requires fairly small 

code space, although not as small as TEA or TREYFER. The SAFER K-64 also requires 

additional RAM to store the expanded subkeys. However, as it will be shown in later 
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chapters, SAFER K-64 has the best performance in all block ciphers discussed in this 

paper, making it suitable for sensor networks requiring performance (thereby even lower 

power consumption) and has more memory resources. 

The TREYFER block cipher is also designed for byte operation and aimed at extremely 

small code size, which is the main reason for choosing TREYFER. It requires the least 

code space in all block ciphers discussed in this paper. Similar to TEA, TREYFER also 

does not require any key initialization process to store expanded subkeys. However, as it 

will be shown in later chapter, TREYFER has the poorest performance in all block ciphers 

discussed in this paper. It is therefore not strongly recommended for WSNs. 

RC4 is the only stream cipher implemented in this paper. The RC4 stream cipher also 

operates on byte-level and requires very small code space. As it will be shown in later 

chapters, RC4 has the best performance compare all other ciphers discussed in this paper. 

However, a stream cipher cannot be used as in the case of block ciphers with different 

modes of operation to provide authentication. Therefore it is more difficult to provide 

authentication using a stream cipher. Apart from this, RC4 has shown to be a good choice 

for the resource-constrained WSN field. 

Other popular block ciphers have also been analyzed in this chapter. They have been 

shown to be inappropriate for WSNs in many aspects. One example is the large code space 

required by AES. In the results and discussions chapter, other block ciphers have also 

shown to be able to provide better performance with smaller code size. 

 

 
 
 



   5 
UMAC 

This chapter provides a brief overview of UMAC from a practical implementation point of 

view. The concept of a UMAC is discussed in the standard UMAC section and the 

practical UMAC implementations in systems today is discussed in the refined UMAC 

section. The detailed security definitions and the security proofs of universal hash 

functions and UMAC are beyond the scope of this paper and are therefore not discussed. 

5.1. Standard UMAC 

UMAC is an authentication algorithm using the universal hash function family, NH. NH is 

a new universal hash function family developed specifically for UMAC [55]. In simple 

terms, universal hash functions are collections of hash functions that map messages into 

short output strings such that the collision (pairs of different inputs with identical outputs) 

probability of any given pair of messages is small. UMAC has been particularly designed 

to utilize the SIMD (Single Instruction Multiple Data) parallelism of modern processors to 

achieve high speed. A 64-bit hash code UMAC optimized with MMX (Multimedia 

extensions) instructions can achieve a speed of more than 1 byte/cycle with messages 

larger than 256 Kbytes (on a Pentium II machine with MMX) [55]. UMAC allows user to 

select the underlying cryptographic primitives (e.g. cryptographic hash functions or block 

ciphers). No new heuristic primitives are developed in UMAC; therefore it is secure as 

long as the underlying cryptographic primitives are secure. 
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Figure 5.1 shows how the standard UMAC is implemented using a pseudo random 

function (PRF) to authenticate messages. 

 

Figure 5.1. UMAC. 

 

The notations used for UMAC are defined as follows: 

• key is the user selected secret key. 

• w is the adopted word size. 

• K1, ... ,Kn are the subkeys generated to be used in NH. All subkeys are the size of a 

word, w. n is the total number of subkeys for use in NH. 

• A is the subkey generated to be used in the PRF. 

• PRG is the pseudo random generator used to expand the secret key into subkeys 

needed for the different stages of UMAC. 
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• NH is the universal hash function used in UMAC. 

• PRF is the pseudo random function applied to the variable length hash code to 

produce a fixed size MAC. 

• nonce is a non-repeating, non-secret value that is to be sent by the message sender 

to the receiver. 

5.1.1. NH 

The message to be authenticated needs to be represented in words of size w. For illustration 

purpose, let w be 32 bits. The message is then divided into blocks of n number of words, 

let n = 4 as shown in Figure 5.2. This n number of words is the amount of words that the 

NH hash function will process when it is called. The actual n values range from 32 to 228 

bytes, typically n = 256 (equivalent to 1024 bytes when w = 32 bits) [57]. 
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Figure 5.2. NH hash function with word size w = 32, number of words processed n = 4. 

 

The message words (M) are processed by the NH hash function as shown in the above 

figure. The n words subkeys (K) are generated by a pseudo random generator (PRG). With 

32-bit words, each message word is added (modulo 32) with the subkey word and then 

multiplied (modulo 64) with the next word that is also the result of subkey and message 

word addition. All multiplied (modulo 64) results of an NH call are then added (modulo 64) 

to get a 64-bit hash code. Repeated NH hash function calls are performed on all message 

words at n words per NH function call. The n subkeys remain the same for all NH calls; 

therefore with the same secret key, subkeys only need to be generated once. The multiple 

64-bit hash codes resulting from multiple NH calls are concatenated together as an 

unbounded (variable length) hash code. Although this hash code is smaller than the 

original data message, it is still proportional to its size. 

Increasing n increases the number of words to be processed in one NH call and results in 
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M1 K1

+32 

×64 

+64

M2 K2

+32

M3 K3

+32

×64 

M4 K4

+32 

64-bit hash result

 
 
 



Chapter   5  UMAC  

Electrical, Electronic and Computer Engineering 72

generation on large messages, but requires more memory (for subkeys K1, ... ,Kn) for 

processing and could potentially slow the processor by overflowing the processor’s cache 

memory. 

NH operations can be optimized using SIMD instructions such as MMX (Multi Media 

Extensions) instructions. NH calls are heavily used in UMAC, thus by optimizing NH calls 

one can greatly optimize UMAC. 

5.1.2. Pseudo Random Generator (PRG) 

A PRG is used to expand the user selected secret key into subkeys needed for internal 

stages of UMAC. Subkeys K1, .. ,Kn are needed for the NH hash function, whereas subkey 

A is needed for pseudo random function (PRF) to produce a fixed size MAC. UMAC 

allows any PRG, but typically a block cipher (e.g. AES) is used. A block cipher takes the 

user selected secret key to encrypt a block of pre-defined value known as the index value. 

The resulting ciphertexts from encrypting different index values are used as the subkeys. 

The block cipher may have to be called several times to obtain enough ciphertexts as 

subkeys. 

5.1.3. Pseudo Random Function (PRF) 

The unbounded (variable length) hash codes obtained from NH calls are first appended 

with a nonce. A pseudo random function (PRF) is then performed on it to obtain a fixed 

size MAC output. HMAC-SHA1 can be used as a PRF, but any PRF is allowed. With 

HMAC-SHA1, the subkey A generated by the PRG is needed.  

A non-repeating nonce is also needed for PRF to ensure that every MAC generated is 

different even if the data messages are the same. The nonce in UMAC has similar 

properties as the nonce used in OCB. It can be a simple non-secret incrementing counter 

that is sent with the data message and the appended MAC. For secure operations, the nonce 

should never be repeated within the life of a single UMAC secret key. To provide 

protection against replay attacks, the receiver needs to check that no nonce value is used 
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twice. This can be easily achieved when the nonce is a counter. 

Although HMAC-SHA1 itself alone can be used to generate a MAC, UMAC using 

HMAC-SHA1 as PRF is more efficient since the input to HMAC-SHA1 is already a lot 

smaller than the original data message size. 

5.2. Refined UMAC 

After the release of the standard UMAC, UMAC authors have further refined UMAC and 

achieved three main goals [56] [57]: 

1. Improved UMAC performance on short messages. 

2. Minimize the use of underlying cryptographic primitives. 

3. Selective-assurance verifiability is achieved. For example if a 64-bit MAC is 

computed, the receiver can choose to verify only the first 32 bits at nearly twice the 

speed of verifying the full 64-bit MAC. 

Figure 5.3 shows the functional diagram of the refined UMAC [57]. 
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Figure 5.3. Refined UMAC. 

 

At first glance, the standard UMAC (Figure 5.2) appears to be very different than the 

refined UMAC (Figure 5.3). However, as will be discussed now, the differences are in fact 

fairly subtle. The key derivation function (KDF) contains the pseudo random generator 

(PRG) in standard UMAC. Whereas the pseudo random function (PRF) (e.g. HMAC-

SHA1) is replaced by the keyed hash function UHASH and the pad derivation function 

(PDF). 

5.2.1. Key Derivation Function (KDF)  

The user selected secret key is expanded into more subkeys using the KDF. The subkeys 

are used internally by UMAC in UHASH and the pad derivation function (PDF). KDF is 

equivalent to the PRG process in the standard UMAC. Block ciphers (e.g. AES) are used in 

output feed back (OFB) mode to produce the required subkey bits. The OFB mode used in 

KDF first encrypts a pre-defined index value, and then takes the resulting ciphertext output 

as the next block to be encrypted. This chain of ciphertext outputs is used as the required 

subkeys. 
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5.2.2. Pad Derivation Function (PDF) 

The PDF is needed to generate the one-time encryption pad to be XORed with the fixed 

size hash code to produce the MAC. This one-time-pad (also known as otp) is obtained by 

applying the PDF to a nonce with a subkey generated by the KDF. A block cipher is 

typically used in the PDF to encrypt the nonce. The resulting ciphertext bytes are used as 

the one-time-pad. The nonce is defined the same as in the standard UMAC. 

5.2.3. UHASH 

UHASH is a keyed hash function, which takes an arbitrary length input data message, and 

produces as output a fixed length hash code. Figure 5.4 shows the function diagram of the 

UHASH. 

 

Figure 5.4. UHASH with word size w = 32. 

