
Appendix A 

Test functions used for SQSD 

Minimize f (x): 

1. f(x) = xI 2x~ + 3x~ - 2Xl - 4xz - 6X3 6 XO = [3 3 3]T x* , '" 
[1,1,I]T, f(x*) 0.0 

2. 	 f(x) = xt-2xix2+xi+x~-2xl [3,3]T, x* [1,1]T, f(x*) = 

0.0 

3. 	 f(x) xi 8x~ 25xi 4x~ 4XIX2 32xl + 16, XO [3,3]T, x* = 

[2,I]T, f(x*) = 0.0 

4. 	 f(x) 100(XZ-xI)2+(I-xl)2, XO = [-1.2,1]T, x* [1,I]T, f(x*) = 

0.0 (Rosenbrock's parabolic valley [113]) 

5. 	 f(x) xi+x~-xl +xi-x~ X2 X~-X3+XIXZX3' (Zlobec's function 

[114]) 

(a) 	xO = [1, -1, I]T and 

(b) 	XO [0,0,0]T, x* = [0.57085597,-0.93955591,0.76817555]T, 

f(x*) = 1.91177218907 
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6. 	 f(x) (Xl 10x2)2 + 5(X3 - X4)2 + (X2 2X3)4 lO(XI - X4)4, XO 

[3, -1, 0,1F, x* = [0, 0, 0, OlT, f(x*) 0.0 (Powell's quartic function 

[113]) 

l7. 	 f(x) - { 1+(Xl _ X2)2 + sin (! 1rX2X 3) exp [- (Xl~X3 2)2] }, xO 

[0,1, 2F, x* = [1,1, l]T, f(x) = -3.0 [113] 

8. 	 f(x) = {-13 + Xl + [(5 - X2)X2 - 2]X2J2 + {-29 + Xl + [(X2 + 1)x2­

14jx2P, XO [1/2, _2]T, x* [5, 4F, J(x*) = 0.0 (Freudenstein and 

Roth function (113]) 

9. 	 f(x) 100(X2-Xy)2+(1-XI)2, XO [-1.2, IF, x* = [1, IF, f(x*) = 

0.0 	(cubic valley (115]) 

10. 	 f(x) = [1.5-XI(1-X2)]2+[2.25-XI(1-x~)j2+[2.625-XI(1-x~)j2, XO = 

[1, 1F, x* [3, 1/2F, f(x*) 0.0 (Beale's function [113]) 

11. 	 J(x) [1O(x2 xi)j2 + (1 XI)2 90(X4 X~)2 + (1 X3)2 10(x2 X4 

2)2+0.1(x2-x4)2, XO [-3,1, -3, -IF, x* = [1,1,1, 1F, J(x*) 0.0 

(Wood's function [113]) 

12. 	 f(x) = E~=lix;, XO = [3,3, ... ,3F, x* = [O,O, ... ,oF, J(x*) 0.0 

(extended homogeneous quadratic functions) 

13. 	 f(x) E:-I
I[100(XiH - X;)2 (1- Xi)2J, XO = [-1.2,1, 1.2,1, ...]T, 

x* [1,1, ... , IF, f(x*) - 0.0 (extended Rosenbrock functions [113]) 

14. 	 f(x) = E~=l (1- Xi)2 /2i
-

l , xo- [0,0, ... , of, x* = [1,1, ... , 1F, 


f(x*) = 0.0 (extended Manevich functions [116]) 


 
 
 



Appendix B 

The dynamic trajectory 


optimization algorithm 


B.l Background 

The dynamic trajectory method (also called the "leap-frog' method) for 

the unconstrained minimization of a scalar function f(x) of n real variables 

represented by the vector x [XI, X2, ••• ,xnF was originally proposed by 

Snyman [101, 102]. The original algorithm has also been modified to handle 

constrained problems by means of a penalty function formulation (Snyman 

et al. [119] and Snyman [103]). The method possesses the following charac­

teristics: 

