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Typographical conventions

Computer related abbreviations and terms are given in PROGRAM CODE (usually uppercase) type in
order to distinguish them from wet-bench and bioclogical terms.

Residues are referred to using the standard three letter code followed directly by the residue number of
the organism in question. The organism follows directly in italics: hum: Homo sapiens, pot: Solanum
tuberosum (potato). For example Ser68hum would refer to serine 68 of the human enzyme. When no
species is given in the residue name or in the text, P. falciparum is assumed.

Amino acid substitutions and mutations are indicated using the standard three letter code for the
original residue, followed directly by it’s position, which is in turn followed by the replacement amino

acid, e.g.: Ser68Ala would indicate the replacement of serine 68 with alanine.
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Chapter 1

Introduction

1.1. The need for new anti-malarials

Malaria is a disease characterised particularly by severe febrility. The disease acquired it’s name from
the Latin "mal’aria” or “bad air”, after an association gained in Roman times for being prevalent in marshy
areas. Writings of high fevers left by Hippocrates and others indicate that malaria has been known for
at least 2500 years. The discovery of swollen spleens in Egyptian mummies suggest that the figure is
closer to 5000 years. With a rapidly growing human population the disease quickly established itself over
much of the Old World. European colonisers in turn carried the disease to the New World, and by the
beginning of the 1900s the disease had established itself as far north as Siberia (Sherman, 1998).

Malaria is caused by mosquito-borne parasitic protozoa of the genus Plesmodium. The four known
species capable of infecting humans are P. falciparum, P. vivez, P. melarice and P. ovale. Of these,
P. faleiparum is the most infective and is responsible for the largest number of deaths annually (Miller
et al., 2002). The mosquito hosts are the females of the genus Anopheles. The most effective P. falciparum
transmitters are A. gambige and A. funestus which are prevalent through the African tropics {Breman,
2001). The parasite exhibits a complex life cycle that is shared between the human and mosquito
hosts (Fig. 1.1). Infection begins with a mosquito bite, injecting sporozoites into subcutaneous tissue
or blood which in turn infect the liver. There the parasites mature into merozoites, which later infect
the erythrocytes. Within the red blood cells the parasite passes through various further developmental
stages which result in the asexual reproduction of the merozoites. Once the new merozoites are produced
the red blood cell ruptures releasing the merozoites for further invasion. The life cycle is completed with
the maturation of merozoites into gametocytes. These are taken up by the mosquito host where sexual
reproduction occurs. The asexual stage is the main pathological stage of the parasite’s life cycle (Miller
et al., 2002). Red blood cell rupture results in the release of parasite and erythrocyte material. It is this
release, and the host reaction to these products that largely give rise to the disease. Furthermore, the
loss of red blood cells can lead to anaemia (White, 1998},

The first successful treatment for malaria was quinine, derived from the bark of the Cinchong tree
from South America. Discovered by Spanish colonists in the 17th century, quinine was brought back

to Europe and was rapidly established as the prime therapeutic for malaria. It’s value had a number
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Chapter 1. Introduction 9

also infriguing to consider the possibility that a single molecule could potentially inhibit multiple enzymes,
because the polyamine structural motif presents itself a number of times in polyvamine metabolism.

The state of affairs is somewhat different for P. falciparum however. The short ODC and AdoMetDC
half-life is not observed for the bifunctional malarial enzyme, suggesting that the parasite would be
more susceptible to targeting of these enzymes {Wrenger et al, 2001}. The extended half-life and the
bifunctional nature of AdoMetDC/ODC are key features that distinguish malarial polyamine metabolism
from the mammalian host. This identifies malarial polyamine metabolism as & potential drug target, and
by exploiting these differences it may be possible to identify malaria-specific drugs. The short turnover
of the mammalian enzyme in turn suggests that there is a good chance of discovering novel anti-malarials
with favourable pharmacological profiles, since host polyamine metabolism is less likely to be undesirably
perturbed.

