
Chapter 6 

The planar tendon-driven 

parallel manipulator 

6.1 Introduction 

Tendon-driven parallel manipulators represent a relatively recent technology, 

characterized by the use of cables in place of the linear actuators generally 

used in parallel manipulators. The use of these manipulators as overhead 

cranes for materials handling (Dagalakis et al. [123], Bostelman et al. [124], 

Verhoeven et al. [125]) and worker-access (Bostelman et al. [126]) in the 

heavy, and large-scale manufacturing industries appears to be a promising 

application of this technology. On a smaller scale another possible application 

of tendon driven manipulators is in pick-and-place applications. Verhoeven 

et al. [125] also mention applications as fast moving micromanipulators. 

Three separate, but inter-related topics are examined in this chapter, and 

methodologies for addressing these topics are proposed. The first topic ad­

dressed is the determination of cable forces for overconstrained tendon-driven 

manipulators. It is necessary to solve this problem in order to address the 
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CHAPTER 6. THE PLANAR TDPM 122 

second topic, namely the development of a methodology for workspace de­

termination of tendon-driven manipulators. The final topic examined is the 

dimensional synthesis of tendon-driven manipulators for a large dextrous 

workspace. 

As far as the current state-of-the-art relating to these topics is concerned, 

Verhoeven and Hiller [127] present a method for determining the cable ten­

sion distribution in overconstrained tendon-based parallel manipulators. This 

method is limited though to the homogenous case, where no external forces 

are applied to the manipulator end-effector. Lafourcade et a1. [128] determine 

cable tensions based on the minimum norm solution. In terms of workspace 

calculation, Verhoeven and Hiller [129] have proposed a method for deter­

mining planar tendon-driven manipulator workspaces considering external 

forces, but not torques applied to the moving platform. Other authors, for 

example, Fattah and Agrawal [130] have used a discretization approach to 

determining and optimizing manipulator workspaces. 

In the next section, the tendon-driven parallel manipulators considered in 

this chapter are presented and the kinematic and static analyses performed. 

Thereafter methods for determining cable forces are developed and described. 

Two methodologies for determining workspaces of tendon-driven parallel ma­

nipulators are developed and applied to 3- and 4-cable planar tendon-driven 

parallel manipulators. Finally dimensional synthesis of these manipulators 

for maximal dextrous workspaces is performed. 

6.2 The tendon-driven parallel manipulator 

As shown schematically in Figure 6.1, the tendon-driven parallel manipu­

lator (TDPM) considered here consists of a moving platform connected to 

a fixed frame by means of n cables, with associated displacement vectors 

i [~, t;,]T, i = 1, ... ,n. The lengths of the cables, denoted li' i 1, ... )n 
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Figure 6.1: Planar tendon-driven manipulator definitions 

where Ii = J!i = Ilill, can be varied by winches attached to the fixed frame. A 

coordinate frame x' y' is attached to the moving platform. The position of 

the origin of the platform coordinate frame is u - [Ub u2F = [xp, yp]T, and 

the platform frame is inclined at an angle cpp to the global x y coordinate 

frame. The cables are attached to the fixed frame at ci
, i = 1, ... ,n and to 

the moving platform at points ai, i = 1, ... , n, defined relative to the platform 

coordinate frame x' y'. These vectors may of course be transformed to the 

global coordinate frame by means of a transformation matrix T(cp p) such that 

the global attachment vectors a i are given byai T(cpp)ai
. The forces in 

each of the cables are described by vectors fei [f;i) f;iF) i 1,2, ... ,n. 

The corresponding magnitudes of the tensions in these cables are denoted 

til i = 1,2, ... ,n where ti = fei = Ilfei II. External forces and torques acting 

on the platform are fP U!,J':, TPF. 

