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Abstract 

Proteases play a crucial role in plant defence mechanisms as well as acclimation to 

changing metabolic demands and environmental cues. Proteases regulate the development 

of a plant from germination through to senescence and plant death. In this thesis the role 

of proteases and their inhibitors in plant response to cold stress and CO2 enrichment were 

investigated. 

 

The activity and inhibition of cysteine proteases (CP), as well as degradation of their 

potential target proteins was investigated in transgenic tobacco plants expressing the rice 

cystatin, OC-I. Expression of OC-I caused a longer life span; delayed senescence; 

significant decrease in in vitro CP activity; a concurrent increase in protein content; and 

protection from chilling-induced decreases in photosynthesis. An initial proteomics study 

identified altered abundance of a cyclophilin, a histone, a peptidyl-prolyl cis-trans 

isomerase and two RuBisCO activase isoforms in OC-I expressing leaves. Immunogold 

labelling studies revealed that RuBisCO and OC-I is present in RuBisCO vesicular bodies 

(RVB) that appear to be important in RuBisCO degradation in leaves under optimal and 

stress conditions.  
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Plants need to respond quickly to changes in the environment that cause changes in the 

demand for photosynthesis. In this study the effect of CO2 enrichment on photosynthesis-

related genes and novel proteases and protease inhibitors regulated by CO2 enrichment 

and/or development, was investigated. Maize plants grown to maturity with CO2 

enrichment showed significant changes in leaf chlorophyll and protein content, increased 

epidermal cell size, and decreased epidermal cell density. An increased stomatal index in 

leaves grown at high-CO2 indicates that leaves adjust their stomatal densities through 

changes in epidermal cell numbers rather than stomatal numbers. Photosynthesis and 

carbohydrate metabolism were not significantly affected. Developmental stage affected 

over 3000 transcripts between leaf ranks 3 and 12, while 142 and 90 transcripts were 

modified by high CO2 in the same leaf ranks respectively. Only 18 transcripts were 

affected by CO2 enrichment exclusively. Particularly, two novel CO2-modulated serine 

protease inhibitors modulated by both sugars and pro-oxidants, were identified. Growth 

with high CO2 decreased oxidative damage to leaf proteins.  
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