Investigations into the potential anti-malarial activity of DFMO show that it has little effect on the
erythrocytic stages of the parasite using the P. berghei rodent model, and that in vitro activity against
P. feleiparum is also cytostatic rather than cytotoxic (Bitonti ef af., 1987). This may possibly be due
to poor uptake of the compound and/or the ability for the parasite to utilise exogenous polyamines
{(Miller ef al., 2001). Whatever the reason, it is likely that any anti-polyamine strategy that is followed
for malaria will have to deal with the transport problem. Inhibition of ODC by the ornithine analogue
DFMO has already been successful for the treatment of West African Sleeping Sickness caused by T. brucei
gambiense. For DFMO to be used effectively it must be given intravenously in large doses. It is also
unfortunately ineffective against T. brucei rhodesiense {East African Sleeping Sickness, Wang, 1995).
Targeting of the Trypanosomal AdoMetDC has also been successfully demonstrated in vitro and in vivo
in mice. The AdoMetDC inhibitor CGP 40215A inhibited at a K, of 4.5 nM and was found to successfully
cure Trypanosoma infected mice when used in combination with DFMO (Brun et ofl., 1996; Bacchi et al.,
1996). These results suggest that pursuing polyamine metabolism for intervention in parasitic diseases
may be worthwhile. The properties and inhibition of AdoMetDC will be discussed in further detail in

the following section.

1.3. Properties of S-adenosylmethionine decarboxylase (AdoMetDC)

1.3.1. AdoMetDC requires pyruvoyl

Bukaryotic AdoMetDC is a pyruvoyl-requiring enzyme, usually & 330 amino acids in length. Unlike
most decarboxylases which require pyridoxal-5°-phosphate (PLP) for activity, AdoMetDC falls among &
small class of enzymes that use a covalently bound pyruvoyl instead. Other enzymes that make use of
pyruvoyl include aspartate decarboxylase, histidine decarboxylase, proline reductase and phosphatidyl
serine decarboxylase (Marton and Pegg, 1995). The pyruvoyl group is derived during an internal pro-

teolytic cleavage from a serine residue (Ser68 - H. sapiens) (Stanley et al., 1989). In the eukaryotic
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Chapter 5. Concluding Discussion 71

et al., 1997, Walters and Murcko, 2002). Combined use of a more than one docking algorithm for mass
computational screening is also suggested in order to identify more likely inhibitors based on repeated hits
{Charifson et al., 1999). Modification of known inhibitors and /or substrates as scaffolds is also suggested,
since this should increase the likelihood of identifying novel inhibitors. Specifically, the predicted cavity
near the pyruvoyl residue, and the substitution of Thr245hum by a Ser residue may allow bulkier ligands
to fit the Plasmodium enzyme. The substitution of Asn224hum with Thrd16 may also allow for the design
of ligands that exploit different polar interactions in the parasite. The model also suggests why Tris does
not affect the Plasmodium enzyme (Section 2.4.3.2), due the replacement of Hisbhum by glycine. Tris
inhibition could possibly by engineered into the Plasmedium enzyme to test this prediction, or conversely
the human residue mutated to the corresponding Plasmedium residue.

The modelling of this enzyme highlighted the difficulties of modelling low homology proteins. Dur-
ing this study the need for integrating techniques when constructing a model was highlighted. In this
case motif identification, inclusion of sequences of sister Plasmodium species and secondary structure
all contributed to easing the difficulties of modelling such proteins. During this process some of the
shortcomings of current in silico methods were also revealed, the lack of integration of existing methods
chief among these. There is much information available when it comes to such projects, however, it is
not being exploited to the fullest. For example no program could be found that can produce a multiple
alignment by simultaneously using available sequences, secondary structures, known structures, known

residue-residue contacts, etc. Whereas a number of methods exist to conduct such analysis individually
much manual intervention is required to integrate all of these. If computational protein modelling is to
become commonplace and reliable, however, automated integration of these methods will be needed or a
vast improvement in the capabilities of ab initio modelling is required.

Nonetheless, following a computational approach it was possible to gather further insights into the
structure of the bifunctional malarial ODC/AdoMetDC. Some of the predictions were confirmed experi-
mentally. However, the objective of identifying novel inhibitors was not met. In order to fulfil this it is
suggested that the different approaches described above should be followed. The use of computational
methods for understanding and predicting protein structure and identifving novel inhibitors is becom-
ing commonplace (Fauman et al., 2003; Krumrine et al., 2003). The rapid acquisition of resistance to
existing drugs highlights the need for fast discovery of new drugs, and it is expected that a large array
of methodologies will be required to fulfil this need. Computational drug discovery is but one technique
that is likely 0 be required. Although computational drug design will probably be more difficult with
malaria due to complications introduced by the uniqueness of it’s genome and proteins, it is predicted
that structural modelling will be indispensable in our fight against this parasitic diseases in the 21st

century.
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Table B.3: Hits identified from virtual screening against the NCT database
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