The specific planar parallel tendon-driven manipulator used to illustrate the 

methodologies proposed here is shown in Figure 6.2. It is assumed that the 
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L 

Figure 6.2: The planar tendon-driven manipulator 

3-cable 4-cable 

al ~ [0.1,0. ~ [0.1,0.1] 

a2 ~ [-0.1, O.l]T ~ [-0.1, O.l]T 

a3 [0.0, -O.ljT [-0.1, -0. 

a4 [0.1, -O.l]T 

Table 6.1: TDPM moving platform cable attachment points 

motors are positioned somewhere on a square frame of dimensions 2 x 2 in 

arbitrary units. The global origin x y is positioned at the center of the 

frame. Two different configurations, a 3-cable and a 4-cable manipulator 

will be considered. For each of these configurations, the cable attachment 

points on the moving platform platform are given in Table 6.1, and the 

exact motor attachment points on the frame in Table 6.2. The workspace of 

the manipulator is dependent on the load applied to the platform. In this 

chapter, three different load cases, denoted L1-L3, and given in arbitrary 

units in Table 6.3, will be considered. 
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3-cable 4-cable 

c1 [1,11T [1,0.5F 

c2 [-1, IF 1,0.5jT 

c3 [0, _l]T [-1, -0.5]T 

c4 [1, -0.5]T 

Table 6.2: Geometrical parameters for the 3 and 4-cable TDPM 

Ll 
L2 

° 
5 

-10 
-10 

° 
0 

L3 5 -10 1 

Table 6.3: Load conditions LI-L3 

6.2.1 Kinematic analysis 

Consider the n kinematic constraint equations, expressed in generalized co­

ordinates q [U,V,W]T, relating the platform position u [xP,yplT, the 

orientation w = ¢p, and the input cable lengths v [h, l2, . .. , lnl T : 

4>(q) = 4>(u, v, w) 0 (6.1) 

From Figure 6.1, it can be seen that the following relationships hold: 

(6.2) 

The transformation ai(¢p) = T(¢p)ai of a i from the local to the global 

coordinate system, by means of the matrix T(¢ p), is given by 

[ai~] [c~s¢p -sin¢p] [-i ] (6.3) 
ay sm¢p cos¢p ay 

for i = 1,2, ... ,n. The corresponding input cable lengths Ii Ilii II may be 

written as: 

li = [(e~)2 (~)2] ~ (6.4) 

= [(c~ -a~(¢p) _Xp)2+ (c~ a~(¢p) _yp)2]~ 
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Writing (6.4) in the standard form (6.1) yields 

~(q) = ~(u, v, w) 

(6.5) 


o 

where a subscript x, y or z denotes the x, y or z component of a vector. 

Substituting (6.3) into (6.5) and differentiating yields 

[I £1 l(a1 xt ~z= :::.IL 1 0 ... 0
h l~ h 
[2 £ {a2 xt2~.= :::.IL o 1 ... 0b b b~qq 

~ 5L (anxtn)z 0 0 ... 1in In In 

This can alternatively be written as 

VI 
V2 

Vn 

£1 [I (al XlI).= :::.IL 
l1 l~ II 

!!i~ (a2 xt2)z 
l2 I2 l2 

~5L (anxln)z 
In In In 

.[ U, ]:2 
 . 
or v 

UI 
U2 
W 

o (6.6)VI 
V2 

Vn 

.T . T 
= - J [u ,w] (6.7) 

where J is the Jacobian of the kinematic constraint equations with respect 

to the output u and intermediate w variables. 
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6.2.2 Static analysis 

Force equilibrium implies that for any configuration, specified by u and w, 

the following equations must hold: 

i PL
n 

fei + [I:, 1:1T = 0 and L
n 

a X fei +T = 0 (6.8) 
i=l i=l 

Noting that the tensions fei act parallel to their corresponding cable vectors 

ii, it follows that 

fei = li ti (6.9) 
Ii 

Equations (6.8) can thus be rewritten as 

n e n li 
PL Tti + [I;, I:]T 0 and Lai x-ti + T = 0 (6.10) 

i=l t i=l li 

where li Iliill. Writing (6.10) in matrix form gives 

(6.11) 


or fP = -St 

where S is called the structure matrix of the manipulator (Verhoeven et al. 