 

UHASH consists of three layers. The first layer is the NH hash function, which is used to 
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length) hash results from NH, and produces a fixed-length 16-byte output (when w = 32). 

The polynomial hash function includes prime modulus operations. The security guarantee 

assured by polynomial hashing degrades linearly with the increasing length of the message 

being hashed and the prime number value. The prime modulus can be dynamically 

increased to ensure that the collision probability never grows beyond a certain pre-set 

bound when hashing a long message. 

The third layer is an inner-product hash function that hashes the fixed 16-byte input to a 

fixed length word (i.e. 4 bytes when w = 32). A 36-bit prime modulus operation is used to 

improve security. Detailed discussions of layer two and layer three implementations are 

beyond the scope of this paper. 

These three layers (UHASH) are repeated (with some different subkeys) until enough 

output MAC bytes are produced. For example, with 32-bit word size, UHASH needs to be 

called twice to obtain a 64-bit MAC. This shows that each MAC word can be computed 

and verified independently; therefore allowing the receiver to repeat UHASH lesser times 

to compute only some prefix of a UMAC MAC, thereby achieving faster verification speed 

(selective-assurance verification). 

 
 
 



   6 
LINK LAYER SECURITY PROTOCOLS 

The link layer security provides the first-line security just above the physical layer (where 

medium access control resides). All other higher level securities rely on the secureness of 

link layer securities. There are however, only very few link layer security protocols that 

have been proposed for WSNs. This chapter provides a review of the available link layer 

security protocols for WSN. 

6.1. Sensor Network Encryption Protocol (SNEP) 

One of the early studies on the security concerns for WSNs at the link layer is by Perrig, 

Szewczyk et. al. [1]. They proposed a security protocol called SPINS (Security Protocols 

for Sensor Networks), which contains two sub-protocols called: SNEP (Sensor Network 

Encryption Protocol) and μTESLA. SPINS was designed for the UC Berkeley SmartDust 

program [24]. The prototype SmartDust sensor node on which SPINS was implemented 

has the following specifications: 8-bit 4MHz microcontroller, 8 KB instruction flash, 512 

bytes RAM, 916 MHz radio, 10Kbps bandwidth. The operating system running on the 

nodes is called TinyOS [25], which is also developed by UC Berkeley. 

6.1.1. Confidentiality 

SNEP (Sensor Network Encryption Protocol) is a link layer security protocol as it provides 
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confidentiality, authenticity and integrity. Additionally, SNEP also provides data freshness 

for protection against replay attacks. All these security primitives are constructed from a 

single block cipher, RC5. To achieve confidentiality, a counter (CTR) mode encryption is 

used (section 4.5.2). A shared counter is known between the sender and the receiver, 

therefore there is no need for transmitting the counter value with the data packet, which 

saves communication overhead. The overhead for SNEP is 8 bytes per message. The use of 

a counter value prevents electronic code book (ECB) attacks [26]. The aim for SNEP to 

use CTR mode as opposed to cipher block chaining (CBC) mode is that, with CBC mode, a 

random or secret initial vector (IV) is needed to protect against ECB attacks [1][26]. 

However, having to send different IVs for every transmission adds overhead to the data 

packet, which increases the power consumption in the sensor node. Since the counter value 

in CTR mode does not need to be random, it can be known and shared between sender and 

receiver in advance. Another reason for using CTR mode is that the size of the ciphertext is 

exactly the same size as the plaintext and not a multiple of the block size. 

6.1.2. Authenticity 

To achieve authenticity and integrity, a CBC message authentication code (CBC-MAC) 

using RC5 is used (section 4.5.1). Initialization vectors (IV) are not required in the CBC 

mode when it is used for generating a MAC; therefore it does not have the problem of 

having to transmit large IVs wirelessly. The counter value shared between the sender and 

the receiver is also used in generating the MAC. Using a counter here provides protection 

against replaying of old messages. 

When using SNEP, the message that will be sent from A to B looks as follows: 

 ( ) ( )( ){ }MECMACMEBA CencKmacKCencK ),_(_),_( ,:→  (6.1) 

• ( )ME CencK ),_( , means RC5 encryption E with encryption key K_enc, using 

counter value C, on message data M. 
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• ( )MEC CencK ),_( , is the concatenation of counter value C with ( )ME CencK ),_( . 

• ( )( )MECMAC CencKmacK ),_(_ , is the message authentication code function 

(CBC-MAC) with MAC key K_mac on ( )MEC CencK ),_( . 

In the prototype sensor node for which SPINS was implemented, every node has a master 

key. Both encryption key K_enc and MAC key K_mac are derived from this master key by 

encrypting two different constant values with the master key to obtain two ciphertexts. The 

resulting ciphertexts are used as the encryption key and the MAC key. 

Another protocol designed for SPINS is the μTESLA (“micro” version of the Timed, 

Efficient, Streaming, Loss-tolerant Authentication) protocol. μTESLA allows the sender to 

broadcast authenticated data to the entire sensor network with potentially untrusted 

receivers in it. Using symmetric MAC is insecure: If a node has been compromised with its 

symmetric MAC key known to the attacker, then the compromised node can impersonate 

the sender and forge messages to other receivers, therefore an asymmetric mechanism is 

required. Typically asymmetric cryptography is used for this purpose, but for the case of 

WSN asymmetric cryptography is too resource intensive. μTESLA allows authenticated 

broadcast from symmetric cryptography only (using RC5), and introduces asymmetry with 

delayed key disclosure and one-way function key chains. Authenticated broadcast is 

beyond the scope of link layer security and is therefore not further discussed in this paper. 

Note that the μTESLA security protocol assumes the following data flow patterns only: 

node to base station, base station to node, and base station to all nodes. These 

communication patterns do not include sensor node to sensor node communication, which 

is found more often in mobile ad-hoc networks (MANET). 
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6.2. TinySec 

TinySec [6] is another link layer security protocol also proposed by UC Berkeley but 

several years later and by different developers. It is designed to provide only link layer 

security: message confidentiality, integrity and authenticity. TinySec is designed to be 

implemented into the operating system TinyOS [25], which is the OS running on many 

sensor nodes (e.g. Mica mote series [14]). As a result of integrating with TinyOS, the 

TinySec stack can be used with simple function calls from the TinyOS application 

programmers’ point of view. A representative sensor node that implements TinySec 

through TinyOS is the Mica2 [14]. It has the following specifications: 8MHz 8-bit Atmel 

ATMega128L microcontroller with 128KB flash for code, 4KB RAM for data, 512KB 

flash for data logging, ISM (industrial, scientific and medical) radio band and 19.2Kbps 

radio bandwidth. 

6.2.1. Confidentiality 

To provide confidentiality, TinySec adopts CBC mode encryption using the block cipher 

SkipJack. Although the optimized RC5 assembler code performs better than SkipJack [6], 

SkipJack is still chosen by the TinySec developers because of its lower key setup costs and 

because it is patent free. Recall that in the previous section it has been discussed that CBC 

mode encryption requires secret or random initial vectors (IV). TinySec uses an 8 byte IV 

(Figure 6.1), but 4 of the 8 bytes are from existing header fields, therefore only 4 additional 

bytes of overhead are added. In the 4 bytes overhead, 2 bytes are used as a counter for 

generating non repeating IV. Although transmitting a plaintext counter as IV (non-secret 

IV) does not achieve the strongest security in CBC mode encryption [26], this is a security 

tradeoff which TinySec accepts due to the resource-constrained sensor nodes. The 

remaining 2 bytes overhead is used to represent the source node address. This is to prevent 

every node from having the same IV when the counter value starts from zero. The 2 bytes 

counter together with the unique source address ensures IVs between nodes are different. 

This is different than the SNEP protocol, where all nodes share the same counter value 

used for CTR mode. With TinySec the counter is used to derive IV. However, a 2-byte 

counter allows only 216 different IV values per node. Therefore IV reuse occurs after 
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sending only 65536 data packets. TinySec relies on the fact that data rates for data packets 

are very low (typically one packet per minute per node), therefore IV reuse will only occur 

after a longer period of time, at which point a new key should have been used already and 

thus IV counter can start anew again. At a data rate of one packet per minute, IV reuse will 

not occur for over 45 days. Even if IV reuse has occurred, only limited information may be 

revealed. This is another security tradeoff which TinySec considers to be tolerable. 

Figure 6.1 shows the packet formats for TinySec with authentication and encryption 

(TinySec-AE), TinySec with authentication only (TinySec-Auth) and TinyOS packet 

format without TinySec security protocol. The common fields of TinyOS packets are: 

destination address (Dest), active message (AM) type, and the packet length (Len). The 

explanations for these fields are beyond the scope of this paper. Additional fields as 

overheads of TinySec are: source address (Src), counter (Ctr) and MAC (MAC). Note that 

a cyclic redundancy check (CRC) code is not used when a MAC is used. This is because 

MAC also provides the integrity check originally provided by CRC. 

6.2.2. Authenticity 

To provide authentication and integrity, CBC-MAC is used. The additional MAC overhead 

size is 4 bytes. Unlike SNEP, protection against replay attacks is not provided in TinySec. 

This is because TinySec nodes do not share the same counter value; therefore in order to 

detect replay attacks every node needs to maintain a table of past counter values from all 

the nodes that it receives. Whereas with the shared same counter value, every node knows 

exactly what counter values have already been used, thus preventing replay attacks. 

TinySec developers believe that replay attack protection should be provided in layers 

higher than the link layer. 

Figure 6.1 shows the TinyOS packet format without security and with security (TinySec). 

The grayed fields are protected by MAC, field with grid is authenticated and encrypted and 

the byte size of each field is indicated in brackets. 
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Figure 6.1. The TinySec and TinyOS packet format. 

