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Parallel manipulators have attracted increasing interest from researchers over 

the past couple of decades. These manipulators consist of a moving platform, 

connected to a fixed base by means of a number of separate kinematic chains, 

placed in parallel. Due to this particular architecture, parallel manipulators 

possess a number of advantages over traditional serial manipulators. Some of 

the disadvantages of parallel manipulators, however, are their limited work­

spaces and nonlinear behavior throughout their workspaces . As a result, 

development of design methodologies for such manipulators is an important 

issue in order to ensure performance to their full potential. The methodolo­

gies developed in this study are based on the use of numerical optimization 

techniques. 
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The development of appropriate design methodologies in this study required 

three separate issues to be addressed. The first of these was the development, 

testing and selection of numerical optimization algorithms suitable for the 

solution of the practical optimization problems encountered. Two optimiza­

tion algorithms, the spherical quadratic steepest descent (SQSD) algorithml 

for uncons trained problems, and the Dynamic-Q algorithm2 for constrained 

problems were developed and tested. These methods compare well with 

conjugate gradient, and sequential quadratic programming methods respec­

tively, exhibiting rohustness and efficiency when applied to a number of test 

problems. 

The second topic addressed is the important issue of the determination of 

manipulator workspaces. The existing chord method for workspace deter­

mination is refined, and applied for the first time to the determination of 

new types of manipulator workspaces for a planar three-degree-of-freedom 

(3-dof) manipulator. The chord method is also modified for the determina­

tion of planar tendon-driven parallel manipulator workspaces. A new and 

efficient method for determining tension distributions in over-constrained 

tendon-driven manipulators is proposed. The chord method is easily ap­

plied to the determination of manipulator works paces, and determines them 

accurately and efficiently. 

The final issue addressed is that of dimensional synthesis of manipulators for 

prescribed and desired workspaces. Various specific methodologies are inves­

tigated and applied to a 2-dof parallel manipulator3
. The most promising 

1 J .A. Snyman and A.M. Hay, The spherical quadratic steepest descent method for 

unconstrained minimization with no explicit line searches. Computers and Mathematics 

with Applications, 42:169- 178, 200l. 
2J.A. Snyman and A.M. Hay, The Dynamic-Q optimization method: An alternative to 

SQP7 Computers and Mathematics with Applications, 44:1589-1598, 2002. 
3 A.M. Hay and J.A. Snyman, Methodologies for the optimal design of parallel manip­

ulators. Accepted [or publication in the International Journal for Numerical Methods in 

Engineering, 2003 (in press). 
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methodology is then used to opti mize a 3-dof planar parallel manipulator4
", 

using various strategies for dealing wi t h the extra angular orientational de­

gree of freedom of the moving platform. An alternative approach is used 

in optimizing a planar tendon-driven parallel manipulator6 The numerical 

optimization algorithm used in all cases is the Dynamic-Q method, which 

performs efficiently and rohustly in determining optimal designs , even when 

numerical noise is present in the prohlem. It is helieved that the new method­

ologies presented provide efficient, practical and easily generalizable numeri­

cal alternatives to existi ng methods for the dimensional synthesis of parallel 

manipulators. 

Key terms: optimization algorithm, parallel manipulator, optimal design, 

workspace analysis, mechanism synthesis. 

4A.M. Hay and J.A. Snyman, T he optimal synthesis of parallel manipulators for desired 

workspaces. In .J. Lenarcic and F. Thomas, ed itors,Advances in Robot Kinematics, 337-

346, Caldes de Malavella, Spain, June 2002. Kluwer Academic Publishers. 
5 A.M. Hay and J.A. Snyman, The synthe5is of parallel manipulators for optimal de­

sired workspaces with respect to the condition number. CD-ROM Proceedings of ASME 

2002 Design Engineering Technical Conferences, Paper number DETC2002/MECH-34306, 

Montreal , Canada, October 2002. 
6 A.M. Hay and J .A. Snyman , Analysis and optimization tools for a reconfignrable 

tendon-driven manipulator. CD-ROM P roceedings of CIRP 2nd International Conference 

on Reconfigurable Manufacturing, Ann Arbor 1 MI, August 2003. 
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Gedurende die afgelope paar dekades is toenemende belangstelling deur na­

vorsers in parallel-manipuleerders getoon. Hierdie manipuleerders bestaan 

uit 'n bewegende platform, gekoppel aan 'n vaste basis dem middel van 'n 

aantal afsonderlike kinemat iese kettings, wat in parallel met mekaar geplaas 

is. As gevolg van hul besondere argitektuur, bet parallel-manipllleerders 

'n aantal voordele bo tradisionele serie-manipuleerders. Sekere nadele van 

parallel-manipllleerders is egter, hul beperkte werkrllimtes en nie-lineeere 

gedrag binne die werkruimtes. Gevolglik, is die ontwikkeLing van ontwerp­

metodologie vir sulke manipllleerders van lliters belang, om te verseker dat 

hul tot volle potensiaal fllllksioneer. Die metodologie wat in hierdie stlldie 

ontwikkel is, is gebaseer op die gebruik van nllmeriese optimeringstegnieke. 

lV 
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Die ontwikkeling van gepaste ontwerp-metodologie in hierdie studie, vereis 

dat drie verskillende sake aangespreek word. Die eerste van hierdie is die 

ontwikkeling, toetsing en seleksie van numeriese optimerings-algoritmes wat 

geskik is vir die oplos van die praktiese optimeringsprobleme wat in die studie 

voorkom. Twee optimerings-algoritmes, die sferiese kwadratiese steilste dal­

ing (SQSD) algoritme' vir onbegrensde probleme, en die Dynarnic-Q algo­

ritme2 vir begrensde probleme, is ontwikkel en getoets. Hierdie metodes 

vergelyk onderskeidelik goed met die toegevoegde gradient en agtereenvol­

gende kwadratiese programmerings (SQP) metodes. 

Die tweede belangrike onderwerp wat aangespreek word is die bepaling van 

manipuleerder werkruimtes. Die bestaande koord-metode vir werkruimte­

bepalil1g is ver[yn, en vir die eerste keer toegepas in die bepaling van nuwe 

tipes werkruimtes van 'n in-vlak mal1ipuleerder met 3-vryheidsgrade. Die 

koord-metode is ook aangepas vir die bepaliug van die werkruimtes van 'n 

in-vlak tendon-aangedrewe parallel-manipuleerder. Die toepassing van die 

koord-metode lei met gemak tot die doeltreffende en akkurate bepaling van 

hierdie werkruimtes . 

Die finale saak wat bestudeer word is die dimensionele sintese van man­

ipuleerders vir voorgeskrewe en verlangde werkruimtes. Verskeie spesifieke 

metodologie word ondersoek en toegepas op 'n 2-vryheidsgrade parallel-man­

ipuleerder3 . Vervolgens is die mees belowende metodologie gebruik in die op-

'J.A. Snyman and A.M. Hay, The spherical quadratic steepest descent method for 

unconstrained minimization with no explicit line searches. Computers and Mathematics 

with Applications, 42:169- 178, 200l. 
2.LA. Suyman and A.M. Hay, The Dynamic-Q optimization method: An alternative to 

SQP? Computers and Mathematics with Applications, 44:1589-1598,2002. 
3 A.M. Hay and J.A. Snyman, Methodologies for the optimal design of parallel manip­

ulators. Accepted for publication in the International Journal for Numerical Methods in 

Engineering, 2003 (in press). 
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timering van 'n 3-vryheidsgrade in-vlak parallel-manipuleerder15, waar ver­

skeie strategie gebruik is om die addisionele hoek-orientasie-vryheidsgraad 

te hanteer. 'n Alternatiewe benadering is gevolg in die optimering van die 

tendon-aangedrewe in-vlak parallel-manipuleerder6 In al die gevalle is die 

Dynamic-Q numeriese optimerings-algoritme gebruik. Die metode is doel­

treffend en betroubaar, sells wanneer numeriese geraas in die probleem teen­

woordig is. Die vertroue is dat die nuwe metodologie wat hier aangebied word, 

doeltreffende, praktiese en maklik veralgemeende numeriese alternatiewe tot 

bestaande metodes vir dimensionele sintese van parallel-manipuleerders, ver­

teenwoordig. 

Sleutelterme: optimerings-algoritme, parallel-manipuleerder, optimale ont­

werp, werkruimte-analise, meganisme-sintese 

4A.M. Hay and .J .A. Snyman, The optlmal synthesis of parallel manipulators for deslred 

workspaces. In J. Lenarcic and F. Thomas, editors,Advances in Robot Kinematics, 337-

346, Caldes de Malavella, Spain, June 2002. Kluwer Academic Publishers. 
5 A.M. Hay and J.A. Snyman, The synthesis of parallel manipulators for opt imal de­

sleed workspaces with respect to the condition number. CD-ROM Proceedings of ASME 

2002 Design Engineering Technical Conferences, Paper number DETC2002/MECH-34306, 

Montreal, Canada, October 2002. 
6 A.M. Hay and J.A. Snyman, Analysis and optimization tools for a reconfigurable 

tendon-driven manipulator. CD-ROM Proceedings of CIR? 2nd International Conference 

on Reconfigurable Manufacturing, Ann Arbor, MI, August 2003. 
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Chapter 1 

Introduction: Overview of 

parallel manipulators and 

literature review 

1.1 Introduction 

A parallel manipulator can be defined as 

a closed-loop kinematic chain mechanism whose end-effector is 

linked to the base by several independent kinematic chains (Mer­

let [1]). 

Parallel manipulators have been increasingly studied and developed over the 

last couple of decades (Merlet [2], Dasgupta and Mruthyunjaya [3]) from 

both a theoretical viewpoint as well as for practical applications. Parallel 

structures are certainly not a new discovery, however advances in computer 

technology and development of sophisticated control techniques, amongst 

other factors, have allowed for the more recent practical implementation of 

1 
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Figure 1.1: Parallel manipulator publications by year 1955-2002 

parallel manipulators. This trend is well illustrated by the ever increasing 

number of publications dedicated to parallel manipulators. Figure 1.1 shows 

the approximate annual numbers of publications related to parallel manipu­

lators for the past 50 years as reported by Merlet [4]. 

Interest in parallel manipulators has been stimulated by the advantages of­

fered over traditional serial manipulator architectures. In fact, there exists 

an interesting duality between parallel and serial architectures, both in terms 

of analysis and performance, where parallel manipulators have good charac­

teristics in areas where serial manipulators perform poorly, and vice versa. 

Zamanov and Sotirov [5], Waldron and Hunt [6] and Duffy [7] seek to ex­

plain this duality and Fichter and MacDowell [8] discuss some of the practical 

issues relating to performance of serial and parallel robots. 
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Figure 1.2: The spherical parallel mechanism patented by Gwinnett 

The literature review presented in this chapter provides an overview of the 

development of parallel manipulators, workspace determination, optimal de­

sign, characterization of manipulator performance, and optimization meth­

ods. This selective overview is used in Section 1.6 to motivate the current 

study. 

1.2 Brief history of parallel manipulator de­

velopment 

Some theoretical problems associated with parallel structures were mentioned 

by the English architect Sir Christopher Wren as early as the 17th century. 

Cauchy, Lebesgue, Bricard and Borel aU published papers on problems re­

lated to parallel mechanisms in the 19th and early 20 th century (Merlet [1]) . 

It appears that the first practical application for a parallel manipulator was 

proposed by Gwinnett [9] who was granted a patent in 1931 for a motion plat­

form, based on a spherical parallel mechanism (Bonev [10]). As illustrated 

in Figure 1.2, the motion platform was intended for use in the entertainment 

industry. 
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Figure 1.3: Pollard's spatial industrial robot 

In 1942 a patent was issued to Pollard [11] for what is now known as the 

first industrial parallel robot design. The robot, shown in Figure 1.3, was 

intended for spray painting, but was never built. 

In 1965 Stewart [12], published a paper in which he proposed a six-degree­

of-freedom (six-dof) parallel platform for use as a flight simulator. This 

paper attracted so much attention that many researchers began referring 

to octahedral hexapod parallel manipulators as "Stewart platforms". It is 

somewhat ironic though that similar ideas to Stewart's had already been 

independently conceived by two other researchers. 

Eric Gough, an employee of the Dunlop Rubber Co., England, had con­

structed an octahedral hexapod in 1954 (Gough [13], see communications 

from [12]). This parallel manipulator was used as a universal tyre testing 

machine as shown in Figure 1.4. Interestingly, Bonev [10] notes that this 
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Figure 1.4: The universal tyre-testing machine of Gough 

machine continued to operate until 1999. 

At the same time an American engineer, Klaus Cappel, was also indepen­

dently developing an octahedral hexapod manipulator. A patent for an octa­

hedral hexapod to be used as a motion simulator was filed in 1964 and issued 

in 1967 [14]. The first ever flight simulator based on a octahedral hexapod 

was made under licence from this patent. Figure 1.5 shows a drawing taken 

from Cappel's patent. 

Since these early days, parallel manipulators have proliferated and found 

application in many fields. One of the most promising applications is in 

the manufacturing industry. Prominent early examples of machine tools 

based on parallel architectures are the Giddings and Lewis Variax and the 

Ingersoll Octahedral Hexapod which were both first presented at the 1994 

International Manufacturing Technology Show (IMTS) in Chicago. More 

recent and successful applications of parallel manipulator architectures have 

been the Z3 machining head developed by DS Technologie Gmbh (DST) 

which is shown in Figure 1.6 and the Neos Tricept. Other applications include 

flight simulators, fine positioning devices, overhead cranes (when using cable-

 
 
 



6 CHAPTER 1. INTRODUCTION 

driven manipulator architectures) and more recently in medical applications 

as surgical robots. 

1.3 	 Workspace determination of parallel ma­

nipulators 

The workspace of a manipulator may loosely be defined as 

regions 	[in output spacel ] which can be reached by a reference 

point located on the mobile platform [of the manipulator] (Merlet 

et al. [15]). 

Based on this definition, the workspace of any manipulator has the same 

dimension as the number of output degrees of freedom of the manipulator. 

For example, the workspace of a planar parallel manipulator manipulator, 

which has three degrees of freedom (translations x and y in the plane and 

rotation ¢ about the out of plane axis) is thus most fully represented three­

dimensionally, with two axes used to represent the x and y positional coordi­

nates of the reference point, and the third axis corresponding to the angular 

orientation ¢ of the moving platform. 

Similarly, the workspace of the Cappell, Gough and Stewart platforms (see 

the previous section) can only really be fully described in six-dimensional 

space. Of course, it is difficult for us to conceptualize any space of dimension 

greater than three. In order to obtain descriptions of manipulator positioning 

capabilities that can be easily visualized and understood, subsets of the full 

workspace are defined for which restrictions are placed on some of the output 

degrees of freedom of the manipulator, most commonly on the orientation 

loutput space - positional plus angular orientational dimensions 
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Figure 1.5: Octahedral hexapod motion simulator by Cappel 

Figure 1.6: The Z3 machining head by DST 
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of the moving platform. The various types of workspace commonly used are 

defined in Section 1.3.1. 

Determination of these workspaces for parallel manipulators poses a chal­

lenging problem (Merlet et al. [15]). Various methods proposed by different 

researchers are discussed in Section 1.3.2. 

1.3.1 Classification of workspace types 

Constant orientation workspace 

A specific constant [angular] orientation workspace is defined as (Mer let et 

al. [15]) 

the positional region which can be reached by the reference point 

of the manipulator when the mobile platform has a specific pre­

scribed constant [angular] orientation. 

The constant orientation2 workspace has the same dimension as the number 

of translational [positional] output degrees of freedom of the parallel manip­

ulator. 

For the planar manipulators studied here, the constant orientation workspace 

is two-dimensional, and will be denoted as WG[¢/ix], where ¢fix is the specific 

prescribed and fixed angular orientation of the moving platform associated 

with that particular constant orientation workspace. 

Maximal workspace 

The definition of the maximal workspace adopted here is 

2Hereafter 'orientation' will be considered synonymous with 'angular orientation'. 
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the positional region which can be reached by the reference point 

of the manipulator with no restrictions on the orientation of the 

moving platform. 

9 

This is in agreement with the definition offered by Merlet et 81. [15]. Haug 

et al. [16] also refer to maximal workspaces as "accessible output sets". Es­

sentially, the maximal workspace can be thought of as either the projection 

of the full output workspace onto the positional space of the manipulator, or 

the union of all possible constant orientation workspaces. 

For planar manipulators, the maximal workspace, denoted W M , is two di­

mensional and for spatial manipulators, three-dimensional. 

Dextrous workspace 

The dextrous workspace of a manipulator is 

the region reachable by the reference point of the manipulator 

with all orientations in a given set [4>min, 4>max]. 

This terminology in consistent with that used by Haug et al. [17] and Du 

Plessis and Snyman [18], but differs slightly from that used by Merlet et al. 

[15] who use the term "total orientation workspace" to describe this work­

space, and the term "dextrous workspace" for the special case where the 

moving platform is required to reach all possible orientations. 

Once again the dextrous workspace is two-dimensional for the planar case and 

three-dimensional for the spatial case. The dextrous workspace is denoted 

W D [¢min, ¢max] here for the planar case, and can also be thought of as the 

intersection of all constant orientation workspaces in the orientation interval 

[¢min, ¢max]. 
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Orientation workspace 

Finally a specific orientation workspace is defined as 

the set of angular orientations (orientational region) which can 

be attained by the moving platform for a fixed position of the 

reference point. 

10 

The orientation workspace is difficult to represent for a general spatial ma­

nipulator. Merlet [19] notes that simply plotting the standard Euler angles 

does not lead to intelligible results. He suggests mapping instead the posi­

tions which can be reached by a unit vector, fixed to the moving platform, 

onto a unit sphere. Bonev et al. [20] suggest the use of modified Euler tilt­

and-torsion angles, which result in a compact and intuitive representation 

of the orientation workspace. For the planar manipulator, the orientation 

workspace is one-dimensional and is denoted WO[ufix ], where u fix is a vector 

containing the fixed position of the reference point. 

1.3.2 Methods for workspace determination 

In general, determination of parallel manipulator workspaces poses a more 

challenging problem than for serial manipulators. This is because of the 

strong coupling of the positional and orientational capabilities of parallel 

manipulators. Merlet [1] gives the example of a six-dof serial robot with a 

concurrent axis wrist. For this manipulator the three-dimensional volume, 

which the robot can reach, depends only on the motion capability of the 

first three actuated joints, while the orientational ability depends only on 

the last three joints. Compare this to a hexapod, where orientational and 

positional ability are influenced simultaneously by all the actuators. The 

most prominent and commonly-used methods for workspace determination 

can be grouped into four categories. 
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Geometrical methods 

Geometrical methods are based on the observation that the workspace bound­

ary must necessarily always be associated with a physical limit on the ma­

nipulator input kinematic chains. By separately taking into account the 

constraints on each input kinematic chain and geometrically determining the 

region which can be reached by reference point under these conditions, and 

then determining the intersection of all these regions, the actual workspace 

of the manipulator can be determined. 

The method as applied to parallel manipulators was first introduced by Gos­

selin and Angeles [21] who used a geometrical approach to determine constant 

orientation workspaces of a planar 3-RRR parallel manipulator. In this nota­

tion, the number signifies the number of kinematic chains linking the moving 

platform to the base, and the set of letters defines the sequence of joints used 

in each kinematic chain. A revolute joint is denoted by R and a prismatic 

joint by P. Spatial universal and spherical joints are respectively denoted by 

U (or sometimes RR) and S. Actuated joints are indicated by underlining. 

The geometrical methodology, including the effects of passive joint limits, is 

applied to 3-RPR planar manipulators in Gosselin and Jean [22]. Merlet et 

al. [15] extend the methodology to determining other types of workspaces of 

planar 3-RPR parallel manipulators (see Section 1.3.1). 

Geometric methods have also been used to determine constant orientation 

workspaces of more complex 6-U PS spatial manipulators by Gosselin [23]. 

The effects of passive joint limits and links interference are included in the 

constant orientation methodology by Merlet [24, 1]. Constant orientation 

workspaces of other types of six-dof parallel manipulators including the 6-

PU S (Bonev and Ryu [25]) and 6-RU S (Bonev and Gosselin [26]) parallel 

manipulators have also been determined by means of the geometrical method. 

A hybrid geometrical-numerical method for determining the orientation work-
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spaces of 6-U PS parallel manipulators has been proposed by ~erlet [19]. 

This problem is also addressed by Huang et a1. [27], who propose a closed 

form solution to the problem. 

Bajpai and Roth [28] and Williams and Reinholtz [29] also use geometrical 

reasoning to determine workspaces of specific classes of manipulators. 

Geometrical methods represent the most efficient and accurate methods for 

workspace determination available, since the workspace boundary is expressed 

in analytical terms. It is evident however that the various geometric method 

implementations are specific to distinct classes of manipulators. At present 

there exist no direct geometric methods for determining maximal and dex­

trous workspaces of spatial parallel manipulators. 

Continuation methods 

A broadly applicable method for workspace analysis using continuation meth­

ods has been presented by Jo and Haug [30]. In this method, manipulator 

workspace bOlmdaries are defined as the sets of points for which the Jacobian 

matrix of the kinematic constraints are row rank deficient. A continuation 

method is then used to trace the family of one-dimensional trajectories which 

correspond to the workspace boundary. When determining parallel manipu­

lator workspaces using this methodology, it becomes necessary to use a slack 

variable formulation to represent the unilateral constraints implied by physi­

cal limits to joint motions (Jo and Haug [31.]). This is one of the limitations of 

the continuation method: that the introduction of other constraints limiting 

the workspace, such as limits on the passive joints, and link interferences, 

lead to a very large manipulator Jacobian, which in turn may render the 

procedure difficult to manage (Merlet [1]). 

Jo and Haug [31 J use the continuation method to determine maximal work­

spaces of a 3-RP R planar manipulator, and constant orientation workspaces 
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of a 6-SP S spatial manipulator. Further developments by Haug et al. [16] 

result in the determination of maximal workspaces of 6-SPS spatial parallel 

manipulators. In Haug et al. [32] it is shown that the continuation method 

also provides an effective tool for determining barriers to control within the 

manipulator workspace. 

The determination of dextrous workspaces of 3-RPR and 6-SPS parallel 

manipulators (Haug et al. [17]) has also been addressed by means of the 

continuation method. These authors motivate their approach by stating that 

"numerical methods are required for constructing boundaries of dextrous 

workspaces [of more complex spatial manipulators]", an assertion that is 

borne out by the fact that there are at current no analytical methods available 

for solving this problem. 

Continuation methods have also been applied to the problem of determin­

ing operational envelopes, or the set of points which can be occupied by all 

points on the working body of the manipulator (Haug et al. [33], Adkins 

and Haug [34]). This problem is important in order to avoid interference be­

tween the working body and its surroundings. An associated problem is the 

determination of domains of interference between working bodies and their 

surroundings (Haug et al. [35, 36]). 

An overview of continuation methods applied to determination of workspaces, 

operational envelopes, and domains of interference is given by Haug et al. 

[37]. 

Discretization methods 

Although computationally expensive, discretization methods represent an 

easy and stable method for workspace determination. A large variety of im­

plementations are found in the literature. One approach (Yang and Lee [38], 

Sorli and Ceccarelli [39], Cervantes-Sanchez and Rendon-Sanchez [40]) is to 
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vary the manipulator input parameters discretely between their limits, and 

plot the points reached by the reference point. This approach can provide 

some insight into the effects of design parameters on the manipulator work­

space (Ceccarelli and Sorli [41]), but produces results which can be difficult to 

interpret, and requires the solution of the forward kinematics of the parallel 

manipulator. 

Since the inverse kinematics are easy to solve for a parallel manipulator, 

seemingly a better approach is to discretize the output space of the manipu­

lator, and then determine whether or not each discrete point belongs to the 

workspace by solving the inverse kinematics and evaluating at that point the 

various constraints acting on the manipulator. Approaches based on this idea 

have been used by Fichter [42], Lee and Shah [43], Masory and Wang [44], 

Arai et 81. [45], Stamper et al. [46] and Wang et al. [47] for determining con­

stant orientation and maximal workspaces of various manipulators. Bonev 

and Ryu [25] propose a discretization method for determining orientation 

workspaces of 6-U P S manipulators. 

The main criticism of discretization methods is their exponential increase in 

computational expense as the required accuracy is increased. 

Optimization methods 

Of the methods discussed in the previous sections, geometric methods are 

highly efficient and accurate, but require a specific formulation for each ma­

nipulator class and workspace type. At the other extreme discretization 

methods are computationally intensive resulting in limited accuracy, but can 

easily be applied to almost any manipulator. Numerical continuation meth­

ods lie somewhere between these two approaches, but including all the con­

straints acting on the manipulator, and the fact that all internal boundary 

curves are also mapped, can make the method difficult to implement for more 

complex manipulators. 
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As an alternative efficient numerical approach for workspace determination, 

optimization methods have been proposed by Snyman ct al. [48]. The basic 

philosophy of the optimization approach is to define the workspace boundary 

in terms of a constrained optimization problem, where the constraints relate 

to various physical conditions which limit the workspace of the manipulator. 

A numerical optimization algorithm is used to solve the optimization problem 

in a number of search directions to obtain a representation of the workspace 

boundary. There are two specific implementations of the optimization ap­

proach, the my method and the chord method. These two methods are 

distinguished from each other by the search geometry used in determining 

the successive discrete points along the workspace boundary. 

The original ray method of Snyman ct al. [48] determines the points of inter­

section of a pencil of rays emanating from a fixed radiating point with the 

workspace boundary. One deficiency of the the ray method is that it can­

not be used to map non-convex manipulator workspaces. The modified ray 

method (Hay and Snyman [49]) addresses this problem by using user interac­

tion together with the original ray method to map sections of the workspace 

which ca~not be mapped automatically. The alternative chord method of 

Hay and Snyman [50] can be used to determine non-convex manipulator 

workspaces automatically. From an initial point on the workspace bound­

ary, the chord method uses fixed radius arc searches to determine successive 

points until closure of the boundary is obtained. 

Previous applications of the optimization approach have focussed on the 

determination of constant orientation (ray methodology - Du Plessis and 

Snyman 118]) and maximal workspaces (ray method - Snyman ct al. [48]; 

modified ray method - Hay and Snyman [49]; chord method - Hay and Sny­

man [50]) of planar 3-RPR and spatial 6-UPS manipulators. An efficient 

indirect method for determining dextrous manipulator workspaces of these 

same manipulators by calculating the intersection of various constant orien­

tation workspaces has also been proposed by Du Plessis and Snyman [18]. 
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In Section 5.5 of this work a direct method for determining dextrous planar 

manipulator workspaces is given. 

In this study, the chord method is used as the method of choice for deter­

mining manipulator workspaces when using the optimization approach. A 

general overview of the chord methodology is given in Appendix C. A de­

tailed presentation and applications of the ray methodology may be found in 

Snyman et al. [48] and Du Plessis [51]. The modified ray and chord methods 

are further discussed in Hay and Snyman [49, 52] and Hay [53]. 

An optimization approach similar to the ray method has also been suggested 

by Wang and Hseih [54]. 

1.4 Optimal design of parallel manipulators 

As already mentioned parallel manipulators possess a number advantages 

over traditional serial manipulators (Merlet [1]). Parallel manipulators are, 

however, difficult to design due to their highly nonlinear and often non­

intuitive behavior. An effective and systematic way of addressing the prob­

lems stated above is through the use of optimization techniques in the design 

process. Depending on the particular application, certain manipulator per­

formance criteria may be of more importance than others. Such criteria 

include design so that the manipulator can reach a certain prescribed work­

space, design for optimum velocity, force or error transmission ratios between 

the actuators and the moving platform, stiffness, isotropy, dynamic behavior 

or dexterity of the manipulator throughout the workspace. 

A distinction can be made between the types of problem studied in the 

current literature in terms of whether or not workspace requirements are 

included in the optimization. In the next section optimization purely with 

respect to some performance measure is discussed. The different synthesis 
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problems, which explicitly include requirements on the workspace, are dis­

cussed in Section 1.4.2. 

1.4.1 Optimization of performance 

This first type of problem involves optimizing the performance of the manip­

ulator with respect to some performance measure without explicit consider­

ation of the workspace. The various performance measures commonly used 

in optimizing manipulators are listed below. 

Stiffness 

Bhattacharya et al. [55], investigate the effect of design parameters on the 

stiffness of a 6-U P S manipulator. Since these authors consider only two vari­

ables, the optimization is performed by plotting various stiffness measures as 

functions of the design parameters and then selecting the most appropriate 

design by inspection of these graphs. A method for synthesizing a manipu­

lator with respect to link and joint stiffnesses so that the end effector has a 

desired stiffness is suggested by Chakarov [56]. Hayward et al. [57] notice the 

importance of manipulator stiffness in designing a parallel mechanism-based 

hand controller. 