[125] ). It is interesting to note that S = JT, where J is the Jacobian defined 

by equation (6.7). 

6.3 Calculation of the cable tensions 

6.3.1 Minimum norm approach 

It is evident for the planar case, as pointed out by Verhoeven and Hiller 

[127] and Fattah and Agrawal [130], that system (6.11) is overconstrained 
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and thus has many solutions if n > 3. For n = 3 there are 3 equations and 3 

unknowns, and thus if the equations are linearly independent, there will be 

a unique solution simply given by 

(6.12) 

For n > 3 there are many solutions, assuming SST is invertible. The general 

solution to (6.11) in this case is of the form 

(6.13) 

where t mn is the minimum norm solution of (6.11) and t nul is a vector belong­

ing to the nullspace N(S) of S. The minimum norm solution t mn is deter­

mined by means of the Moore-Penrose inverse, defined as S+ ST (SST)-I, 

and is given by (Fattah and Agrawal [130]) 

(6.14) 

Fattah and Agrawal [130] take t nnl o and thus the solution to (6.11) 

t mnis simply given by setting t where t mn is given by (6.14). As will 

be illustrated in the next section this approach may result in some feasible 

points being excluded from the workspace. The minimum norm solution 

does however have the advantage that it is not computationally demanding, 

and may thus have some use when performing rough workspace calculations. 

Lafourcade et al. [128] present a simple iterative method whereby t nnl is 

gradually increased until feasible cable tensions are determined. 

6.3.2 Constrained R2-norm approach 

A new methodology for determining the cable tensions for any specified u 

and w is now proposed. Using the partitioning indicated in system (6.11) to 

define 

(6.15) 
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where A is 3 x 3 and B is 3 x (n - 3), system (6.11) can be rewritten as: 

(6.16) 

which gives the values of the dependent tensions t A E R3 as a function of 

the independent tensions tB E Rn-3. For a given position u = [xp, yp]T and 

orientation w = ¢p of the platform, and for identical prescribed lower and 

upper bounds, tmin and tmax on the tension magnitudes ti, i = 1,2, ... ,n, the 

cable tensions t may now be determined by solving the following numerical 

optimization problem1
: 

min lit II;
t B 

such that tmin ::;tf(tB )::; tmax , i- 1,2,3 (6.17) 

and tmin < tf ::; tmax
, j 1,2, ... , (n 3) 

where t = [tl, t2, ... ,tnF = [tAT, tBTF = [tt, tt, tt, tf, ... ,t~-3F. This 

optimization problem is solved using the LfopC numerical optimization al­

gorithm of Snyman [103] (see Appendix B). Of course, on removal of the 

inequality constraints, it can be shown that optimization problem (6.17) 

reduces to equation (6.14) (see Appendix E). The advantage of the method­

ology proposed here is that either the minimum, or maximum possible cable 

tensions, in the case where a maximization is performed instead in (6.17), 

can be determined. The respective solutions correspond to a tendon driven 

system with minimal energy consumption, or one with maximal stiffness. 

Figure 6.3 illustrates the significant difference between the minimum norm 

(with t nul 0) and constrained .e2-norm approach approaches for determin­

ing the cable tensions. The illustrative manipulator design analyzed here has 

frame attachment points c1 [1,0.15JT, c2 1,0.15]T, c3 1, -0.15JT 

and c4 = [1, -0.15]T and platform attachment points as given in Table 6.l. 