 

TinySec has been implemented with the programming language used for TinyOS called 

nesC. The implementation requires 728 bytes of RAM and 7146 bytes of code space. Or an 

alternative implementation that requires 256 bytes of RAM and 8152 bytes of code space, 

and also a 6% slower block cipher operation. 

6.3. Other Link layer Securities 

Other link layer security ideas have also been proposed or even adopted in prototype 

sensor networks. But many of them have not been documented as a proper security 

protocol. One such example is the link securities in the EYES project (refer to section 

2.3.3). The security designers for the EYES network have proposed profiling application 

patterns [5]. The different “profiles” specify parameters that will be most suitable for the 
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different application environments, instead of designing a one-size-fits-all security solution. 

Example profile parameters such as the need for: data confidentiality, tamper resistance 

hardware, public key cryptography and etc. The securities for EYES network assumes 

public key cryptography capability because of the large 1MB serial RAM, and also adopts 

symmetric block cipher. Proposed block ciphers to be used are: MISTY1, TEA and AES 

(depending on the memory resources available). 

 
 
 



   7 
IMPLEMENTATIONS 

In this chapter, the implementation environment and security primitives implemented in 

this paper are discussed. The implementation decisions and approaches as well as the 

reasons for choosing particular security primitives are also explained. 

7.1. Implementation Environment 

All algorithms from this paper are implemented on the MSP430 low power microcontroller 

family from Texas Instruments [33]. This microcontroller family is used by sensor nodes 

from the EYES project [21] and the TinyMote nodes in the Technical University of 

Vienna’s WSN project [12]. TinyMote nodes are used as the WSN platform on which the 

implementations of this paper are based. Figure 7.1 shows the TinyMote sensor nodes with 

the antenna built into PCB (printed circuit board), and a sensor node fitted with two AA 

batteries. 
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Figure 7.1. TinyMote with 2 AA batteries (left). 

 

TinyMote has the following characteristics: 

• Dimension: 38mm × 28mm 

• Microcontroller: 

 TI MSP430F1232  

 16-bit RISC CPU 

 200 μA at 1 MHz (1 MIPS), 2.2V 

 8KB flash memory (code memory), 256 bytes RAM 

• Wireless interface: 

 Chipcon CC2400 [60] 2.4 GHz band 
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 Range: 100 m (line-of-sight) 

 Data rate: 10 Kbps, 250 Kbps, 1 Mbps 

 RF wakeup time: 1.23 ms 

 Onboard antenna 

• Sensors: 

 Onboard: temperature, brightness, relative humidity 

 Optional mountable sensor board (analog input 10-bit resolution) 

The TinyMote is programmed by connecting it to a custom made TinyMote USB dongle, 

which is in turn connected to a TI JTAG interface to a PC. The USB dongle can be either 

powered either by connecting it to a USB port, or by connecting it to two AA batteries. 

The programming software used is the IAR Embedded Workbench IDE (integrated 

development environment) for MSP430 with C/C++ compiler version 3.21A [59]. The 

IAR Embedded Workbench contains both the programmer for TinyMote and the C/C++ 

compiler with which the algorithms from this paper are implemented. The compiler is set 

for maximum speed optimization for all code implemented in this paper.  

The software running on TinyMote nodes is developed by the Technical University of 

Vienna [12], and is at version 2.4.6. The security primitives that are implemented in 

TinyMote nodes are first integrated into this version of the node software (written in C), 

then the software is recompiled and uploaded to the nodes. 

With the current design of TinyMote WSN, the sink node (base station) is a standard 

TinyMote node with source address “0”. It is connected via a USB dongle to a PC, to 

which the received data packets are sent. The PC is also the power source for the sink node 
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through the USB port. The human interface and the display of sensor information take 

place at the sink node connected PC. 

 

Figure 7.2. TinyMote connected to USB dongle. 

 

The security model in this research is based on the base station as the point of trust (central 

trusted authority). The sink node (base station) and sensor nodes are connected similar to 

Figure 2.1. However, since the current design of the TinyMote WSN uses a standard 

sensor node as the base station, the base station in the TinyMote WSN lacks many 

characteristics often found in other WSN base stations. These include the high bandwidth 

base station-to-base station communications (as shown in Figure 2.1) and rich 

computational and memory resources. However, since the TinyMote base station is 

connected to the PC through the USB dongle, it has no limits on its energy usage. 

7.1.1. TinyMote Network Behavior 

The TinyMote network behavior is depicted as a flow chart in Figure 7.3. The current 

version of the node software implements the medium access control protocol CSMA-MPS 

[18] and only simple routing algorithms.  

The traffic pattern of the TinyMote WSN in this paper is many-to-one. Multiple sensor 

nodes send sensor values to the sink node and there are no sensor node-to-sensor node 

communications. The network topology is also static (the node positions are fixed). 

Each sensor node periodically listens to the channel at two second intervals. It listens for 
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wakeup signals from its neighboring nodes and receives data packets. A node is 

synchronized with its neighboring node through this periodic channel listening. The 

TinyMote node also performs sensor measurements every two seconds. If sensor values 

have changed significantly then a data packet with new sensor values will be sent back to 

the sink node, possibly with several hops of other nodes in between. If a data packet has 

failed to be delivered (or the transmitting node has not received acknowledgment from the 

receiving node) after two trials, the node will then search for an alternate neighboring node 

to deliver the data packet. If this third delivery trial also fails, the data packet will be 

dropped and the node will enter sleep mode for 60 seconds to save power, because it is 

probably not connected to the network. 
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Figure 7.3. TinyMote network behavior. 
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7.1.2. TinyMote Packet Structure 

The TinyMote packet structure is shown in Figure 7.4. The transceiver fields in Figure 7.4 

(a) are added by the RF transceiver hardware. Figure 7.4 (b) shows the detailed view of the 

data field from Figure 7.4 (a). The user specific fields are handled by TinyMote software in 

the microcontroller. The first three fields (packet length, source address, last hop count) in 

Figure 7.4 (a) are required for normal operations of the medium access control protocol 

CSMA-MPS. Hop counts (HC) are values indicating how many transmissions are needed 

before a data packet reaches the sink node. For example, a node with source HC = 2 

indicates that the data packet it sends needs to go through another node before reaching the 

sink node. The mandatory fields in Figure 7.4 (b) are required by the current version of the 

TinyMote software, but are not required by the CSMA-MPS protocol; therefore it is 

possible to reprogram these fields for alternative purposes. 

Transceiver User specific transceiver
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Figure 7.4. TinyMote packet structure. 

 

The meaning of different data fields in Figure 7.4 (b) are as follows: 

• Source HC – hop count value of the source node (where the data packet originates). 

• Sensor type – bit encoded byte indicating which types of sensor values are included 

in the optional fields. 
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• TX slot counter – a debugging value for CSMA-MPS protocol. 

• VCC – the voltage level of the source node. 

• VSol – the solar cell voltage level of the source node (refer to section 7.1.3). 

• Temperature – the temperature of the source node with accuracy up to one tenth of 

a degree Celsius. 

• Brightness – the brightness of the source node measured in LUX. 

• Humidity – the relative humidity of the source node measure as a percentage (%). 

Note that the CRC (Cyclic Redundancy Check) field for integrity checking will not be 

needed if the authentication security primitive is implemented (e.g. MAC). This is because 

an authentication code provides both authentication and an integrity check. 

7.1.3. TinyMote Power Consumption 

The TinyMote power consumption levels (with no security primitives) at different 

measurement intervals and data transmission intervals are shown in Figure 7.5 and Figure 

7.6. A data packet is only sent when sensor readings differs significantly, therefore the 

packet transmission interval is usually longer than the measurement and channel listening 

interval. 

It is worth noting that the TinyMote based WSN is designed to be energy self-sufficient, 

meaning the sensor network lifetime is not limited by energy resources (e.g. batteries). To 

achieve this, TinyMote has been designed to be connected to a solar cell which has a solar 

panel and two 10F ultra-capacitors. The ultra-capacitors are used as an energy storage 

medium. They are superior to rechargeable batteries because ultra-capacitors achieve a lot 

more charge-discharge cycles and thus a longer lifetime than any rechargeable batteries. 
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Figure 7.5. Power consumption 187 μW (channel listening: 47 μW, packet sending: 

41.14μW, sensors: 98.38 μW) (2s measurement interval, 10s transmission interval). 

 

 

Figure 7.6. Power consumption 70 μW (channel listening: 9.50 μW, packet sending: 

41.14μW, sensors: 19.68 μW) (10s measurement interval, 10s transmission interval). 
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7.2. Block Ciphers 

This section discusses which block ciphers are implemented in this paper, how they are 

implemented and why these block ciphers and these particular configurations are chosen. 

7.2.1. XTEA 

XTEA (Extended Tiny Encryption Algorithm) as implemented in this paper is adapted 

from the XTEA reference C code [36]. The reference XTEA C code is ported to the IAR 

C/C++ compiler for MSP430. The number of XTEA cycles is fixed at 15 (30 Feistel 

rounds); therefore certain XTEA internal values can be pre-computed. This results in a 

slightly more optimized version of XTEA with a smaller code size and a faster execution 

speed. A faster execution speed means lesser processor cycles are required and it therefore 

requires lower power consumption. 