The optimal design of 3-dof spherical manipulator with respect to both stiff­

ness and conditioning is undertaken by Liu et al. [58]. Again, since there are 

only two design parameters, the optimization is done by inspection of plots of 

these performance measures against the design parameters. Zhang et al. [59] 

use a genetic algorithm to optimize the stiffness of a 5-dof revolute actuated 

parallel manipulator with passive constraining leg. Simaan and Shoham [60] 

determine the configurations of a variable geometry 3-RPR planar parallel 

manipulator which yield a desired stiffness of the end-effector. 

 
 
 



CHAPTER 1. INTRODUCTION 18 

Static and dynamic behavior 

A mechanism is said to be statically balanced when the weights of the links 

do not produce any torque (or force) at the actuators under static conditions 

(Gosselin [61]). Such balancing is achieved through the use of counterweights 

or springs. Static balancing of various spatial parallel mechanisms has been 

performed analytically by Wang and Gosselin [62, 63], Gosselin and Wang 

[64] and Gosselin ct al. [65J. Herder [66] provides a general discussion on 

statically balanced parallel mechanisms. 

Dynamic behavior is mentioned by Merlet [1] as a measure to be used when 

quantifying manipulator performances. In many practical applications opti­

mization of acceleration and inertial characteristics may be of importance. 

Weck and Giesler [67] include dynamic properties in their multi-objective 

optimization of a 2-RPR planar machine tooL 

Conditioning of the Jacobian matrix and dexterity 

The condition number of the Jacobian matrix of the manipulator can be used 

as a measure of accuracy of control of the manipulator, or manipulator dex­

terity. Here the term dexterity refers to a measurement of fine end-effector 

motion in a local sense (Klein and Blaho [68]). When viewed as a measure 

of accuracy, the condition number can be thought of as a factor amplifying 

errors in the actuators, and thus affecting the natural precision of the ma­

nipulator. The best conditioning is obtained when the Jacobian matrix is 

orthogonal, and the manipulator is said to be in an isotropic configuration. 

Gosselin and Angeles [21, 69J study planar and spherical3-RRR manipulators 

and determine, amongst other conditions, designs so that these manipulators 

are isotropic in their home configurations. Gosselin and Lavoie [70] deter­

mine designs of spherical 3-dof manipulators so that they have at least one 

isotropic configuration. Pittens and Podhorodeski [71] and Zanganeh and 
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Angeles [72] undertake the isotropic design of 6-UPS spatial and 3-RRR 

planar manipulators. It is noted by these authors and by Merlet [1] that it is 

necessary, if the Jacobian contains both rotational and translational terms, 

to scale the translational terms by a chosen characteristic length, since the 

Jacobian is not invariant under any choice of dimensional units. This is a 

criticism of the use of the condition number as a performance measure in 

these cases (Merlet [73]). 

Of course, isotropy of the Jacobian matrix is a local, configuration-dependent 

property of the manipulator. Gosselin and Angeles [74] propose a global 

conditioning index (GCI), evaluated over the entire workspace of the ma­

nipulator, which they used to optimize the global conditioning of parallel 

3-dof planar and spherical manipulators using the complex method3 • The 

GCI is aimed at obtaining better performance of the manipulator through­

out its workspace. Stamper et al. [46] and Tsai and Joshi [75] use the global 

condition index to numerically optimize a spatial 3-dof translational paral­

lel manipulator. Kurtz and Hayward [76] and Leguay-Durand and Reboulet 

[77] use similar principles in optimizing redundantly-actuated spherical mech­

anisms. In this case since the number of design variables is low the optimiza­

tion can be performed graphically. Stoughton and Arai [78] argue against 

averaging the conditioning over the entire workspace and propose instead 

optimizing the average dexterity over a centralized subregion of the work­

space of a 6-UPS spatial manipulator. The optimization is performed using 

the numerical BFGS algorithm. 

Other 

In Lee et al. [79, 80], Zhang and Duffy [81] and Lee et al. [82] the concept 

of using the quality index to determine optimal designs and configurations is 

proposed and developed for various 3-RPRand n-UP S manipulators. The 

3The complex method is a constrained version of the simplex method (Box 1965) 
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quality index is a measure of proximity to a singularity. Carretero et al. [83] 

minimize the parasitic motion of a 3-P RS spatial parallel manipulator using 

a quasi-Newton optimization method. 

1.4.2 Workspace synthesis 

The second type of problem is concerned with the workspace of the manipula­

tor. Essentially this type of problem, concerned with manipulator synthesis, 

is the inverse of the analysis problem. Analysis is concerned with determin­

ing the workspace of the manipulator for a given design and dimensioning. 

Synthesis seeks to find the dimensions of the manipulator so that is has a 

required workspace. Since there is not necessarily a unique solution to this 

problem, additional requirements are sometimes introduced, where required, 

to ensure a desired performance of the mechanism as welL 

Synthesis with respect to workspace only 

Gosselin and Guillot [84J use the complex method to optimize a planar 2-

RP R parallel manipulator so that the workspace of the manipulator is as 

close as possible to a prescribed workspace. This methodology is extended 

by Boudreau and Gosselin [85, 86J and is applied, now using a genetic al­

gorithm, to planar 3-RP Rand 3-RRR manipulators, and a spatial 6-U P S 

manipulator. 

Murray et ai. [87J use a quaternion approach which allows them to determine 

many 3-RPR planar manipulator designs, the workspaces of which include 

a number of prescribed points. In this approach the set of serial chains 

(forming the links between the base and moving platform) that can reach the 

desired poses are first determined. The feasible parallel manipulator designs 

which can also reach these poses are then assembled from these chains. The 

quaternion approach is extended to other parallel manipulator types, both 
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planar and spatial in Murray and Hanchak [88], and Perez and McCarthy 

[89]. 

Another approach proposed by Merlet [90,91] is used to determine all spatial 

manipulator geometries, the workspaces of which include prescribed points 

or line segments. The method presented takes into account leg length con­

straints, limits on the passive joint angles, and interference between links. 

The basic approach is to use each constraint separately to restrict the design 

variable domain. The region where all constraints are satisfied then corre­

sponds to the set of manipulator designs which can reach the desired poses. 

Merlet [92, 1] later extends the methodology to include constraints on the 

articular velocities. 

The effects of the design parameters on workspaces of various spatial parallel 

manipulators is also studied by Ji [93]. 

Multi-objective optimization 

The algorithm for workspace synthesis proposed by Merlet [91] has been 

extended in Merlet [92], resulting in the DEMOCRAT design methodology. 

Once the design space has been reduced to all the robot designs, which can 

reach the required workspace as described in the previous section (referred 

to by Merlet as the "cutting phase"), the "refining phase" then consists of 

discretizing this reduced design space, and evaluating robot performances 

with respect to various performance criteria at each resulting node. The 

advantage of the DEMOCRAT methodology is its ability to determine all 

possible designs which fulfill the designer's requirements. It would appear 

though, that as the number of design variables increase, the methodology 

becomes increasingly more difficult to handle. 

Kirchner and Neugebauer [94J have combined many performance criteria in 

optimizing a spatial manipulator with 13 design variables. These authors 

~ \ '1 ?>'1 0 SW 0 
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determine the Pareto-optimal set with respect to these criteria using a ge­

netic algorithm. Similarly Weck and Giesler [67] perform multi-objective 

optimization of a planar manipulator to be used in machining applications. 

Finally, Gallant and Boudreau (95] propose a method which uses a genetic 

algorithm for synthesizing planar parallel 3-RP R manipulators for a desired 

workspace, including avoidance of singularities and using the global condi­

tioning index. 

1.5 Numerical optimization methods 

The sustained increase in computing power has led to numerical optimization 

techniques becoming more and more popular in many fields, including me­

chanical engineering. Most current optimization algorithms can be broadly 

classified as either deterministic or stochastic methods (Chedmail [96]). The 

methods discussed in this section are in general for nonlinear optimization 

problems, since these are the sorts of problems which occur in the mechanism 

synthesis field. 

1.5.1 Deterministic methods 

Deterministic methods use knowledge of the local topography of the objective 

(and constraint) function to travel towards the optimum design. Such meth­

ods include classical optimization techniques, line search methods, gradient­

based methods and methods such as the simplex method and the method of 

moving asymptotes. Although many such methods exist, the discussion here 

is limited to methods which have direct relevance to this study. 
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Line search methods 

The method of steepest descent is one of the most fundamental procedures 

for minimizing a differentiable function of several variables. The method, 

proposed by Cauchy in the middle of the nineteenth century, continues to be 

the basis of several gradient-based solution procedures (Bazaraa et al. [97], 

p.300). The performance of the steepest descent method is disappointing, 

however) compared to other first-order (gradient only) line search methods. 

In spite of using what appears to be the "best" search direction, i.e. that 

which gives the maximum rate of decrease at the point of application, the 

method is not really effective in most problems. The method of steepest 

descent usually works quite well during the early stages of the optimization 

process, depending on the point of initialization. However, as a stationary 

point is approached, the method often behaves poorly, taking small and 

nearly orthogonal steps. Steepest descent methods are discussed more fully 

in Section 2.2. 

Amongst the methods that use only gradient information and perform suc­

cessive line searches, the most popular method is probably the conjugate 

gradient method of Fletcher and Reeves [98]. This method generates mu­

tually conjugate directions by taking, at each successive point, a suitable 

convex combination of the current gradient and the direction used at the 

previous iteration, as search direction. A slight variation of the Fletcher­

Reeves method is the method of Polak and Ribiere [99], which is argued to 

be preferable for non-quadratic functions (Bazaraa et al. [97], p.357). Gra­

dient only methods, such as the Fletcher-Reeves method, remain of great 

importance because they become indispensable when the problem size (num­

ber of variables) becomes very large. 

Second order methods, using Hessian information and based on Newton's 

method, have also been proposed. For large numbers of variables the full 

evaluation of the Hessian matrix, required by Newton's method at each step, 
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becomes time-consuming. In order to avoid this difficulty, quasi-Newton 

methods, which approximate the Hessian matrix by means of an update 

formula after each step, have been proposed. Two implementations of such 

quasi-Newton methods are the Davidon-Fletcher-Powell (DFP), and the more 

recent Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods. These methods 

exhibit fast convergence. When the number of variables exceed approxi­

mately 100, however, attempts to update the Hessian become impractical 

because of the size of the matrix (Bazaraa et a1. [97], p.328). 

Lagrangian-based methods 

In 1760 Lagrange developed the classical method for solving equality con­

strained optimization problems by the introduction of Lagrange multipliers 

and solution of the resulting unconstrained optimization problem (Snyman 

[100]). This method can be extended to inequality constrained problems by 

the use of auxiliary variables. Karush (1939) and Kuhn and Tucker (1951) 

derived the necessary Karush-Kuhn-Tucker (KKT) conditions, expressed in 

terms of the Lagrangian, that must be satisfied at the solution of an inequal­

ity constrained problem. Analytical determination of the stationary point of 

the Lagrangian is not always practical, or possible. In order to address this 

problem, augmented Lagrange multiplier methods combine the classical La­

grangian method with a penalty function approach in solving the constrained 

problem. Here successive approximations to the Lagrange multipliers are 

used in order to obtain the solution via an iterative procedure. 

Sequential quadratic programming (SQP) methods are based on the applica­

tion of Newton's method to determine the optimum from the KKT conditions 

of the constrained problem. The method relies on the solution of a quadratic 

programming problem at each step, in order to determine the next approxi­

mate solution and associated Lagrange multipliers. A complete discussion of 

SQP methods is given in Section 3.2. 
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The dynamic trajectory method 

An alternative optimization algorithm, based on modelling the dynamic tra­

jectory followed by a particle of unit mass in a conservative force field has 

been proposed by Snyman [101, 102, 103]. This method, called the dynamic 

trajectory, or Leap-Frog (LfopC) optimization algorithm, has a number of 

properties which make it suitable for implementation in solving practical 

engineering optimization problems. A detailed discussion of this method 

appears in Appendix B. 

1.5.2 Stochastic methods 

In contrast to deterministic methods, stochastic methods only use gradient 

information indirectly, and use instead random processes for finding new 

points in the design space. Such methods usually rely on modelling natural 

phenomena as the basis of the algorithm. Examples of this type of method 

are the genetic, simulated annealing and particle swarm algorithms. 

Genetic algorithms 

Genetic algorithms were first introduced by Holland (1965). Their use has 

subsequently been encouraged by Goldberg [104] and Michalewicz [105]. 

These algorithms mimic the process of evolution found in nature. From 

an initial, random population, where each individual is characterized by a 

specific design vector, subsequent generations are created by "inheriting" 

features, or parts of the design vector, from the previous generation. The 

best individuals in each generation are given a better chance of passing on 

their features to subsequent generations, thus driving the entire population 

towards an optimum design. Various strategies, such as introducing random 

perturbations or "mutations" into the design vector of certain individuals, 
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are also employed. Genetic algorithms have gained tremendous popularity 

due to their high ease of programming, and ability to take into account 

discrete and continuous design variables (Chedmail [96]). These algorithms 

are however computationally very demanding, and often require the exper­

imental selection of many optimization parameters in order to obtain good 

performance for a given problem. 

Simulated annealing 

Optimization by simulated annealing was proposed by Kirkpatrick et al. [106] 

who credit Metropolis et al. [107] for the basic idea. The problem studied 

by Metropolis and his colleagues was to determine the equilibrium state of a 

material, composed of a number of particles, by simulating the thermal mo­

tion of these particles at a given temperature. In order to use this simulation 

as a component in an optimization technique, the temperature is used as 

a control parameter, and under systematic reduction of this, the algorithm 

asymptotically and statistically converges to the global optimum of the sys­

tem being optimized. The difficulty associated with such algorithms is that 

the efficiency of the algorithm, and accuracy of results, are affected by the 

choice of parameters, such as the rate of decreasing the control temperature. 

As with genetic algorithms, some initial experimentation is necessary to de­

termine the best settings for a given problem. Many function evaluations are 

also required in comparison to deterministic methods. 

1.6 Motivation for the study 

1.6.1 Optimization of parallel manipulators 

Some of the advantages offered by parallel manipulators, when properly de­

signed, include an excellent load to weight ratio, high stiffness and positioning 
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accuracy and good dynamic behavior (Merlet [2, 1], Fichter and MacDowell 

[8]). These characteristics are, to a large extent, the result of the load on 

the platform being distributed more or less equally among the actuators, as 

opposed to the serial case where the full load is carried by each actuator. In 

addition, depending on the exact parallel manipulator design, the stress in 

the actuators is mostly tension or compression, which means that the ma­

nipulator can be made very rigid, especially when using linear actuators. In 

contrast, for a serial manipulator the load is often carried in a cantilever 

fashion, and the mechanism must be designed to carry the resulting bending 

loads, often resulting in bulky links. Another factor influencing the accuracy 

of parallel manipulators is that the positioning accuracy of the end-effector 

is only slightly affected by errors in the actuators. Errors tend to average in 

the parallel case, whereas they are cumulative for a serial robot. All of these 

factors, and the availability of new control and component technologies, have 

resulted in the increasing popularity of parallel manipulators. 

There are, however, also some disadvantages associated with parallel manip­

ulators, which have inhibited their application in some cases. Most serious 

of these is that the particular architecture of parallel manipulators leads to 

smaller manipulator workspaces than their serial counterparts. This is due 

to the additional constraints imposed by the closed kinematic chains of such 

mechanisms. Parallel manipulators can also be difficult to design (Gosselin 

et a1. [108]), since the relationships between design parameters and the work­

space, and behavior of the manipulator throughout the workspace, are not 

intuitive by any means. In addition, parallel manipulator performances are 

highly dependent on their dimensions. Merlet [73] gives the example that 

changing the radius of a Gough-Stewart platform by 10% results in a 700% 

change in the minimal stiffness of the robot. For all of these reasons, Merlet 

[1] argues that customization of parallel manipulators for each application 

is absolutely necessary in order to ensure that all performance requirements 

can be met by the manipulator. 
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1.6.2 The need for new methodologies 

In their recent review paper Dasgupta and Mruthyunjaya [3] survey 214 

relevant publications, and at the end of the paper state that, amongst others, 

the following open problems exist: 

1. A detailed and easy-to-use description of the workspace. 

2. Workspace synthesis for the Stewart platform. 

3. Optimum kinematic synthesis of the Stewart platform for well-condi­

tioned workspace. 

These notions are supported even more recently by Merlet, who devotes a 

keynote address to "the need for a systematic methodology for the evaluation 

and optimal design of parallel robots" [109]. In a later paper the same author 

[110] states that "none of [the existing dimensional synthesis methods] are 

appropriate for parallel robots, which usually have a large number of design 

parameters" . 

Of the synthesis methods discussed in Section 1.4.2, genetic algorithm ap­

proaches are capable of synthesizing manipulators with large numbers of 

design variables. These methods are however disadvantaged by their reliance 

on weighting the contributions of individual performance measures when per­

forming the multi-objective optimization, and the high computational expense 

of these optimization algorithms. Alternative approaches, while efficient, are 

limited by their need to derive a specific formulation for various manipulator 

types. In addition, increasing the number of manipulator variables leads to 

dramatically increasing complexity of the methods. It is thus felt that there 

is a need for a design methodology, based on efficient numerical optimiza­

tion techniques, which is generally applicable to a variety of manipulator 

architectures. 
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1.6.3 Objectives of this study 

In an effort to address the points highlighted in the previous section, the 

following issues are addressed in this study: 

1. The development of efficient numerical optimization algorithms capable 

of handling engineering problems. 

2. The development and refinement of numerical methods for workspace 

determination of various parallel manipulators. 

3. The development of alternative numerical methods for manipulator di­

mensional synthesis, and the investigation of the applicability of the 

new optimization algorithms, mentioned in 1, to such problems. 

This work is split into two parts: 

PART I: OPTIMIZATION ALGORITHMS is devoted to the development of 

new optimization algorithms (item 1 above). Two separate numerical opti­

mization algorithms are presented. The spherical quadratic steepest descent 

(SQSD) algorithm, presented in Chapter 2 is intended for unconstrained 

problems. In Chapter 3 an optimization algorithm for constrained prob­

lems, called the Dynamic-Q algorithm, is presented. 

PART II: MANIPULATOR OPTIMIZATION is devoted to workspace determi­

nation and development of new methods for manipulator optimization (items 

2 and 3 above). In Chapter 4 various optimization algorithms are applied 

to the problem of synthesizing a 2-RP R planar parallel manipulator. Various 

forms of the optimization problem statement are developed and evaluated. 

Building on these results, Chapter 5 contains application of the methodol­

ogy to a planar 3-RPR manipulator, together with some new developments 

for dextrous workspace determination of such manipulators. A different class 

of manipulator, tendon-driven parallel manipulators, are studied in Chap­

ter 6. New analysis methods for this class of manipulator are introduced, 

 
 
 



CHAPTER 1. INTRODUCTION 30 

and optimization of such manipulators is performed. Finally in Chapter 7 

conclusions are drawn from the work performed, and recommendations for 

future research are made. 
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Chapter 2 

The spherical quadratic 

steepest descent algorithm 

2.1 Introduction 

In this chapter an extremely simple gradient only algorithm is proposed that, 

in terms of storage requirement (only 3 n-vectors need be stored) and com­

putational efficiency, may be considered as an alternative to the conjugate 

gradient methods. The method effectively applies the steepest descent (SD) 

method to successive simple spherical quadratic approximations of the ob­

jective function in such a way that no explicit line searches are performed in 

solving the minimization problem. It is shown that the method is convergent 

when applied to general positive-definite quadratic functions. The method is 

tested by its application to some standard and other test problems. On the 

evidence presented the new method, called the SQSD algorithm, appears to 

be reliable and stable, and very competitive compared to the well established 

conjugate gradient methods. In particular, it does very well when applied to 

extremely ill-conditioned problems. 

32 
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2.2 The classical steepest descent method 

Consider the following unconstrained optimization problem: 

min f(x), x E ~n 	 (2.1) 

where f is a scalar objective function defined on ~n, the n-dimensional real 

Euclidean space, and x is a vector of n real components Xl, X2, ••• ,Xn . It 

is assumed that f is differentiable so that the gradient vector V f(x) exists 

everywhere in ~n. The solution is denoted by x*. 

The steepest descent (SD) algorithm for solving problem (2.1) may then be 

stated as follows: 

Initialization: Specify convergence tolerances c9 and cx, select starting point 


xo. Set k 1 and go to main procedure. 


Main procedure: 


1. 	If IIVf(xk-1)11 < (9) then set x* rv XC x k
-

1 and stop; otherwise set 

Uk - V f(Xk- 1). 

2. 	 Let Ak be such that f(xk - 1 + AkUk ) = min.\, f(xk - 1 AUk) subject to 

A 2: a {line search step}. 

3. 	 Set xk Xk- 1 + AkUk; if Ilxk Xk-111 < Cx, then x* """- XC xk and 

stop; otherwise set k := k 1 and go to Step 1. 

It can be shown that if the steepest descent method is applied to a general 

positive-definite quadratic function of the form1 f(x) = ~xTAx + b T X c, 

then the sequence {f(xk)} -----+ f(x*). Depending, however, on the starting 

point Xo and the condition number of A associated with the quadratic form, 

the rate of convergence may become extremely slow. 

1 A superscript T means transpose. 
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It is proposed here that for general functions f(x), better overall performance 

of the steepest descent method may be obtained by applying it successively 

to a sequence of very simple quadratic approximations of f(x). The proposed 

modification, named here the spherical quadratic steepest descent (SQSD) 

method, remains a first order method since only gradient information is used 

with no attempt being made to construct the Hessian of the function. The 

storage requirements therefore remain minimal, making it ideally suitable for 

problems with a large number of variables. Another significant characteristic 

is that the method requires no explicit line searches. 

2.3 	 The spherical quadratic steepest descent 

method 

In the SQSD approach, given an initial approximate solution xo, a sequence of 

spherically quadratic optimization subproblems P[k], k = 0,1,2, ... is solved, 

generating a sequence of approximate solutions xkH. More specifically, at 

each point xk the constructed approximate subproblem is P[k]: 

minA(x) 
x 

(2.2) 

where the approximate objective function ik(X) is given by 

(2.3) 

and Ck diag(ck' Ck, . .. ,Ck) - ckI. The solution to this problem will be 

denoted by x*k, and for the construction of the next subproblem P[k + 
1], X k+1 := x*k. 

For the first subproblem the curvature Co is set to Co:= IIVf(xO)11 Ip, where 

p > 0 is some arbitrarily specified step limit. Thereafter, for k 2': 1, Ck is 

chosen such that j(xk) interpolates f(x) at both xk and xk-l. The latter 
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conditions imply that for k= 1,2, ... 

2 [f(Xk- 1) - f(xk) VT f(xk)(Xk- 1 xk)] 
2 (2.4)

Ilxk-1 - xkl1 

Clearly the identical curvature entries along the diagonal of the Hessian, 

mean that the level surfaces of the quadratic approximation jk(X), are indeed 

concentric hyper-spheres. The approximate subproblems P[k] are therefore 

aptly referred to as spherical quadratic approximations. 

It is now proposed that for a large class of problems the sequence xo, xl, ... 

will tend to the solution of the original problem (2.1), i.e. 

lim x = x* (2.5)
k->oo 

For subproblems P[k] that are convex, i.e. ek > 0, the solution occurs where 

V jk(X) = 0, that is where 

(2.6) 

The solution to the subproblem, X*k is therefore given by 

k V f(xk
)

X - -'-'---'- (2.7)
ek 

Clearly the solution to the spherical quadratic subproblem lies along a line 

through Xk in the direction of steepest descent. The SQSD method may 

formally be stated in the form given in Algorithm 2.2. 

Step size control is introduced in Algorithm 2.2 through the specification 

of a step limit p and the test for "xII:: Xk-111 > p in Step 2 of the main 

procedure. Note that the choice of Co ensures that for prO] the solution xl 

lies at a distance p from Xo in the direction of steepest descent. Also the test 

in Step 3 that ek < 0, and setting ell:: := 10-60 where this condition is true 

ensures that the approximate objective function is always positive-definite. 
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Algorithm 2.2 SQSD algorithm 

Initialization: Specify convergence tolerances eg and ex, step limit p > 0 and 

select starting point xo. Set Co := IIVf(xO)II/p. Set k := 1 and go to main 

procedure. 

Afain procedure: 

1. If IIVf(Xk-1)11 < egl then x* rv XC Xk- 1 and stop; otherwise set 

k k-l V f(Xk- 1)
x :=X - . 

Ck-l 

2. If Ilxk - Xk-111 > p, then set 

V f(Xk- 1) 

p IIVf(xk - 1) II ; 

3. Set 

if Ck < 0 set Ck := 10-6°. 

4. Set k k + 1 and go to Step 1 for next iteration. 
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2.4 Convergence of the SQSD method 

An analysis of the convergence rate of the SQSD method, when applied to 

a general positive-definite quadratic function, affords insight into the con­

vergence behavior of the method when applied to more general functions. 

This is so because for a large class of continuously differentiable functions, 

the behavior close to local minima is quadratic. For quadratic functions the 

following theorem may be proved. 

THEOREM. The SQSD algorithm (without step size control) is convergent 


when applied to the general quadratic function of the form f(x) 


b T x, wherc A is a n x n positive-definite matrix and b E 3'in . 


PROOF. Begin by considering the bivariate quadratic function, f(x) = xi + 
I'x~, I' 2:: 1 and with xO 

.- [a,,8]T. Assume Co > 0 given, and for convenience 

in what follows set Co = l/b,b > O. Also employ the notation fk f(xk). 

Application of the first step of the SQSD algorithm yields 

xl XO - V fa 
Co 

= [a(l - 2b), ,8(1 - 2l'b)r (2.8) 

and it follows that 

(2.9) 

and 

(2.10) 

For the next iteration the curvature is given by 

(2.11) 

L"tilizing the information contained in (2.8)-(2.10), the various entries in 

expression (2.11) are known, and after substitution CI simplifies to 

(2.12) 
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In the next iteration, Step 1 gives 

1 ViI x ---	 (2.13)
Cl 

And after the necessary substitutions for Xl, ViI and Cl , given by (2.8), 

(2.10) 	and (2.12) respectively, (2.13) reduces to 

x2 [a(l 2b')/-l1, j1(1 - 2,O")Wll T (2.14) 

where 

III 1 
1 
1 

,2j12/a2 

,3j12/a2 
(2.15) 

and 

WI 1 
, ,3j12/a 2 

1 ,3j12/a 2 
(2.16) 

Clearly if , = 1, then /-ll o and WI O. Thus by (2.14) x2 o and 

convergence to the solution is achieved within the second iteration. 

Now for, > 1, and for any choice of a and j1, it follows from (2.15) that 

(2.17) 


which implies from (2.14) that for the first component of x 2: 

or introducing a notation (with ao a), that 

(2.19) 

{Note: because Co 1/0" > 0 is chosen arbitrarily, it cannot be said that 

lall < laol· However al is finite.} 

The above argument, culminating in result (2.19), is for the two iterations 

Xo 2 
-4 Xl -4 x . Repeating the argument for the sequence of overlapping 

x2 x 2pairs of iterations Xl -4 x3
; -4 x3 x4

; .•. , it follows similarly -4 

that la31 = 1/-l2a 21 < la21; la41 1/-l3a 31 < la31;···, since 0 :s /-l2 :s 1; 0 :s 
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f-t3 :::; 1; ... , where the f-ts are given by (corresponding to equation (2.15) for 

f-tl) : 
2{32 j 21 I j-l aj_l

f-tl = 1 - (2.20)
"",3{32 ja21 I j-l j-I 

Thus in general 

(2.21) 

and 

(2.22) 

For large positive integer m it follows that 

(2.23) 

and clearly for I > 0, because of (2.21) 

(2.24) 

Now for the second component of X2 in (2.14), the expression for WI, given 

by (2.16), may be simplified to 

(2.25) 

Also for the second component: 

(2.26) 

or introducing {3 notation 

(2.27) 

The above argument is for XO ---7 Xl x2 and again, repeating it for the---7 

sequence of overlapping pairs of iterations, it follows more generally for j = 

1,2, ... , that 

(2.28) 
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where Wj is given by 

(2.29) 

Since by (2.24), ic);ml 0, it follows that if l,8ml -+ 0 as m -+ 00, the theorem 

is proved for the bivariate case. Make the assumption that l,8m Idoes not tend 

to zero, then there exists a finite positive number [; such that 

(2.30) 

for all j. This allows the following argument: 

1-, 1 1 1-, 1 1(1-,)0:;_11 (2.31)IWjl = 11+,3,8;_1/0:;_1 S; 1+,3[;2/O:J_1 = 0:;_1 +,3[;2 

Clearly since by (2.24) 100ml -+ 0 as m -+ 00, (2.31) implies that also 

Iwml -+ O. This result taken together with (2.28) means that l,8ml -+ 0 

which contradicts the assumption above. With this result the theorem is 

proved for the bivariate case. 