The constant orientation workspaces for ¢p = 0, ¢p 0.2 and ¢p 0.4 

are given. Minimum and maximum allowable tensions were 5 and 100 re­

spectively. The workspaces indicated by a solid line were calculated using 

111 . II:~ denotes the £2-norm of its argument. 
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¢ip = 0.2 ¢ip 0.4 

0.50.5 0.5 

"" 0"" 0 

~ 

-0.5 -0.5 -0.5 

-1 '----~---' -1 '--------' -1 '----~-----' 
-1 o -1 o -1 o 

x x x 

Figure 6.3: Comparison of workspaces obtained with cable forces calculated 

using the minimum norm (dashed line) and constrained .e2-norm (solid line) 

approaches. 

the constrained .e2-norm approach, and those indicated by a dashed line were 

calculated using the unconstrained minimum norm approach for determining 

the cable tensions. Workspaces were determined using the chord method (see 

Section 6.4.3). It is evident that using the unconstrained minimum norm so­

lution here results in an extreme underestimation of the feasible workspace 

of the manipulator. 

6.3.3 Constrained l\-norm approach 

The constrained .e2-norm approach for determining cable tensions outlined 

above is limited by the computational effort required by the numerical opti­

mization algorithm. When determining manipulator workspaces, for exam­

ple, the cable tensions will have to be determined many times. It is thus 

desirable to have a more efficient method for determining the feasible cable 

tensions. The constrained .ernorm approach follows from the constrained .e2­

norm approach outlined above, but is posed as a linear programming prob­

lem, allowing for a more efficient solution of the cable tensions. For a fixed 

position and orientation of the moving platform, the constraints on the three 

dependent cable tensions t A are used to calculate the feasible region for the 
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3independent cable tensions t B E 1Rn
- . For each dependent cable, minimum 

and maximum tension limits dictate that the following inequalities hold: 

t min tf(tB
) 	~ 0, i 1,2,3 (6.18) 

tmaxand ti\(tB ) - < 0 i = 1 2 3 
t -" , 

Defining M = -A-ifE' and N -A-1B, substituting (6.16) into (6.18), 

and including the inequalities limiting the tensions of the independent cables 

t B the feasible region in the independent cable tension space t B E 1Rn - 3 is 

bounded by the inequality constraints of the following optimization problem2 
: 

n-3 

'" N- -tf! > tmin M • 1,2,3; 	 (6.19)L.....t t]] - i, • 
j=l 

n-3 

tmaxL Nijtf ~ - M i , i = 1,2,3 
j=l 


and tmin tf < t IDaX
~ , k = 1,2, ... , (n - 3) 

The minimum or maximum (where a maximization is performed instead) 

allowable cable tensions may be determined by solving optimization problem 

(6.19). For n 2: 5 this can be done efficiently using linear programming 

methods. For the case where n 4, inequalities (6.19) reduce to 

NitB 2: 	(tInin - M i ), i- 1,2,3 

(tmaxNitB ~ M i ), i = 1,2,3 (6.20) 

Inin tB maxo~ t ~ ~ t

The existence of a feasible solution, and the minimum t Bmin and maximum 

tBmax allowable independent cable tensions may in this case be easily and 

efficiently determined analytically by examining the extreme values of tB 

211 - 111 denotes the l\ -norm of its argument. 
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defined by (6.20). The exact algorithm achieving this is stated in Algorithm 

6.1. 

Algorithm 6.1 Tension limit algorithm 

for i = 1 : 3 

if Ni > 0 


(tmin 


tf
t~OW - Mi )/Ni 

igh (tmax 
- Mi)/Ni 

else 

t~OW (tmax 
- Mi)/Ni~ 

f~ugh (tmin - Mi)/Ni~ 

end if 

end for 

t mint~OW 

thigh tmax 
4 

t Bmin maxi (t}OW) , i = 1, ... ,4 
B max • (thigh) . 1 4t . IIllni i ,~=, . . . , 

If t Bmin > tBmax , then no feasible solution exists for the cable tensions. Of 

course, once t B is known, the dependent cable tensions t A may be calculated 

using (6.16). Note that since the minimum irnorm solution may correspond 

or t Bmaxto either t Bmin , it is necessary to evaluate and compare both pos­

sibilities in order to determine the correct minimum norm. The same is 

true when determining the maximum iI-norm. In terms of control of such 

or tBmaxa manipulator, the cable tensions t corresponding to either tBmin , 

or indeed any intermediate values, may be used since these are all feasible 

solutions for the cable tensions. 
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6.4 	 Constant orientation workspace determi­

nation 

6.4.1 	 Workspace definition 

Unlike regular parallel manipulators, where the workspace is dependent on 

the input joint limits and the geometrical realization of the manipulator, the 

workspace for tendon-driven manipulators is primarily determined by the 

allowable forces in the cables (Verhoeven et al. [125]). In particular, the 

tension in each of the cables should lie between a pretension and maximum 

tension: 