One of the main reasons for choosing XTEA is its small code size (typically less than 30 

lines of C codes). XTEA also requires very little RAM space because it does not require an 

initialization process to generate and store subkeys like many other block ciphers. Subkeys 

are mixed and generated within the XTEA rounds. XTEA is chosen instead of the even 

simpler original TEA or other TEA variants because the original TEA has proven to be 

insecure; Block TEA and XXTEA are designed to be more efficient on longer messages, 

whereas in a WSN environment most messages are fairly short. A 15-cycle XTEA is 

chosen because the best proposed attack on XTEA is on 27 rounds, which is less than 14 

cycles. Therefore for a balance between security and performance, a 15-cycle (30 rounds) 

XTEA is chosen. 

Although XTEA operates directly on 32-bit words and requires 32-bit shifts, it requires 

only short fixed number bit shifts. Furthermore, the MSP430 is a 16-bit microcontroller; 

therefore operating on 32-bit words does not impose as huge a penalty as would be found 

on an 8-bit microcontroller. 
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7.2.2. SAFER K-64 

The implemented SAFER K-64 (Secure And Fast Encryption Routine with a Key of length 

64 bits) in this paper is adapted from the Turbo Pascal code provided by the SAFER K-64 

designer [44]. For execution speed optimization, three look-up tables are provided which 

are not included in the reference Turbo Pascal code. They are namely the log, exponential 

and the key bias tables. These look-up tables allow SAFER K-64 to avoid logarithmic, 

exponential and modulus operations during key scheduling and round functions. A 7-round 

SAFER K-64 is used in this paper. 

SAFER K-64 has many advantages for implementation in a resource-constrained 

environment. When using look-up tables to replace logarithmic and exponential 

computations the SAFER K-64 requires only byte level XOR and addition operations, 

making it suitable for any word size microcontrollers. SAFER K-64 is also a relatively 

small code size block cipher. Another reason for choosing SAFER K-64 is that, although it 

seems to be suitable in an embedded environment, there are not many studies on SAFER 

K-64’s performance in a WSN environment; therefore it is chosen to see how it compares 

against some other well known block ciphers. A 7-round SAFER K-64 is chosen because 

so far the best feasible attack has been found on 5-round SAFER K-64. The authors of the 

proposed attack indicate a 7 or 8-round SAFER K-64 is secure against such attack. With a 

6-round SAFER K-64, although such attack is still applicable, the required encryption 

computation time approaches 264 (attack computation time: 261); therefore an attack on a 6-

round is also not very feasible. 

7.2.3. TREYFER 

A 32-round (nominal) TREYFER is implemented in this paper. The TREYFER codes are 

adapted from the C code provided by the designer [42]. In the original code, explicit 

modulo 256 operations are required. However, this operation consumes a lot of processor 

cycles as it requires to performing division operations. The adapted TREYFER code 

avoids explicit use of modulo 256 operations and thus achieves optimization for both code 

size and execution speed (33% smaller code size and 83% faster execution speed than the 

original TREYFER C code). The designer of TREYFER suggested “stealing” the required 

256 bytes of S-box from any other place in code memory running with TREYFER. 

 
 
 



Chapter   7  Implementations  

Electrical, Electronic and Computer Engineering 95

However, in this paper the 256 bytes S-box is explicitly defined together with the 

TREYFER code. 

The main reason for choosing TREYFER is its extremely small code size (even smaller 

than the TEA block cipher). TREYFER also requires only byte level operations. Similar to 

the TEA block cipher, TREYFER also does not require the generation and storage of 

subkeys; therefore it also requires less RAM. Another reason for investigating TREYFER 

is that, similarly to SAFER K-64, although it is also suitable for a resource-constrained 

environment, it has not yet been properly studied in a WSN environment. The 32-round 

TREYFER is chosen because it is the nominal round value used by the designer. Although 

the designer suggests any round value larger than 8 should provide enough security, 

however there are no attempts to cryptanalysis on TREYFER rounds smaller than 32; 

therefore for security reason a 32-round TREYFER is chosen. 

A feasible attack on TREYFER has been shown to be possible and is independent of the 

number of rounds. However, a counter-measure against such an attack is also possible 

(refer to section 4.3.1.) 

7.2.4. OCB Mode 

Offset Codebook (OCB) version 2.0 block cipher mode as implemented in this paper is 

developed from scratch, but using snippets of C code from the OCB designer’s web site 

[53] as a guideline. The only difference is that the underlying block cipher has changed 

from AES (128-bit block size) to XTEA (64-bit block size). 

One of the main reasons for choosing OCB is its ability to provide authentication and 

encryption in only one-pass of the data message (data message processed once only), plus 

two additional block cipher calls and some processing overhead for creating the sequence 

offsets. Other generic modes usually require one-pass for encryption (e.g. CBC, CTR mode) 

and another pass for processing of the data message for authentication (e.g. CBC-MAC). 

Compared to other one-pass modes, OCB is a follow up work on XCBC [50] and is 

proposed after many earlier proposed one-pass modes. As a result, OCB has been designed 

with several improvements and is more efficient and less complex than many other one-

 
 
 



Chapter   7  Implementations  

Electrical, Electronic and Computer Engineering 96

pass modes. For example, OCB uses XOR instead of large bit addition or modulo prime 

number operations. OCB version 2.0 has particularly reduced the complexity of generating 

sequence offsets compare to other one-pass modes, where offset generation has contributed 

to most of the processing time after the block cipher operations in any one-pass modes. 

Another advantage of OCB, also described in section 4.5.3, is that it is designed to be able 

to authenticate a packet’s associated data (e.g. header bytes in a data packet) without 

encrypting it. This allows both header bytes and data bytes in a packet to be authenticated, 

while only data bytes are encrypted. This is an important feature in many networks 

including WSN, because a sensor node may need to see the headers in plaintext in order to 

quickly relay the data packet to the next node and return to sleep to conserve power. If the 

headers are also encrypted, then in order for a node to correctly relay the packet to the next 

node, it needs to first decrypt the headers, which imposes more processing time and thus 

higher power consumption. 

7.3. RC4 Stream Cipher 

The RC4 stream cipher in this paper is not implemented on the MSP430F1232 

microcontroller that is used in the TinyMote sensor nodes. It is implemented and simulated 

on a MSP430F149 microcontroller. The reason for this is that RC4 requires at least 256 

bytes of RAM to store its constantly changing S-box content, but MSP430F1232 has only 

256 bytes of RAM. Therefore it is implemented on a MSP430F149 which has a larger 

RAM space (2 KB RAM) (another WSN, the EYES [5] project, uses MSP430149 as its 

node microcontroller). RC4 in this paper is adapted from the pseudo code in [26]. However, 

the initialization function of the adapted RC4 has been improved by avoiding the use of 

modulo key length operations, which greatly reduces the initialization processor time (76% 

faster) and also with slightly smaller code size (3% smaller). 

RC4 is chosen because it is an extremely fast and small size stream cipher, even though it 

can not be implemented on the TinyMote platform. Therefore it is implemented in this 

paper to investigate its alternative use. RC4 also only requires byte level operations, 

making it suitable for any word size microcontrollers. RC4 on its own provides only 

confidentiality (encryption) and it cannot be used like block cipher modes to provide 
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authenticity. Therefore in this paper, RC4 is used to generate pseudo random numbers 

needed for UMAC operations, as an alternative to using block ciphers to generate the 

needed pseudo random numbers. Lastly, although not as popular as the block cipher modes 

providing authentication, there are still other proposals suggesting how stream ciphers can 

be used to provide authentication, but these are not investigated in this paper. 

7.4. UMAC 

The UMAC implementations in this paper have been greatly modified to be more suitable 

to a WSN environment. They are implemented from scratch using UMAC internet drafts 

[57] as guidelines. 

7.4.1. UMAC-Block Cipher 

In the UMAC shown in Figure 5.3 and Figure 5.4 from section 5.2, the L2-HASH and L3-

HASH are used to further reduce the size of the unbounded (variable length) hash code 

generated by L1-HASH (NH hash function). After the L2-HASH and L3-HASH the output 

hash code is a fixed size. However, the output hash code size of the NH hash function is 

proportional to the input message size. Therefore in a closed WSN environment where data 

message size is small, fixed and known, it is possible to customize UMAC to eliminate the 

need for the L2-HASH and L3-HASH. The UMAC implemented in this paper is similar to 

Figure 5.3, except that only the NH hash function is needed in place of UHASH as shown 

in the figure below. 
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Figure 7.7. customized UMAC. 

 

The customized UMAC in this paper (Figure 7.7) uses an underlying block cipher with a 

64-bit block size. Therefore the KDF (key derivation function) only needs to call the block 

cipher twice to generate two 8-byte subkeys to be used in the PDF (pad derivation function) 

and NH hash function. Note that the subkeys only need to be generated once, and remain 

the same for the lifetime of the same secret key. One block cipher call in PDF produces 8 

bytes of encryption pads to be XORed with a 4-byte (32-bit) hash code. Therefore every 

PDF call produces enough encryption pads for generating two MACs. The nonce used with 

PDF is realized with a simple incrementing counter. 

The NH hash function is shown in the following figure (Figure 7.8).  
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Figure 7.8. NH hash function with word size w = 16 and number of words processed 

in a NH block n = 4. 

 

The word size processed in the NH hash function is 16-bit, and the number of words 

processed in a NH block is equal to 4 words. Therefore the number of bytes processed in 

one NH hash function call is 8 bytes. Word size is chosen to be 16-bit to achieve a 32-bit 

hash code after two 16-bit multiplications, and also because the word size of the 

microcontroller used is also 16-bit.  

The data message is divided into 8-byte chunks as input for the NH hash function. The 

hash result of a NH function call is added to the hash result of the previous NH function 

call. Therefore, the final hash code will always be of a fixed 4-byte size. For example, to 

process a 24 byte data message, three NH function calls are required, and all three hash 

results are added. This method of implementing the NH hash function has also been 

proposed by Yüksel [58], however, in a hardware implementation only. 