Although the algebra becomes more complicated, the above argument can 

clearly be extended to prove convergence for the multivariate case, where 
n 

f(x) L ,iX;,,1 1 < ,2 <'3 < ... < ,n (2.32) 
i=l 

Finally since the general quadratic function 

1
f(x) '2xT Ax + b T x, A positive definite (2.33) 

may be transformed to the form (2.32), convergence of the SQSD method is 

also ensured in the general case. 

2.5 Numerical results and conclusion 

The SQSD method is now demonstrated by its application to some test prob­

lems. :For comparison purposes the results are also given for the standard SD 
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method and both the Fletcher-Reeves (FR) and Polak-Ribiere (PR) conju­

gate gradient methods. The latter two methods are implemented using the 

CG+ FORTRAN conjugate gradient program of Gilbert and Nocedal [111]. 

The CG+ implementation uses the line search routine of More and Thuente 

[112]. The function and gradient values are evaluated together in a single 

subroutine. The SD method is applied using CG+ with the search direction 

modified to the steepest descent direction. The FORTRAN programs were run 

on a 266 MHz Pentium 2 computer using d.ouble precision computations. 

The standard (references [113, 114, 115, 116]) and other test problems used 

are listed in Appendix A and the results are given in Tables 2.1 and 2.2. The 

convergence tolerances applied throughout are eg 10-5 and ex = 10-8 , ex­

cept for the extended homogenous quadratic function with n = 50000 (Prob­

lem 12) and the extremely ill-conditioned Manevich functions (Problems 14). 

For these problems the extreme tolerances eg 0(= 10-75 ) and ex = 10- 12 , 

are prescribed in an effort to ensure very high accuracy in the approxima­

tion XC to x*. For each method the number of function-cum-gradient-vector 

evaluations (Nlg) are given. For the SQSD method the number of itera­

tions is the same as N Ig. For the other methods the number of iterations 

(Nit) required for convergence, and which corresponds to the number of line 

searches executed, are also listed separately. In addition the relative error 

(Er) in optimum function value, defined by 

C 

E r = If(x*) - f(x ) I (2.34)
1 If(x*) I 

where XC is the approximation to x* at convergence, is also listed. For the 

Manevich problems, with n ;::: 40, for which the other (SD, FR and PR) 

algorithms fail to converge after the indicated number of steps, the infinite 

norm of the error in the solution vector (/00), defined by Ilx* - xClloo is also 

tabulated. These entries, given instead of the relative error in function value 

(Er), are made in italics. 

Inspection of the results shows that the SQSD algorithm is consistently com­

 
 
 



42 CHAPTER 2. THE SQSD ALGORITHM 

Prob. # n SQSD Steepest Descent 

p fg E'r Nfg Nit E r lIDO 

1 3 1 12 3.E-14 41 20 6.E-12 

2 2 1 31 1.E-14 266 131 9.E-11 
3 2 1 33 3.E-08 2316 1157 4.E-08 

4 2 0.3 97 1.E-15 > 20000 3.E-09 

5(a) 3 1 11 1.E-12 60 29 6.E-08 
5(b) 3 1 17 1.E-12 49 23 6.E-08 

6 4 1 119 9.E-09 > 20000 2.E-06 

7 3 1 37 1.E-12 156 77 3.E-11 
8 2 10 39 1.E-22 12050* 6023* 26* 
9 2 0.3 113 5.E-14 6065 3027 2.E-10 
10 2 1 43 1.E-12 1309 652 1.E-1O 
11 4 2 267 2.E-11 16701 8348 4.E-11 
12 20 1.E+04 58 1.E-11 276 137 l.E-11 

200 1.E+04 146 4.E-12 2717 1357 1.E-11 
2000 1.E+04 456 2.E-1O > 20000 2.E-08 

20000 1.E+04 1318 6.E-09 > 10000 8.E+01 
50000 1.E+lO 4073 3.E-16 > 10000 5.E+02 

13 10 0.3 788 2.E-10 > 20000 4.E-07 
100 1 2580 1.E-12 > 20000 3.E+01 
300 1.73 6618 1.E-I0 > 20000 2.E+02 
600 2.45 13347 1.E-l1 > 20000 5.E+02 
1000 3.16 20717 2.E-1O > 30000 9.E+02 

14 20 1 3651 2.E-27 > 20000 9.E-Ol 
10 3301 9.E-30 

40 1 13302 5.E-27 > 30000 l.E+OO 

10 15109 2.E-33 
60 1 19016 7.E-39 > 30000 1.E+OO 

10 16023 6.E-39 
100 1 39690 1.E-49 > 50000 1.E+OO 

10 38929 3.E-53 
200 1 73517 5.E-81 > 100000 1.EI-OO 

10 76621 4.E-81 

* Convergence to a local minimum with f(x C
) = 48.9. 

Table 2.1: Performance of the SQSD and SD optimization algorithms when 

applied to the test problems listed in Appendix A 
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Prob. # n Fletcher-Reeves Polak-Ribiere 
Nfg Nit ErjI= N/g Nit ErjI= 

1 3 7 3 0$ 7 3 0$ 

2 2 30 11 2.E-11 22 8 2.E-12 

3 2 45 18 2.E-08 36 14 6.E-11 

4 2 180 78 1.E-l1 66 18 1.E-14 

5(a) 3 18 7 6.E-08 18 8 6.E-08 

5(b) 3 65 31 6.E-08 26 11 6.E-08 

6 4 1573 783 8.E-1O 166 68 3.E-09 
7 3 132 62 4.E-12 57 26 1.E-12 

8 2 72* 27* 26* 24* 11* 26* 

9 2 56 18 5.E-11 50 17 1.E-15 

10 2 127 60 6.E-12 30 11 1.E-11 

11 4 193 91 1.E-12 99 39 9.E-14 

12 20 42 20 9.E-32 42 20 4.E-31 

200 163 80 5.E-13 163 80 5.E-13 

2000 530 263 2.E-13 530 263 2.E-13 

20000 1652 825 4.E-13 1652 825 4.E-13 
50000 3225 1161 1.E-20 3225 1611 1.E-20 

13 10 > 20000 2.E-02 548 263 4.E-12 

100 > 20000 8.E+Ol 1571 776 2.E-12 

300 > 20000 3.E+02 3253 1605 2.E-12 

600 > 20000 6.E+02 5550 2765 2.E-12 

1000 > 30000 l.E+03 8735 4358 2.E-12 

14 20 187 75 8.E-24 1088 507 2.E-22 
40 > 30000 1.E+OO > 30000 1.E+00 

60 > 30000 1.E+00 > 30000 1.E+00 

100 > 50000 1.E+00 > 50000 1.E+OO 

200 > 100000 1.E+OO > 100000 1.E+OO 

* Convergence to a local minimum with f(xC
) = 48.9; $ Solution to machine accuracy. 

Table 2.2: Performance of the FR and PR algorithms when applied to the 

test problems listed in Appendix A 
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petitive with the other three methods and performs notably well for large 

problems. Of all the methods the SQSD method appears to be the most 

reliable one in solving each of the posed problems. As expected, because line 

searches are eliminated and consecutive search directions are no longer forced 

to be orthogonal, the new method completely overshadows the standard SD 

method. What is much more gratifying, however, is the performance of the 

SQSD method relative to the well-established and well-researched conjugate 

gradient algorithms. Overall the new method appears to be very competi­

tive with respect to computational efficiency and, on the evidence presented, 

remarkably stable. 

In the implementation of the SQSD method to highly non-quadratic and 

non-convex functions, some care must however be taken in ensuring that the 

chosen step limit parameter p, is not too large. A too large value may result 

in excessive oscillations occurring before convergence. Therefore a relatively 

small value, p 0.3, was used for the Rosenbrock problem with n = 2 

(Problem 4). For the extended Rosenbrock functions of larger dimensionality 

(Problems 13), correspondingly larger step limit values (p ylnjlO) were 

used with success. 

For quadratic functions, as is evident from the convergence analysis of Section 

2.4, no step limit is required for convergence. This is borne out in practice by 

the results for the extended homogenous quadratic functions (Problems 12), 

where the very large value p 104 was used throughout, with the even more 

extreme value of p = 1010 for n = 50000. The specification of a step limit in 

the quadratic case also appears to have little effect on the convergence rate, 

as can be seen from the results for the ill-conditioned Manevich functions 

(Problems 14), that are given for both p 1 and p = 10. Here convergence is 

obtained to at least 11 significant figures accuracy (1Ix* - xClloo < 10-11 
) for 

each of the variables, despite the occurrence of extreme condition numbers, 

such as 1060 for the Manevich problem with n 200. 

The successful application of the new method to the ill-conditioned Manevich 
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problems, and the analysis of the convergence behavior for quadratic func­

tions, indicate that the SQSD algorithm represents a powerful approach to 

solving quadratic problems with large numbers of variables. In particular, the 

SQSD method can be seen as an unconditionally convergent, stable and eco­

nomic alternative iterative method for solving large systems of linear equa­

tions, ill-conditioned or not, through the minimization of the sum of the 

squares of the residuals of the equations. 

 
 
 



Chapter 3 

The Dynamic-Q optimization 

algorithm 

3.1 Introduction 

An efficient constrained optimization method is presented in this chapter. 

The method, called the Dynamic-Q method, consists of applying the dynamic 

trajectory optimization algorithm (see Appendix B) to successive quadratic 

approximations of the actual optimization problem. This method may be 

considered as an extension of the unconstrained SQSD method, presented 

in Chapter 2, to one capable of handling general constrained optimization 

problems. 

Due to its efficiency with respect to the number of function evaluations re­

quired for convergence, the Dynamic-Q method is primarily intended for 

optimization problems where function evaluations are expensive. Such prob­

lems occur frequently in engineering applications where time consuming nu­

merical simulations may be used for function evaluations. Amongst others, 

these numerical analyses may take the form of a computational fluid dynam­

46 
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ics (CFD) simulation, a structural analysis by means of the finite element 

method (FEM) or a dynamic simulation of a multibody system. Because 

these simulations are usually expensive to perform, and because the relevant 

functions may not be known analytically, standard classical optimization 

methods are normally not suited to these types of problems. Also, as will 

be shown, the storage requirements of the Dynamic-Q method are minimal. 

No Hessian information is required. The method is therefore particularly 

suitable for problems where the number of variables n is large. 

In the next section sequential quadratic programming (SQP) methods are 

briefly discussed to allow for comparison with the proposed method. Next, 

the Dynamic-Q methodology is presented. Finally the performance of the 

method is tested and compared to that of an SQP method. 

3.2 	 Sequential quadratic programming meth­

ods 

Sequential quadratic programming (SQP) methods have been developed over 

the past thirty years, and are generally considered to be some of the most 

efficient algorithms available today. Based on Lagrangian methods, it can be 

shown that the solution x'" of the nonlinear equality constrained optimization 

problem 

(3.1 ) 

subject to h(x) 0 

where f(x) and h(x) are respectively a scalar and a vector function of x, can 

be obtained by solving, at successive approximations xi to x*, a sequence of 

corresponding quadratic programming (QP) subproblems (QP[i]' i 0,1,2, ...) 
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containing linearized constraints of the following form: 

min f(xi) VT f(xi)s + ~sTWis 	 (3.2) 
s 2 

subject to VTh(Xi)S + h(xi) 0 

where Wi V2 f(x i ) + AiTV2h(xi), with Ai denoting the associated vector 

of Lagrange multipliers. The solution to subproblem QP[i] is denoted by 

Si and the point at which the next subproblem QP[i 1] is constructed is 

Xi+l Xi Si. If successful, the SQP method yields a sequence xO, Xl, x 2, ... 

that converges to x*. The particular QP subproblem given here is one of a 

number of possible forms that may be chosen. 

Based on the above argument, a simple SQP algorithm is as follows (Pa­

palambros and Wilde [117]). 

Algorithm 3.1 Simple SQP algorithm 

Initialization: Select initial point XO and initial Lagrange multipliers AO. Set 

i := 1. 

Main procedure: 

1. 	 Solve the quadratic programming problem QP[i] corresponding to (3.2) 

to determine Si and Ai+l. 

3. If termination criteria are satisfied, set x* = Xi+l and stop; else set 

1, :=~ 1, 1 and go to Step 1. 

Numerous authors have proposed modifications and variations to the above 

basic algorithm. There are four areas in which the differences are most promi­

nent. The first of these is the way in which inequality constraints are also 

included in the algorithm. For optimization problems containing inequality 

constraints an active set strategy may be used. This strategy can be imple­

mented in one of two ways, either on the original problem or by including all 

 
 
 



CHAPTER 3. THE DYNAMIC-Q OPTIMIZATION ALGORITHM 49 

of the inequality constraints in the QP subproblem, and applying an active 

set strategy to the subproblem. The second point of difference lies in the 

way the QP subproblem is solved. Almost any method for nonlinear pro­

gramming, such as the augmented Lagrangian method or the dual method, 

may be specially adapted to the solution of the QP subproblem. A third 

way in which SQP algorithms differ from each other is in the computation 

of second derivatives of the problem. In the above simple SQP algorithm it 

is necessary to evaluate the second derivatives of the objective function and 

the constraints in the computation of Wi, which will usually be a computa­

tionally intensive process. In any event, the storage of Hessian information 

is required which implies the availability of O(n2
) storage locations, and the 

determination and manipulation of the elements of the n x n Hessian matrix:. 

Some authors have avoided the latter difficulties by applying quasi-Newton 

updating formulae to approximate the second derivatives. Powell [118] , for 

example, has proposed using the BFGS formula to approximate these second 

derivatives. A fourth point of difference lies in dealing with the feasibility 

or infeasibility of the constructed subproblems. If the QP subproblem (3.2) 

is constmcted at a point far from the solution x* of the constrained opti­

mization problem (3.1), then the subproblem may have an unbounded or 

infeasible solution. For this reason many modern SQP algorithms rather use 

Si as a search direction. Then the point Xi+l at which the next subproblem 

is constmcted is set at Xi+l := Xi (liSi with the step size (li determined by 

performing a line search on an appropriate merit function in the direction Si. 
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3.3 The Dynamic-Q method 

Consider the general nonlinear optimization problem: 

subject to (3.3) 

9j(X) 0; j = 1,2, ... ,p 

hk(x) 0; k= 1,2, ... ,q 

where f(x), 9j(X) and hk{x) are scalar ftmctions of x. 

In the Dynamic-Q approach, successive subproblems P[i], i 0,1,2, ... are 

generated, at successive approximations Xi to the solution x"', by constructing 

spherically quadmtic approximations /(x), ih(x) and hk(x) to f(x), 9j(X) and 

hk{x). These approximation functions, evaluated at a point Xi, are given by 

/(x) f(x i
) + VT f(xi)(x - Xi) + ~(x - Xi) TA(x Xi) 

gj(X) _ 9j(Xi
) VT9j(Xi)(X Xi) 

21(X - Xi)TB(j X - Xi)', J - 1, ... ,p (3.4) 

hk(x) hk{Xi 
) + VThk(Xi){X - Xi) 

1 . T .
+2'(x - xt) Ck(x - xt), k 1, ... ,q 

with the Hessian matrices A, B j and C k taking on the simple forms 

A diag(a, a, . .. ,a) aI 

B j bjI (3.5) 

Ck ckI 

Clearly the identical entries along the diagonal of the Hessian matrices indi­

cate that the approximate subproblems P[i] are indeed spherically quadratic. 

For the first subproblem (i 0) a linear approximation is formed by setting 

the curvatures a, bj and Ck to zero. Thereafter a, bj and Ck are chosen so 
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that the approximating functions (3.4) interpolate their corresponding actual 

functions at both xi and Xi-I. These conditions imply that for i = 1,2,3, ... 

2 [/(xi
-

I
) 

a 
Ilxi-1 - Xi 112 

19j(Xi ) - VT9j(Xi )(Xi- - Xi)] . 
1, ... ,p (3.6)b·J Ilxi-l_XiI12 , J 


hk(xi) - VThk(Xi)(Xi-l - Xi)] k 

1, ... , q

I\Xi-1 _ x i l1 2 , 

If the gradient vectors VT/, VT 9j and VThk are not known analytically, 

they may be approximated from functional data by means of first-order for­

ward finite differences. 

The particular choice of spherically quadratic approximations in the Dynamic­

Q algorithm has implications on the computational and storage requirements 

of the method. Since the second derivatives of the objective function and 

constraints are approximated using function and gradient data, the O( n2) 

calculations and storage locations, which would usually be required for these 

second derivatives, are not needed. The computational and storage resources 

for the Dynamic-Q method are thus reduced to O(n). At most, 4+p+q+r+s 

n-vectors need be stored (where p, q, rand s are respectively the number 

of inequality and equality constraints and the number of lower and upper 

limits of the variables). These savings become significant when the number 

of variables becomes large. For this reason it is expected that the Dynamic-Q 

method is well suited, for example, to engineering problems such as structural 

optimization problems where a large number of variables are present. 

In many optimization problems, additional simple side constraints of the 

form ki ::; Xi ::; ki occur. Constants ki and ki respectively represent lower 

and upper bounds for variable Xi. Since these constraints are of a simple form 

(having zero curvature), they need not be approximated in the Dynamic-Q 

method and are instead explicitly treated as special linear inequality con­

straints. Constraints corresponding to lower and upper limits are respectively 
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of the form 

hvi XvI::; 0, l = 1,2, ... ,r ::; n (3.7) 

Xwm - kwm ::; 0, m = 1,2, ... , s ::; n 

where vl E j = (vI, v2, ... , vr) the set of r subscripts corresponding to the 

set of variables for which respective lower bounds kvl are prescribed, and 

wm E j = (wI, w2, ... , ws) the set of s subscripts corresponding to the 

set of variables for which respective upper bounds kwm are prescribed. The 

subscripts vl and wm are used since there will, in general, not be n lower 

and upper limits, i.e. usually r nand s #- n. 

In order to obtain convergence to the solution in a controlled and stable 

manner, move limits are placed on the variables. For each approximate sub­

problem P[i] this move limit takes the form of an additional single inequality 

constraint 

(3.8) 

where p is an appropriately chosen step limit and X i - 1 is the solution to the 

previous subproblem. 

The approximate subproblem, constructed at Xi, to the optimization problem 

(3.4) (plus simple side constraints (3.7) and move limit (3.8)), thus becomes 

P[i]: 

subject to 

9j(X) 0, j 1,2, ... ,p 

hk(x) 0, k 1,2, ... , q (3.9) 

gl(X) ::; 0, l 1,2, ... ,r 

9m{X) ::; 0, m 1,2, ... , s 

gp(x) Ilx xi -] 112 - p2 ::; ° 
with solution X*i. The Dynamic-Q algorithm is given by Algorithm 3.2. In 
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the Dynamic-Q method the subproblems generated are solved using the dy­

namic trajectory, or "leap-frog" (LfopC) method of Snyman [101, 102] for un­

constrained optimization applied to penalty function formulations (Snyman 

et al. [119], Snyman [103]) of the constrained problem. A brief description 

of the LfopC algorithm is given in Appendix B. 

Algorithm 3.2 Dynamic-Q algorithm 

Initialization: Select starting point xO and move limit p. Set i O. 

Main procedure: 

1. 	 Evaluate f(xi ), gj{xi ) and hk;(xi) as well as V f(x i ), V gj(xi ) and 

Vhk;(Xi ). If termination criteria are satisfied set x* xi and stop. 

2. 	 Construct a local approximation P[i] to the optimization problem at 

xi using expressions (3.4) to (3.6). 

3. 	 Solve the approximated subproblem P[i] (given by (3.9)) using the 

constrained optimizer LfopC with XO := Xi (see Appendix B) to give 

4. 	 Set i := i + 1, Xi := x*(i-l) and return to Step 2. 

The LfopC algorithm possesses a number of outstanding characteristics, 

which makes it highly suitable for implementation in the Dynamic-Q method­

ology. The algorithm requires only gradient information and no explicit 

line searches or function evaluations are performed. These properties, to­

gether with the influence of the fundamental physical principles underlying 

the method, ensure that the algorithm is extremely robust. This has been 

proven over many years of testing (Snyman [103]). A further desirable char­

acteristic related to its robustness, and the main reason for its application in 

solving the subproblems in the Dynamic-Q algorithm, is that if there is no 

feasible solution to the problem, the LfopC algorithm will still find the best 

possible compromised solution without breaking down. The Dynamic-Q al­

gorithm thus usually converges to a solution from an infeasible remote point 
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without the need to use line searches between subproblems, as is the case 

with SQP. The LfopC algorithm used by Dynamic-Q is identical to that pre­

sented in Snyman [103] except for a minor change to Lfop which is advisable 

should the subproblems become effectively unconstrained. 

3.4 Numerical results and conclusion 

The Dynamic-Q method requires very few parameter settings by the user. 

Other than convergence criteria and specification of a maximum number of 

iterations, the only parameter required is the step limit p. The algorithm is 

not very sensi ti ve to the choice of this parameter, however) p should be chosen 

of the same order of magnitude as the diameter of the region of interest. For 

the problems listed in Table 3.1 a step limit of p 1 was used except for 

problems 72 and 106 where step limits and p 100 were used respectively. 

Given specified positive tolerances CX) and cc, then at step i termination 

of the algorithm occurs if the normalized step size 

(3.10) 


or if the normalized change in function value 

IP jbestl < (3.11)
1 -j- Ijbest I cf 

where jbest is the lowest previous feasible function value and the current 

xi is feasible. The point xi is considered feasible if the absolute value of 

the violation of each constraint is less than Cc' This particular function 

termination criterion is used since the Dynamic-Q algorithm may at times 

exhibit oscillatory behavior near the solution. 

In Table 3.1, for the same starting points, the performance of the Dynamic­

Q method on some standard test problems is compared to results obtained 

for Powell's SQP method as reported by Hock and Schittkowski [120]. The 
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n SQP Dynamic-QProb. # fact 

rr E rNjg NjgE" 
16~2 S.04E-022 2.S4E+Ol 2.70E+0l 7* <1.00E-OS 

10 

4.94E+00 

2 -1.00E+OO 12 S.OOE-OS 13-1.00E+00 -1.00E+00 <1.00E-OS 

12 -3.00E+OI 12 <l.OOE-OS 92 -3.00E+0l -3.00E+Ol <1.00E-OS 

13 2 S.OOE-OS1.00E+00 4S SO$ 9.S9E-Ol 2.07E-02 

14 

1.00E+00 

2 1.39E+00 6 1.39E+00 S.07E-09 S 7.S6E-07 

15 

1.39E+00 

2 3.07E+02 5 15* 5.55E-07 

16 

3.07E+02 <1.00E-OS 3.60E+02 

2 2.50E-0l 6* 2.31E+0l <1.00E-OS 5* 2.31E+01 <1.00E-OS 

17 2 1.00E+OO 12 1.00E+00 <l.OOE-OS 16 <1.00E-OSl.OOE+oO 

20 2 3.S2E+01 20 3.82E+01 4.83E-09 4* 4.02E+Ol <1.00E-08 

22 2 1.00E+OO 9 l.OOE+OO <l.OOE-OS 3 1.00E+oO <1.00E-08 

23 2 2.00E+OO S7 2.00E+00 <l.OOE-OS 2.00E+OO <1.00E-OS 

24 2 -l.OOE+OO 5 -1.00E+00 <l.OOE-OS 4 -l.OOE+OO 1.00E-08 

26 3 19 4.05E-08O.OOE+OO 4.05E-08 27 1.79E-07 1.79E-07 

27 3 4.00E-02 25 4.00E-02 1.73E-08 2S 4.00E-02 9.62E-I0 

2S 3 O.OOE+OO 5 2.98E-21 2.98E-21 12 7.56E-10 7.S6E-1O 

29 3 -2.26E+0l 8.S9E-1113 -2.26E+0l 11 -2.26E+0l 8.59E-ll 

330 1.00E+00 14 1.00E+OO <1.00E-OS 5 1.00E+OO <1.00E-08 

331 6.00E+00 10 6.00E+OO <l.OOE-OS 10 6.00E+00 1.43E-08 

332 1.00E+00 3 <l.OOE-OS1.00E+OO 4 1.00E+OO <1.00E-08 

33 3 -4.59E+00 5* -4.00E+OO <l.OOE-OS 3* <1.00E-08-4.00E+OO 
36 -3.30E+033 4 -3.30E+03 <1.00E-OS 15 -3.30E+03 <1.00E-08 

45 5 1.00E+OO S 1.00E+00 <1.00E-OS 7 1.00E+00 1.00E-OS 

52 5 5.62E-095.33E+OO S 5.33E+OO 12 5.33E+oO 1.02E-OS 
1~SS 6 6.33E+OO 4.54E-0 2 6.00E+00 2* 1.30E-096.66E+OO 

56 7 -3. 46E+OO 11 -3.46E+00 <1.00E-OS 20 6.73E-OS-3.46E+00 

60 3 3.26E-02 9 3.26E-02 3.17E-OS 11 3.26E-02 l.21E-09 

61 3 -1.44E+02 1.52E-OS10 -1.44E+02 10 -1.44E+02 1.52E-OS 

363 9.62E+02 9 9.62E+02 2.1SE-09 6 2.1SE-099.62E+02 

3 11~65 9.54E-0l 2.S0E+OO 9.47E-01 9 9.54E-01 2.90E-OS 

71 4 51.70E+0l 1.67E-081.70E+0l 6 1.70E+01 1.67E-OS 

72 4 7.2SE+02 35 1.37E-OS7.2SE+02 30 7.2SE+02 1.37E-OS 
76 -4.6SE+004 6 -4.6SE+OO 3.34E-09 S 3.34E-09-4.6SE+00 

7S 5 -2.92E+00 9 2.5SE-09-2.92E+OO 6 -2.92E+00 2.SSE-09 

S S.39E-02SO 7 S.39E-02 7.S9E-1O 6 S.39E-02 7.59E-1O 

Sl 5 5.39E-02 8 5.39E-02 1.71E-09 12 S.39E-02 l.90E-1O 

100 7 6.S0E+02 20 6.S0E+02 <1.00E-OS 16 6.S0E+02 1.46E-I0 

104 S 3.9SE+OO 19 S.00E-093.95E+00 42 3.95E+00 5.26E-OS 

106 S 7.0SE+03 44 1.1SE-OS7.0SE+03 79 l.1SE-057.05E+03 

-S.66E-0llOS 9 9* -6.97E-Ol 1.32E-02 26 -S.66E-01 3.32E-09 

15 ~ ~ ~I1S 6.65E+02 3S 6.65E+02 3.00E-OS 

Svan 21 2.S0E+02 150 9.96E-052.S0E+02 93 2.80E+02 l.59E-06i 

* Converges to a local minimum - listed E1' relative to function value at local minimum; 

~ Fails; $ Terminates on maximum number of steps 

Table 3.1: Performance of the Dynamic-Q and SQP optimization algorithms 
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problem numbers given correspond to the problem numbers in Hock and 

Schittkowski's book. For each problem, the actual function value fact is given, 

as well as, for each method, the calculated function value 1* at convergence, 

the relative function error 

Ifact - 1*1 (3.12)
1 + Ifact I 

and the number of function-gradient evaluations (N19) required for conver­

gence. In some cases it was not possible to calculate the relative function 

error due to rounding off of the solutions reported by Hock and Schittkowski. 

In these cases the calculated solutions were correct to at least eight significant 

figures. For the Dynamic-Q algorithm, convergence tolerances of C1 = 10-8 

on the function value, Cx 10-5 on the step size and Cc = 10-6 for constraint 

feasibility, were used. These were chosen to allow for comparison with the 

reported SQP results. 

The result for the 12-corner polytope problem of Svanberg [121] is also given. 

For this problem the results given in the SQP columns are for Svanberg's 

Method of Moving Asymptotes (MMA). The recorded number of function 

evaluations for this method is approximate since the results given corre­

spond to 50 outer iterations of the MMA, each requiring about 3 function 

evaluations. 