(6.21 ) 

Here it is also required that each cable has a minimum allowable length [min: 

li 2: zmin, 	 i = 1,2, ... ,n (6.22) 

The constant orientation workspace WC[wfix
] (as defined in Section 1.3.1) 

of the tendon-driven parallel manipulator for a fixed platform orientation 

wfix ¢fj1 can now be defined as 

WC[wfix
] 	 {u E ?R2 

: cp(u, v, wfix 
) = 0, (6.23) 

tmin S ti S ~a:x and li 2:: lmin, i-I, 2, ... ,n} 

Where the cable tensions t are calculated using either the minimum norm, 

constrained .ez-norm, or constrained .ernorm approach proposed in the pre­

vious section, and the cable lengths v are calculated using (6.4). Other 

conditions such as platform stiffness and proximity to singularities can also 

be easily included in the workspace definition by the addition of further in­

equality constraints. In this chapter, for the the 3-cable manipulator, a lower 

limit is placed on the determinant of the kinematic Jacobian, to ensure that 

the manipulator does not approach a singular position: 

det (J) 2: 	Dmin (6.24) 
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Limit Value 

tmin 5 

tmax 100 
zmin 0.1 

Dmin 10-3 

Table 6.4: Numerical values of limits used in calculating TDPM workspaces 

The values of the various maximum and minimum limits required in inequal­

ities (6.21), (6.22) and (6.24), as used for all numerical examples in this 

chapter, are given in Table 6.4. 

6.4.2 Discretization method 

As mentioned in Section 1.3.2, one method commonly used by researchers 

for determining parallel manipulator workspaces is the discretization method. 

For a given fixed orientation ¢frx of the moving platform, this method sim­

ply involves discretizing the output space u E ?R2 of the planar TDPM at a 

given resolution, and then testing each of the resulting mesh points u ij for 

compliance with the inequalities (6.21) and (6.22), as well as (6.24) if appli­

cable. If none of these inequalities are violated then the point lies within the 

manipulator workspace. If any of the constraints are violated, then the point 

does not lie within the workspace. The basic discretization method used is 

stated in Algorithm 6.2. 

This discretization method has been applied to workspace determination of 

various manipulator designs, using the constrained .e2-norm method, embod­

ied in (6.17) for determining the cable tensions in the 4-cable case. 

 
 
 



135 CHAPTER 6. THE PLANAR TDPM 

Algorithm 6.2 Discretization algorithm 

1. 	Select the required workspace resolution, m, specifying the number of 

points to be inserted between the maximum and minimum possible 

limits of the workspace determined in the next step. 

2. 	 Determine extreme limits of the region to be discretized by determining 

xmin = min(c~), xmax max(c~), ymin = min(c~), and ymax = max(c~) 
for i 1,2, ... ,n in each case. 

3. 	 Discretize the output space of the manipulator by determining (m+ 1)2 

points u ij 

0, 1,2, ... , m and j 0, 1,2, ... , m. 

4. 	 Test each u ij for compliance with inequalities (6.21) and (6.22) (and 

(6.24) for the 3-cable case). If all inequalities are satisfied, record u ij 

as a valid point. 