• 	 It uses only function gradient information V f(x), 

• 	 No explicit line searches are performed, 

• 	 It is extremely robust: handles steep valleys and discontinuities in func­

tions and gradients, 

• 	 Algorithm seeks a low local minimum and can therefore be used as a 
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basic component in a methodology for global minimization, 

• 	 The method is not as efficient as classical methods on smooth or near­

quadratic functions 

B.2 Basic dynamic model 

In its unconstrained form, the leap-frog optimizer (Lfop) determines the min­

imum of a function f(x), by considering the associated dynamic problem of 

the motion of a particle (of unit mass) in an n-dimensional conservative force 

field, where the potential energy of the particle at a point x(t) and time t, 

is given by f(x). The method thus requires the solution of the equations of 

motion of the particle. At x the force on the particle is given by 

a x(t) -V f(x(t)) 	 (B.1) 

subject to initial conditions 

x(O) = xo, x(O) Vo 	 (B.2) 

To explain how the dynamic trajectory method works, consider the solution 

of the above problem over the time interval [0, t]. It follows that 

~llx(t)112 - ~llvo"2 = f(xO) - f(x(t)) 

T(t) - T(O) = f(O) - f(t) (B.3) 

or f(t) T(t) = f(O) -+ T(O) = K 

Here T(t) is used to denote the kinetic energy of the particle at time t and K 

is a constant determined by the initial values. The last expression in (B.3) 

indicates that energy is conserved. It can also be seen that 6.f = -6.T, 

therefore as long as T increases, f decreases. This forms the basis of the 

dynamic trajectory method. 
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B.3 	 Basic algorithm for unconstrained prob­

lems 

Given f(x), and starting point x(O) xo, the Lfop algorithm computes an 

approximation to the trajectory followed by the particle in the force field by 

solving the initial value problem (B.1) and (B.2). 

The algorithm monitors the velocity x(t) = y(t) of the particle. Clearly as 

long as T ~lly(t)112 is increasing along the trajectory, f(x(t)) is decreasing 

and the algorithm is minimizing the function. However, whenever T decreases 

along the trajectory, the objective function (potential energy) is increasing. 

An interfering strategy is then applied to extract kinetic energy from the 

particle. The consequence of this strategy, based on an energy conservation 

argument, is that a systematic reduction in the potential energy f(x) of the 

particle is obtained, and the likelihood of descent is increased. The particle 

is thus forced to follow a path to a local minimum at x*. 

The numerical integration of the initial value problem (B.1) and (B.2) is 

achieved using the "leap-frog" (Euler forward-Euler backward) method, by 

computing for k 0,1,2, ... , and time step t1t 

(BA) 

A typical interfering strategy, implemented when Il y k+1 11 S Ilyk II is to set 

(B.5) 

and then use these new values of yk and xk to compute the new yk+1 using 

(B.4). 

The method contains some heuristic elements to determine an initial t1t, to 
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allow for reduction and magnification of llt, and to control the step size used 

in the algorithm. 

B.4 Modification for constrained problems 

The Lfop algorithm outlined above can be modified to handle constrained 

problems by means of the penalty function approach (LfopC) [119, 103]. 

Given a constrained optimization problem with objective function f(x), x E 

?Rn, inequality constraint functions 9j(X) :s; 0, j 1,2, ... ,p, equality con­

straint functions hk(x) :s; 0, k = 1,2, ... ,q and penalty parameters elj and 

13k, the associated unconstrained optimization problem given by the penalty 

function formulation is 

For simplicity the penalty parameters elj and 13k usually take on the same 

positive value elj = 13k /1. It can be shown that as /1 tends to infinity, 

the unconstrained minimum of Q(x) yields the solution to the constrained 

optimization problem. The Lfop dynamic trajectory method is applied to 

the penalty function formulation of the constrained problem in three phases. 

PHASE 0: Given some starting point xo, apply Lfop with some overall penalty 

parameter /1 /10(= 102) to Q(x, /10) to give x*(/1o). 