The advantage of using such a customized UMAC is clear. After the initial subkeys have 

been generated, to produce two MACs for any messages afterwards only requires one KDF 
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call (i.e. one block cipher call) and several NH hash calls (depending on the size of the 

message). Using only one block cipher call to generate every two MACs can save a 

significant amount of processing time, particularly when the block cipher calls are more 

expensive than NH function calls. The underlying block cipher of UMAC can also be used 

to provide encryption that is not provided by UMAC. 

7.4.2. UMAC-RC4 

The KDF and PDF in UMAC are needed to produce subkeys and encryption pads 

respectively. However, UMAC is not limited on using only block ciphers to generate 

pseudo random numbers needed in KDF and PDF. In this paper, the RC4 stream cipher is 

used to generate pseudo random numbers as the subkeys needed for the NH hash function 

and the encryption pads needed to XOR the NH hash code. The following figure (Figure 

7.9) shows how RC4 is used with an NH hash function to generate a MAC. The NH hash 

function used here is the same as the one described previous in Figure 7.8. A nonce 

(counter) is not needed in this implementation because a nonce is used with the block 

cipher to ensure that every encryption pad produced will be different. Also, the RC4 stream 

cipher is designed to continuously generate pseudo random key stream bytes as encryption 

pads; therefore a nonce is not required. 

 

Figure 7.9. UMAC with RC4. 
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replaces the need of KDF and PDF for generating pseudo random numbers, resulting in a 

smaller code size. Apart from generating pseudo random numbers needed for UMAC, RC4 

can also generate additional encryption pads to encrypt the data message; thus providing 

encryption apart from the authentication by UMAC. However, since there is no nonce 

being used in RC4, the message receiver of the UMAC-RC4 authenticated and RC4 

encrypted messages must keep track of the sender’s RC4 S-box status in order to know 

which key stream bytes are being used at the moment. 

7.5. Conclusions 

Adaptations and implementations of several cryptographic algorithms are discussed in this 

chapter. Blocks ciphers of XTEA, SAFER K-64, and TREYFER are implemented. The 

OCB mode block cipher encryption and authentication is also implemented. The only 

stream cipher implemented and evaluated is the RC4 stream cipher. Furthermore, UMAC 

authentication algorithm is also adapted for WSN and implemented with XTEA as its 

underlying block cipher. 

 
 
 



   8 
RESULTS AND DISCUSSIONS 

This chapter provides the results of the various implementations discussed in the previous 

chapter. These results include the performance, power consumption and security level of 

the different security primitives; and how link layer security protocols are improved 

compare to existing protocols.  

8.1. Power Consumption in the MSP430 Microcontroller 

Different instructions may require different numbers of clock cycles, resulting in different 

amounts of energy consumption per cycle. Even different instructions with the same 

number of clock cycles may consume different amount of energy per cycle because of the 

nature of the instruction itself. For example an instruction that accesses the main memory 

(RAM) or registers will consume less energy than an instruction that accesses the flash 

memory. 

However, Law et. al. [54] have shown that the energy per cycle is fairly consistent for the 

MSP430 microcontroller family with a mean deviation of 6%. Groβschadl et. al. [64] have 

further shown that variable energy consumption per cycle has more influence on high-end 

microcontrollers and DSPs. For example, Intel’s StrongARM SA-1100 has a more 

complex power management strategy such as the use of conditional clocking trees, which 

ensures only the presently required units in the microcontroller are clocked and other units 

remain static; thereby resulting in the difference in energy consumption per cycle. 
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Therefore it is safe to say that the MSP430F1232 microcontroller used in this paper 

running at 1 MIPS, 2.2V, and at an average current of 200 μA requires an average power 

consumption of: WAV μμ 4402002.2 =× . 

8.2. Cryptographic Ciphers 

Table 8.1 shows the code size, look-up table size, user key size and expanded subkey size 

required for each cryptographic cipher. Both code and look-up table are stored in the flash 

memory and the key and expanded key are stored in RAM. The size of the standard and 

optimized versions of XTEA, TREYFER and RC4 are also shown. 

Table 8.1. Cryptographic ciphers memory requirements. 

 
Code 

(Flash) 

Look-up table 

(Flash) 

Key 

(RAM) 

Expanded key 

(RAM) 

XTEA (std.) 712 bytes N/A 16 bytes N/A 

XTEA (opt.) 620 bytes N/A 16 bytes N/A 

SAFER K-64 850 bytes 624 bytes 8 bytes 112 bytes 

TREYFER (std.) 294 bytes 256 8 bytes N/A 

TREYFER (opt.) 196 bytes 256 bytes 8 bytes N/A 

RC4 (std.) 512 bytes N/A 16 bytes 256 bytes 

RC4 (opt.) 492 bytes N/A 16 bytes 256 bytes 

 

The code size consists not only of the algorithm for the cipher, but also the necessary 

simple code for setting up testing vectors (e.g. plaintexts and ciphertexts) to execute the 

cipher. 

All three block ciphers implemented in this paper are implemented and measured in ECB 

(electronic codebook) mode processing an 8-byte block. This is to allow measurements to 

be focused on the actual block cipher algorithm’s speed performance. However, Law et. al. 

[54] have shown that the performance in a speed optimized block cipher differs very little 
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between generic modes of operation (e.g. CBC, CFB, CTR etc.). 

Table 8.2 below shows the performance (in CPU cycles to process one byte) of each cipher. 

Key setup is the number of cycles required to initialize expanded subkeys and is only 

executed once for the lifetime of the same user selected secret key. 

Table 8.2. Cryptographic ciphers CPU usage. 

 Encrypt Key setup 

XTEA (std.) 303 N/A 

XTEA (opt.) 287 N/A 

SAFER K-64 126 3578 

TREYFER (std.) 6527 N/A 

TREYFER (opt.) 1110 N/A 

RC4 (std.) 103 47515 

RC4 (opt.) 103 11154 

 

From the tables above it can be seen that the optimized XTEA achieves smaller size (12% 

smaller) and slightly faster execution speed (5.3% faster) than the standard XTEA code 

size. XTEA does not require setting up expanded subkeys; therefore there is no additional 

RAM or CPU usage needed for storing and setting up subkeys. 

Both SAFER K-64 and TREYFER are the only cryptographic ciphers that require look-up 

tables. It can be seen that SAFER K-64 requires the most total memory usage. However, 

SAFER K-64 is also the fastest block cipher compared to the other two block ciphers. If a 

6-round SAFER K-64 is used, then the execution speed is comparable to the stream cipher 

RC4 (6-round SAFER K-64: 110 CPU cycles per byte). 

The optimized TREYFER is approximately 33% smaller in size and significantly faster 

(83% faster) than the standard TREYFER. When used in a real-life application, the 256 

bytes TREYFER look-up table values can be derived from other parts of the same 

application in memory running with TREYFER. It can be seen from the above tables that, 
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although TREYFER has the smallest code size, it also requires the highest CPU usage. 

The optimized RC4 is only slightly smaller (3% smaller code) than the standard RC4 code 

size. However, with optimized RC4, a significant CPU usage saving is obtained in key 

initialization (76% faster). RC4 does not require a look-up table in flash, but it requires 256 

bytes of S-box in RAM for generating key streams. Stream cipher RC4 is the fastest and 

requires the least flash memory space. 

Table 8.3 shows additional block cipher memory requirements and CPU usage conducted 

by Law et. al. in [54] (compiler also set for speed optimization). The code size contains 

both code and look-up tables of the block cipher. CPU usage for encryption is also 

measured in CPU cycles per byte (on an 8-byte block), and key setup is measured in 

number of CPU cycles needed. MISTY1 is another royalty-free 128-bit key, 64-bit block 

cipher; it is not further discussed in this paper. Note that the version of AES used by Law 

et. al. in [54] has been optimized for speed, sacrificing the storage space with larger code 

size. 

Table 8.3. Additional cryptographic ciphers memory requirements and CPU usage. 

 
Code 

(Flash) 

Expanded Key

(RAM) 

Encrypt 

(CBC) 
Key setup 

RC5 6312 bytes 152 bytes 620 40556 

AES 15842 bytes 240 bytes 400 
1313 (encrypt) 

5034 (decrypt) 

MISTY1 8492 bytes 64 bytes 490 584 

 

There are three differences between the implementation environment in this dissertation 

and the implementation environment in [54]. 

1. The block ciphers in [54] are implemented on the same microcontroller family 

(MSP430) as the one used in this paper. The only difference is that the 

microcontroller used in [54] has larger memory resources and a built-in hardware 
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multiplier. However, none of the block ciphers in Table 8.3 requires intensive 

multiplication operations. 

2. The development software used in [54] is the IAR C/C++ compiler version 2.20A, 

which is older than the version used in this paper. However, the performance 

differences between the two compiler versions are very slight, especially when the 

compiler is set to optimize for code speed. 

3. The block ciphers in Table 8.3 are implemented in CBC mode, which has higher CPU 

usage than the ECB mode results in this paper (Table 8.2). However, it is also shown 

in [54] that the performance differences between different modes are minimal, 

particularly when the compiler is to compile codes for speed optimization. Note that 

with the speed optimized codes in this compiler, CBC mode produces code 

approximately 3 KB bigger than ECB mode. 

Therefore despite some minor differences, the results from Law et. al. (Table 8.3) still 

provide good comparisons against the results obtained in this paper (Table 8.1 and Table 

8.2). 