3-cable manipulator 

Constant orientation workspaces for the 3-cable manipulator described in 

Section 6.2, and for values of ai and ci as defined in Tables 6.1 and 6.2 

respectively, were calculated using the discretization method. Figure 6.4 

shows the constant orientation workspaces obtained for3 cpp = 0, cPp = 0.05 

and cpp = 0.1 in the columns, and for load cases Ll, L2 and L3 (given in 

Table 6.3) in the rows. For these cases, using m 50, the average time 

for workspace calculation was 0.03s, using a FORTRAN code on a 1.6 GHz 

Pentium 4 computer. Of course, as m is increased, the time required for 

computation increases proportionally to m 2 • 

It is interesting to note, for this manipulator design, that the manipulator 

workspace is highly dependent on the both the load on the moving platform, 

3 All angles in this chapter are expressed in radians. 
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q,p = 0 

0.5 

-0.5 

-1 

0.5 

Ll 0 

-0.5 

-1 

q,p = 0.05 

-1 0 - 1 0 

0 

0.5 

0 

-0.5 

-1 
-1 0 

0.5 0.5 

L3 ;:" 0 0-" 
.:P 

'::,f:;.ii-0.5 -0.5 
:r 

-1 -1 
-1 0 -1 0 

x x 

¢p = 0.1 

0.5 

0 

~ 

.E? 
Ii¥-" 
W 
r 

-0.5 

-1 
-1 0 

0.5 

0 

- 0.5 

-1 
-1 0 

0 

x 

Figure 6.4: Workspaces of the 3-cable TDPM determined using the dis­

cretization method 

as well as the orientation of the platform. Note that even small changes in 

the platform orientation result in extreme changes in the workspace. Also 

of interest is the presence of a singularity at x = 0 for the cases where 

¢ p = 0 which effectively divides the workspace into two usable regions. The 

workspace boundaries in the vicinity of this singularity are dictated by the 

limit Dmin on the determinant of the Jacobian, implemented by means of 

inequality (6.24). 

4-cable manipulator 

Figure 6.5 shows some constant orientation workspaces of the 4-cable ma­

nipulator presented in Section 6.2, and defined in Tables 6.1 and 6.2. These 
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¢p = -0.2 ¢p = 0.2 

0.5 

-1 L---_~_ ___' 

-1 a 

0.5 

0.5 

-1 L---_~_ ___' -1 L--_~_----" 
-1 a -1 a 

0.5 0.5 

L2;:» a 

-0.5 

-1 '--------------' -1 '--------' -1 '--------' 
-1 a -1 a -1 a 

0.5 0 .5 0.5 

-1 '--------' -1 '--------' -1 '--------' 
-1 a -1 o -1 a 

x x x 

Figure 6.5: Works paces of the 4-cable TDPM determined using the dis­

cretization method 

workspaces were calculated using the discretization algorithm with m = 50, 

and the constrained ernorm method embodied in (6.17) for determining the 

cable tensions. The average time for workspace computation was 29.3s, us­

ing FORTRAN on a 1.6 GHz Pentium 4 computer. It is immediately evident 

that the necessity of using a more complicated approach for determining the 

cable tensions for the 4-cable manipulator dramatically increases the time 

required to compute the manipulator workspace. Times required to compute 

workspaces using the constrained e1-norm approach for determining cable 

tensions are comparable to the 3-cable case. 

Of interest is the fact that for the particular design presented here, the ma­

nipulator has a greater workspace than for the 3-cable manipulator. It also 

appears that the size ofthe workspace is less sensitive to platform orientation 

and applied loads than its 3-cable counterpart. 
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6.4.3 Chord method 

The tendon-driven parallel manipulator constant orientation workspaces can 

also be determined using a modified version of the chord method proposed in 

Section 5.4. As before the method consists of finding an ini tial single point 

on the workspace boundary, and then using an optimization-based search 

methodology to determine subsequent points along the workspace boundary 

at constant chord lengths d. 

In order to determine a point on the workspace boundary, a single feasible 

point uO somewhere within the workspace boundary must first be determined. 

This may be accomplished in one of two ways. The first possibility is to run 

the discretization method, at a coarse resolution to obtain a rough estimation 

of the workspace. The internal point for the method can then be chosen 

manually, and the chord methodology used to map the boundary accurately. 