A robust and efficient method for nonlinear optimization, with minimal stor­

age requirements compared to those of the SQP method, has been proposed 

and tested. The particular methodology proposed is made possible by the 

special properties of the LfopC optimization algorithm (Snyman [103]), which 

is used to solve the quadratic subproblems. Comparison of the results for 

Dynamic-Q with the results for the SQP method show that equally accurate 

results are obtained with comparable number of function evaluations. 
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Chapter 4 

Choice of a suitable 

dimensional synthesis 

methodology 

4.1 Introduction 

The main objective of this chapter is to find a fundamentally sound and 

robust numerical methodology for synthesizing parallel manipulators for a 

desired workspace. Various formulations for manipulator dimensional syn­

thesis are proposed and investigated numerically by application to a two­

degree-of-freedom (dof) parallel manipulator. Specifically, the various syn­

thesis strategies result in one tmconstrained optimization formulation and 

two constrained optimization formulations. In the next section, the 2-RP R 

planar parallel manipulator studied in this chapter is described. Thereafter 

four candidate numerical optimization algorithms, LfopC, EtopC, Dynamic­

Q and SQSD, are briefly discussed. These four optimization algorithms are 

applied to the the unconstrained 0 synthesis (definition follows below) ma­

nipulator design formulation in order to assess their relative merits and po­
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tential for application to parallel manipulator dimensional synthesis problems 

in general. The goal of the 0 synthesis formulation is to determine a manip­

ulator design so that its workspace is as close as possible to some prescribed 

workspace. The most suitable optimization algorithm identified by means of 

the 0 synthesis problem is then applied to the proposed (constrained) E and 

P synthesis formulations. The E synthesis formulation seeks to determine 

the manipulator design so that workspace of the optimal manipulator fully 

contains a prescribed workspace in the most efficient manner. The second, 

more practical, P synthesis formulation is aimed at determining a manipu­

lator design so that a prescribed workspace is fully enclosed, but that the 

workspace is also well-conditioned with respect to some performance index. 

The final methodology arrived upon is applied to the more complicated case 

of a 3-dof planar parallel manipulator in the next chapter. 

4.2 Coordinates and kinematic constraints 

In general terms, when describing the kinematics of a mechanism, the follow­

ing descriptions and definitions can be used (Haug et aL [16]). Generalized 

coordinates q [qI, q2, ... ,qnqjT E mnq are used to characterize the position 

and orientation of each body in the mechanism. It the vicinity of an assem­

bled configuration of the mechanism, these generalized coordinates satisfy m 

independent holonomic kinematic constraint equations of the form 

-p(q) = 0 (4.1) 

nqwhere -P : m ---+ mm is a smooth function. 

Mechanisms are usually designed to produce a desired functionality. Spec­

ifying the values of a selected subset of the generalized coordinates, called 

the input coordinates, defines the motion of the mechanism. These input 

coordinate values are controlled by external influences with the intent of pre­

scribing the motion of the mechanism. The vector of input coordinates is 
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In order to characterize the functionality of the mechanism some measure 

of output, which is controlled by the mechanism inputs, must be monitored. 

Output coordinates are the subset of the mechanism's generalized coordinates 

that define the useful functionality of the mechanism. Output coordinates are 

distinct from input coordinates and are denoted by U [Ul, U2, . .. 1 Unu]T E 

?}{nu. A choice of input and output coordinates for a mechanism defines a 

mechanical system with an intended function. This mechanism is then called 

a manipulator. 

Generalized coordinates of a mechanism that are neither input coordinates 

nor output coordinates are called intermediate coordinates, denoted by w 

[WI, W2,'" ,wnw]T E ?}{nw, where nw = nq nv nu. 

4.3 	 The planar two-degree-of-freedom paral­

lel manipulator 

The mechanism used to investigate the various methodologies proposed in 

this chapter is a planar 2-RPR parallel manipulator similar to that studied by 

Gosselin and Guillot [84]. As shown in Figure 4.1, the manipulator consists of 

two linear actuators, with variable lengths it and h, connected to the ground 

by means of revolute joints A and B, and to each other by a revolute joint P 

with global coordinates (x p, Yp ). Point A has coordinates (xA, YA) and point 

B coordinates (XB' YB). It assumed here that YB == YA. Point P will be used 

to describe the motion of the mechanism and is called the working point of the 

manipulator. Here for the sample 2-dof manipulator, with no limits on the 

actuator lengths, point P may arbitrarily be positioned in the x - Y plane by 

controlling the lengths of legs 1 and 2. It is evident that this manipulator thus 

has two degrees of freedom. The input coordinates, which are used to control 

the manipulator, are the leg lengths v = [l1, hF E ?}{2. Output coordinates, 
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A 

Figure 4.1: The 2-dof parallel manipulator 

describing the functionality of the mechanism, are u = [xp, yp]T E ?R2
• There 

are no intermediate coordinates. Thus for this 2-dof example nu 2, nv 

and nw O. The generalized coordinates of the manipulator are partitioned 

as follows 

(4.2) 

For this two-degree-of-freedom manipulator there are two kinematic con­

straint equations (i.e. m = 2), and (4.1) can be rewritten in terms of the 

partitioning given by (4.2) 

~(q) = ~(u, v) 0 (4.3) 

The motion of the manipulator is restricted when the actuator legs have 

limits associated with them of the form 

l~in < l· < l~ax,; 1 2 ( 4.4) t - t - t ,. , 

or more generally 

(4.5) 

These constraints, together with the geometry of the manipulator, deter­

mine the size and shape of the workspace of the manipulator. Since the 

2 

 
 
 



62 CHAPTER 4. CHOICE OF A SUITABLE METHODOLOGY 

manipulator has no orientational ability, the types of workspace discussed in 

Section 1.3.1 have no meaning here, and the workspace W is simply the set 

of points that can be reached by the working point P of the manipulator. 

The workspace can thus be defined as 

W = {u E ~nu : q,(u, v) 0, with v satisfying (4.5)} (4.6) 

The boundary oW of the workspace may then be defined as 

oW {u E ~nu : u E Wand :3 an S E ~nu such that for 

u + AS, AE ~ arbitrarily small and either (4.7)u' 

positive or negative, no v exists that satisfies 

q,(u' ,v) = 0 as well as inequalities (4.5)} 

The particular workspace determination method used here is the chord op­

timization method (Snyman and Hay [122]) although the ray optimization 

method (Snyman et a1. [48]) would be equally applicable. The chord method 

is fully described in Appendix C and yields on application discrete points 

b i E U, i 1,2, ... , nb along the boundary of the workspace at constant 

chord lengths d, as shown in Figure 4.2. Included in this set of points are the 

bifurcation points Bj E u, j = 1,2, ... , NB. It is arbitrarily assumed that all 

points are ordered counterclockwise. 

4.4 Candidate optimization algorithms 

In this preliminary study four different optimization algorithms, all developed 

at the University of Pretoria, were compared in order to assess their suit­

ability for solving the manipulator optimization problems to be addressed. 

The four candidate algorithms were the unconstrained spherical quadratic 

steepest descent optimization algorithm, and three constrained optimization 

algorithms: LfopC, Dynamic-Q and EtopC. 
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Of these algorithms, the SQSD method, developed in Chapter 2, has proven 

to work particularly well on ill-conditioned problems with large numbers of 

variables, however the fact that this is an unconstrained algorithm limits 

its suitability for manipulator optimization problems. The LfopC algorithm 

((Snyman [103], see Appendix E)) possesses a number of outstanding char­

acteristics making it a good potential candidate for implementation. The 

algorithm requires only gradient information, and no explicit line searches 

or function evaluations are performed. These properties, together with the 

influence of the fundamental physical principles tmderlying the method, en­

sure that the algorithm is extremely robust. This has been proven over many 

years of testing (Snyman [103]). A further desirable characteristic related to 

its robustness, is that if there is no feasible solution to the problem, the 

LfopC algorithm will still find the best possible compromised solution with­

out breaking down. The one disadvantage of the LfopC method is that, 

although it moves quickly to the vicinity of the solution, it may converge 

relati vely slowly towards the exact optimum if high accuracy is required. In 

an attempt to reduce the number of gradient evaluations required, while still 

retaining the robust properties of LfopC, the Dynamic-Q method (Chapter 

3) may prove to be useful. 

In order to obtain a gradient-only method with fast convergence in the vicin­

ity of the solution, the conjugate gradient method has been adapted to require 

only gradient information (Snyman [114]). In the resultant algorithm EtopC, 

the use of only gradient evaluations is made possible by exploiting a step size 

selection procedure based on an Euler-trapezium integration scheme. Either 

the Fletcher-Reeves or Polak-Ribiere directions can be used. In this study, 

the Polak-Ribiere version of EtopC has been used. 

4.5 Best overall fit to a prescribed workspace 

The goal of the first formulation presented in this section is stated as 
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o synthesis: Determine a manipulator design that results in 

a workspace We whicll most closely approximates a prescribed 

workspace Wp.l 

4.5.1 Optimization formulation 

As indicated in Figure 4.2, the prescribed and calculated workspace bound­

aries are defined using polar coordinates ((3, r), centered on a local coordinate 

system x' - y' at 0'. The angle between the x'-axis of the local coordinate 

system and the ray to a point b p on the prescribed boundary is denoted (3p. 

The distance from 0' to b p is r P' The boundary of the workspace We, associ­

ated with specific manipulator design d, may be defined in a similar manner. 

Here the boundary point b~, generated by the chord method (Snyman and 

Hay [122J, see Appendix C), corresponds to angle (3~ and ray length r~. For 

convenience, a point on the prescribed boundary at the angle (3~ that cor­

responds to the computed workspace boundary point b~ is denoted b~ and 

rp((3D = r;. 

The part of workspace \¥p not intersecting We is denoted 8l-'Vp, and the part 

of workspace l-'Ve not intersecting Wp is denoted 8We (respectively indicated 

by the light and dark shaded areas in Figure 4.2). It is assumed that the 

workspace We, dependent on the design vector d, will most closely approx­

imate the prescribed workspace Wp when d is chosen such that the sum of 

the non-intersecting areas 8Wp and 8We is minimized (Gosselin and Guillot 

[84]). The optimum solution d* is obtained by solving the unconstrained 

optimization problem : 

(4.8) 


where the respective weights Wp and We in the objective function satisfy the 

lSubscripts p and c respectively denote quantities associated with the prescribed work­

space, and workspace calculated for a specific design 
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Figure 4.2: Prescribed and calculated works paces 

condition wp + We = 1, and are chosen here to be equal, and thus each take 

on the value 0.5. 

The calculation of approximations to the areas OYllp and olVe is performed 

using a numerical scheme. Considering two consecutive calculated workspace 

boundary points b~ and b~+l, the incremental contributions dWp and dWe 

to areas oWp and oWe may be calculated by use of the following expression, 

relating the area A of a triangle to the coordinates L = [Lx, LyJT, M = 
[Mx, MyJT and N = [Nx, NyF of its vertices: 

In applying formula (4.9), a distinction must be made between four possibili­

ties that may arise regarding the relative position of the prescribed workspace 

boundary to any two adjacent calculated workspace boundary points. With 
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(a) (b) 

(c) (d) 

Figure 4.3: Various cases for numerical calculation of workspace areas 

reference to Figure 4.3 these four possibilities are: 

a. 

dW = A(bi bi +1 0') - A(bi bi +1 0')
C c' C , p' p , p 

b. If ri 
C 

< ri and ri+l < r i+1 then pcp 

+1 +1dWp = A(bi 
p' bi 

p , 0') - A(bi 
C) b

i 
C , 0') 

If ri < ri and r i+1 > r'i+l thenc. pcp (4.10)c 

A(bi+l b i +1 I)c ) P , 

A(b~, b;, I) 

d. 

A(b~, b~) I) 

A(b i+1 b i +1 I)p , c , 

where point I is calculated as required. 
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Areas 6Wp and 6Wc can now be approximated by summing the incremental 

contributions dWp and dWc for sequential pairs of boundary points (b~, b~+l), i = 
1, ... , nbc 2 where nbc is the number of boundary points generated by the 

chord method. The closing boundary section is calculated by considering 

points (b~bc-l, b~). Note that the final boundary point b nbc fulfills no part 

in the calculation of the workspace area since it lies between points b~ and 

b~. Using this methodology, the objective function in optimization problem 

(4.8) can be computed for any design vector d. Hence, solving minimiza­

tion problem (4.8) by means of a suitable optimization algorithm results in 

a manipulator design d* which is a solution to the 0 synthesis problem. 

4.5.2 Numerical results 

The four optimization algorithms, listed in Section 4.4, are compared and 

evaluated in this section to determine which one most efficiently and robustly 

solves optimization problems of the form (4.8). The particular prescribed 

workspace chosen is that already considered by Gosselin and Guilliot [84] 

and shown in Figure 4.4. The choice of this prescribed workspace provides 

some means of validation of the current results. 

The boundary of the prescribed workspace is defined in polar coordinates 

relative to a local coordinate system centered at 0' [0, 3F: 

(4.11) 

where R 2.867 and D = 1.687 and the expression for a for various intervals 

of [3p is given in Table 4.1. 

Each of the four candidate optimization algorithms is applied to problem 

(4.8) using the prescribed workspace defined by (4.11), and run from four 

different starting designs dO, given in Table 4.2. The workspaces correspond­

ing to these starting designs are shown, together with the prescribed work­

space, in Figure 4.4. A chord length of d = 0.5 was used for calculating the 
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[/3p min, /3p max) a 

[-11" /4,71"/4) -D cos(/3p ) 

[11"/4,311"/4) -D sin(/3p ) 

[311"/4,511" /4) +D cos (/3p ) 

[511"/4,711"/4) +D sin(/3p ) 

Table 4.1: Parameters specifying the prescribed workspace for 0 synthesis 

XA YA XB [min
1 

Z~in 

SP1 -2 -0.075 2 3 3 

SP2 -4 -1 4 5 5 

SP3 -1 -1 4 3 5 

SP4 -5 -1 1 5 3 

Table 4.2: 0 synthesis starting designs 

workspace boundary, usually resulting in nbc ~ 22 at the solution. 

For the 2-dof manipulator there are in total eight parameters which have an 

effect on the shape and position of the workspace. These parameters are 

[min [max lmin lmax] Td =X[ A, YA, X B, YB, 1 '1 '2 '2 (4.12) 

It is assumed for this illustrative example, in which arbitrary units of length 

are used, that YB = YA and [fax 1.5[~n, i = 1,2. The design vector now 

becomes 

Zmin lmin]Td = [XA,YA,XB, 1 '2 (4.13) 

For each starting design and algorithm, Tables 4.3 to 4.6 give the number 

of gradient vector evaluations (NY) required for convergence, as well as final 

objective function values J(d*) and solution vectors d*. For all algorithms, 

and where applicable, the termination tolerances on the function value, step 

size and gradient norm were respectively set to Cf 10-6, Cx 10-4 and 
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3.5 

1.5 

Prescribed 

- - - - SPl 

-SP2 

'-'-'- SP3 

. SP4 

,L~~~__~ __.~~__~_L..~~~~_._.J 
-3.5 -3 -2.5 -2 -1.5 -0.5 0.5 1.5 

Figure 4.4: Prescribed workspace and workspaces corresponding to starting 

designs 

Cg 10-3. Where applicable, move limits were set to p 0.2. Figures 4.5 to 

4.8 give the convergence histories corresponding to Tables 4.3 to 4.6. 

The number of function evaluations (N!) in the case of the Complex method 

used by Gosselin and Guillot [84] is not reported. For the Pretoria algorithms 

(see Section 4.4), because forward finite differences are used for computing 

the components of the gradient vector, N! = (n I)Ng, where n = 5 is 

the number of design variables. The interval used in calculating the forward 

finite differences is r = 10-5 for all the variables. 

Ng 1* d* 

Dynamic-Q 97 0.596617 [-3.835, -0.6972,3.382,4.277, 4.059]T 

SQSD 124 0.595935 [-3.767, -0.6440,3.552,4.214, 4.119F 

LfopC 152 0.611484 [-3.962, -0.7344,3.298,4.361, 4.058F 

EtopC 379 0.611510 [-3.939, -0.7344,3.325,4.348, 4.072]T 

Complex [84] 0.654 [-4.25, -0.81, 3.02,4.57, 3.92F 

Table 4.3: 0 synthesis solutions obtained from SPI 
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NgAlgorithm f* d* 

Dynamic-Q 32 0.618382 [-3.873, -0.9893,3.611,4.482, 4.324jT 

SQSD 90 0.612084 [-3.890, -0.7318,3.410,4.318, 4.1l4]T 

LfopC 161 0.617327 [-3.947, -0.9825,3.581,4.519, 4.309jT 

EtopC 444 0.617914 [-3.941, -0.9638,3.642,4.508, 4.326]T 

Table 4.4: 0 synthesis solutions obtained from SP2 

Algorithm N9 f* d* 

Dynamic-Q 80 0.640436 [-2.928, -0.6551,4.189,3.810, 4.502jT 

SQSD 71 0.627223 [-2.818, -0.5753,4.367,3.711, 4.540]T 

LfopC 186 0.625862 [-2.896, -0.5905,4.241,3.756, 4.472]T 

EtopC 228 0.647717 [-3.005, -0.9524,3.980,4.016, 4.501jT 

Table 4.5: 0 synthesis solutions obtained from SP3 

Algorithm N9 f* d* 

Dynamic-Q 86 0.633575 [-4.075, -0.5207,2.786,4.343, 3.679jT 

SQSD 189 0.632303 [-4.005, -0.5264,2.839,4.305,3. 707]T 

LfopC 116 0.631643 [-3.878, -0.5418,2.916,4.242,3. 753JT 

EtopC 509 0.595853 [-3.828, -0.6684,3.455,4.259, 4.081]T 

Table 4.6: 0 synthesis solutions obtained from SP4 
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Figure 4.5: 0 synthesis convergence histories from SPI 
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Figure 4.6: 0 synthesis convergence histories from SP2 
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Figure 4.7: 0 synthesis convergence histories from SP3 
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Figure 4.8: 0 synthesis convergence histories from SP4 
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In all cases except from SP3, Dynamic-Q is the fastest of the four methods. 

For SP3, SQSD is marginally faster. As expected, LfopC moves quickly to the 

vicinity of the solution but takes relatively longer to converge to the accuracy 

specified. EtopC is the slowest of the four methods but does, however, yield 

the overall lowest function value of f* = 0.595853 for SP4. 

A point of interest relating to the accuracy of the solutions obtained for the 

o synthesis problem is that the objective function is relatively insensitive to 

large changes in the design vector. Consider for example the highest (EtopC 

for SP3) and lowest (EtopC for SP4) solutions obtained. The distance (£2 

norm) between the two solution vectors is 1.127 whereas the difference in 

function value is only 0.052. This result is typical, and further inspection of 

the results would suggest a design space which contains a flat-bedded, steep 

sided solution valley where a large number of different and widely separated 

design vectors give objective function V'dJues close to the global optimum 

value. Indeed, there does not seem to be a sharp global optimum, or for that 

matter, sharp local optima since of the 16 runs none converged to identical 

solutions. A further factor contributing to this is the small amount of numer­

ical noise present in the optimization due to the numerical approximation of 

areas OTVc and 8Wpo 

From a practical point of view it is important to note that all the solutions 

obtained are almost equally valid in giving designs that closely match the 

prescribed workspace. This means that any of the algorithms (with indeed 

any starting point) may in practice be used to satisfactorily solve the design 

problem. This is further illustrated by Figure 4.9 which depicts the best 

and worst computed works paces relative to the prescribed workspace. For 

comparative purposes the Complex Method solution of Gosselin and Guillot 

[84] is also shown. 

The only remaining consideration is that of computational expense. Al­

though the Dynamic-Q algorithm does not find the lowest solution for each 

starting point, the solutions found are very good, and its superior perfor­
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Figure 4.9: 0 synthesis workspaces corresponding to optimal designs 

mance with respect to computational efficiency offsets any other slight disad­

vantage. Although based on the same approximation principles as Dynamic­

Q, SQSD appears to be less efficient, requiring overall many more gradient 

evaluations than Dynamic-Q. The difference in performance between the 

two methods can be attributed to the fact that, in SQSD, the constructed 

approximations are solved analytically wherea..'l in Dynamic-Q, the solutions 

to the subproblems are approximated iteratively by the LfopC algorithm. 

This introduces a stochastic element to the solution procedure. It appears 

that this stochastic strategy is more efficient for the 0 synthesis problem. A 

further reason for the rejection of SQSD as the general algorithm of choice 

for the manipulator optimization problem, is that it is purely a method for 

unconstrained problems. This makes its use in constrained extensions to the 

manipulator optimization problem impossible. 

All the algorithms tested are capable of solving the manipulator optimization 

problem given sufficient computing power. The function evaluations, each 

corresponding to a workspace computation, are however relatively expen­

sive, and will become more so as manipulator dimensionality and complexity 
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increase. Efficiency is thus of primary importance. From the results obtained 

for the simple manipulator studied here it is expected that, for the more chal­

lenging manipulator design problems to be tackled later, Dynamic-Q will also 

be able to provide the efficiency required, with a minimal compromise on the 

accuracy of the solution. 

4.6 	 Efficient inclusion of a prescribed work­

space 

The synthesis problem studied in this section is 

E synthesis: determine the manipulator design resulting in a 

workspace which completely includes the prescribed workspace 

in the most efficient manner. 

4.6.1 	 Optimization formulation 

One possible way of solving the E synthesis problem is by adjusting the 

weights We and Wp in (4.8). As We tends towards 0, 8lVc takes on less im­

portance in the optimization problem and the manipulator tends towards a 

design with a workspace that fully includes the prescribed workspace. The 

problem with this approach is that when We = 0, there are clearly an infinite 

number of solutions yielding the global optimum value r = 0, with as many 

of them corresponding to designs with unnecessarily large workspaces. This 

problem may be overcome by considering the following alternative exact fit 

constrained optimization problem: 

min f( d) 8l-Vc 
d 

subject to the equality constraint (4.14) 

h(d) = 8Wp = ° 
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N9 d*f* h* 

SP1 253 2.88511 0.7E 2 [-4.152, -2.461,4.060,5.491, 5.441r 

SP2 573 2.85018 0.3E ­ 2 [-4.570, -2.203,4.545,5.542, 5.527]T 

SP3 323 3.03526 0.3E ­ 2 [-4.023, -2.518,4.235,5.468, 5.563]T 

SP4 402 3.15618 O.lE ­ 2 [-4.269, -2.567,3.986,5.618, 5.481]T 

Table 4.7: E synthesis solutions 

A solution to this problem corresponds to a manipulator design d* with a 

corresponding workspace that fully encloses the prescribed workspace in an 

optimal manner, as required by the E synthesis statement. 

4.6.2 Numerical results 

The constrained optimization problem (4.14) was solved using the Dynamic­

Q algorithm, with the same prescribed workspace (4.11) and starting points 

(Table 4.2 and Figure 4.4) as for the unconstrained problem. Termination 

parameters used for Dynamic-Q were cf = 10-6 and Cx = 10-4• The results 

obtained for the different runs are summarized in Table 4.7 which gives the 

number of gradient evaluations (N9), final objective f* and equality con­

straint h* function values, as well as the final design vector. Figure 4.10 

shows the works paces corresponding to the solutions obtained. For the re­

sults presented here, a chord length of d 0.1 was used wi th number of 

boundary points nbc ~ 124 at the solution. The finite difference interval for 

determining function gradients was r 10-3 
• Figure 4.11 gives the conver­

gence histories from the four starting designs. 

From Table 4.7 and Figure 4.10 it can be seen that the final workspaces 

obtained are grouped more closely together than for the unconstrained prob­

lem. This is to be expected with the introduction of the equality constraint. 

Of interest as well is that, although the resultant optimum designs and cor­
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Figure 4.10: E synthesis workspaces corresponding to optimal designs 
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Figure 4.11: E synthesis convergence histories 
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responding workspaces for SP1 and SP2 are quite different from each other, 

their function values differ by less than 1%. This once more reinforces the 

previous conclusion that the objective functions considered here have rela­

tively large flat regions near the optimum solution. 

It is evident from inspection of Table 4.7 that the equality constraint h is 

not accurately satisfied at the converged solutions. This inaccuracy, and 

relatively slow and erratic convergence (see Figure 4.11) compared to that 

previously experienced (in Chapter 3), can be attributed to three possible 

factors. The first of these factors is the discrete nature of the workspace 

calculation, which may cause numerical noise in the problem. Indeed, as 

the chord length used in the workspace calculation is reduced, the equality 

constraint is more accurately satisfied, but at increased computational cost. 

The second factor influencing the poor convergence is the topography of 

the optimization problem near the solution. In particular, the choice that 

li3X = 1.5lFn , i = 1,2 seems to result in a flat-bedded, steep-sided valley near 

the solution, which in turn inhibits sharp convergence of the algorithm to the 

solution. A third possible reason for the erratic convergence behavior may 

be the obvious discontinuous nature of the gradient vector of h(d) as design 

points at which exact fit is achieved are approached from design regions where 

8Wp > O. This discontinuous nature cannot be modelled by the continuous 

quadratic approximations to h(d) used by the Dynamic-Q algorithm. 

4.7 	 Synthesis with respect to a performance 

measure 

The final methodology proposed in this chapter is: 

P synthesis: determine a manipulator design such that a pre­

scribed workspace is fully enclosed by the manipulator workspace, 
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and that the behavior is optimal, with respect to some perfor­

mance measure, within the workspace. 

4.7.1 Optimization formulation 

F\uther investigation of the numerical ill-conditioning reported in Section 

4.6.2, reveals that the dominant factor in introducing the poor and erratic 

convergence, is probably the the imposition of the leg-ratio equality con­

straint. It is concluded that this constraint is undesirable and in most design 

situations probably unnecessary. On the other hand it appears that the 

discrete manner in which the functions are computed does not seriously af­

fect the conditioning of the problem. It is evident that for any prescribed 

workspace there are an infinite number of manipulator designs, even when re­

stricted by some leg length ratio, which will result in a workspace that fully 

includes the prescribed one. Thus far, the criterion for choosing the most 

suitable design for the constrained cases was that the non-intersecting part 

of the calculated workspace area should be a minimum. As mentioned in the 

introduction, there are however a number of other factors, such as manipula­

tor stiffness or conditioning of the workspace, which may be of even greater 

importance in parallel manipulator design. A possibly better approach to 

practical design may be, depending on the application, the maximization 

of, for example, the overall manipulator stiffness, subject to the constraint 

that the workspace of the optimal manipulator should include the prescribed 

workspace. In this respect the motivation for method presented here is simi­

lar to the Quaternion and Democrat methodologies discussed in Section 1.4.2. 

These methods determine the set of manipulator designs, the workspaces of 

which include prescribed points, or line segments. The most suitable ma­

nipulator with respect to some performance criterion or criteria can then be 

selected from this set. In this section a similarly motivated approach is devel­

oped and applied to the 2-dof planar parallel manipulator, although in this 

case the optimum manipulator is determined in one step by simultaneously 
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considering performance and workspace. 

Thus the constrained optimization formulation, proposed here for the solu­

tion of the P synthesis problem, is aimed at optimizing manipulators with 

respect to some suitable performance index f\" which is to be reduced in an 

overall sense for the optimum performance of the manipulator, i.e.: 

min {max f\, (d, u)}
d uEWp 

subject to the inequality constraint ( 4.15) 

g(d) ::; 0 

where for a design d, f\, may be measured at any point u within the pre­

scribed workspace Wp , and the inequality constraint function g(d) is defined 

slightly differently to the equality constraint function h(d) in (4.14). The 

displacement vector between the prescribed workspace boundary and cal­

culated workspace boundary, measured along a ray emanating from A' at 

angle f3~ is denoted by riei
, where ei is a unit outward vector at angle f3!. If 

rrnin mini {Iril ,i 1,2, ... ,nbc} set r rmin. The constraint function is 

now defined as follows: 

(d) = {OWp if oWp > 0 (4.16)
9 -r2 if 6lV 0 p 

This modification is made in order to improve the topography of the inequal­

ity constraint function by effectively avoiding the severe discontinuity in the 

gradient of g(d), at the point of exact fit, that was previously present in 

the gradient of h(d). It is believed that the severe discontinuities inherent 

in h(d) adversely affected the performance of the Dynamic-Q algorithm (see 

last paragraph in Section 4.6.2). 

The solution to optimization problem (4.15) seeks to improve the single worst 

point with respect to some chosen performance measure f\" within the pre­

scribed workspace, Wp. This philosophy differs from that proposed by Gos­
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selin and Angeles [74] and used by numerous other researchers where the 

average performance index over the entire workspace is optimized. Since 

it is assumed that the manipulator's movements will be limited to the pre­

scribed workspace, it is only necessary to ensure good performance qualities 

within this workspace and thus it is better here to optimize the single worst 

value, instead of the average. 