8.2.1. Observation and Analysis 

From the above performance results and memory requirements, it can be seen that the 

stream cipher RC4 requires the least flash memory and CPU usage to encrypt one byte; 

however, it requires the most RAM and fairly high CPU usage for key initialization. Also, 

being a stream cipher, RC4 cannot be easily adapted with block cipher modes of operation 

to provide authentication besides encryption. On the other hand, if an efficient stream 

cipher authentication algorithm and a microcontroller with sufficient RAM is used, RC4 

will be a very good choice as a low-power security solution to provide both encryption and 

authentication. Another advantage of RC4 is that because it produces one keystream byte 

at a time, it can be customized to the exact packet size of different WSN applications. 

The SAFER K-64 block cipher is the fastest block cipher compared to all other block 
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ciphers. However, it requires more flash and RAM memory than XTEA and TREYFER. 

TREYFER requires the least flash memory, but it performs poorly and requires the most 

CPU cycles to encrypt one byte. XTEA appears to be a good compromise between speed 

performance and code size. Therefore XTEA is suitable for an extremely memory 

constrained environment, while still providing fairly low power consumption. SAFER K-

64 is well suited for environments with slightly more memory where it can be used to 

achieve even lower power consumption (less CPU usage). However, note that the security 

of XTEA is higher than the SAFER K-64 because of its 128-bit key length compared to the 

SAFER K-64’s 64-bit key length. 

It is observed that some of the popular block ciphers (e.g. RC5 and AES) that are found in 

many traditional network security packages do not perform that well in the embedded 

environment. Although AES is faster compared to RC5 and MISTY1, it however requires 

very large flash memory space (more than 10 KB). Even so, it is still slower than XTEA 

and SAFER K-64. Both RC5 and MISTY1 also require higher CPU usage than XTEA and 

SAFER K-64 to encrypt one byte. Furthermore, RC5 also requires fairly high CPU usage 

for its subkey initialization. The higher CPU usage needed for subkey initialization, the 

less energy-efficient it is to change its secret key. Therefore both RC5 and AES are not 

suitable for a WSN environment. Law et. al. [54] recommended using MISTY1 for a 

memory constrained environment. However, the results of this paper have shown that 

XTEA requires both lower CPU usage and less memory than MISTY1. SAFER K-64 also 

requires less flash memory (but more RAM) and performs better compared to MISTY1. 

8.3. UMAC 

UMAC provides only authentication by calculating the MAC (message authentication 

code). In this paper, UMAC is customized for small size data using XTEA (block cipher) 

and RC4 (stream cipher) as its underlying pseudo random number generator. 

8.3.1. UMAC-XTEA 

The customized UMAC-XTEA can be subdivided into three components: KDF, PDF and 
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NH. The key derivation function (KDF) generates two subkeys (total of 16 bytes) needed 

for both the PDF and the NH hash function. The pad derivation function (PDF) generates a 

one-time encryption pad to be XORed with the hash code. The NH hash function processes 

eight-byte blocks and produces four-byte (32-bit) hash codes. Every PDF call invokes an 

XTEA cipher call, which produces an eight-bytes encryption pad; therefore one PDF call 

provides encryption pads for generating two MACs. 

Table 8.4 shows the number of CPU cycles needed for the different function calls within 

UMAC-XTEA. The NH hash function involves 16-bit multiplication operations, which 

makes the CPU cycle usage depending on the input value to the NH function. The NH 

function CPU usage below is the average value across several different input values. 

Furthermore, some MSP430 microcontrollers have built-in hardware multiplier (HW 

multiplier) (e.g. MSP430F140). When such microcontrollers are used, the performance of 

the NH hash function is improved. 

Table 8.4. UMAC-XTEA CPU usage. 

 KDF PDF 

NH  

(without HW 

multiplier) 

NH  

(with HW 

multiplier) 

CPU usage 4679 2300 570 190 

 

The flash memory required for UMAC-XTEA code in the above table is 1333 bytes. This 

includes code for setting up a simulated 24 byte data packet. If a data packet is of size 24 

bytes (3 blocks), then to authenticate such data packet using UMAC-XTEA requires one 

PDF call and three NH hash function calls (excluding the key setup KDF call). 

8.3.2. UMAC-RC4 

The customized UMAC-RC4 is similar to the block cipher UMAC-XTEA. It uses the same 

NH hash function to process eight-byte data blocks and to produce four-byte (32-bit) hash 

codes. The key derivation function (KDF) in UMAC-RC4 only needs to generate one 
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eight-byte subkey for the NH. The pad derivation function (PDF) generates four-byte 

encryption pads to be XORed with the hash code. 

Table 8.5 shows the CPU usage (number of CPU cycles) of function calls within UMAC-

RC4. The initialization function initializes the RC4 S-box in RAM. Both initialization and 

KDF only need to be executed once for the lifetime of the same secret key. The NH 

functions CPU usage is the same as the previous result with UMAC-XTEA. 

Table 8.5. UMAC-RC4 CPU usage. 

 Initialization KDF PDF

NH  

(without HW 

multiplier) 

NH  

(with HW 

multiplier) 

CPU usage 11154 529 277 570 190 

 

The flash memory required for UMAC-RC4 code in the above table is 1429 bytes. This 

includes code for setting up a simulated data packet of 24 bytes. To authenticate a data 

packet of size 24 bytes (3 blocks), with UMAC-RC4 requires one PDF call and three NH 

hash function calls (excluding RC4 initialization and key setup call of KDF). 

8.4. OCB-XTEA 

OCB (Offset Codebook) is a block cipher mode that provides both encryption and 

authentication. OCB is capable of authenticating associated data (e.g. header bytes) 

without encrypting it. The customized OCB-XTEA in this paper is divided into two 

components: PMAC and OCB_ENC. PMAC authenticates header bytes (associated data) 

into 8-byte (64-bit) authentication tags. OCB_ENC encrypts and authenticates the data 

bytes, and combines the data authentication tag with the header authentication tag from 

PMAC to obtain a final 64-bit MAC. 

In Table 8.6, results (number of CPU cycles) are obtained from simulated data packets of 
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size 24 bytes. The first 8 bytes are the header bytes and the last 16 bytes are message data 

bytes. Therefore, the OCB-XTEA-encrypted and -authenticated data packet will have 8-

byte headers in plaintext, 16 bytes of encrypted message data, and a 64-bit MAC 

authenticating both header and message data bytes. 

Table 8.6. OCB-XTEA CPU usage on 24 bytes data (8-byte header, 16-byte data). 

 
PMAC 

(8-byte header)

OCB_ENC 

(16-byte data) 

CPU usage 4898 9790 

 

The flash memory required for OCB-XTEA codes in the above table is 1749 bytes, which 

includes code for setting up the simulated data packet of 24 bytes.  

For a data packet consisting of an 8-byte header and a 16-byte data block (for a total of 3 

blocks); PMAC requires one block cipher call, OCB_ENC requires two block cipher calls 

for encryption, and another block cipher call for producing the final MAC. Another 

additional block cipher call is required to encrypt the nonce to be used in OCB offsets. 

Therefore with N blocks, N+2 block cipher calls are required. Apart from the block cipher 

calls, OCB also requires several offset operations (refer to section 4.5.3), which requires a 

lot less CPU cycles than the block cipher calls. 

8.5. Security Primitives Implementations 

To provide all security primitives: confidentiality, authenticity and integrity are needed. 

Encryption provides confidentiality, while authentication using MAC provides both 

message authentication and integrity checking. This section suggests several combinations 

of using the abovementioned cryptographic functions to provide encryption, authentication 

and integrity checking in WSN. 

• OCB-XTEA – OCB block cipher mode provides both encryption and 
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authentication with N+2 of block cipher calls (N being the number of blocks) and 

some offset operations. Only one secret key is needed in OCB for both encryption 

and authentication. 

• UMAC-XTEA + XTEA – UMAC-XTEA provides only authentication. However, 

because block cipher XTEA is used as UMAC’s underlying pseudo number 

generator, the same XTEA code can be reused to perform the encryption function. 

Two different secret keys are needed for UMAC (authentication) and XTEA 

encryption. 

• UMAC-RC4 + RC4 – UMAC-RC4 provides only authentication. The underlying 

stream cipher RC4 is used as pseudo number generator for UMAC. However, the 

pseudo random bytes (keystream bytes) generated by RC4 can also be used as 

encryption pad to be XORed with the message data for encryption. Only one secret 

key is used for RC4 in the implementation of this paper. However, using two 

different keys for two RC4 instantiation is possible. 

• Generic Block Cipher modes – Generic block cipher modes have been widely used 

to provide encryption and authentication (e.g. CBC-MAC). Therefore it is included 

in the performance measurements for a comparison to other non-conventional 

methods of providing encryption and authentication. Two different secret keys are 

needed for the encryption mode and the authentication mode. 

Table 8.7 shows the CPU usage (number of CPU cycles) of the suggested combinations of 

cryptographic functions. A simulated data packet of 24 bytes is used, with first 8 bytes 

being the header and the last 16 bytes being the data bytes. All block cipher performance 

measurements are done using XTEA. The aim is to observe which cryptographic 

combinations are most suitable; therefore other block ciphers can be used instead of XTEA.  
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Table 8.7. Encryption and Authentication CPU usage (24 bytes packet size). 

 
Encryption & 

Authentication 
Key setup 

OCB-XTEA 14688 N/A 

UMAC-XTEA  +  XTEA 7446 4679 

UMAC-RC4  +  RC4 3635 11683 

Generic block cipher modes 

(XTEA) 

(CBC-MAC  +  CTR mode)

11465 N/A 
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Figure 8.1. Encryption and Authentication CPU usage (24 bytes packet size). 