PHASE 1: With Xo := x*(/1o), apply Lfop with increased overall penalty 

parameter /1 = /11(= 104) » /10 to Q(x, /11) to give X*(/11)' Identify the 

set of na active constraints corresponding to the set of subscripts fa 

(u1, u2, ... , una) for which 9uj(X*(/11)) > 0, j 1,2, ... , na' 
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PHASE 2: With xO x*(J.lt}, apply Lfop to 

mJn Qa(x, J.ll) 
na q 

LJ.llg~;(X) + LJ.llh~(x) 
;=1 k=l 

(B.7) 

to give x*. 

 
 
 



Appendix C 

Review of the chord method for 

workspace determination 

C.l Introduction 

This appendix summarizes the chord method for maximal workspace determi­

nation as proposed by Hay and Snyman [50]. Further references related to the 

chord method, and the optimization approach for workspace determination 

are given in Section 1.3.2. In the next two sections of this appendix, defini­

tions necessary for the discussion of the workspace determination method are 

given. The most important basic components of the chord method are deter­

mining an initial point on the workspace boundary, mapping the workspace 

boundary using constant chord length searches, and the accurate determina­

tion of bifurcation points which occur along the workspace boundary. Each 

of these components of are discussed in separate sections. 
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Lx 


Figure C.1: A general planar parallel manipulator 

C.2 A general planar parallel manipulator 

Consider the planar parallel manipulator shown in Figure C.1, for which the 

input coordinates are the leg lengths y = [h, l2' lsF, the output coordinates 

are the coordinates of the working point P of the moving platform u = 

[xp, yp F, and the remaining intermediate coordinate is the orientation of 

the moving platform w ¢p. Refer to Section 4.2 for definitions of these 

coordinates. 

Physical limits on the input variables (leg lengths) take the form of inequality 

constraints 

(C.1) 

Similarly, any other physical limits which might be imposed by the manipula­

tor construction (such as limits on the passive joint angles) can be expressed 

in terms of input, output and intermediate variables by 

gmin :s; g(u, Y, W) :s; gmax (C.2) 

The vectors ymin, ymax, groin and gm!!.X contain the numerical lower and upper 
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limits to the constraints specified in (C.1) and (C.2). 

C.3 	 Maxinlal workspace definition 

The kinematic constraint equations (4.1), ensuring assembly of the mecha­

nism, may be rewritten in terms of the defined coordinates: 

.p(u, v,w) 0 	 (0.3) 

The maximal workspace W M of the manipulator, in agreement with the 

definition given in Section 1.3.1, is defined as 

WM = 	 {u E ?Rnu 
: .p(u, v, w) = 0; v satisfying (C.1); (C.4) 

g(u, v, w) satisfying (C.2)} 

The boundary awM of the maximal workspace may then be defined as 

{ u E ?RnuawM = : u E WM and :3 an S E ?Rnu such that for 

u' = u AS, A E ?R arbitrarily small and either (C.5) 

positive or negative, no v and w exist that satisfy 

.p(u', v,w) 0 as well as inequalities (C.1) - (C.2)} 

C.4 	 Finding an initial point of the workspace 

boundary 

As a starting point for the chord method, a suitable radiating point UO must 

be found within the workspace. For a parallel manipulator, the inverse kine­

matics are easy to solve. Thus, given u and w, system (C.3) may easily be 

solved to give v in terms of u and w: 

v = v(u,w) 	 (C.6) 
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Figure C.2: Finding an initial point on the maximal workspace boundary 

Since we are analyzing a planar manipulator, the maximal workspace W M is 

two-dimensionaL Depending on the particular geometry of the manipulator 

a suitable choice for a radiating point uo, inside the workspace, may be self­

evident. If not, then Uo may be obtained from (C.6) by solving for u and w 

in: 

v = v(u,w) (C.7) 

In practice this can be done by solving the least squares optimization problem 

min Iv(u, w) vl1 2 (C.8) 
u,w 

Consistent with the definition of W M in (C.5), an initial point bl (Xl, yl) T 

on the boundary, in an arbitrarily chosen direction (designated by a unit 

vector 8
1

) from uO, may be determined by solving the following constrained 

optimization problem: 

subject to vmin ::; v(u, w) (C.g) 

gmin::; g(u, v, w) ::; gmax 

and equality constraint h(u, 8 1
) II~=~~II' 8

1 
- 1 = 0 


The solution of Problem (C.g) is illustrated in Figure C.2. Essentiallyopti­


mization problem (C.g) seeks to find the point of intersection (bl ) of a ray, 
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emanating from UO in direction 8 1, with the workspace boundary. 