4.7.2 The condition number of the manipulator 

The specific performance measure chosen here is the condition number of 

the Jacobian matrix of the manipulator, although any of the other criteria 

mentioned in Section 1.4.1 could also be used. The accuracy of control of the 

manipulator is dependent on the condition number (Gosselin and Angeles 

[74]). Since this quantity tends to infinity as the manipulator approaches 

a singular position, minimizing the condition number also ensures that the 

manipulator remains far away from such singular positions. For a general 

parallel manipulator the inverse kinematics are easy to solve. 

From (4.3), an inverse transformation relating the input and output velocities 

can be determined: 

(4.17) 

where Ju and Jv are the respective constraint Jacobian matrices, containing 

the partial derivatives of the m kinematic constraints (4.3) with respect to 

the variables u and v. Equation (4.17) can be rewritten as 

Ju=v (4.18) 

In general, the condition number /1, of an n x n Jacobian J is defined as 

(4.19) 
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where 11·11 denotes any norm of its matrix argument. The norm adopted here 

is the same as that used by Gosselin and Angeles [74], namely 

(4.20) 

where W is defined as n-1 multiplied by the n x n identity matrix. The lower 

the condition number, the better the behavior of the manipulator, with the 

lowest possible value of '" being unity. The value of ",-1, the inverse of the 

condition number, thus lies between 0 and 1, and is preferably used in the 

objective function as it is bounded and better conditioned than the condition 

number itself. For the 2-dof parallel manipulator studied here n m = 2 

(see Section 4.3). 

An optimization problem equivalent to (4.15) above is therefore: 

max { min ",-1 (d, u)}
d uEWp 

subject to the inequality constraint (4.21) 

g(d) :::; 0 

where g(d) is defined as in (4.16). 

One point which arises concerns the nested part of optimization problem 

(4.21) and the question of how to determine the smallest value of ",-1 over 

the set u E Wp. Since we only require the single lowest value of the inverse 

condition number, an efficient method for determining this value, based on 

the necessary condition for an internal maximum or minimum of the condi­

tion number is proposed and used here. 

The Jacobian J of the 2-dof manipulator (nv nu = 2, nw = 0) shown in 

Figure 4.1 is given by 

J [(U1 - XA)/Vl (U2 - YA)/Vl] (4.22)
(Ul - XB)/V2 (U2 - YB)/V2 

Using (4.19) and (4.20), and assuming YA YB the inverse condition number 
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K-1 of the manipulator can be determined (see Appendix D): 

(4.23) 

The necessary condition for an internal maximum or minimum of the function 

K-l(U) is that VK-l(u) = O. It can be shown that the only set of solutions 

corresponding to this condition is 

which is the set of points on a circle of radius (XA - xB)!2 centered at 

[(XA+XB)!2, YAF. It can be shown that for these points K-l(U) = 1, which is 

known to be the maximum possible value of K-1. The set U thus corresponds 

to a "maximum ridge" of the inverse condition number K-1. Now assume that 

there exists a point u' E ~nu such that K-l(UI 
) is a minimum. Since K-1 is 

continuous for YP > YA it is then necessary that VK-l(ul 
) = O. It has 

however been shown that the only solutions corresponding to the necessary 

conditions in the upper plane are elements of U and they are maxima. Thus 

the minimum value of K-
1 must lie on the boundary awp of the prescribed 

workspace Wp- A complete version of this proof is given in Appendix D. 

The maximum value of the condition number can thus be approximated by 

calculating K at points b~, i = 1, ... , nbc and then determining the overall 

maximum of the values at these candidate points. This of course also gives 

the corresponding overall minimum value of K-1 required in (4.21). 

4.7.3 Numerical results 

Optimization problem (4.21) is solved for the 2-dof parallel manipulator with 

three different prescribed workspaces denoted P1-P3. Here it is assumed 

that the actuator sizes are fixed with lrun 4.0, i = 1,2 and lfax = 7.0, i 

1,2. There are thus three design variables and the design vector is d = 

[XA,YA,XBF. PI is the workspace studied in the previous sections and is 
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[,Bpmin, ,Bpmax) dx dy R 

[0,71"/2) 0.0000 0.0000 2.0000 + 
[71" /2,71") -1.5000 0.0000 2.5000 + 

[71",1.44471") 2.7500 2.2500 2.8504 

[1.4441r,1.55571") -0.07005 0.86647 0.29206 

[1.55571",21r) -2.3125 2.500 2.5195 

Table 4.8: Parameters specifying prescribed workspace P3 

described by (4.11). P2 is an ellipse centered at 0' = [0,3F with x and y 

half axis lengths a 1.75 and b 1.00. P3 is a non-convex, non-symmetrical 

workspace centered at 0' [0,3F and defined in polar coordinates by 

rp(,Bp) = -b Vb2 - dx2 - dy2 + R2 (4.25) 

where b = dx cos ,Bp dy sin,Bp 

and where the parameters dx, dy, R and the sign before the square root 

are, for various angular intervals [,Bpmin, ,Bp max) , as given in Table 4.8. The 

boundary thus consists of five smooth arcs. 

The three prescribed workspaces, as well as the workspace for the starting 

design dO = [-4, -0.1, 4F are shown in Figure 4.12(a). Contours of the 

reciprocal of the condition number K-1 corresponding to the starting design 

are also plotted. Optimization problem (4.21) was implemented using the 

Dynamic-Q algorithm with move limit p = 0.2 and chord length of d = 0.1 

for calculating the workspace. Termination criteria Cf 10-4 and Cx 10-3 

were used. For each prescribed workspace P1-P3, Table 4.9 summarizes the 

number of gradient evaluations NY required to reach the optimum solution 

f* from the starting function value f(dO), as well as the value of the in­

equality constraint function g* at the solution and the solution vector d*. 

Workspaces corresponding to the solutions along with plots of the reciprocal 

of the condition number are given in Figures 4.12(b) and 4.13. Convergence 

histories corresponding to Table 4.9 are given in Figure 4.14. 
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Figure 4.12: P synthesis (a) prescribed workspaces PI-P3, manipulator work­

space and /'\,-1 contours corresponding to the starting design and (b) pre­

scribed workspace PI and corresponding optimal manipulator workspace and 

contours 

x 

Figure 4.13: P synthesis manipulator workspace and /'\,-1 contours corre­

sponding to the optimal design for prescribed workspaces (a) P2 and (b) 

P3 

 
 
 



86 CHAPTER 4. CHOICE OF A SUITABLE METHODOLOGY 

Ng f(do) f* g* d* 

PI 10 0.780 0.952 -0.5E ­ 5 [-3.892, -1.016, 3.882jT 

P2 12 0.823 0.968 -0.2E ­ 5 [-3.830, -0.9740, 3.859jT 

P3 10 0.786 0.921 -0.5E 4 [-3.414, -0.6427, 4.107jT 

Table 4.9: P synthesis solutions 

(a) (c) 
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NY 

Figure 4.14: P synthesis convergence histories for (a) PI, (b) P2, and (c) P3 

The results obtained are extremely encouraging, accurate and optimal so­

lutions having been obtained with minimal computational effort. In each 

case the algorithm not only determines manipulator dimensions so that the 

prescribed workspace can be reached by the manipulator, but also places 

the calculated workspace so that the condition number is as low as possible 

throughout the prescribed workspace. 

4.8 Conclusion 

Various computational schemes for synthesizing planar parallel manipula­

tor designs have been proposed, successfully implemented and evaluated. 

In broad terms, two different criteria are applied in measuring the corre­

spondence. The application of the first criterion is equivalent to seeking a 

good overall approximation of the prescribed workspace and results in an 
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unconstrained optimization problem. The second criterion requires that the 

prescribed workspace be fully contained in the optimal manipulator work­

space and results in a constrained optimization problem. The unconstrained 

formulation solving the 0 synthesis problem has been used to select the most 

suitable algorithm for this class of problems from four different algorithms 

developed at the University of Pretoria. The Dynamic-Q method exhibits 

higher efficiency than the other methods under consideration. In the search 

for an efficient, stable, well-conditioned and practically relevant method two 

different formulations of the constrained optimization problem, namely E 

and P synthesis formulations, were proposed and numerically evaluated. Al­

though the Dynamic-Q algorithm was successfully applied to the constrained 

optimization problems, its performance, with respect to accuracy and con­

vergence rate, appeared to be seriously affected by the apparent poor condi­

tioning of the E synthesis formulation. This was initially ascribed to both the 

inherent discrete manner in which the objective and constraint functions are 

computed and to the topographical ill-conditioning introduced by the impo­

sition of the leg ratio equality constraint. A third likely reason for the erratic 

convergence behavior is thought to be the discontinuous nature of the pre­

scribed equality constraint. Nevertheless, from an engineering design point 

of view, good solutions are obtained. Finally, the P synthesis formulation, 

which attempts to obtain a well-conditioned manipulator workspace which 

fully contains the prescribed workspace, was proposed. In this formulation 

the severe discontinuity previously present in the constraint function, which 

adversely influenced the performance of Dynamic-Q, was effectively removed. 

This final methodology produces convincing results giving a stable and ef­

ficient method for designing 2-dof planar parallel manipulators. Although 

the search for a flmdamentally sound and robust numerical methodology for 

synthesizing parallel manipulators was restricted to the 2-dof planar case, 

it nevertheless led to a successful methodology that appears to be general. 

It seems that that the final P synthesis methodology is possibly the most 

practically relevant one. 

 
 
 



Chapter 5 

The three-degree-of-freedom 


planar parallel manipulator 


5.1 Introduction 

As an extension to the work presented in the previous chapter, the con­

strained optimization formulations presented here are aimed at determining 

3-dof planar parallel manipulator designs so that a prescribed workspace is 

fully enclosed and well-conditioned with respect to some performance index. 

Depending on the particular application, certain manipulator performance 

criteria may be of more importance than others (see Section 1.4.1). The 

performance measure used here is the condition number of the manipulator 

Jacobian matrix, although a number of other performance measures, or a 

combination of such measures, could also have been used. The optimization 

method used in performing the optimization is the Dynamic-Q method. 

In the next two sections the 3-RPR planar parallel manipulator, and the 

kinematics and determination of the condition number for this manipulator, 

are presented. The remainder of this chapter then separately deals with the 
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topics of workspace determination and dimensional synthesis of 3-dof parallel 

manipulators. In Sections 5.4 and 5.5 the chord workspace determination 

methodology is extended to the determination of constant orientation and 

dextrous workspaces of planar 3-RPR manipulators. 

The P synthesis methodology developed in Chapter 4 is then applied to the 

3-dof planar manipulator. Three forms of the dimensional synthesis prob­

lem are proposed and implemented. These forms differ from each other in 

the way that the orientational ability of the 3-dof platform is accounted for. 

Respectively, the dimensional synthesis is performed for a single constant 

orientation workspace (SO synthesis), multiple constant orientation work­

spaces (MO synthesis), and for a dextrous workspace (D synthesis). These 

methodologies and are discussed in Sections 5.6 to 5.8. 

5.2 	 The three-degree-of-freedom parallel ma­

nipulator 

The manipulator considered in this chapter is the 3-dof planar parallel mecha­

nism shown in Figure 5.1. The manipulator consists of a platform of length 2r 

connected to a base by three linear actuators, which control the three output 

degrees of freedom of the platform. The actuators have leg lengths ll' l2 and I3 

and are joined to the base and platform by means of revolute joints identified 

by the letters A-E. It will be assumed that Yc YD = YEo The coordinates 

of point P, the mid-point of the platform, are (xp, yp) and the orientation of 

the platform is cpp. With reference to the definitions given in Section 4.2, the 

actuator leg lengths are the input variables, i.e. v [ll,z2, l3F E 1JC3. The 

global coordinates of the working point P form the output coordinates, i.e. 

u - [xp, yp]T E ~2. In contrast with the 2-dof manipulator considered in 

the previous chapter, the 3-dof manipulator may, in addition to positioning 

P in the x - Y plane, be orientated at an angle cpp by controlling the three 
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C E 
~----------------------~------------------~ 
(XC,YC) (XE, YE) 

Figure 5.1: The 3-dof parallel manipulator 

leg lengths. It is evident that this manipulator thus has three degrees of 

freedom. The rotation angle of the platform is considered as an intermediate 

coordinate w ¢p. For the 3-dof manipulator nu = 2, nv = 3 and nw l. 

The generalized coordinates for this platform are therefore given by 

(5.1) 

In the vicinity of an assembled configuration the input, output and interme­

diate coordinates satisfy the m independent kinematic constraint equations 

of the form 

<p(q) = <p(u, v, w) = 0 (5.2) 

For the 3-dof planar parallel manipulator, m = 3. 

In general, factors imposed by the physical construction of the planar par­

allel manipulator, which limit the workspace, may be related to the input 

variables or a combination of input, output and intermediate variables. An 

example of former type for the planar parallel manipulator are leg length 

limits, and of the latter, limits on the angular displacement of the revolute 
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joints connecting the legs to the ground and to the platform. These limiting 

factors are described by means of inequality constraints and may respectively 

take the general forms 

(5.3) 

gmin :::; g(u, v, w) < gtnaX (5.4) 

Limits on the platform orientation (intermediate coordinate) take one of two 

forms given by 

(5.5) 

or w = wfix (5.6) 

where wfix is a prescribed fixed scalar quantity. 

The above definitions are necessary in order to facilitate the mathematical 

description of kinematics and workspaces types of the 3-dof planar parallel 

manipulator. 

5.3 	 The kinematics and condition number of 

the manipulator 

In general, the parallel manipulator inverse kinematics are easy to solve. For 

the manipulator under consideration, the three leg lengths are given by 

zi = (xp r cos ¢p - xc) 2 (yp - r sin ¢p YC)2 

Z2
2 (xp rcos¢p XD)2 +- (yp - r sin ¢p YD)2 (5.7) 

l~ (Xp + rcos¢p XE)2 (yp+rsin¢p YE)2 
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Writing in the standard form of the kinematic constraint equations (5.2) and 

using the coordinates definitions from the previous section, (5.7) become 

V2 (Ul - r cos w - XC)2 (U2 - r sin w - Yc)2] 
cI>(u, v, w) = V~ (Ul - rcosw - XD)2 (U2 - rsin w - YD)2 (5.8) 

[ 
v~ (Ul -+ r cos w - XE)2 - (U21- r sin w - YE)2 

o 

The explicit expressions for v in terms of u and w, v v(u,w), may be 

determined from (5.7), allowing constraints (5.3) to be written as follows: 

(5.9) 

where v min [lmin lmin tminlT and v min = [zmax lmax zmaxlT
1'2'3 1'2'3 . 

As in Chapter 4, the specific performance used here to characterize the perfor­

mance of the 3-dof planar parallel manipulator is the inverse of the condition 

number of the Jacobian matrix of the manipulator. The accuracy of control 

of the manipulator is dependent on the condition number, denoted here by 

/'i,. Since /'i, tends to infinity as the manipulator approaches a singular po­

sition, maximizing the inverse condition number, /'i,-l, also ensures that the 

manipulator remains far away from singular positions. From (5.2), an inverse 

transformation relating the input, output and intermediate velocities can be 

determined: 

(5.10) 

where () [u T,wjT, and Jo and J v are the respective constraint Jacobian 

matrices containing the partial derivatives of the m kinematic constraints 

(5.2) with respect to the variables () and v. Equation (5.10) can be rewritten 

as 

(5.11) 

where J -J:;IJO. Recall that for the parallel manipulator studied here 

m,=n nv=nu-+nw. 
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One point now arises due to the platform's orientational ability. In contrast to 

the the 2-dof case, the Jacobian of the manipulator contains entries related 

to both positional and rotational abilities of the platform. The condition 

number will thus inherently contain a mix of these terms. It is important to 

normalize the positional terms of the Jacobian matrix so that positional and 

rotational abilities are equally represented by the condition number. Pittens 

and Podhorodeski [71] and Stoughton and Arai [78] note this occurrence and 

suggest that the best approach is to normalize the positional terms of the 

Jacobian with respect to the platform radius r, a suggestion which is adopted 

here. 

In explicit terms, differentiation, with respect to time, of the kinematic con­

straints (5.2), and writing in the form (5.10) yields 

[ :~: ~~: ~:~::::-~:~::: J[~.:J [~: ~ J[:J (5.12) 
XBE YBE -rXBE sm w + rYBE cosw wOO V3 V3 

where the notation XAB = XA XB is used, and XA = Ul - rcosw, YA = 
U2 - rsinw, XB Ul +rcosw and YB = 712 rsinw. 

The Jacobian J of the 3-dof planar manipulator, as defined by (5.11), is thus 

given by 

xAC/rvl YAC/rvl (rxAcsin w rYAC cos W)/Vl J 
J X AD / rV2 YAD / rV2 (rxAD sin w rYAD cos w) / V2 (5.13) 

[ 
XBE/rv3 YBE/rv3 (-rxBE sin w + rYBE cos W)/V3 

Note the normalization of the positional terms in the first two columns by 

the platform radius r. The condition number K, of this 3 x 3 Jacobian may 

be determined using equations (4.19) and (4.20) of Section 4.7.2. 
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5.4 	 Constant orientation workspace determi­

nation 

5.4.1 	 Workspace definition 

The constant orientation workspace associated with a fixed value w = wfix 

of the intermediate variable, in the form of (5.6), is denoted WC[wfixl. In 

agreement with the definition given in Section 1.3.1, the constant orientation 

workspace of the 3-dof manipulator can be defined mathematically 8..9 

WC[wfix 
] 	 {u E Rnu : cp(u, v, w) = 0, with v satisfying (5.3), (5.14) 

g(u, v, w) satisfying (5.4) and w satisfying (5.6)} 

Intuitively the boundary aWC[wfix ] of the constant orientation workspace 

may be defined as 

aWC[wfix
] = {u E Rnu : u E WC[wfix ] and ::I an s E Rnu such that for 

u' = u + AS, A E 1R arbitrarily small and either 

positive or negative, no v exists that satisfies (5.15) 

cp(u', v,w) = OJ as well as inequalities (5.3) and (5.4), 

and equality constraint (5.6)} 

5.4.2 	 Mapping the constant orientation workspace bound­

ary 

The boundary of the constant orientation workspace may be mapped numer­

ically by means of the chord method. The basic methodology remains the 
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same as described in Appendix C, however the precise optimization problems 

used to determine points on the workspace boundary, differ for two reasons 

from those given by (C.9) and (C.12). 

The first reason for the difference is that it has been noted that the opti­

mization problems, used to determine successive points on the workspace 

boundary, can be solved much more efficiently by reducing the number of 

optimization variables. In the original form of both the ray and chord meth­

ods for maximal workspace determination, the output and intermediate co­

ordinates of the manipulator were the optimization variables. For planar 

parallel manipulators, the resulting optimization problems thus contained 

three variables, and one equality constraint dictating the direction in which 

the next boundary point was determined. It is possible, however, to enforce 

the equality constraint explicitly and analytically in the optimization prob­

lem, resulting in a reduction by one of the number of required optimization 

variables. The resulting increase in efficiency is a result both of this, and 

the elimination of the numerical equality constraint and associated equality 

gradient function evaluations. 

The second reason for the different form of the optimization problems, of 

course, is that the platform orientation (the intermediate coordinate) is now 

fixed for the constant orientation workspace. This again reduces the number 

of optimization variables by one, since this requirement can also be explicitly 

and analytically enforced in the optimization problem. 

For these reasons, the precise forms of optimization problems (C.9) and 

(C.12) for constant orientation workspace determination are as follows. Given 

a radiating point uO inside the constant orientation workspace WC[wfix ], and 

a search direction specified by a unit vector S1 E !}i2, the output coordinates 

u in terms of a scalar r is given by 

(5.16) 

An initial point b I u(r*) on the constant orientation workspace boundary 
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(a) (b) 

Figure 5.2: The importance of mapping bifurcation points 

the two active constraints. This can be easily accomplished by solving the 

following least squares optimization problem: 

(5.20) 

where p contains the active set of constraints from (5.3) or (5.4) and pext the 

corresponding upper or lower limits. Active constraints, and the presence of 

bifurcation points can be determined by continuously monitoring the values 

of constraints (5.3) or (5.4) while tracing the workspace boundary. Figure 5.2 

illustrates the importance of mapping bifurcation points. Successive points 

determined along the workspace boundary aWe using the chord method are 

h i -I, ... ,hi+2. It is evident on comparison of Figure 5.2 (a) and (b) that 

the inclusion of the bifurcation point Bj results in a much more accurate 

representation of the workspace boundary. 

5.5 Dextrous workspace determination 

This section presents a new numerical multi-level optimization methodology 

for determining dextrous workspaces of planar parallel manipulators. The 

methodology is based on the chord method discussed in Appendix C, which 

was extended and refined in the previous section for determining constant 

orientation workspaces. It should be noted that the method proposed here 
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differs from the optimization method for determining dextrous workspaces 

proposed by Du Plessis and Snyman [18]). 

5.5.1 Workspace definitions 

Dextrous workspace 

The dextrous requirement for the manipulator at a point u is that all orien­

tations in the range 

(5.21) 

can be attained by the manipulator (see Section 1.3.1). The dextrous work­

space wD[¢min, ¢max] of the planar manipulator is thus defined as: 

WD = {u E })in'lL: q,(u, v, w) 0, with V satisfying (5.3) (5.22) 

and g(u, v,w) satisfying (5.4) for all wE [¢min,¢maxl} 

The boundary awD of the dextrous workspace can thus be defined as: 

awD -- {u E })in'lL: U E WD and :3 an s ERn'lL such that for (5.23) 

u' = u AS, A E })i arbitrarily small and either positive 

or negative, no v exists that satisfies q,(u', v, w) 0; 

as well as inequalities (5.3) and (5.4) for all w E [¢min, ¢max]} 

In order to calculate the dextrous workspace, it is necessary to be able to 

calculate the manipulator orientation workspace, for any given position u, as 

welL 

Orientation workspace 

The orientation workspace ~VO[Ufix] of a manipulator, for a fixed position u fix 

of the working point, is the set of orientations that can be attained by the 
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manipulator end-effector (see Section 1.3.1). For a planar manipulator, since 

only one rotation is possible (about the z-axis perpendicular to the plane), 

the orientation workspace is one-dimensional and can easily be specified by 
maxthe maximum w and minimum wmin orientations attainable by the ma­

nipulator end-effector. For a given ufix , the orientation workspace can thus 

be described mathematically as 

WO[ufix
] {w E 1R: Cl>(ufix 

, v, w) 0 with v satisfying (5.24) 

(5.3) and g(ufix 
, v, w) satisfying (5.4)} 

The boundary 8Wo of the orientation workspace for a planar manipulator 

is thus 

8WO[ufix
] 	 {w E 0 and ::3 a A E msuch that for w' w + A 

with A arbitrarily small and either positive or (5.25) 

negative, no v exists that satisfies Cl>(ufix 
, v, w') = 0 

as well as conditions (5.3) and (5.4)} 

fix	 min and wIn practical terms, for u , the values of w max may easily be obtained 

numerically by solution of the following optimization problem. 

max (w wave) 2 
w 

subject to v min :s; v(ufix , w) :s; v max , (5.26) 

gmin :s; g ( U fix, v, w) :s; gma..'{ 

where wave is a suitably chosen value of the manipulator orientation that lies 

inside the orientation workspace. By choosing a suitable starting point for 

optimization problem (5.26) the values of w min and wmax, corresponding to 

the two extreme local minima, can be determined. 
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5.5.2 Mapping the dextrous workspace boundary 

Finding an initial point on the workspace boundary 

Finding an initial point on the dextrous workspace boundary requires the 

sequential solution of three problems: 

1. 	Finding the assembled point ua of the manipulator with input coordi­

nates at their average value. 

2. 	 Finding the point u d where the manipulator has its greatest dextrous 

ability. 

3. 	 Determining an initial point b I on the dextrous workspace boundary. 

These three steps are realized through the implementation of three different 

constrained optimization problems, which result in a reliable and automatic 

determination of the initial boundary point b i . 

Step 1 essentially involves the solution of the forward kinematics of the ma­

nipulator, i.e. solve for u and win (5.2) with v prescribed as 

(5.27) 

In practice this can be done by solving the least squares optimization problem 

min Ilv(u, w) - vl12 	 (5.28) 
u,w 

where v(u, w) denotes the inverse kinematic solution of (5.2) for any given 

u and w. The solution of this problem yields the correct value for u a . 

The point of greatest dexterity of the manipulator u d (Step 2) can similarly 

be determined by means of the unconstrained optimization problem: 

(5.29) 
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feasible_ :_ infeasible 
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Figure 5.3: Finding an initial point on the dextrous workspace boundary 

where the values of wmin(u) and wmax(u) for a fixed u, are determined by 

solution of optimization problem (5.26), i.e. by determining the orientation 

workspace of the manipulator at point u. 

Consistent with the definition of 8WD in (5.23), an initial point b 1 on the 

dextrous workspace boundary in an arbitrary direction from ud, designated 

by a unit vector SI E ?lin'lL, is determined by solving the following constrained 

optimization problem (corresponding to optimization problem (C.g) in Ap­

pendix C): 

r 

such that Cl = ¢= - wmax(u(r)) ~ 0; (5.30) 

C2 = wmin(u(r)) ¢min < a 

where u(r) ud + rsl. The solution of this problem is schematically illus­

trated in Figure 5.3. Once more the the values of wmin(u) and wmax(u) for a 

point u in (5.30), are determined by solution of optimization problem (5.26). 
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Mapping the workspace boundary 

Once an initial point on the workspace boundary has been found, subsequent 

points can be mapped using the chord methodology. The updated form of 

optimization problem (C.12) is 

such that Cl ¢max wmax(u(w)) ~ 0; (5.31) 

C2 = wmirI(u(w)) ¢rnin ~ 0 

where u(w) is as defined in (5.18), and wmirI and wmax are determined using 

optimization problem (5.26), hence the description of the methodology as 

multi-level. The basic form of the chord methodology remains otherwise the 

same as described in Appendix C. 

5.5.3 Determination of bifurcation points 

It is evident that any point on the dextrous workspace boundary will be 

associated with either a maximum ¢rnax or minimum ¢min orientation of the 

manipulator (see Figure 5.3). In addition, since the solution to optimization 

problem (5.26) is implicit in solving (5.31), each boundary point is also asso­

ciated with an extreme leg value. In fact, the workspace boundary is associ­

ated with a number of curves, each corresponding to a different extreme leg 

value and associated extreme platform orientation. Points where these curves 

meet are termed bifurcation points since the manipulator may assume one 

of two distinct extreme states when travelling clockwise or counter-clockwise 

along the workspace boundary from such a point. When determining the 

dextrous workspace, a distinction must be made between two different types 

of bifurcation points. 
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Type I bifurcation points 

Type I bifurcation points occur along the workspace boundary when two 

intersecting boundary curves are both associated with the same extreme 

orientation, either ¢min or ¢max of the platform. Each curve will additionally 

be associated with one leg at an extreme length. In the vicinity of the 

intersection, the precisely active leg, and associated active boundary curve, 

can be determined by examination of the final values of the constraints from 

optimization problem (5.31). In this way, at the intersection or bifurcation 

point, two legs m and n will both be at known extreme values v:t and v~xt, 

and the platform will be at a known extreme orientation ¢ext. We need then 

to simply solve the inverse kinematics to determine the exact coordinates of 

the type I bifurcation point Bi. This is done by the solution of the following 

optimization problem: 

(5.32) 

which will yield the coordinates of the bifurcation point. 

Type II bifurcation points 

Type II bifurcation points are associated with a change in the active extreme 

orientation of the platform. Thus at these points the maximum wmax and 

minimum wmin values of platform orientation will both simultaneously be 

exactly equal to the maximum and minimum prescribed orientation values 

¢ma:x and ¢min. Therefore to determine such points, constraints Cl and C2 

given in equations (5.30) and (5.31) must both be exactly satisfied. This 

may be accomplished by solving the following unconstrained optimization 

problem: 

min {(¢max wmax(U))2 + (¢min _ wmin(u))2} (5.33) 
u 

The complete multi-level optimization algorithm for dextrous workspace de­

termination is summarized in Algorithm 5.1. 
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Algorithm 5.1 Dextrous workspace determination 

1. 	 Determine the assembled point u a of the mechanism using optimization 

problem (5.28). 

2. 	 Determine the point of greatest dexterity u d using optimization prob­

lem (5.29). 

3. 	 Determine an initial point on the workspace boundary by means of 

optimization problem (5.30). 

4. 	 Using optimization problem (5.31), determine successive points along 

the boundary at chord intervals d. Identify and map type I and II bi­

furcation points as they occur using either optimization problem (5.32) 

or (5.33). 