 

Table 8.8 and Figure 8.4 shows the performance of block cipher cryptographic functions 

on a packet size of 3 blocks (24 bytes). However, different cryptographic function 

combinations will perform differently with different packet sizes: 

• OCB-XTEA – Requires N+2 block cipher calls (N is the number of blocks) and 
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additional offset operations to provide encryption and authentication. The 

additional offset operations typically require a lot less CPU cycles than block 

cipher calls.  

• UMAC-XTEA + XTEA – Unlike OCB, the number of block calls in this 

combination depends also on the header size. This is because header bytes only 

need to be authenticated and not encrypted; therefore as the header increases in size 

compared to the message data portion, the number of block cipher calls required 

will decrease. The block cipher calls required are: (N - H) + 0.5 (where N is the 

total number of blocks and H is the number header blocks). UMAC-XTEA requires 

half a block cipher call and N NH function calls for authentication. N - H block 

cipher calls are needed for encryption. For example, a 24 bytes (3 blocks) packet 

with 8 bytes header (1 block) requires half a block cipher call plus four NH hash 

function calls for UMAC-XTEA authentication; along with two XTEA calls for 

encryption. 

• Generic block cipher modes – When using generic block cipher modes to encrypt 

and authenticate N blocks of data, 2N block cipher calls are required. However, 

when authenticating N blocks of data and encrypting N - H blocks of message data, 

the required number of block cipher calls is: 2(N - H) + H (N is the number of 

blocks and H is the number header blocks). For example, a 24 bytes (3 blocks) 

packet with an 8 bytes header (1 block) requires three block cipher calls for 

authentication and two block cipher calls for encryption (five block cipher calls in 

total).  

Table 8.8 shows the number of block calls needed for various size data packets. WSN 

packet sizes are typically less than 30 bytes. TinyMote [12] has a maximum packet size of 

15 bytes (including header bytes). Therefore a comparison of packet sizes between 16-byte 

to 32-byte systems is reasonable. 
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Table 8.8. Number of block cipher calls needed for various size data packets. 

 

16-byte 

(8-byte header, 

8-byte data) 

24-byte 

(8-byte header, 

16-byte data) 

32-byte 

(8-byte header, 

24-byte data) 

OCB-XTEA 4 5 6 

UMAC-XTEA  +  XTEA 1.5 2.5 3.5 

Generic block cipher modes 

(XTEA) 

(CBC-MAC  +  CTR mode) 

3 5 7 

 

8.5.1. Observation and Analysis 

As shown in Table 8.7, the combination of the UMAC-RC4 + RC4 and the RC4 security 

primitives requires the least CPU usage to provide both encryption and authentication. 

Using RC4 also requires fairly little flash memory. However, RC4 needs to maintain a 

256-byte S-box in RAM, which may be too much for certain extremely memory 

constrained sensor node (e.g. TinyMote with only 256 bytes of RAM). Furthermore, as 

mentioned in section 7.4.2, unlike block cipher modes, the stream cipher RC4 does not use 

a nonce; therefore the receiver has to keep a copy of the sender’s S-box in order to produce 

the same keystream bytes being used on the received data packet. If two secret keys are 

used for encryption and authentication, then two RC4 instantiations are required, thus two 

256-byte S-boxes will be needed at both the sender and the receiver. 

When using a block cipher to provide encryption and authentication, Table 8.7 shows the 

UMAC (authentication) + block cipher (encryption) has the least CPU usage when the 

packet size is 24 bytes with 8-byte header. Table 8.8 also shows that UMAC-XTEA + 

XTEA requires the least block cipher calls and N NH hash function calls (where N is the 

number of blocks). It has also been noted that NH function calls typically need a lot fewer 

CPU cycles than block cipher calls. As a result, optimized UMAC + block cipher 

encryption seem to be a viable security primitives solution in the resource constrained 

WSN environment.  
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In Table 8.8, it can be seen that OCB performs better with higher numbers of blocks when 

compared to the generic block cipher modes of providing encryption and authentication. 

Even when OCB and generic block cipher modes require the same number of block cipher 

calls as in the case with 24-byte packet (with 8-byte header), OCB still has a higher CPU 

usage (Table 8.7). This is because OCB requires additional offset operations than generic 

block cipher modes. Therefore, with a smaller packet size, it is more efficient to use 

generic block cipher modes than OCB to provide encryption and authentication; whereas 

OCB performs better with larger packet size. 

For generic block cipher mode authentication, other variants of CBC-MAC can also be 

used to overcome some shortcomings of CBC-MAC (as discussed in section 4.5.1.2). 

8.6. Secure Link Layer Protocol 

Secure cryptographic functions on their own cannot assure the security of the network. If 

the security primitives are not properly implemented in the communication protocol, then 

attacks on the security flaws of the protocol may be possible even if the cryptographic 

functions themselves are secure. A well known example of such an attack is in the WEP 

(Wired Equivalent Privacy) protocol, which is part of the IEEE 802.11 (WiFi) standard. 

The WEP protocol uses RC4 as its underlying cryptographic function, which is secure. 

However, the WEP protocol itself has been found to have security flaws and thus has been 

broken, allowing the secret key to be easily found [61]. 

This section suggests one way of implementing security primitives as a secure link layer 

protocol. A detailed study of various methods for implementing security primitives in the 

link layer is beyond the scope of this paper. 

8.6.1. Block Cipher Based 

For the suggested secure link layer protocol, the CTR (counter) mode encryption with 8-

byte counter is recommended for all the block cipher cryptographic combinations 

mentioned previously. A 32-bit MAC is recommended for authentication and integrity 

 
 
 



Chapter   8  Results and Discussions  

Electrical, Electronic and Computer Engineering 116

checking. 

8.6.1.1. CTR mode 

The main reason for choosing CTR mode encryption is its simplicity to implement. Unlike 

the initialization vector (IV) of the CBC mode encryption, a simple incrementing counter 

can be used as the counter in CTR mode encryption. The security of CBC mode encryption 

is affected if a counter is used as an IV in the CBC mode (refer to section 4.5.1.1). In the 

case when using UMAC-block cipher + block cipher encryption (e.g. UMAC-XTEA + 

XTEA), a simple incrementing counter can be used as the nonces required by UMAC. 

Therefore with CTR mode encryption, the same counter can be used for both encryption 

and UMAC authentication.  

The counter value in CTR mode must never be repeated within the lifetime of the same 

secret key. As discussed in section 4.5.2, if the counter value is repeated, severe 

information leakage occurs. In order to prevent repeated counter value, 8-byte counter is 

recommended. 

The counter (also being the nonce for UMAC) is a non-secret value and is transmitted 

together with the data packet. Therefore if the full 8-byte counter is being transmitted with 

the data packet, then it will add too much overhead and greatly increase power 

consumption. As a result, only the lowest byte of the 8-byte counter should be transmitted 

with the data packet. The sender and receiver (e.g. base station) in WSN is often 

synchronized, therefore the receiver is expected to have the remaining higher 7 bytes of the 

counter value. With the transmitted lowest counter byte, the receiver can regain 

synchronization with sender if packet loss has occurred. Therefore it can be seen as a 

“window” which buffers for some packet losses due to an unreliable wireless channel. 

If multiple sensor nodes all start with a counter value of zero, then this counter value is in 

essence repeated in all sensor nodes. This will result in the same encryption pads being 

produced and used for multiple data packets, which leads to the security problem discussed 

in section 4.5.2. To prevent this from happening, each node’s unique node address can be 

XORed with the counter value before it is encrypted to derive the encryption pad (as 
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shown in Figure 8.2, where P and N are the plaintext and ciphertext block respectively). In 

this way, no two sensor nodes will have the same encryption pad for encryption even if 

they are using the same counter value. 

 

Figure 8.2. Counter XORed with unique node address in the CTR mode. 

 

8.6.1.2. 32-bit MAC 

A MAC of 32 bits may seem to be insufficient from a traditional security application’s 

point of view. It is however, sufficient from a practical WSN application’s point of view. 

In order to forge a MAC, the attacker needs to be “on-line” and to continuously interact 

with the entity verifying the MAC (e.g. a WSN base station). However, in order to 

preserve energy in the WSN, communications usually only take place at intervals of a few 

seconds or a few minutes. Consider the case where sensor nodes take sensor measurements 

and communicate these readings every two seconds (as in a TinyMote sensor node, refer to 

section 7.1.1). Then with a 32-bit MAC, there will be 232 = 4.29 × 109 possible MAC 

combinations. Then in order to forge a MAC, the attacker needs to communicate all 4.29 × 

109 ÷ 2 at 2-second intervals. This means a total time of 4.29 × 109 ÷ 2 × 2 seconds is 

required by the attacker, which translates to approximately 136 years! 
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8.6.2. RC4 Stream Cipher Based 

With the UMAC-RC4 + RC4 implementation, a 32-bit MAC is also recommended. 

However, as discussed in section 7.4.2, RC4 does not use a nonce (counter) to produce 

different encryption pads as in the case of CTR mode. Therefore, in an unreliable 

communication channel, packet loss may cause the sender and the receiver to lose 

synchronization (receiver loses track on which RC4 keystream bytes are being used). To 

solve this problem, every packet transmitted can be numbered with a sequence number. If 

packet losses have occurred, the receiver can detect this by realizing that several sequence 

numbers have been skipped, so the receiver can also skip some keystream bytes 

accordingly to decrypt the received packet and regain synchronization. 