C.5 Basic chord nlethodology 

Consider any boundary point b i with an associated unit vector Sli pointing 

out of the workspace. A vector S2i from b i to an arbitrary output point u, 

corresponding to a position of the working point of the manipulator, is 

(C.lO) 

Dropping the superscript i, the angle w between the unit vector 8 1 and vector 

8
2

, defined in the right hand sense, is given by 

w {cos-
l (ii~::,~) if Q; 2:: 0 

(c.n) 
27r - cos-1 (i,~'~,~) if Q; < 0 

1 8 2where 8 X Q;Z and Z is the unit vector in the z-direction. 

Clearly w is a function of the output coordinates u. 

Given such a point b i on the workspace boundary, the next point at a con­

stant chord length d along the workspace boundary may be determined by 

means of a modified version of optimization problem (C.g): 

minw 
u,w 

max;subject to v min ::::; v(u, w) ::::; v (C.12) 

gmin:::; g(u, v, w) ::::; gmax 

and equality constraint h Ilu bill - d = 0 

The solution to this optimization problem is depicted in Figure C.3. Having 

solved problem (C.12), 8 2i = b i +l _ b i with components S;i and S;i is precisely 

known and a new reference vector 8
2(i+I), associated with the new botmdary 

point bi+l can now be determined as follows: l 

IThe function tan has two input arguments and returns an answer in the range 

[0, 21f]. 
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L 
I 

I 

Figure C.3: The chord methodology 

(C.13) 

This equation defines a vector perpendicular to s2i and pointing out of the 

workspace. Since it has already been shown how an initial point hI and 

reference vector can be found, it follows that the workspace boundary awM 

can be mapped numerically by successively solving optimization problem 

(C.12) for i = 1,2,3, .. " each time using the solution to the previous problem 

as the starting point for the new optimization problem, Equation (C.13) is 

used to determine the associated reference vector for each new boundary 

point, hi+!. 

The algorithm is terminated when a specified maximum number of iterations 

is exceeded or when 

Ilhi 
- hIli ::s; d (C.14) 

and Ilhi 
- h2 ::s; d11 

which is an indication of closure of the workspace boundary. 
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The formulation given above maps the workspace boundary in a counter­

clockwise manner. In order to map in the clockwise direction it is necessary 

to modify the definition of w in (C .11) to 

COS-l (iI~'~ln if a ::; 0 
w (C.15) 

{ 21T cos-1 (il~~n if a > 0 

where 8 1 x 8 2 = az 

and to change calculation (C.13) of the reference vector sl(i+1) to 

(C.16) 

The same termination conditions (C.14) apply. 

C.6 Determination of bifurcation points 

Whenever the manipulator moves along a trajectory such that motion is 

restricted in some direction, the manipulator is said to be moving along a 

bifurcation path. For maximal workspaces of the planar 3-dof manipulators, 

such paths correspond to configurations either when two legs remain at ex­

treme lengths while the third varies between extreme values or when one leg 

is at an extreme length and remains collinear with the working point while 

the others vary between extreme values. As is to be expected, the bound­

ary of the maximal workspace consists of portions of bifurcation paths. The 

remaining portions of the bifurcation paths are internal bifurcation paths, 

which correspond to positions within the workspace where the manipulator 

motion is restricted (Haug et al. [32]). Points of intersection of bifurcation 

paths in the output space usually correspond to bifurcation points. 

Bifurcation points are positions in the output space where the manipulator 

can branch or change directly from following one bifurcation path to another. 
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It is necessary to determine the exact positions of bifurcation points to ensure 

accurate mapping of the workspace boundary. The precise determination of 

bifurcation points is done by, having identified the constraints active at the 

bifurcation point during the mapping procedure, then solving for the point 

of intersection of these constraints using an optimization approach. l<'urther 

details of this approach can be found in Snyman et al. [48], and Hay and 

Snyman [49, 50]. 