5. 	 Terminate when condition (C.14) becomes true or when the specified 

maximum number of iterations is exceeded. 
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Xc yc XD XE r 

M1 -1 0 1 2 1 

M2 -0.75 0 0.75 1.5 0.75 

M2 -0.5 0 0.5 1 0.25 

Table 5.1: Geometric parameters for manipulator designs M1-M3 

5.5.4 Numerical results 

Three different manipulator geometries, denoted M1-M3 are used in illus­

trating the proposed methodology. The three sets of five parameters defining 

the three different manipulator designs are given in Table 5.1. Extreme leg 

lTinlengths for the manipulators considered here are lTin V2, l~n 

1 [rna:;{ [rna:;{ = 2 zrnax 13. The chord algorithm described in AloO'orithm , 1 '2 '3 Vu 

5.1, implemented in FORTRAN on a 1.6 GHz Pentium 4 computer, was ap­

plied in determining the various dextrous works paces of these manipulators. 

The dextrous workspaces were obtained for various ranges of dexterity and 

are given in Figures 5.4 to 5.6. For the various dextrous workspaces obtained, 

Table 5.2 gives the number of points determined on each workspace boundary 

nb, as well as the computational time t required for computing each dextrous 

workspace. Investigation of the performance of the algorithm has revealed 

that a large portion of the computational cost is related to solving optimiza­

tion problem (5.26), to determine the manipulator orientation workspaces. 

In many cases, it may be possible to determine such orientation workspaces 

analytically, which would dramatically reduce the time needed to compute 

the dextrous workspa~e. Here though, the numerical approach has been pre­

sented since it provides an alternative, generally applicable methodology. 
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r 

Figure 5.4: Dextrous workspaces of Ml 
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Figure 5.5: Dextrous workspaces of M2 
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5.6 	 Optimization for a single prescribed con­

stant orientation workspace 

The constrained optimization methodology developed in Section 4.7 is ap­

plied here to the 3-dof manipulator in the following form: 

SO synthesis: Determine a manipulator design that reaches, 

with optimal conditioning, a prescribed constant orientation work­

space. 

5.6.1 	 Optimization formulation 

As is Section 4.5.1, the prescribed workspace is defined by polar coordinates 

((3P) Tp) centered on a local coordinate system:r! - y' at 0'. The boundary of 

the constant workspace WeC[¢fix] associated with design d is represented in 

a similar manner (refer to Figure 4.2). The chord method (see Section 5.4) 

is used to generate points b!, with corresponding polar coordinates ({3!, T~), 

on the constant orientation workspace boundary. 

Dropping the [¢fix], which is implicit when referring to constant orientation 

workspaces W C for the rest of this section, the part of the prescribed work­

space Wpc not intersecting calculated workspace We? is denoted 8W~, and 

the part of workspace Wec not intersecting W~ is denoted 8Wec, The calcu­

lation of approximations to the areas 8Wpc and 8~Vec is performed using the 

numerical scheme described in Section 4.5.1. 

SO synthesis is thus achieved by solution of the following optimization prob­
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lem: 

max { min ;;;-1 (d, u)}
d uEW,f[4>fi"l 

subject to the inequality constraint (5.34) 

g(d) ~ 0 

where the intermediate coordinate w ¢lrx is prescribed and fixed, and where 

the inequality constraint function g(d) is defined as 

(5.35) 

where r is calculated as before (see Section 4.7). The solution to optimization 

problem (5.34) seeks to improve the single worst point with respect to chosen 

performance measure, ;;;-1, within the prescribed workspace, W;. 

Once again the question of how to determine the smallest value of ;;;-1 over 

the set u E W; arises. It has been shown for the planar 2-dof manipulator, 

that the maximum value of ;;; (or minimum of ;;;-1) will lie on the boundary 

8Wpc of the prescribed workspace (See Appendix D). An assumption is made 

that a similar result can be found for the particular 3-dof manipulator to be 

investigated here. The minimum value of the inverse condition number ;;;-1 

can thus be approximated by calculating ;;;-1 at points b~, i I, ... ,nbc si­

multaneously to the determination of the boundary points b~, i 1, ... , nbc. 

The overall minimum of the ;;;-1 values at these candidate points may then 

easily be determined. Based on the results presented throughout this chapter 

it appears that the above assumption is valid. 

5.6.2 Numerical results 

The method described above, and embodied by optimization problem (5.34), 

has been applied to the 3-dof planar parallel manipulator for three different 

prescribed workspaces. These prescribed works paces are centered at 0' = 
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Ng f(dO) f* g* d* 

PI 21 0.759 0.912 0.2E ­ 5 [-1.111,0.2317,1.277,1.967,0.9l59jT 

P2 17 0.768 0.927 OAE ­ 9 [-1.153,0.3003,1.275,1.906,0.9401jT 

P3 71 0.747 0.943 O.lE ­ 4 [-1.170,0.3365,1.463,1.946,0.9108]T 

Table 5.3: SO synthesis solutions 

[1,1.5JT. They are chosen to correspond to workspaces PI-P3 in Section 4.7, 

scaled down by a factor of 5 for workspaces PI and P2 and by 7 for P3. 

This was done so that the prescribed workspaces were of such diameter that 

feasible solutions for the choice of actuator leg lengths existed. It is assumed 

the actuators have been chosen and thus that the maximum and minimum 

leg lengths are predetermined. The remaining five design variables for the 

problem are thus 

(5.36) 

Actuator limits were chosen as l~in = 12 lr.nax = 2 i = 1 2 and loon~ y £', ~ , -, 3 

1, lrax = -13. Actuator leg lengths and the initial design vector dO 

[-1,0,1,2,1JT were selected to correspond to the manipulator studied by 

Haug et al. [16]. 

The prescribed workspaces PI-P3, the workspace corresponding to the initial 

design vector and inverse condition number contours for this startign design 

are shown in Figure 5.7(a). The Dynamic-Q optimization algorithm (see 

Chapter 3) was used to perform the optimization with move limit p- 0.1, 

termination parameters Cf = lO-6 and Cx lO-4, and a finite difference 

interval r lO-6 for calculating the gradients of the optimization functions. 

The chord length for calculating the workspace was d = 0.02. For all manip­

ulators the orientation of the platform was fixed at ¢>p 0°. 

Numerical results for each of the runs from the starting point dO and for 

the different prescribed workspaces are reported in Table 5.3, which gives 

the number of gradient evaluations Ng required for convergenee, the initial 
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Figure 5.7: SO synthesis (a) prescribed workspaces P1-P3, manipulator work­

space and corresponding ",-1 contours corresponding to the starting design 

and (b) prescribed workspace P1 and corresponding optimal manipulator 

workspace and ",-1 contours 
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Figure 5.8: SO synthesis manipulator workspace and ",-1 contours corre­

sponding to the optimal design for prescribed workspaces (a) P2 and (b) 

P3 
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Figure 5.9: SO synthesis convergence histories for (a) PI, (b) P2 and (c) P3 

function value f(dO), converged objective function value 1*, corresponding in­

equality constraint function value g* and components of the optimum design 

vector d*. The resultant workspaces and inverse condition number contours 

corresponding to PI-P3 are shown in Figure 5.7(c) and Figure 5.8(a) and 

(b) respectively. Finally Figure 5.9 gives the convergence histories for the 

various prescribed workspaces. 

5.7 	 Optimization for multiple prescribed con­

stant orientation workspaces 

MO synthesis: Determine a manipulator design that reaches, 

with optimal conditioning, multiple prescribed constant orienta­

tion workspaces. 

5.7.1 	 Optimization formulation 

Some strategy needs to be implemented for dealing with the orientational 

capability of the manipulator. This point is addressed by evaluating the 

SO optimization problem of the previous section at various angular "slices" 
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through the workspace. This is the approach used by Boudreau and Gosselin 

[86] in an unconstrained case. Accordingly, in the methodology proposed 

here, the minimization over u [x, y]T in (5.34) is carried out, not only for 

a single prescribed value of 4>p, but over multiple slices of the prescribed 

workspace corresponding to mS! fixed values of 4>P. For illustration of the 

methodology in this section mS! = 3 with slices through the workspace at 

4>P 4>rnin, 4>int, 4>ma:x. In solving the MO optimization problem the resulting 

design is expected to fulfil the dexterity requirement of operating over the 

range of 4>P = [4>min, 4>1naX] within the prescribed workspace. 

Optimization problem (5.34), modified to allow for optimization over the 

three values (ms] 3) of w 4>p, becomes 

max { min ,..,-1 (d, u)}
d UEWf[</>'J, i=1,... ,ms1 

subject to the inequality constraint (5.37) 

g(d) ::; 0 

The inequality constraint function is defined as follows: 

1,. = 1, ... ,msJ 1'f S > 0 
g (d) (5.38) 

if S 0 

5.7.2 Numerical results 

The prescribed workspaces P1-P3, corresponding to those used in Section 5.6, 

are shown in Figure 5.10. The manipulator workspaces corresponding to an 

initial design vector dO = [-0.75,0, 0.75,1.5, O. 75jT for the various constant 

orientations, as well as the corresponding inverse condition number contours 

are shown in the same figure. Actuator limits were again chosen as lfin = ../2, 
Ifa:x = 2, i 1,2 and l:fin = 1, lr;ax J3. The constant orientation slices 

through the workspace were made at4>p = -5°,0°,+5°. Figure 5.10 clearly 
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Ng !(dO) g* d*f* 
PI 33 0.677 0.901 0.2E ­ 5 [-1.034,0.2484, 1.331, 1.657, 0.8553F 

P2 25 0.681 0.917 O.lE 4 [-1.061,0.2721,1.345,1.718,0.861jT 

P3 44 0.666 0.915 O.1E - 4 [-1.072,0.3103, 1.420, 1.621, 0.8778F 

Table 5.4: MO synthesis solutions 
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0.5 1.5 1.5 0.5 1.5 
x x x 

Figure 5.10: MO synthesis prescribed workspaces P1-P3 and manipulator 

workspace and ~-l contours corresponding to the starting design 

shows that the initial design dO is infeasible because for each orientational 

slice the prescribed workspace is not contained in the reachable workspace. 

The Dynamic-Q optimization algori thm move limit used was p = 0.1 and 

the chord length for calculating the workspace was d 0.02. Convergence 

tolerances used for Dynamic-Q were Cx 10-4 and cf 10-5 and a finite 

difference of r = 10-6 was used for calculating function gradients. 

The workspaces, and ~-l contours corresponding to the optimal designs for 

prescribed workspaces P1-P3 are shown in Figures 5.11 to 5.13. Table 5.4 

summarizes the number of gradient evaluations Ng required for convergence, 

the initial f (dO) and final f* objective function values, inequality constraint 

function value at convergence c* and optimal design d* for each prescribed 

workspace. Figure 5.14 shows the convergence histories for the various opti­

mization runs. 
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Figure 5.11: MO synthesis manipulator workspace and ~-l contours corre­

sponding to the optimal design for prescribed workspace PI 
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Figure 5.12: MO synthesis manipulator workspace and ~-l contours corre­

sponding to the optimal design for prescribed workspace P2 
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Figure 5.13: MO synthesis manipulator workspace and ~-l contours corre­

sponding to the optimal design for prescribed workspace P3 
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(a) (b) 	 (e) 
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Figure 5.14: MO synthesis convergence histories for (a) P1, (b) P2 and (c) 

P3 

5.8 	 Optimization for a prescribed dextrous 

workspace 

D synthesis: Determine a manipulator design that reaches, with 

optimal conditioning, a prescribed [continuous} dextrous work­

space. 

5.8.1 	 Optimization formulation 

Using the methodology for determining dextrous workspaces developed in 

Section 5.5, the planar parallel manipulator can, as an alternative to MO 

methodology, be directly synthesized for a prescribed dextrous workspace and 

optimal conditioning. The form of the optimization problem for achieving 

this is 

max { min /'i',-l (d, u)}
d UEW? Ipminj,W?[4>maxj 

subject to the inequality constraint (5.39) 

g(d) :::; 0 
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where the inequality constraint function is defined as follows: 

6wtl¢min, ¢max] if 6wtl¢nlln, ¢max] > 0 
9 (d) (5.40){ -r2 if 6wt[¢nlln, ¢max] = 0 

The minimum value of the condition number is determined using the same 

approach as given in Section 5.6. Once again it is assumed that the minimum 

value of occurs on the boundary of the prescribed workspace. Further­

more it is expected, based on the results obtained in Section 5.7, that the 

minimum value will also be associated with an extreme platform orienta­

tion, ¢min or ¢max. Thus in determining the minimum value of /1,-1 over 

wt[¢min, ¢min], only the workspace boundaries of WpC[¢min] and w;[¢max], 

corresponding to the "edges" of the prescribed dextrous workspace, are con­

sidered. These assumptions appear to be valid, based on the results obtained 

here. 

5.8.2 Numerical results 

The optimization problem embodied in (5.39) has been implemented, once 

more using the Dynamic-Q algorithm to find optimal designs for prescribed 

workspace P1-P3. Parameters used for Dynamic-Q were convergence tol­

erances ex 10-4 and e f = 10-6 and a move limit p = 0.05. Gradients 

were calculated using central differences and a finite difference interval of 

r 10-3 . A chord length of d = 0.02 was used for all calculations. Results 

obtained are summarized in Figures 5.15 and 5.16 and Table 5.5. The various 

quantities given in Table 5.5 are the same as those given in Table 5.4. 

Comparison of these results with those given for the MO synthesis in Section 

5.7.2 indicates that, in general, Jv ::::; JAW. This is to be expected, since the 

specification of a prescribed dextrous workspace places a more stringent re­

quirement on the numerical optimization, resulting in lower optimal objective 

function values in these cases. 
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(b) 

0.5 1.5 
x x 

Figure 5.15: D synthesis (a) prescribed workspaces Pl-P3, manipulator work­

space and corresponding 1';,-1 contours corresponding to the starting design 

and (b) prescribed workspace PI and corresponding optimal manipulator 

workspace and 1';,-1 contours 
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Figure 5.16: D synthesis manipulator workspace and 1';,-1 contours corre­

sponding to the optimal design for prescribed workspaces (a) P2 and (b) 

P3 
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Ng r g* d* 

PI 33 0.677 0.897 0.2E -5 [-0.9884,0.2466,1.339,1.664,0.8413jT 

P2 36 0.681 0.916 0.6E 7 [-1.050,0.2717,1.356,1.716,0.8500)T 

P3 52 0.660 0.892 O.lE -4 [-0.9890,0.2816,1.362,1.668,0.8678JT 

Table 5.5: D synthesis solutions 
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Figure 5.17: D synthesis convergence histories for (a) PI, (b) P2 and (c) P3 
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5.9 Conclusion 

The chord workspace determination methodology, as proposed at the start 

of this chapter, for the determination of constant orientation and dextrous 

workspaces, is a reliable and efficient numerical methodology. This has been 

proven by the fact that optimization of the 3-dof manipulators in the latter 

part of the chapter inherently requires many manipulator workspaces evalu­

ations, which have been performed robustly by the chord method. 

For the 3-dof manipulator studied here the dimensional synthesis results ob­

tained are encouraging, optimum solutions having been obtained with mini­

mal computational effort compared to that which would have been required 

using evolutionary optimization algorithms. ~br each of the three synthesis 

methodologies presented, not only are manipulator dimensions determined 

so that the prescribed workspace can be reached by the manipulator, but also 

so that the inverse condition number is as high as possible throughout the 

prescribed workspace. The proposed methodology produces convincing re­

sults, indicating it to be a stable and efficient numerical method for designing 

planar parallel manipulators. The Dynamic-Q optimization algorithm used 

in the synthesis methodology exhibits high efficiency in solving the associated 

optimization problem. 

 
 
 



Chapter 6 

The planar tendon-driven 

parallel manipulator 

6.1 Introduction 

Tendon-driven parallel manipulators represent a relatively recent technology, 

characterized by the use of cables in place of the linear actuators generally 

used in parallel manipulators. The use of these manipulators as overhead 

cranes for materials handling (Dagalakis et al. [123], Bostelman et al. [124], 

Verhoeven et al. [125]) and worker-access (Bostelman et al. [126]) in the 

heavy, and large-scale manufacturing industries appears to be a promising 

application of this technology. On a smaller scale another possible application 

of tendon driven manipulators is in pick-and-place applications. Verhoeven 

et al. [125] also mention applications as fast moving micromanipulators. 

Three separate, but inter-related topics are examined in this chapter, and 

methodologies for addressing these topics are proposed. The first topic ad­

dressed is the determination of cable forces for overconstrained tendon-driven 

manipulators. It is necessary to solve this problem in order to address the 
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second topic, namely the development of a methodology for workspace de­

termination of tendon-driven manipulators. The final topic examined is the 

dimensional synthesis of tendon-driven manipulators for a large dextrous 

workspace. 

As far as the current state-of-the-art relating to these topics is concerned, 

Verhoeven and Hiller [127] present a method for determining the cable ten­

sion distribution in overconstrained tendon-based parallel manipulators. This 

method is limited though to the homogenous case, where no external forces 

are applied to the manipulator end-effector. Lafourcade et a1. [128] determine 

cable tensions based on the minimum norm solution. In terms of workspace 

calculation, Verhoeven and Hiller [129] have proposed a method for deter­

mining planar tendon-driven manipulator workspaces considering external 

forces, but not torques applied to the moving platform. Other authors, for 

example, Fattah and Agrawal [130] have used a discretization approach to 

determining and optimizing manipulator workspaces. 

In the next section, the tendon-driven parallel manipulators considered in 

this chapter are presented and the kinematic and static analyses performed. 

Thereafter methods for determining cable forces are developed and described. 

Two methodologies for determining workspaces of tendon-driven parallel ma­

nipulators are developed and applied to 3- and 4-cable planar tendon-driven 

parallel manipulators. Finally dimensional synthesis of these manipulators 

for maximal dextrous workspaces is performed. 

6.2 The tendon-driven parallel manipulator 

As shown schematically in Figure 6.1, the tendon-driven parallel manipu­

lator (TDPM) considered here consists of a moving platform connected to 

a fixed frame by means of n cables, with associated displacement vectors 

i [~, t;,]T, i = 1, ... ,n. The lengths of the cables, denoted li' i 1, ... )n 
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'l,,,,,,,,,,,,,, 

_-'---x 

Figure 6.1: Planar tendon-driven manipulator definitions 

where Ii = J!i = Ilill, can be varied by winches attached to the fixed frame. A 

coordinate frame x' y' is attached to the moving platform. The position of 

the origin of the platform coordinate frame is u - [Ub u2F = [xp, yp]T, and 

the platform frame is inclined at an angle cpp to the global x y coordinate 

frame. The cables are attached to the fixed frame at ci
, i = 1, ... ,n and to 

the moving platform at points ai, i = 1, ... , n, defined relative to the platform 

coordinate frame x' y'. These vectors may of course be transformed to the 

global coordinate frame by means of a transformation matrix T(cp p) such that 

the global attachment vectors a i are given byai T(cpp)ai
. The forces in 

each of the cables are described by vectors fei [f;i) f;iF) i 1,2, ... ,n. 

The corresponding magnitudes of the tensions in these cables are denoted 

til i = 1,2, ... ,n where ti = fei = Ilfei II. External forces and torques acting 

on the platform are fP U!,J':, TPF. 

The specific planar parallel tendon-driven manipulator used to illustrate the 

methodologies proposed here is shown in Figure 6.2. It is assumed that the 
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L 

Figure 6.2: The planar tendon-driven manipulator 

3-cable 4-cable 

al ~ [0.1,0. ~ [0.1,0.1] 

a2 ~ [-0.1, O.l]T ~ [-0.1, O.l]T 

a3 [0.0, -O.ljT [-0.1, -0. 

a4 [0.1, -O.l]T 

Table 6.1: TDPM moving platform cable attachment points 

motors are positioned somewhere on a square frame of dimensions 2 x 2 in 

arbitrary units. The global origin x y is positioned at the center of the 

frame. Two different configurations, a 3-cable and a 4-cable manipulator 

will be considered. For each of these configurations, the cable attachment 

points on the moving platform platform are given in Table 6.1, and the 

exact motor attachment points on the frame in Table 6.2. The workspace of 

the manipulator is dependent on the load applied to the platform. In this 

chapter, three different load cases, denoted L1-L3, and given in arbitrary 

units in Table 6.3, will be considered. 
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3-cable 4-cable 

c1 [1,11T [1,0.5F 

c2 [-1, IF 1,0.5jT 

c3 [0, _l]T [-1, -0.5]T 

c4 [1, -0.5]T 

Table 6.2: Geometrical parameters for the 3 and 4-cable TDPM 

Ll 
L2 

° 
5 

-10 
-10 

° 
0 

L3 5 -10 1 

Table 6.3: Load conditions LI-L3 

6.2.1 Kinematic analysis 

Consider the n kinematic constraint equations, expressed in generalized co­

ordinates q [U,V,W]T, relating the platform position u [xP,yplT, the 

orientation w = ¢p, and the input cable lengths v [h, l2, . .. , lnl T : 

4>(q) = 4>(u, v, w) 0 (6.1) 

From Figure 6.1, it can be seen that the following relationships hold: 

(6.2) 

The transformation ai(¢p) = T(¢p)ai of a i from the local to the global 

coordinate system, by means of the matrix T(¢ p), is given by 

[ai~] [c~s¢p -sin¢p] [-i ] (6.3) 
ay sm¢p cos¢p ay 

for i = 1,2, ... ,n. The corresponding input cable lengths Ii Ilii II may be 

written as: 

li = [(e~)2 (~)2] ~ (6.4) 

= [(c~ -a~(¢p) _Xp)2+ (c~ a~(¢p) _yp)2]~ 
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Writing (6.4) in the standard form (6.1) yields 

~(q) = ~(u, v, w) 

(6.5) 


o 

where a subscript x, y or z denotes the x, y or z component of a vector. 

Substituting (6.3) into (6.5) and differentiating yields 

[I £1 l(a1 xt ~z= :::.IL 1 0 ... 0
h l~ h 
[2 £ {a2 xt2~.= :::.IL o 1 ... 0b b b~qq 

~ 5L (anxtn)z 0 0 ... 1in In In 

This can alternatively be written as 

VI 
V2 

Vn 

£1 [I (al XlI).= :::.IL 
l1 l~ II 

!!i~ (a2 xt2)z 
l2 I2 l2 

~5L (anxln)z 
In In In 

.[ U, ]:2 
 . 
or v 

UI 
U2 
W 

o (6.6)VI 
V2 

Vn 

.T . T 
= - J [u ,w] (6.7) 

where J is the Jacobian of the kinematic constraint equations with respect 

to the output u and intermediate w variables. 
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6.2.2 Static analysis 

Force equilibrium implies that for any configuration, specified by u and w, 

the following equations must hold: 

i PL
n 

fei + [I:, 1:1T = 0 and L
n 

a X fei +T = 0 (6.8) 
i=l i=l 

Noting that the tensions fei act parallel to their corresponding cable vectors 

ii, it follows that 

fei = li ti (6.9) 
Ii 

Equations (6.8) can thus be rewritten as 

n e n li 
PL Tti + [I;, I:]T 0 and Lai x-ti + T = 0 (6.10) 

i=l t i=l li 

where li Iliill. Writing (6.10) in matrix form gives 

(6.11) 


or fP = -St 

where S is called the structure matrix of the manipulator (Verhoeven et al. 

[125] ). It is interesting to note that S = JT, where J is the Jacobian defined 

by equation (6.7). 

6.3 Calculation of the cable tensions 

6.3.1 Minimum norm approach 

It is evident for the planar case, as pointed out by Verhoeven and Hiller 

[127] and Fattah and Agrawal [130], that system (6.11) is overconstrained 
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and thus has many solutions if n > 3. For n = 3 there are 3 equations and 3 

unknowns, and thus if the equations are linearly independent, there will be 

a unique solution simply given by 

(6.12) 

For n > 3 there are many solutions, assuming SST is invertible. The general 

solution to (6.11) in this case is of the form 

(6.13) 

where t mn is the minimum norm solution of (6.11) and t nul is a vector belong­

ing to the nullspace N(S) of S. The minimum norm solution t mn is deter­

mined by means of the Moore-Penrose inverse, defined as S+ ST (SST)-I, 

and is given by (Fattah and Agrawal [130]) 

(6.14) 

Fattah and Agrawal [130] take t nnl o and thus the solution to (6.11) 

t mnis simply given by setting t where t mn is given by (6.14). As will 

be illustrated in the next section this approach may result in some feasible 

points being excluded from the workspace. The minimum norm solution 

does however have the advantage that it is not computationally demanding, 

and may thus have some use when performing rough workspace calculations. 

Lafourcade et al. [128] present a simple iterative method whereby t nnl is 

gradually increased until feasible cable tensions are determined. 

6.3.2 Constrained R2-norm approach 

A new methodology for determining the cable tensions for any specified u 

and w is now proposed. Using the partitioning indicated in system (6.11) to 

define 

(6.15) 
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where A is 3 x 3 and B is 3 x (n - 3), system (6.11) can be rewritten as: 

(6.16) 

which gives the values of the dependent tensions t A E R3 as a function of 

the independent tensions tB E Rn-3. For a given position u = [xp, yp]T and 

orientation w = ¢p of the platform, and for identical prescribed lower and 

upper bounds, tmin and tmax on the tension magnitudes ti, i = 1,2, ... ,n, the 

cable tensions t may now be determined by solving the following numerical 

optimization problem1
: 

min lit II;
t B 

such that tmin ::;tf(tB )::; tmax , i- 1,2,3 (6.17) 

and tmin < tf ::; tmax
, j 1,2, ... , (n 3) 

where t = [tl, t2, ... ,tnF = [tAT, tBTF = [tt, tt, tt, tf, ... ,t~-3F. This 

optimization problem is solved using the LfopC numerical optimization al­

gorithm of Snyman [103] (see Appendix B). Of course, on removal of the 

inequality constraints, it can be shown that optimization problem (6.17) 

reduces to equation (6.14) (see Appendix E). The advantage of the method­

ology proposed here is that either the minimum, or maximum possible cable 

tensions, in the case where a maximization is performed instead in (6.17), 

can be determined. The respective solutions correspond to a tendon driven 

system with minimal energy consumption, or one with maximal stiffness. 

Figure 6.3 illustrates the significant difference between the minimum norm 

(with t nul 0) and constrained .e2-norm approach approaches for determin­

ing the cable tensions. The illustrative manipulator design analyzed here has 

frame attachment points c1 [1,0.15JT, c2 1,0.15]T, c3 1, -0.15JT 

and c4 = [1, -0.15]T and platform attachment points as given in Table 6.l. 

The constant orientation workspaces for ¢p = 0, ¢p 0.2 and ¢p 0.4 

are given. Minimum and maximum allowable tensions were 5 and 100 re­

spectively. The workspaces indicated by a solid line were calculated using 

111 . II:~ denotes the £2-norm of its argument. 
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¢ip = 0.2 ¢ip 0.4 

0.50.5 0.5 

"" 0"" 0 

~ 

-0.5 -0.5 -0.5 

-1 '----~---' -1 '--------' -1 '----~-----' 
-1 o -1 o -1 o 

x x x 

Figure 6.3: Comparison of workspaces obtained with cable forces calculated 

using the minimum norm (dashed line) and constrained .e2-norm (solid line) 

approaches. 

the constrained .e2-norm approach, and those indicated by a dashed line were 

calculated using the unconstrained minimum norm approach for determining 

the cable tensions. Workspaces were determined using the chord method (see 

Section 6.4.3). It is evident that using the unconstrained minimum norm so­

lution here results in an extreme underestimation of the feasible workspace 

of the manipulator. 

6.3.3 Constrained l\-norm approach 

The constrained .e2-norm approach for determining cable tensions outlined 

above is limited by the computational effort required by the numerical opti­

mization algorithm. When determining manipulator workspaces, for exam­

ple, the cable tensions will have to be determined many times. It is thus 

desirable to have a more efficient method for determining the feasible cable 

tensions. The constrained .ernorm approach follows from the constrained .e2­

norm approach outlined above, but is posed as a linear programming prob­

lem, allowing for a more efficient solution of the cable tensions. For a fixed 

position and orientation of the moving platform, the constraints on the three 

dependent cable tensions t A are used to calculate the feasible region for the 
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3independent cable tensions t B E 1Rn
- . For each dependent cable, minimum 

and maximum tension limits dictate that the following inequalities hold: 

t min tf(tB
) 	~ 0, i 1,2,3 (6.18) 

tmaxand ti\(tB ) - < 0 i = 1 2 3 
t -" , 

Defining M = -A-ifE' and N -A-1B, substituting (6.16) into (6.18), 

and including the inequalities limiting the tensions of the independent cables 

t B the feasible region in the independent cable tension space t B E 1Rn - 3 is 

bounded by the inequality constraints of the following optimization problem2 
: 

n-3 

'" N- -tf! > tmin M • 1,2,3; 	 (6.19)L.....t t]] - i, • 
j=l 

n-3 

tmaxL Nijtf ~ - M i , i = 1,2,3 
j=l 


and tmin tf < t IDaX
~ , k = 1,2, ... , (n - 3) 

The minimum or maximum (where a maximization is performed instead) 

allowable cable tensions may be determined by solving optimization problem 

(6.19). For n 2: 5 this can be done efficiently using linear programming 

methods. For the case where n 4, inequalities (6.19) reduce to 

NitB 2: 	(tInin - M i ), i- 1,2,3 

(tmaxNitB ~ M i ), i = 1,2,3 (6.20) 

Inin tB maxo~ t ~ ~ t

The existence of a feasible solution, and the minimum t Bmin and maximum 

tBmax allowable independent cable tensions may in this case be easily and 

efficiently determined analytically by examining the extreme values of tB 

211 - 111 denotes the l\ -norm of its argument. 
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defined by (6.20). The exact algorithm achieving this is stated in Algorithm 

6.1. 