8.6.3. Observation and Analysis 

As a result of the 32-bit MAC and the transmitted lowest counter byte, the new TinyMote 

packet with encryption and authentication is shown in Figure 8.3, as opposed to the normal 

packet structure shown in Figure 7.4. 
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Sync 
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length 
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Figure 8.3. TinyMote packet structure with encryption and authentication. 

 

The grayed bars are authenticated fields, and the authenticated and encrypted fields are 

covered with grayed dots. Note that the counter must also be authenticated. 
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Comparing the above figure with the original TinyMote packet at Figure 7.4, it can be seen 

that the field’s CRC, TX slot counter, and VSol have been discarded. CRCs (Cyclic 

Redundancy Checks) are used for integrity checking, therefore it is no longer required 

when using MAC. The TX slot counter has been used only for debugging purpose and can 

be discarded. The VSol field is used specifically for measuring the solar cell voltage level. It 

may also be discarded because the TinyMote sensor nodes only need one power source at a 

time, thus the same VCC field can be used for indicating either battery voltage or solar cell 

voltage. As a result, even with the security primitives of both encryption and authentication 

implemented in TinyMote WSN, only one byte of packet overhead is imposed! 

8.7. Security Primitives Power Consumption 

As discussed in section 8.1, it is safe to say that energy per cycle is more or less constant 

for the MSP430 microcontrollers. Therefore the energy consumption for security 

primitives can be calculated from the number of CPU cycles it requires. 

Consider the MSP430F1232 operating at 1 MIPS and an average power of 440 μW. The 

time to complete one instruction is: 6101
1

−×
 = 1μs. With OCB-XTEA, it requires 14688 

CPU cycles to encrypt and authenticate 24 bytes of data (as shown in Table 8.7). Therefore 

the time needed for such operation is: 14688 cycles × 1 μs = 14.688 ms. Thus the average 

power consumption for such OCB-XTEA operation is: WmsW μμ 46.6688.14440 =× . 

However, if the sensor node only need to perform the security function at a 2-second 

interval (i.e. packet transmitted at 2-second interval), then the average power would be: 

WW μμ 23.3
2

46.6
= . 

The following table and figure shows the average power consumption per second of the 

different cryptographic function combinations at 2 second and 10 second packet 

transmission intervals. 
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Table 8.9. Encryption and authentication power consumptions. 

 2 second 10 second 

OCB-XTEA 3.23 μW 646.27 nW 

UMAC-XTEA  +  XTEA 1.64 μW 327.62 nW 

UMAC-RC4  +  RC4 799.7 nW 159.94 nW 

Generic block cipher modes 

(XTEA) 

(CBC-MAC  +  CTR mode)

2.52 μW 504.46 nW 
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Figure 8.4. Encryption and authentication power consumptions. 

 

8.8. Improvements to Existing WSN Link Layer Securities 

The proposed security primitives and the secure link layer protocol implemented in 

TinyMote sensor networks have shown several improvements when compared to existing 

secure link layer protocols. 
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• Packet overhead – The TinySec [6] security protocol requires 5 bytes overhead per 

transmitted packet to provide encryption and MAC authentication. The SNEP [1] 

security protocol requires 8 bytes overhead. The proposed security protocol 

requires only 1 byte overhead for each packet of the TinyMote sensor network. 

Smaller overhead also means lower power consumption while transmitting data 

packets. 

• Power consumption – Results of the customized UMAC for a small data size have 

been shown it to be more efficient than the generic use of block ciphers to provide 

authentication. Therefore the resulting authentication and encryption has shown 

significant reduction in power consumption compared to other security protocols 

using generic block cipher modes to provide encryption and authentication. 

• Synchronization – SNEP uses the CTR mode for encryption, but it does not 

transmit the counter value together with the packet. It relies on the receiver to share 

the same counter value with the sender. However, in an unreliable communication 

channel, sender and receiver may loose synchronization due to loss of data packets. 

The proposed security protocol transmits the lowest counter byte with the data 

packet so that even when a few packet losses have occurred, with the received 

counter value it is still possible to let the receiver regain synchronization with the 

sender. 

• Security – The proposed security link layer protocol for TinyMote have better 

security than the existing security protocols in many aspects: 

 The TinySec security protocol uses a counter as its IV (initialization vector) 

for CBC mode encryption, which results in information leakage issues. 

The proposed security protocol uses CTR mode and needs only simple 

incrementing counter. 

 With a transmitting rate of one packet per minute, TinySec IV reuse will 

occur after every 45 days, which results in leaking some information on 
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messages with repeated IV. The proposed security protocol uses an 8-byte 

counter (with only the lowest byte being transmitted in the packet), which 

will not repeat in a few hundred years even if packets are sent at one 

second intervals. 

 TinySec does not provide protection against a replay attack. The proposed 

security protocol provides protection against a replay attack by 

authenticating the counter (as shown in Figure 8.3). If a packet is verified 

successfully, the receiver knows the packet must be sent after the 

previously verified packet because it will have a larger counter value. 

 SNEP also uses CTR mode for encryption. It however, does not cater for 

the situation when multiple sensor nodes all start with the same counter 

value. This repeated counter value give rise to serious security issues as 

discussed in section 4.5.2. The proposed security protocol prevents such 

problem by XORing the counter value with the sensor node’s unique node 

address (as shown in Figure 8.2). 

8.9. Conclusions 

In this chapter the results of the various implementations are recorded. It can be seen that 

although the TREYFER block cipher has been designed for small size, but has performed 

poorly. OCB has been designed to improve encryption and authentication performance, but 

its performance gain is observed only when processing larger data packets. On the other 

hand, UMAC and XTEA have not been designed for an embedded 16-bit environment, but 

have been adapted and shown to perform fairly well (as to be discussed in the next chapter). 

 
 
 



   9 
CONCLUSION AND FUTURE WORK 

In this dissertation, several cryptographic ciphers, block cipher modes and authentication 

algorithms have been investigated for their power consumption and code size for their 

applicability in an ultra-low power wireless sensor network environment. 

The well known AES and the WSN-popular RC5 block ciphers have been shown to be not 

very suitable for WSN. The block cipher SAFER K-64 has been investigated for the first 

time for its applicability in WSN. Compared to other block ciphers investigated for WSN 

environment, SAFER K-64 achieves the best performance in CPU usage known to the 

author. It, however, requires slightly more RAM. XTEA requires a fairly small amount of 

flash/ROM memory and no RAM is needed for the subkeys setup. Even though XTEA is 

designed for a 32-bit architecture, it performed well on the 16-bit MSP430 platform and 

outperformed both AES and RC5 on the same MSP430 platform. Although TREYFER 

requires the least flash memory and also does not need RAM for the subkey setup, it 

requires a considerable number of CPU cycles. RC4 is the only stream cipher implemented 

in this paper, but it has been shown to require the least amount of CPU usage. 

Improvements have been made on XTEA, TREYFER and the initialization of RC4 to 

further optimize their performance and code size. 

The three types of security primitives required for use in wireless sensor networks are 

encryption, authentication and integrity checking. A fairly new block cipher mode, OCB 

has been implemented to study its performance in WSN. The UMAC authentication 

algorithm has also been studied and implemented. 
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OCB performs better with higher numbers of data blocks to process. When it comes to 

lower numbers of data blocks, using the generic block cipher modes to provide 

authentication and encryption performs better than the OCB mode. 

Although UMAC is originally designed for a modern 32/64-bit architecture and for 

authenticating longer messages, in this paper it has been adapted and optimized for the 

short message WSN environment. Security primitives using UMAC + XTEA for 

authentication and XTEA (CTR mode) for encryption have been implemented and shown 

to perform very well. Its power consumption is: 1.64 μW and 327.62 nW at 2 second and 

10 second packet transmission intervals respectively, with a packet consisting of an 8-byte 

header and an 16-byte data (24 bytes in total). It has been shown to be better than other 

block cipher based security primitives such as OCB mode and the generic block cipher 

modes for any number of data blocks. UMAC-RC4 has even better speed performance than 

UMAC-XTEA. It however, also requires the most RAM resources. 

In the proposed security link layer protocol, the use of block cipher in CTR mode with an 

8-byte counter and a 32-bit MAC is proposed. The proposed security link layer protocol 

has shown many improvements over the existing security link layer protocols such as the 

TinySec and the SNEP security protocol. 

During the code implementation and optimization, several tradeoffs between performance, 

code size and RAM usage have been observed. Apart from the conventional tradeoffs 

between the code size and the RAM space requirements, tradeoffs also exist between code 

flexibility and code performance. Furthermore, it is also observed that repeated function 

calls can be very expensive and may require a significant amount of CPU cycles. This is 

accounted for by the fact that every function calls needs to setup the parameters being 

passed and to push register data on to stack memory and pop the data back from stack 

memory when returning from the function call. Therefore these function call performance 

overheads add up quite significantly when a function needs to be called repeatedly. 

This paper has achieved in providing analysis and solutions for security primitives in 

wireless sensor networks. However, possible future work may include: 
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• Similar to the TinySec security protocol, the proposed security primitives in this 

paper can also be packaged into a set of security primitive APIs (application 

program interfaces) to allow ease of use for higher layer WSN protocol designers. 

• The research on security primitives in this paper are based on a microcontroller 

platform. However, cryptographic ciphers designed for hardware implementations 

also exist, particularly in stream ciphers. One example is the linear-feedback-shift-

register (LFSR) based stream ciphers, which have been used in smart card 

microcontrollers for encryption [63]. Therefore it is necessary to conduct further 

researches into the possibility of using either ultra-low power cryptographic 

hardware or existing smart card microcontrollers. 
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