 
 
 



Appendix D 

Location of the minimum value 

of ~-1 for the two-dof 

manipulator 

THEOREM. For the 2-dof planar parallel manipulator with YA = YB, XB > 
XA and Y > YA, and any arbitrarily chosen prescribed workspace WPJ the 

minimum value of /1,-1 always lies on the boundary 8Wp of the workspace 

Wp. 

PROOF. Consider the 2-dof planar parallel manipulator shown in Figure 

4.1. The coordinates of point P (output coordinates) are u = [xp, ypF = 
rUb u2F, the input coordinates are v [It, l2F [VI, v2F. The generalized 

coordinates are thus q [u, vF [xp, YP, h, h]T. 

Dropping the subscript P when referring to Xp and Yp, the actuator leg 

lengths are given by 

(D.l) 
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The kinematic constraints iR(q) are thus 

iR(q) 	 (D.2) 

Differentiation of (D.2) with respect to time yields 

(D.3) 

where iRq contains the partial derivatives of (D.2) with respect to q. 

-2(x - XA) -2(y 
(DA)[ -2(x XB) -2(y 

Here the partitioning separates iRq into entries related to the input coordi­

nates, denoted Ju and entries related the output coordinates, denoted J y • 

Using this partitioning, (D.3) can be manipulated as follows: 

iIi.it = [JuIJvJ [ : ] = Jull + Jvv 0 

Juu = -Jyv (D.5) 

v = -Jy-lJuu. = Ju 

where J is the Jacobian of the manipulator. Substituting the expressions 

for Ju and J y , contained in (DA), into (D.5), an explicit expression for the 

Jacobian of the 2-dof planar manipulator may be obtained. 

J -Jy -lJ
u 

[ l/~l' 0 ] [ -2(x - XA) -2(y - VA) ] (D.6)
1/2l2 -2(x - XB) -2{y - VB) 

[ 	(x - XA)/h (y YA)/l, ] 
(x xB)/l2 (y YB)/l2 

The inverse of J is 

J-l- 1 [ 
(y VB)/l2 (y YA)/h] (D.7)

-	 det(J) (x xB)/l2 (x - XA)/lt 
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where the determinant of J is 

det(J) = (x ­ XA)(Y YB) - (x ­ XB)(Y YA) (D.8) 
ltl2 

The condition number K of the Jacobian is given by K = IIJIIIIJ-111 (equation 

(4.19)), where the norm of J is defined as IIJII [tr(JWJT)l~ (equation 

(4.20)). In order to find the norm of J, we first need 

(D.9) 

Thus the norm is given by 

IIJII = [tr(JWJT)]! 
2 2 1(x - XA)2 + (y YA)2 + (x XB) 2l~ (y - YB) J2 (D.lO)[ 2li 

WI + ~;ll! 
1 

In a similar way it can be shown that 

1 [ 12'!l.::1l.ll. (D.ll)
2(det(J))2 + 1 

where det(J) is given by (D.8). The norm of J-1 is thus 

[tr(J-lW J-lT)]! (D.12) 
1 

det(J) 

Substituting (D.lO) and (D.12) into (4.19), the condition number tit is given 

by 

1IJ111IJ-111 (D.13) 
1 

det(J) 
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The inverse condition number is thus 

~-1 = det(J) (D.14) 

(x - XA)(Y - YB) (x XB)(Y - YA) 
hl2 

Assuming that YB YA, 	 (D.14) can be simplified to 

~-1 (y - YA)(XB - XA) 
(D.15)

hl2 

The necessary condition for a maxima or minima is V ~-1 O. The partial 

derivative of ~-1 with respect to x is 

- (y - YAi~~B - XA) [(x xA)l~ (x - xB)lI] (D.16) 
1 2 

(XB XA)
l3[3 (y - YA)(2x - XA XB) 
1 2 

X [(x - XA)(X - XB) (y - YA)2j 

Assuming (XB - XA) > 0 for all that follows, there are three cases for which 
1:},,,-1 - 0 ax - . 