Algorithm 6.1 Tension limit algorithm 

for i = 1 : 3 

if Ni > 0 


(tmin 


tf
t~OW - Mi )/Ni 

igh (tmax 
- Mi)/Ni 

else 

t~OW (tmax 
- Mi)/Ni~ 

f~ugh (tmin - Mi)/Ni~ 

end if 

end for 

t mint~OW 

thigh tmax 
4 

t Bmin maxi (t}OW) , i = 1, ... ,4 
B max • (thigh) . 1 4t . IIllni i ,~=, . . . , 

If t Bmin > tBmax , then no feasible solution exists for the cable tensions. Of 

course, once t B is known, the dependent cable tensions t A may be calculated 

using (6.16). Note that since the minimum irnorm solution may correspond 

or t Bmaxto either t Bmin , it is necessary to evaluate and compare both pos­

sibilities in order to determine the correct minimum norm. The same is 

true when determining the maximum iI-norm. In terms of control of such 

or tBmaxa manipulator, the cable tensions t corresponding to either tBmin , 

or indeed any intermediate values, may be used since these are all feasible 

solutions for the cable tensions. 
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6.4 	 Constant orientation workspace determi­

nation 

6.4.1 	 Workspace definition 

Unlike regular parallel manipulators, where the workspace is dependent on 

the input joint limits and the geometrical realization of the manipulator, the 

workspace for tendon-driven manipulators is primarily determined by the 

allowable forces in the cables (Verhoeven et al. [125]). In particular, the 

tension in each of the cables should lie between a pretension and maximum 

tension: 

(6.21 ) 

Here it is also required that each cable has a minimum allowable length [min: 

li 2: zmin, 	 i = 1,2, ... ,n (6.22) 

The constant orientation workspace WC[wfix
] (as defined in Section 1.3.1) 

of the tendon-driven parallel manipulator for a fixed platform orientation 

wfix ¢fj1 can now be defined as 

WC[wfix
] 	 {u E ?R2 

: cp(u, v, wfix 
) = 0, (6.23) 

tmin S ti S ~a:x and li 2:: lmin, i-I, 2, ... ,n} 

Where the cable tensions t are calculated using either the minimum norm, 

constrained .ez-norm, or constrained .ernorm approach proposed in the pre­

vious section, and the cable lengths v are calculated using (6.4). Other 

conditions such as platform stiffness and proximity to singularities can also 

be easily included in the workspace definition by the addition of further in­

equality constraints. In this chapter, for the the 3-cable manipulator, a lower 

limit is placed on the determinant of the kinematic Jacobian, to ensure that 

the manipulator does not approach a singular position: 

det (J) 2: 	Dmin (6.24) 
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Limit Value 

tmin 5 

tmax 100 
zmin 0.1 

Dmin 10-3 

Table 6.4: Numerical values of limits used in calculating TDPM workspaces 

The values of the various maximum and minimum limits required in inequal­

ities (6.21), (6.22) and (6.24), as used for all numerical examples in this 

chapter, are given in Table 6.4. 

6.4.2 Discretization method 

As mentioned in Section 1.3.2, one method commonly used by researchers 

for determining parallel manipulator workspaces is the discretization method. 

For a given fixed orientation ¢frx of the moving platform, this method sim­

ply involves discretizing the output space u E ?R2 of the planar TDPM at a 

given resolution, and then testing each of the resulting mesh points u ij for 

compliance with the inequalities (6.21) and (6.22), as well as (6.24) if appli­

cable. If none of these inequalities are violated then the point lies within the 

manipulator workspace. If any of the constraints are violated, then the point 

does not lie within the workspace. The basic discretization method used is 

stated in Algorithm 6.2. 

This discretization method has been applied to workspace determination of 

various manipulator designs, using the constrained .e2-norm method, embod­

ied in (6.17) for determining the cable tensions in the 4-cable case. 
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Algorithm 6.2 Discretization algorithm 

1. 	Select the required workspace resolution, m, specifying the number of 

points to be inserted between the maximum and minimum possible 

limits of the workspace determined in the next step. 

2. 	 Determine extreme limits of the region to be discretized by determining 

xmin = min(c~), xmax max(c~), ymin = min(c~), and ymax = max(c~) 
for i 1,2, ... ,n in each case. 

3. 	 Discretize the output space of the manipulator by determining (m+ 1)2 

points u ij 

0, 1,2, ... , m and j 0, 1,2, ... , m. 

4. 	 Test each u ij for compliance with inequalities (6.21) and (6.22) (and 

(6.24) for the 3-cable case). If all inequalities are satisfied, record u ij 

as a valid point. 

3-cable manipulator 

Constant orientation workspaces for the 3-cable manipulator described in 

Section 6.2, and for values of ai and ci as defined in Tables 6.1 and 6.2 

respectively, were calculated using the discretization method. Figure 6.4 

shows the constant orientation workspaces obtained for3 cpp = 0, cPp = 0.05 

and cpp = 0.1 in the columns, and for load cases Ll, L2 and L3 (given in 

Table 6.3) in the rows. For these cases, using m 50, the average time 

for workspace calculation was 0.03s, using a FORTRAN code on a 1.6 GHz 

Pentium 4 computer. Of course, as m is increased, the time required for 

computation increases proportionally to m 2 • 

It is interesting to note, for this manipulator design, that the manipulator 

workspace is highly dependent on the both the load on the moving platform, 

3 All angles in this chapter are expressed in radians. 
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q,p = 0 

0.5 

-0.5 

-1 

0.5 

Ll 0 

-0.5 

-1 

q,p = 0.05 

-1 0 - 1 0 

0 

0.5 

0 

-0.5 

-1 
-1 0 

0.5 0.5 

L3 ;:" 0 0-" 
.:P 

'::,f:;.ii-0.5 -0.5 
:r 

-1 -1 
-1 0 -1 0 

x x 

¢p = 0.1 

0.5 

0 

~ 
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Ii¥-" 
W 
r 
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-1 
-1 0 

0.5 

0 

- 0.5 

-1 
-1 0 

0 

x 

Figure 6.4: Workspaces of the 3-cable TDPM determined using the dis­

cretization method 

as well as the orientation of the platform. Note that even small changes in 

the platform orientation result in extreme changes in the workspace. Also 

of interest is the presence of a singularity at x = 0 for the cases where 

¢ p = 0 which effectively divides the workspace into two usable regions. The 

workspace boundaries in the vicinity of this singularity are dictated by the 

limit Dmin on the determinant of the Jacobian, implemented by means of 

inequality (6.24). 

4-cable manipulator 

Figure 6.5 shows some constant orientation workspaces of the 4-cable ma­

nipulator presented in Section 6.2, and defined in Tables 6.1 and 6.2. These 
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¢p = -0.2 ¢p = 0.2 

0.5 

-1 L---_~_ ___' 

-1 a 

0.5 

0.5 

-1 L---_~_ ___' -1 L--_~_----" 
-1 a -1 a 

0.5 0.5 

L2;:» a 

-0.5 

-1 '--------------' -1 '--------' -1 '--------' 
-1 a -1 a -1 a 

0.5 0 .5 0.5 

-1 '--------' -1 '--------' -1 '--------' 
-1 a -1 o -1 a 

x x x 

Figure 6.5: Works paces of the 4-cable TDPM determined using the dis­

cretization method 

workspaces were calculated using the discretization algorithm with m = 50, 

and the constrained ernorm method embodied in (6.17) for determining the 

cable tensions. The average time for workspace computation was 29.3s, us­

ing FORTRAN on a 1.6 GHz Pentium 4 computer. It is immediately evident 

that the necessity of using a more complicated approach for determining the 

cable tensions for the 4-cable manipulator dramatically increases the time 

required to compute the manipulator workspace. Times required to compute 

workspaces using the constrained e1-norm approach for determining cable 

tensions are comparable to the 3-cable case. 

Of interest is the fact that for the particular design presented here, the ma­

nipulator has a greater workspace than for the 3-cable manipulator. It also 

appears that the size ofthe workspace is less sensitive to platform orientation 

and applied loads than its 3-cable counterpart. 
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6.4.3 Chord method 

The tendon-driven parallel manipulator constant orientation workspaces can 

also be determined using a modified version of the chord method proposed in 

Section 5.4. As before the method consists of finding an ini tial single point 

on the workspace boundary, and then using an optimization-based search 

methodology to determine subsequent points along the workspace boundary 

at constant chord lengths d. 

In order to determine a point on the workspace boundary, a single feasible 

point uO somewhere within the workspace boundary must first be determined. 

This may be accomplished in one of two ways. The first possibility is to run 

the discretization method, at a coarse resolution to obtain a rough estimation 

of the workspace. The internal point for the method can then be chosen 

manually, and the chord methodology used to map the boundary accurately. 

Alternatively a suitable internal point may be found by solving the following 

unconstrained optimization problem: 
n 

tmean )2min 2: {ti (6.25) 
u 

i=] 


{tmax
where tmean - t min )/2. In the implementation this numerical opti­

mization problem is solved using the efficient Dynamic-Q method developed 

in Chapter 3. 

Once a suitable internal point uO has been found, the initial point b I on 

the workspace boundary is found by solution of the following optimization 

problem which replaces (5.17). 

r 

such that tmin < ti (u (r )) ::; tmax (6.26) 

and li(u(r)) ~ lmin 

where u(r) UO + rsl as before and, of course, r is the distance from the 

internal point un. For the 3-cable manipulator, inequality constraint (6.24) 
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is also included in the optimization problem. The cable tensions ti, i = 

1,2, ... , n are calculated using either the constrained .e2-norm or constrained 

.e1-norm approach with u u{r), and cable lengths Ii, i - 1,2, ... , n are 

given by (6.4). 

The chord methodology, with specified chord length d, is embodied in the 

following optimization problem for the tendon-driven manipulator: 

minui 
w 

such that tInin 
::; ti (u) ::; tmax (6.27) 

and Ii(u) 2 lmin 

where, u u(w) is given by (5.18). The solution of (6.27) yields the next 

point bi+l along the workspace boundary and a vector S2i = [S;i, S;i]T, of 

magnitude d, pointing from b i to bi+l. Once again for the 3-cable manipula­

tor, an additional inequality constraint corresponding to condition (6.24) is 

also included in the optimization problem. The values of the cable tensions, 

for any u and prescribed ¢fix, are once again calculated using either the con­

strained .e2-norm or constrained .e1-norm approaches, and the cable lengths 

using (6.4). The chord method otherwise remains the same as presented in 

Appendix C. 

Choice of optimization method 

In previous implementations of the chord method, the numerical optimiza­

tion algorithms used for solving problems (6.26) and (6.27) were the LfopC 

method (Snyman [103]), or the more efficient Dynamic-Q method (Chapter 

3). These methods performed well in these cases, since the constraints typ­

ically appearing in the workspace boundary definition were continuous for 

the types of parallel manipulators studied. For tendon-driven manipulators, 

this is not always the case. In particular the constraints corresponding to the 

cable tension limits (6.21) may be discontinuous on the workspace bound­

ary. Consider Figure 6.6(a) which shows the ¢p 0 constant orientation 
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(a) (b) 
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-1 '---~-~-~----' 
-1 -0.5 0 0.5 

x 

Figure 6.6: (a) Workspace of a 4-cable manipulator with the section indicated 

by means of the chained line and (b) cable tensions ti, i = 1,2,3,4 along the 

section 

workspace under load case Ll for a 4-cable manipulator with c1 [1, o.IF, 

c2 I,O.l]T, c3 1,-O.lF and c4 [1,-O.IF, and platform attach­

ment points ai as given in Table 6.1. The chained line indicates the position 

of a section taken though the workspace (at x 0.54), along which the ca­

ble tensions have been calculated (Figure 6.6(b)). It is evident from Figure 

6.6(b) that cable tensions t3 and t4 are discontinuous at y = 0, a point which 

corresponds to the workspace boundary. Clearly, the result of these disconti­

nuities is that it is not possible to use a gradient-based algorithm for solving 

problems (6.26) and (6.27) at every point on the workspace boundary. 

This problem is addressed by using a bisection method to solve problem 

(6.27). It is possible to use a bisection method here, since there is only one 

variable, namely w, to solve for in optimization problem. The exact bisection 

algorithm used is given in Algorithm 6.3. 

It is thus now possible to solve optimization problem (6.27) using the Dynamic­

Q optimization method, reverting to the bisection algorithm when the opti­

mization breaks down. On implementation, however, it was found that the 

bisection algorithm is more economical in solving optimization (6.27) than 
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Algorithm 6.3 Bisection algorithm 

b i1. 	 Given two successive boundary points b i - 1 and bi, with S2(i-l) 

b i 1-	 , calculate Sli using equation (C.13). Set {3 _S2(i-l}, ui3 bi-I, 

0: ds li and u a = b i + 0:. Choose termination parameter SU(= 10-8 ). 

2. 	 Set "I d(o: + (3)/(l10: (311). If the sign of the z-component of 0: x {3 

is negative, then "I = -"I. 

3. 	 Determine whether u"Y = bi+"Ilies within the workspace by evaluating 

inequalities (6.21) and (6.22) at this point. 

4. 	 If u"Y is feasible, set (3 "I and uP = u"Y, else set 0: = "I and ua u"Y. 

5. 	 If u"Y is feasible, and termination condition II ui3 uall::; SU is satisfied, 

set bi+l u"Y, S2i = "I and stop, else go to Step 2. 

Dynamic-Q, and is thus used exclusively here in mapping the workspace 

boundary. 

Determining the bifurcation points 

As before it is necessary to implement a special procedure for determining 

bifurcation points separately as they are encountered along the workspace 

boundary. The reason for this is illustrated in Figure 6.7(a). The dashed 

line represents the actual workspace boundary, and the solid line the ap­

proximation to the workspace obtained using the chord method. Since the 

chord method maps the workspace boundary at discrete chord lengths d, it 

is evident that bifurcation points will not be accurately determined, and the 

approximation to the workspace will be degraded. Thus determining the 

locations of the bifurcation points is important in order to obtain a more 

accurate representation of the manipulator workspace. 
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3-cable manipulator 

Figure 6.8 gives various constant orientation workspaces for the 3-cable ma­

nipulator computed by the chord method. The workspaces calculated are 

chosen to correspond to those given in Section 6.4.2, to allow for comparison 

with the workspaces computed using the discretization method and depicted 

in Figure 6.4. In calculating these workspaces a chord length of d = 0.05 

was used, except for the workspaces corresponding to ¢p = 0 with load cases 

L2 and L3, where a smaller chord length of d = 0.03 was used in order to 

capture all the significant features of the workspace boundary. Similarly in 

calculating the small left hand part of the workspace for L1 and ¢p = 0.05 

a chord length of d 0.02 was used. The average computational time for 

these workspaces is approximately 0.8s. 

It . is evident that the workspace representations obtained by means of the 

chord method are much more accurate and efficient in terms of informa­

tion stored than those obtained by the discretization method. On the other 

hand the discretization method does present an extremely robust method for 

workspace determination, although limited in terms of accuracy and compu­

tational efficiency. 

4-cable manipulator 

The workspaces for the 4-cable manipulator, determined using the chord 

method with d 0.05 are given in Figure 6.9. A reduced chord length of 

d 0.02 was used to determine the workspace corresponding to load case 

L3 and ¢p -0.2. Average computational time per workspace was 30.12s 

using the constrained .e2-norm approach for determining cable tensions. It 

is evident on comparison with the results using the discretization method 

given in Section 6.4.2 that, for comparable computational effort, the chord 

method yields a much more accurate representation of the workspace. Once 
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Figure 6.8: Workspaces of the 3-cable TDPM determined using the chord 

method 

again use of the constrained f.1-norm approach for determining the cable 

tensions results in a much more economical method, with computational 

times comparable to those of the 3-cable TDPM. 

6.5 Dextrous workspace determination 

In agreement with the definition given in Section 1.3.1 the dextrous work­

space ~VD r¢min, ¢max] of the planar tendon-driven manipulator is defined as: 

{u E?Jt2 
: ~(u,v,w) = 0; 

min < t· < tmax 
t ,; 1 2 dt _ _ ,. " ••• ,n; an (6.28) 

li 2:: [min i = 1,2, ... ,n for all W E [¢min, ¢max]} 
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Figure 6.9: Workspaces of the 4-cable TDPM determined using the chord 

method 

The dextrous workspace can be thought of as the intersection of all constant 

orientation workspaces in the range [q)min, q)max]. Du Plessis and Snyman [18] 

suggest a numerical approach for determining parallel manipulator dextrous 

workspaces similar to that used in Section 5.7. Firstly constant orientation 

workspaces are determined for a finite number m sl of regularly spaced q)p val­

ues in the range [q)min, q)max]. The intersection of these constant orientation 

workspaces then yields the dextrous workspace of the manipulator. In many 

cases the dextrous workspace may be efficiently and accurately described by 

simply computing the intersection of the two extreme constant orientation 

workspaces corresponding to q)min and q)max. Du Plessis and Snyman point 

out however that it is necessary in this case to also check the validity of this 

efficient approach by ensuring that the constant orientation workspace at 
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the intermediate central value of (¢min ¢max)/2 fully contains the dextrous 

workspace computed using the extreme values. In the case where the above­

mentioned approach is invalid, the dextrous workspace may be progressively 

more accurately approximated by increasing m sl , the number of regularly 

spaced values of ¢p between ¢min and ¢max. The discretization algorithm 

outlined in the previous section can be easily modified to compute the dex­

trous workspace, by testing for compliance in Step 4 for a range of values of 

¢p, instead of just one fixed value, as is the case for the constant orientation 

workspace. This approach is used here instead of that developed in Section 

5.5, due to its ease of implementation and slightly higher efficiency. 

6.6 	 Dimensional synthesis for maximal dex­

trous workspace 

6.6.1 	 Optimization formulation 

It is evident from the above results presented in Section 6.4 that the manip­

ulator workspace is highly dependent on the manipulator design, load on the 

end-effector, and end effector orientation. With this in mind, the problem 

addressed here is to design the manipulator so that it yields the greatest 

dextrous workspace for a given load on the platform. 

It is assumed that the cable frame attachment points ci can be arbitrarily 

positioned anywhere along the fixed square frame. The angle between the 

global x-axis and cable attachment point ci is denoted f3 i
. The design vector 

for the optimization problem is thus d [f31, f32, ... , f3nJT. The only con­

straints imposed on the optimization are that a lower limit f3min is placed on 

the angular separations of the frame cable attachment points. The workspace 
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maximization problem is simply 

mF wD [¢rrUn, ¢max] 

such that 1,8i+1 ,8il:;::: ,8rrUn, i = 1,2, ... , n - 1 (6.29) 

and l,8n - ,811 :;::: ,8min 

where the necessary adjustments are made to the angular measurements 

to ensure that the angle determined between consecutive cable attachment 

points is a minimum. 

6.6.2 Numerical results 

Optimization formulation (6.29) is used in this section to determine optimum 

manipulator designs with respect to maximal dextrous workspace for the 3 

and 4-cable manipulators. For each manipulator type, optimal manipulator 

configurations were determined for the three different load cases L1-L3 as 

given in Table 6.3. It is assumed that these loads are applied at the origin of 

the moving x' - 11 frame. Constrained minimum .e1-norm solutions for cable 

tensions were used and cable tensions limits were t rrUn = 5 and tmax = 100. 

The optimization problem (6.29) was solved using the Dynamic-Q optimiza­

tion algorithm (see Chapter 3). As stated previously, this optimization al­

gorithm is suitable for problems where some numerical noise is present in 

the optimization problem. This is indeed the case here, since the discretiza­

tion method is used for determining the manipulator dextrous workspaces. 

Parameters used for the Dynamic-Q method are a move limit of p = 0.1, 

a finite difference interval of r = 0.05 for determining the gradients for the 

3-cable manipulator, and r = 0.1 for the 4-cable manipulator. Central finite 

differences were used in calculating these gradients. For the 3-cable manipu­

lator the [-0.1,0.1] dextrous workspac'C was computed using a resolution m 

of 100 points, and m sl of 3. For the 4-cable manipulator, which is capable 

of reaching a larger workspace, the [-0.2,0.2] dextrous workspace was com­

puted using a resolution m of 50 points, and m sl of 21. Note that the number 

 
 
 



148 CHAPTER 6. THE PLANAR TDPM 

of intermediate values of cpp used for the 3- and 4-cable manipulator differs 

significantly. This is because just three values of cp p can be used to calcu­

late the 3-cable manipulator dextrous workspaces accurately and efficiently. 

For the 4-cable manipulator, however, m sl must be increased in order to ob­

tain an accurate description of the dextrous workspace. For both the three 

and four-cable manipulator and each load case, five feasible random start­

ing designs were chosen for the numerical optimisation embodied in equation 

(6.29). 

3-cable manipulator 

Results obtained for the three load cases for 3-cable manipulator are given 

in Tables 6.5 to 6.7. Each Table gives the number of gradient evaluations 

Ng of the Dynamic-Q algorithm required to find the solution, the randomly 

chosen starting design dO and area A~ of the associated dextrous workspace, 

the optimized design d* and area A~ of the optimized dextrous workspace. 

Figures 6.10 to 6.12 show results of the dimensional synthesis for representa­

tive optimization runs R3, R3 and Rl respectively for load cases L1-L3. In 

each case Figure (a) shows the starting design and associated workspace, and 

Figure (b) the optimal design and workspace. Interestingly, for the 3-cable 

case the dextrous workspace increases in size if a torque is applied to the 

moving platform. Also of interest when examining the results is the presence 

of local maxima in the design space. As an example of this see run 4 for L2 

(Table 6.6) the solution of which corresponds to a local maxima. The solu­

tion obtained by run 4 of L1 (Table 6.5) is the mirror image (about x = 0) of 

the other solutions. The optimization problem thus has two global minima. 

4-cable manipulator 

Optimization results for the 4-cable manipulator are reported in Tables 6.8 

to 6.10. Figures 6.13 to 6.15 once more show representative results from 
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Run NY dO d* 

1 52 [0.6607,2.748,4.367F 0.0660 [0.7676,3.430,3.605jT 0.3152 

2 34 [0.6725,2.880,4.633]T 0.0880 [0.7631,3.519,3.693]T 0.3168 

3 39 [0.2814,3.978,4.278F 0.1996 [0.7645,3.477,3.651 F 0.3172 

4 50 [0.735,2.418,5.159jT 0.0024 [-0.3146,2.379,5.794]T 0.3168 

Table 6.5: 3-cable TDPM optimized designs for L1 

Run NY dO A~ d* A*d 

1 17 [0.9758, 4.056, 4.225]T 0.0216 [0.6179,3.703,3.878] T 0.5136 

2 21 [0.5014, 2.808, 3.616jT 0.0524 [0.7728,3.348,3.523jT 0.5120 

3 41 [0.6861,2.431,4.461jT 0.0812 [0.7667,3.454,3.628jT 0.5228 

4 55 [1.864,2.621,4.251 F 0.0100 [1.683,1.858,4.3891T 0.2504 

Table 6.6: 3-cable TDPM optimized designs for L2 

Run NY dO d* 

1 83 [0.7983,1.281,3.373F 0.0500 [0.6543,2.357,4.252]T 1.024 

3 5 [0.6097,2.319,4.197]T 0.8364 [0.6550,2.371,4.2151T 1.019 

3 48 [0.3040,1.220,5.0401 T 0.0028 [0.6358,2.366,4.263F 1.019 

4 45 [0.5922, 1.718,4.8651T 0.1736 [0.6500,2.369,4.233]T 1.021 

Table 6.7: 3-cable TDPM optimized designs for L3 
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Figure 6.10: 3-cable TDPM (a) starting and (b) optimized design for L1 (R3) 
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Figure 6.11: 3-cable TDPM (a) starting and (b) optimized design for L2 (R3) 
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Figure 6.12: 3-cable TDPM (a) starting and (b) optimized design for L3 (Rl) 
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Run NY dO AO d* A* 

CHAPTER 6. THE PLANAR TDPM 

d d 

1 48 [1.829,2.321,3.392,3.741]T 0.0256 [O.8205,2.338,4.595,4.769F 1.1040 

2 47 [2.139, 3.124, 3.216, 5.478]T 0.1904 [0.7878, 3.112, 3.287, 5.582F 0.9568 

3 48 [2.288,2.601,3.876,4.117]T 0.0144 [0.8207, 2.335, 4.601, 4.775F 1.0992 

4 14 2.219,4.795, 0.9472 2.325,4.625,4.799F 1.0992 

Table 6.8: 4-cable TDPM optimized designs for L1 

NgRun dO d* 

1 34 [0.0924,2.607,2.813,5.982]T 0.1424 [0.7403,3.173,3.348,5.564F 0.9760 

2 39 [1.917,3.369, 3.745, 3.828F 0.0272 [0.8215,2.334,4.585,4.760F 1.1504 

3 56 [0.4313, 3.742, 4.899, 5.242]T 0.0368 [0.8194,2.334,4.591,4.765F 1.1504 

4 82 [0.5235,2.065, 4.784, 4.913F 0.5088 [0.8146,2.326,4.609,4.783F 1.1472 

Table 6.9: 4-cable TDPM optimized designs for L2 

the synthesis. For the 4-cable case, local maxima are also found during the 

design optimization. See for example run 2 for L1, run 1 for L2 and run 3 

for L3. 

6.7 Conclusion 

The new constrained i 2- and iI-norm approaches for determining cable ten­

sions in overconstrained tendon-driven manipulators are reliable, and indeed 

critical for the accurate and correct determination of tendon-driven manipu­

lator works paces. Two methodologies for determining workspaces of planar 

Run NY dO d* 

1 

2 

3 

4 

55 

17 

37 

23 

[1.347, 1.622,2.036, 5.416]T 

[0.4202, 2.962, 3.531, 6. 158F 

[0.6810,0.9393, 3.676, 5.416F 

2.683,4.338, 

0.0048 

0.1968 

0.0016 

0.2032 

[0.7572,2.922,3.097,5.449F 

[0.7636,2.929,3.104,5.439]T 

[1.452, 1.626, 3.843, 5.406jT 

2.330,4.444, 

1.3008 

1.2944 

0.8304 

1.1920 

Table 6.10: 4-cable TDPM optimized designs for L3 
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Figure 6.14: 4-cable TDPM (a) starting and (b) optimized design for L2 (R2) 

 
 
 



153 CHAPTER 6. THE PLANAR TDPM 
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Figure 6.15: 4-cable TDPM (a) starting and (b) optimi7£d design for UJ (R1) 

tendon-driven manipulators are presented and evaluated by application to 

the 3-cable and 4-cable tendon-driven parallel manipulators. The discretiza­

tion method is robust and reliable, but has a high computational requirement 

in comparison to the accuracy of the workspace determination. The chord 

method is accurate, reliable and efficient, but may require some user interac­

tion in selecting the initial point for starting the workspace computation. In 

practice a combination of the two methods proves to be the most reliable and 

accurate, first using the discretization method at a low resolution to obtain 

a rough estimate of the workspace, and then reverting to the chord method 

to obtain an accurate and efficient mapping of the workspace boundary. 

The dimensional synthesis yields TDPM designs with maximal dextrous 

workspaces for given static loads on the platform. The high dependance 

of TDPM workspaces on their design is illustrated, demonstrating the im­

portance of dimensional synthesis of such manipulators. 

 
 
 



Chapter 7 

Conclusion 

The main topic of this study was the optimal dimensional synthesis of pla­

nar parallel manipulators by means of numerical optimization techniques. In 

order to accomplish this, three specific issues needed to be addressed. These 

three issues, and achievements in each of these areas are discussed separately 

in the next three sections. In the final section of this chapter, recommen­

dations for future refinement and development of the methods, developed 

during this study, are proposed. 