Case Xl: 

(D.17) 

Case X2: 

'X=~ 	 (D.18)2 

Case X3: 

(x XA)(X XB) + (y YA)2 = 0 

... [x _ (XA~XB)]2 (Y-YA)2= (XA;XB)2 (D.19) 
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Y 

x= 

-------++-+---r---~;_----~~x 

~----+--+--~----_+----~Y YA 

Figure D.l: Solutions to 8~:1 0 

These three cases are depicted graphically in Figure D.l. 

The partial derivative of K;-l with respect to y is 

- (XBlrltA) [lil~ (y ­ YA)2l~ ­ (y ­ YA)2li] 

(XB - XA) 
- lrl~ [(x XA)(X ­ XB) (y - YA)2] 

x [(x - XA)(X ­ XB) - (y ­ YA)2] 

(D.20) 

There are two cases for which = O. 

Case Yl: 

(x ­ XA)(X - XB) (y YA)2 0 

:. [x ­ (XA1X8)]2 + (y - YA)2 = (XA;XB/ (D.21) 

Case Y2: 

(x ­

:. Y 

XA)(X XB) (y YA)2 = 0 

±J(x- XA)(X - XB) + YA (D.22) 
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y 

Figure D.2: Solutions to 8,;;;/ 0 

These two cases are depicted in Figure D.2. Note that for case Y2, real values 

of Y from (D.22) only occur when x ::; XA or x ;::: XB. Comparing the above 

results it is evident that both necessary conditions are only simultaneously 

satisfied by the set of points U corresponding to (D.19) and (D.21) from cases 

X3 and Yl: 

which is the set of points on a circle of radius (xA - X B) /2 centered at 

((XA + XB)/2,YA)' 

Thansform equation (D.15) to polar coordinates (r,O) by substituting Y = 

YA + rsinO and x = (XA + xB)/2 + rcosO: 

sinO 

[C:B;-XA +- r cos 0) 2 + r2 sin2 0] r cos 0) 2 r2 sin2 OJ 

(D.24) 

Squaring both sides of equation (D.24) and simplifying yields 

(D.25) 
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It is evident that when r = (XB - xA)/2, which corresponds to the set of 

points U, that (/,\:-1)2 = 1. It follows that /,\:-1 ±1. However, /,\:-1 E [0, IF, 
thus /,\:-1 = 1 and the set U corresponds to a "maximum ridge". 

Assume that Y > YA and that there exists a point u' inside the prescribed 

workspace Wp such that /,\:-l(U/ ) is a minima. It follows that V /,\:-1 (u') O. 

However it has been shown that the only solution to V /'C 1(u') = 0 is U, and 

this set of points corresponds to a maxima. It thus follows that the minimum 

value of 1'1;-1 must lie on the boundary 8Wp of the workspace Wp. 

 
 
 



Appendix E 

Minimum norm solution of a 

set of equations 

THEOREM. On removal of inequality constraints, equation (6.17) is equiva­

lent to (6.14) 

PROOF. In optimization terms, the minimum norm solution of (6.11) may 

be stated as 

min~tTt (E.1) 
t 2 

such that St + fP 0 

where S is an m x n matrix with m < n. This optimization problem is 

equivalent to (6.17) with inequality constraints removed. 

The Lagrangian £ of this optimization problem is 

£(t, A) ~tT t + AT (St + fP) (E.2)
2 

where A E ~m denotes the vector of Lagrange multipliers. 

The necessary conditions for a minimum are: 

(E.3) 
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Applying these to (E.2) yields 

(EA) 

(E.5) 

.. St+ SSTA 0 (E.6) 

.. A - _(SST)-lSt (E.7) 

By substituting (E.7) into (E.5) it follows that 

t - ST (SST)-l St = 0 (E.8) 
~ 
-fP 

t = _ST (SST)-lfP (E.9) 

which is the minimum norm solution given in (6.14). 

 
 
 