7.1 Optimization algorithms 

Two optimization algorithms were proposed and evaluated in the first part of 

this study. The spherical quadratic steepest descent (SQSD) optimization al­

gorithm, presented in Chapter 2, provides a method for solving unconstrained 

optimization problems. Comparison of the performance of the algorithm with 

the classical steepest descent (SD) method indicates that the introduction of 

spherical quadratic subproblems dramatically improves the robustness of the 

method. In addition, the elimination of explicit line searches results in. a 

much more efficient method than the SD method. The SQSD method per­
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forms well when compared to conjugate gradient methods. Particularly im­

pressive is the ability of the SQSD method to solve ill-conditioned problems 

containing large numbers of variables, where the conjugate gradient methods 

break down, or take very long to converge. A proof of convergence for the 

SQSD method applied to general positive-definite quadratic functions is also 

given. 

A version of the SQSD method, modified to solve constrained problems, is 

presented and tested in Chapter 3. This method is called the Dynamic-Q 

method, since the dynamic trajectory method of Snyman (see Appendix B) 

is used to solve the successive quadratic subproblems via a penalty function 

formulation. When compared to an SQP method using standard test prob­

lems, the Dynamic-Q method exhibits comparable efficiency and robustness. 

The Dynamic-Q method is however believed to be superior when applied 

to practical engineering problems containing phenomena such as numerical 

noise (as illustrated in Chapters 4 to 6). It also has the advantage that no 

Hessian information is required. This makes it a much more viable method 

for problems with very large number of variables. 

User-friendly implementations of the SQSD and Dynamic-Q optimization 

algorithms have been programmed in FORTRAX and MATLAB. 

7.2 Workspace determination 

The original chord method, described in Appendix C, has been refined during 

the course of this study. The refinement, whereby the number of variables, 

contained in the optimization problem used for determining successive points 

on the workspace boundary, is reduced, results in a more efficient and ac­

curate algorithm than the original implementation (see Section 5.4). In ad­

dition, a new scheme for determining bifurcation points has been developed 

in Section 6.4. This new scheme is slightly less accurate than the original 
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methodology, but more generally applicable. 

For the first time, the chord method has been applied to the determination 

of constant orientation workspaces of planar 3-RPR parallel manipulators. 

Additionally, the numerical multi-level optimization approach for dextrous 

workspace determination, based on the chord method and presented in Sec­

tion 5.5, has successfully been used to determine dextrous workspaces of 

planar parallel manipulators. Constant orientation and dextrous workspaces 

are determined accurately and automatically. 

The determination of workspaces of tendon-driven parallel manipulators is 

a challenging problem because the workspace is dependent primarily on the 

forces in the tendons. When considering over-constrained manipulators this 

factor is particularly important, since there is no unique solution to the cable 

tensions for a given position and load on the platform. Two new methodolo­

gies for determining cable tensions are proposed in Section 6.3.3. A further 

problem, related to workspace determination, is that the cable tensions may 

be discontinuous as the platform moves from one configuration to another. 

Two methodologies for determining works paces of planar tendon-driven ma­

nipulators were developed. The first method, based on the discretization ap­

proach, is robust but in practical terms the accuracy of the method is limited 

by its high computational cost. As an alternative, the chord method is suc­

cessfully applied to determining workspaces of tendon-driven manipulators, 

resulting in accurate and efficient determination of workspace boundaries. 

These methodologies and results are presented in Chapter 6. 

7.3 Dimensional synthesis of manipulators 

In Chapter 4 various strategies for optimizing parallel manipulators are inves­

tigated. The methodology thought to be the most practical is that presented 

in Section 4.7, which seeks to optimize the performance of the manipulator, 
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while ensuring that a certain prescribed workspace can be reached. This 

methodology is successfully applied to a 2-RPR planar parallel manipula­

tor, and then to the more complex 3-RPR manipulator in Chapter 5. For 

the 3-RPR manipulator various approaches are suggested for dealing with 

the orientational degree of freedom of the manipulator. In all cases optimal 

designs were found efficiently using the Dynamic-Q algorithm developed in 

Chapter 3. 

An alternative synthesis approach was adopted in Chapter 6 for tendon­

driven parallel manipulators. Here the objective of the optimization is to 

maximize the dextrous workspace which can be reached by the moving plat­

form. The discretization method is used to evaluate the workspace areas in 

this case. The Dynamic-Q method proves its robustness by optimizing the 

manipulator, despite the numerical noise caused by determining the work­

space in this manner. 

7.4 Recommendations 

It is believed that the full potential of the numerical methodologies developed 

in this work, applied here to planar manipulators, will be demonstrated when 

applied to more complex spatial cases. In terms of workspace determination 

it appears that the method for determining dextrous workspaces, presented 

in Section 5.5, can be extended to spatial parallel manipulators as well. The 

resulting methodology may provide an efficient numerical solution to this 

challenging problem. 

Similarly, the constrained Rrnorm approach developed in Section 6.3.3 for 

determination of cable tensions of overconstrained tendon-driven manipula­

tors, as well as the methods for determining workspaces of tendon driven 

manipulators, could all be extended to the spatial case. 
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Finally, the methodologies for manipulator dimensional synthesis provide 

a meaningful alternative to existing methods. The formulations should be 

easily extended to include other performance criteria, and more complex 

manipulators. The inclusion of more design variables in these cases should 

easily and efficiently be dealt with by the Dynamic-Q method. 
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Appendix A 

Test functions used for SQSD 

Minimize f (x): 

1. f(x) = xI 2x~ + 3x~ - 2Xl - 4xz - 6X3 6 XO = [3 3 3]T x* , '" 
[1,1,I]T, f(x*) 0.0 

2. 	 f(x) = xt-2xix2+xi+x~-2xl [3,3]T, x* [1,1]T, f(x*) = 

0.0 

3. 	 f(x) xi 8x~ 25xi 4x~ 4XIX2 32xl + 16, XO [3,3]T, x* = 

[2,I]T, f(x*) = 0.0 

4. 	 f(x) 100(XZ-xI)2+(I-xl)2, XO = [-1.2,1]T, x* [1,I]T, f(x*) = 

0.0 (Rosenbrock's parabolic valley [113]) 

5. 	 f(x) xi+x~-xl +xi-x~ X2 X~-X3+XIXZX3' (Zlobec's function 

[114]) 

(a) 	xO = [1, -1, I]T and 

(b) 	XO [0,0,0]T, x* = [0.57085597,-0.93955591,0.76817555]T, 

f(x*) = 1.91177218907 
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6. 	 f(x) (Xl 10x2)2 + 5(X3 - X4)2 + (X2 2X3)4 lO(XI - X4)4, XO 

[3, -1, 0,1F, x* = [0, 0, 0, OlT, f(x*) 0.0 (Powell's quartic function 

[113]) 

l7. 	 f(x) - { 1+(Xl _ X2)2 + sin (! 1rX2X 3) exp [- (Xl~X3 2)2] }, xO 

[0,1, 2F, x* = [1,1, l]T, f(x) = -3.0 [113] 

8. 	 f(x) = {-13 + Xl + [(5 - X2)X2 - 2]X2J2 + {-29 + Xl + [(X2 + 1)x2­

14jx2P, XO [1/2, _2]T, x* [5, 4F, J(x*) = 0.0 (Freudenstein and 

Roth function (113]) 

9. 	 f(x) 100(X2-Xy)2+(1-XI)2, XO [-1.2, IF, x* = [1, IF, f(x*) = 

0.0 	(cubic valley (115]) 

10. 	 f(x) = [1.5-XI(1-X2)]2+[2.25-XI(1-x~)j2+[2.625-XI(1-x~)j2, XO = 

[1, 1F, x* [3, 1/2F, f(x*) 0.0 (Beale's function [113]) 

11. 	 J(x) [1O(x2 xi)j2 + (1 XI)2 90(X4 X~)2 + (1 X3)2 10(x2 X4 

2)2+0.1(x2-x4)2, XO [-3,1, -3, -IF, x* = [1,1,1, 1F, J(x*) 0.0 

(Wood's function [113]) 

12. 	 f(x) = E~=lix;, XO = [3,3, ... ,3F, x* = [O,O, ... ,oF, J(x*) 0.0 

(extended homogeneous quadratic functions) 

13. 	 f(x) E:-I
I[100(XiH - X;)2 (1- Xi)2J, XO = [-1.2,1, 1.2,1, ...]T, 

x* [1,1, ... , IF, f(x*) - 0.0 (extended Rosenbrock functions [113]) 

14. 	 f(x) = E~=l (1- Xi)2 /2i
-

l , xo- [0,0, ... , of, x* = [1,1, ... , 1F, 


f(x*) = 0.0 (extended Manevich functions [116]) 


 
 
 



Appendix B 

The dynamic trajectory 


optimization algorithm 


B.l Background 

The dynamic trajectory method (also called the "leap-frog' method) for 

the unconstrained minimization of a scalar function f(x) of n real variables 

represented by the vector x [XI, X2, ••• ,xnF was originally proposed by 

Snyman [101, 102]. The original algorithm has also been modified to handle 

constrained problems by means of a penalty function formulation (Snyman 

et al. [119] and Snyman [103]). The method possesses the following charac­

teristics: 

• 	 It uses only function gradient information V f(x), 

• 	 No explicit line searches are performed, 

• 	 It is extremely robust: handles steep valleys and discontinuities in func­

tions and gradients, 

• 	 Algorithm seeks a low local minimum and can therefore be used as a 
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basic component in a methodology for global minimization, 

• 	 The method is not as efficient as classical methods on smooth or near­

quadratic functions 

B.2 Basic dynamic model 

In its unconstrained form, the leap-frog optimizer (Lfop) determines the min­

imum of a function f(x), by considering the associated dynamic problem of 

the motion of a particle (of unit mass) in an n-dimensional conservative force 

field, where the potential energy of the particle at a point x(t) and time t, 

is given by f(x). The method thus requires the solution of the equations of 

motion of the particle. At x the force on the particle is given by 

a x(t) -V f(x(t)) 	 (B.1) 

subject to initial conditions 

x(O) = xo, x(O) Vo 	 (B.2) 

To explain how the dynamic trajectory method works, consider the solution 

of the above problem over the time interval [0, t]. It follows that 

~llx(t)112 - ~llvo"2 = f(xO) - f(x(t)) 

T(t) - T(O) = f(O) - f(t) (B.3) 

or f(t) T(t) = f(O) -+ T(O) = K 

Here T(t) is used to denote the kinetic energy of the particle at time t and K 

is a constant determined by the initial values. The last expression in (B.3) 

indicates that energy is conserved. It can also be seen that 6.f = -6.T, 

therefore as long as T increases, f decreases. This forms the basis of the 

dynamic trajectory method. 
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B.3 	 Basic algorithm for unconstrained prob­

lems 

Given f(x), and starting point x(O) xo, the Lfop algorithm computes an 

approximation to the trajectory followed by the particle in the force field by 

solving the initial value problem (B.1) and (B.2). 

The algorithm monitors the velocity x(t) = y(t) of the particle. Clearly as 

long as T ~lly(t)112 is increasing along the trajectory, f(x(t)) is decreasing 

and the algorithm is minimizing the function. However, whenever T decreases 

along the trajectory, the objective function (potential energy) is increasing. 

An interfering strategy is then applied to extract kinetic energy from the 

particle. The consequence of this strategy, based on an energy conservation 

argument, is that a systematic reduction in the potential energy f(x) of the 

particle is obtained, and the likelihood of descent is increased. The particle 

is thus forced to follow a path to a local minimum at x*. 

The numerical integration of the initial value problem (B.1) and (B.2) is 

achieved using the "leap-frog" (Euler forward-Euler backward) method, by 

computing for k 0,1,2, ... , and time step t1t 

(BA) 

A typical interfering strategy, implemented when Il y k+1 11 S Ilyk II is to set 

(B.5) 

and then use these new values of yk and xk to compute the new yk+1 using 

(B.4). 

The method contains some heuristic elements to determine an initial t1t, to 
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allow for reduction and magnification of llt, and to control the step size used 

in the algorithm. 

B.4 Modification for constrained problems 

The Lfop algorithm outlined above can be modified to handle constrained 

problems by means of the penalty function approach (LfopC) [119, 103]. 

Given a constrained optimization problem with objective function f(x), x E 

?Rn, inequality constraint functions 9j(X) :s; 0, j 1,2, ... ,p, equality con­

straint functions hk(x) :s; 0, k = 1,2, ... ,q and penalty parameters elj and 

13k, the associated unconstrained optimization problem given by the penalty 

function formulation is 

For simplicity the penalty parameters elj and 13k usually take on the same 

positive value elj = 13k /1. It can be shown that as /1 tends to infinity, 

the unconstrained minimum of Q(x) yields the solution to the constrained 

optimization problem. The Lfop dynamic trajectory method is applied to 

the penalty function formulation of the constrained problem in three phases. 

PHASE 0: Given some starting point xo, apply Lfop with some overall penalty 

parameter /1 /10(= 102) to Q(x, /10) to give x*(/1o). 

PHASE 1: With Xo := x*(/1o), apply Lfop with increased overall penalty 

parameter /1 = /11(= 104) » /10 to Q(x, /11) to give X*(/11)' Identify the 

set of na active constraints corresponding to the set of subscripts fa 

(u1, u2, ... , una) for which 9uj(X*(/11)) > 0, j 1,2, ... , na' 
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PHASE 2: With xO x*(J.lt}, apply Lfop to 

mJn Qa(x, J.ll) 
na q 

LJ.llg~;(X) + LJ.llh~(x) 
;=1 k=l 

(B.7) 

to give x*. 

 
 
 



Appendix C 

Review of the chord method for 

workspace determination 

C.l Introduction 

This appendix summarizes the chord method for maximal workspace determi­

nation as proposed by Hay and Snyman [50]. Further references related to the 

chord method, and the optimization approach for workspace determination 

are given in Section 1.3.2. In the next two sections of this appendix, defini­

tions necessary for the discussion of the workspace determination method are 

given. The most important basic components of the chord method are deter­

mining an initial point on the workspace boundary, mapping the workspace 

boundary using constant chord length searches, and the accurate determina­

tion of bifurcation points which occur along the workspace boundary. Each 

of these components of are discussed in separate sections. 
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Lx 


Figure C.1: A general planar parallel manipulator 

C.2 A general planar parallel manipulator 

Consider the planar parallel manipulator shown in Figure C.1, for which the 

input coordinates are the leg lengths y = [h, l2' lsF, the output coordinates 

are the coordinates of the working point P of the moving platform u = 

[xp, yp F, and the remaining intermediate coordinate is the orientation of 

the moving platform w ¢p. Refer to Section 4.2 for definitions of these 

coordinates. 

Physical limits on the input variables (leg lengths) take the form of inequality 

constraints 

(C.1) 

Similarly, any other physical limits which might be imposed by the manipula­

tor construction (such as limits on the passive joint angles) can be expressed 

in terms of input, output and intermediate variables by 

gmin :s; g(u, Y, W) :s; gmax (C.2) 

The vectors ymin, ymax, groin and gm!!.X contain the numerical lower and upper 
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limits to the constraints specified in (C.1) and (C.2). 

C.3 	 Maxinlal workspace definition 

The kinematic constraint equations (4.1), ensuring assembly of the mecha­

nism, may be rewritten in terms of the defined coordinates: 

.p(u, v,w) 0 	 (0.3) 

The maximal workspace W M of the manipulator, in agreement with the 

definition given in Section 1.3.1, is defined as 

WM = 	 {u E ?Rnu 
: .p(u, v, w) = 0; v satisfying (C.1); (C.4) 

g(u, v, w) satisfying (C.2)} 

The boundary awM of the maximal workspace may then be defined as 

{ u E ?RnuawM = : u E WM and :3 an S E ?Rnu such that for 

u' = u AS, A E ?R arbitrarily small and either (C.5) 

positive or negative, no v and w exist that satisfy 

.p(u', v,w) 0 as well as inequalities (C.1) - (C.2)} 

C.4 	 Finding an initial point of the workspace 

boundary 

As a starting point for the chord method, a suitable radiating point UO must 

be found within the workspace. For a parallel manipulator, the inverse kine­

matics are easy to solve. Thus, given u and w, system (C.3) may easily be 

solved to give v in terms of u and w: 

v = v(u,w) 	 (C.6) 
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Figure C.2: Finding an initial point on the maximal workspace boundary 

Since we are analyzing a planar manipulator, the maximal workspace W M is 

two-dimensionaL Depending on the particular geometry of the manipulator 

a suitable choice for a radiating point uo, inside the workspace, may be self­

evident. If not, then Uo may be obtained from (C.6) by solving for u and w 

in: 

v = v(u,w) (C.7) 

In practice this can be done by solving the least squares optimization problem 

min Iv(u, w) vl1 2 (C.8) 
u,w 

Consistent with the definition of W M in (C.5), an initial point bl (Xl, yl) T 

on the boundary, in an arbitrarily chosen direction (designated by a unit 

vector 8
1

) from uO, may be determined by solving the following constrained 

optimization problem: 

subject to vmin ::; v(u, w) (C.g) 

gmin::; g(u, v, w) ::; gmax 

and equality constraint h(u, 8 1
) II~=~~II' 8

1 
- 1 = 0 


The solution of Problem (C.g) is illustrated in Figure C.2. Essentiallyopti­


mization problem (C.g) seeks to find the point of intersection (bl ) of a ray, 
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emanating from UO in direction 8 1, with the workspace boundary. 

C.5 Basic chord nlethodology 

Consider any boundary point b i with an associated unit vector Sli pointing 

out of the workspace. A vector S2i from b i to an arbitrary output point u, 

corresponding to a position of the working point of the manipulator, is 

(C.lO) 

Dropping the superscript i, the angle w between the unit vector 8 1 and vector 

8
2

, defined in the right hand sense, is given by 

w {cos-
l (ii~::,~) if Q; 2:: 0 

(c.n) 
27r - cos-1 (i,~'~,~) if Q; < 0 

1 8 2where 8 X Q;Z and Z is the unit vector in the z-direction. 

Clearly w is a function of the output coordinates u. 

Given such a point b i on the workspace boundary, the next point at a con­

stant chord length d along the workspace boundary may be determined by 

means of a modified version of optimization problem (C.g): 

minw 
u,w 

max;subject to v min ::::; v(u, w) ::::; v (C.12) 

gmin:::; g(u, v, w) ::::; gmax 

and equality constraint h Ilu bill - d = 0 

The solution to this optimization problem is depicted in Figure C.3. Having 

solved problem (C.12), 8 2i = b i +l _ b i with components S;i and S;i is precisely 

known and a new reference vector 8
2(i+I), associated with the new botmdary 

point bi+l can now be determined as follows: l 

IThe function tan has two input arguments and returns an answer in the range 

[0, 21f]. 
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L 
I 

I 

Figure C.3: The chord methodology 

(C.13) 

This equation defines a vector perpendicular to s2i and pointing out of the 

workspace. Since it has already been shown how an initial point hI and 

reference vector can be found, it follows that the workspace boundary awM 

can be mapped numerically by successively solving optimization problem 

(C.12) for i = 1,2,3, .. " each time using the solution to the previous problem 

as the starting point for the new optimization problem, Equation (C.13) is 

used to determine the associated reference vector for each new boundary 

point, hi+!. 

The algorithm is terminated when a specified maximum number of iterations 

is exceeded or when 

Ilhi 
- hIli ::s; d (C.14) 

and Ilhi 
- h2 ::s; d11 

which is an indication of closure of the workspace boundary. 
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The formulation given above maps the workspace boundary in a counter­

clockwise manner. In order to map in the clockwise direction it is necessary 

to modify the definition of w in (C .11) to 

COS-l (iI~'~ln if a ::; 0 
w (C.15) 

{ 21T cos-1 (il~~n if a > 0 

where 8 1 x 8 2 = az 

and to change calculation (C.13) of the reference vector sl(i+1) to 

(C.16) 

The same termination conditions (C.14) apply. 

C.6 Determination of bifurcation points 

Whenever the manipulator moves along a trajectory such that motion is 

restricted in some direction, the manipulator is said to be moving along a 

bifurcation path. For maximal workspaces of the planar 3-dof manipulators, 

such paths correspond to configurations either when two legs remain at ex­

treme lengths while the third varies between extreme values or when one leg 

is at an extreme length and remains collinear with the working point while 

the others vary between extreme values. As is to be expected, the bound­

ary of the maximal workspace consists of portions of bifurcation paths. The 

remaining portions of the bifurcation paths are internal bifurcation paths, 

which correspond to positions within the workspace where the manipulator 

motion is restricted (Haug et al. [32]). Points of intersection of bifurcation 

paths in the output space usually correspond to bifurcation points. 

Bifurcation points are positions in the output space where the manipulator 

can branch or change directly from following one bifurcation path to another. 
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It is necessary to determine the exact positions of bifurcation points to ensure 

accurate mapping of the workspace boundary. The precise determination of 

bifurcation points is done by, having identified the constraints active at the 

bifurcation point during the mapping procedure, then solving for the point 

of intersection of these constraints using an optimization approach. l<'urther 

details of this approach can be found in Snyman et al. [48], and Hay and 

Snyman [49, 50]. 

 
 
 



Appendix D 

Location of the minimum value 

of ~-1 for the two-dof 

manipulator 

THEOREM. For the 2-dof planar parallel manipulator with YA = YB, XB > 
XA and Y > YA, and any arbitrarily chosen prescribed workspace WPJ the 

minimum value of /1,-1 always lies on the boundary 8Wp of the workspace 

Wp. 

PROOF. Consider the 2-dof planar parallel manipulator shown in Figure 

4.1. The coordinates of point P (output coordinates) are u = [xp, ypF = 
rUb u2F, the input coordinates are v [It, l2F [VI, v2F. The generalized 

coordinates are thus q [u, vF [xp, YP, h, h]T. 

Dropping the subscript P when referring to Xp and Yp, the actuator leg 

lengths are given by 

(D.l) 
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The kinematic constraints iR(q) are thus 

iR(q) 	 (D.2) 

Differentiation of (D.2) with respect to time yields 

(D.3) 

where iRq contains the partial derivatives of (D.2) with respect to q. 

-2(x - XA) -2(y 
(DA)[ -2(x XB) -2(y 

Here the partitioning separates iRq into entries related to the input coordi­

nates, denoted Ju and entries related the output coordinates, denoted J y • 

Using this partitioning, (D.3) can be manipulated as follows: 

iIi.it = [JuIJvJ [ : ] = Jull + Jvv 0 

Juu = -Jyv (D.5) 

v = -Jy-lJuu. = Ju 

where J is the Jacobian of the manipulator. Substituting the expressions 

for Ju and J y , contained in (DA), into (D.5), an explicit expression for the 

Jacobian of the 2-dof planar manipulator may be obtained. 

J -Jy -lJ
u 

[ l/~l' 0 ] [ -2(x - XA) -2(y - VA) ] (D.6)
1/2l2 -2(x - XB) -2{y - VB) 

[ 	(x - XA)/h (y YA)/l, ] 
(x xB)/l2 (y YB)/l2 

The inverse of J is 

J-l- 1 [ 
(y VB)/l2 (y YA)/h] (D.7)

-	 det(J) (x xB)/l2 (x - XA)/lt 
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where the determinant of J is 

det(J) = (x ­ XA)(Y YB) - (x ­ XB)(Y YA) (D.8) 
ltl2 

The condition number K of the Jacobian is given by K = IIJIIIIJ-111 (equation 

(4.19)), where the norm of J is defined as IIJII [tr(JWJT)l~ (equation 

(4.20)). In order to find the norm of J, we first need 

(D.9) 

Thus the norm is given by 

IIJII = [tr(JWJT)]! 
2 2 1(x - XA)2 + (y YA)2 + (x XB) 2l~ (y - YB) J2 (D.lO)[ 2li 

WI + ~;ll! 
1 

In a similar way it can be shown that 

1 [ 12'!l.::1l.ll. (D.ll)
2(det(J))2 + 1 

where det(J) is given by (D.8). The norm of J-1 is thus 

[tr(J-lW J-lT)]! (D.12) 
1 

det(J) 

Substituting (D.lO) and (D.12) into (4.19), the condition number tit is given 

by 

1IJ111IJ-111 (D.13) 
1 

det(J) 
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The inverse condition number is thus 

~-1 = det(J) (D.14) 

(x - XA)(Y - YB) (x XB)(Y - YA) 
hl2 

Assuming that YB YA, 	 (D.14) can be simplified to 

~-1 (y - YA)(XB - XA) 
(D.15)

hl2 

The necessary condition for a maxima or minima is V ~-1 O. The partial 

derivative of ~-1 with respect to x is 

- (y - YAi~~B - XA) [(x xA)l~ (x - xB)lI] (D.16) 
1 2 

(XB XA)
l3[3 (y - YA)(2x - XA XB) 
1 2 

X [(x - XA)(X - XB) (y - YA)2j 

Assuming (XB - XA) > 0 for all that follows, there are three cases for which 
1:},,,-1 - 0 ax - . 

Case Xl: 

(D.17) 

Case X2: 

'X=~ 	 (D.18)2 

Case X3: 

(x XA)(X XB) + (y YA)2 = 0 

... [x _ (XA~XB)]2 (Y-YA)2= (XA;XB)2 (D.19) 
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Y 

x= 

-------++-+---r---~;_----~~x 

~----+--+--~----_+----~Y YA 

Figure D.l: Solutions to 8~:1 0 

These three cases are depicted graphically in Figure D.l. 

The partial derivative of K;-l with respect to y is 

- (XBlrltA) [lil~ (y ­ YA)2l~ ­ (y ­ YA)2li] 

(XB - XA) 
- lrl~ [(x XA)(X ­ XB) (y - YA)2] 

x [(x - XA)(X ­ XB) - (y ­ YA)2] 

(D.20) 

There are two cases for which = O. 

Case Yl: 

(x ­ XA)(X - XB) (y YA)2 0 

:. [x ­ (XA1X8)]2 + (y - YA)2 = (XA;XB/ (D.21) 

Case Y2: 

(x ­

:. Y 

XA)(X XB) (y YA)2 = 0 

±J(x- XA)(X - XB) + YA (D.22) 
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y 

Figure D.2: Solutions to 8,;;;/ 0 

These two cases are depicted in Figure D.2. Note that for case Y2, real values 

of Y from (D.22) only occur when x ::; XA or x ;::: XB. Comparing the above 

results it is evident that both necessary conditions are only simultaneously 

satisfied by the set of points U corresponding to (D.19) and (D.21) from cases 

X3 and Yl: 

which is the set of points on a circle of radius (xA - X B) /2 centered at 

((XA + XB)/2,YA)' 

Thansform equation (D.15) to polar coordinates (r,O) by substituting Y = 

YA + rsinO and x = (XA + xB)/2 + rcosO: 

sinO 

[C:B;-XA +- r cos 0) 2 + r2 sin2 0] r cos 0) 2 r2 sin2 OJ 

(D.24) 

Squaring both sides of equation (D.24) and simplifying yields 

(D.25) 
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It is evident that when r = (XB - xA)/2, which corresponds to the set of 

points U, that (/,\:-1)2 = 1. It follows that /,\:-1 ±1. However, /,\:-1 E [0, IF, 
thus /,\:-1 = 1 and the set U corresponds to a "maximum ridge". 

Assume that Y > YA and that there exists a point u' inside the prescribed 

workspace Wp such that /,\:-l(U/ ) is a minima. It follows that V /,\:-1 (u') O. 

However it has been shown that the only solution to V /'C 1(u') = 0 is U, and 

this set of points corresponds to a maxima. It thus follows that the minimum 

value of 1'1;-1 must lie on the boundary 8Wp of the workspace Wp. 

 
 
 



Appendix E 

Minimum norm solution of a 

set of equations 

THEOREM. On removal of inequality constraints, equation (6.17) is equiva­

lent to (6.14) 

PROOF. In optimization terms, the minimum norm solution of (6.11) may 

be stated as 

min~tTt (E.1) 
t 2 

such that St + fP 0 

where S is an m x n matrix with m < n. This optimization problem is 

equivalent to (6.17) with inequality constraints removed. 

The Lagrangian £ of this optimization problem is 

£(t, A) ~tT t + AT (St + fP) (E.2)
2 

where A E ~m denotes the vector of Lagrange multipliers. 

The necessary conditions for a minimum are: 

(E.3) 
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Applying these to (E.2) yields 

(EA) 

(E.5) 

.. St+ SSTA 0 (E.6) 

.. A - _(SST)-lSt (E.7) 

By substituting (E.7) into (E.5) it follows that 

t - ST (SST)-l St = 0 (E.8) 
~ 
-fP 

t = _ST (SST)-lfP (E.9) 

which is the minimum norm solution given in (6.14). 

 
 
 