Alternatively a suitable internal point may be found by solving the following 

unconstrained optimization problem: 
n 

tmean )2min 2: {ti (6.25) 
u 

i=] 


{tmax
where tmean - t min )/2. In the implementation this numerical opti­

mization problem is solved using the efficient Dynamic-Q method developed 

in Chapter 3. 

Once a suitable internal point uO has been found, the initial point b I on 

the workspace boundary is found by solution of the following optimization 

problem which replaces (5.17). 

r 

such that tmin < ti (u (r )) ::; tmax (6.26) 

and li(u(r)) ~ lmin 

where u(r) UO + rsl as before and, of course, r is the distance from the 

internal point un. For the 3-cable manipulator, inequality constraint (6.24) 
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is also included in the optimization problem. The cable tensions ti, i = 

1,2, ... , n are calculated using either the constrained .e2-norm or constrained 

.e1-norm approach with u u{r), and cable lengths Ii, i - 1,2, ... , n are 

given by (6.4). 

The chord methodology, with specified chord length d, is embodied in the 

following optimization problem for the tendon-driven manipulator: 

minui 
w 

such that tInin 
::; ti (u) ::; tmax (6.27) 

and Ii(u) 2 lmin 

where, u u(w) is given by (5.18). The solution of (6.27) yields the next 

point bi+l along the workspace boundary and a vector S2i = [S;i, S;i]T, of 

magnitude d, pointing from b i to bi+l. Once again for the 3-cable manipula­

tor, an additional inequality constraint corresponding to condition (6.24) is 

also included in the optimization problem. The values of the cable tensions, 

for any u and prescribed ¢fix, are once again calculated using either the con­

strained .e2-norm or constrained .e1-norm approaches, and the cable lengths 

using (6.4). The chord method otherwise remains the same as presented in 

Appendix C. 

Choice of optimization method 

In previous implementations of the chord method, the numerical optimiza­

tion algorithms used for solving problems (6.26) and (6.27) were the LfopC 

method (Snyman [103]), or the more efficient Dynamic-Q method (Chapter 

3). These methods performed well in these cases, since the constraints typ­

ically appearing in the workspace boundary definition were continuous for 

the types of parallel manipulators studied. For tendon-driven manipulators, 

this is not always the case. In particular the constraints corresponding to the 

cable tension limits (6.21) may be discontinuous on the workspace bound­

ary. Consider Figure 6.6(a) which shows the ¢p 0 constant orientation 
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(a) (b) 

0.5 

-1 '---~-~-~----' 
-1 -0.5 0 0.5 

x 

Figure 6.6: (a) Workspace of a 4-cable manipulator with the section indicated 

by means of the chained line and (b) cable tensions ti, i = 1,2,3,4 along the 

section 

workspace under load case Ll for a 4-cable manipulator with c1 [1, o.IF, 

c2 I,O.l]T, c3 1,-O.lF and c4 [1,-O.IF, and platform attach­

ment points ai as given in Table 6.1. The chained line indicates the position 

of a section taken though the workspace (at x 0.54), along which the ca­

ble tensions have been calculated (Figure 6.6(b)). It is evident from Figure 

6.6(b) that cable tensions t3 and t4 are discontinuous at y = 0, a point which 

corresponds to the workspace boundary. Clearly, the result of these disconti­

nuities is that it is not possible to use a gradient-based algorithm for solving 

problems (6.26) and (6.27) at every point on the workspace boundary. 

This problem is addressed by using a bisection method to solve problem 

(6.27). It is possible to use a bisection method here, since there is only one 

variable, namely w, to solve for in optimization problem. The exact bisection 

algorithm used is given in Algorithm 6.3. 

It is thus now possible to solve optimization problem (6.27) using the Dynamic­

Q optimization method, reverting to the bisection algorithm when the opti­

mization breaks down. On implementation, however, it was found that the 

bisection algorithm is more economical in solving optimization (6.27) than 
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Algorithm 6.3 Bisection algorithm 

b i1. 	 Given two successive boundary points b i - 1 and bi, with S2(i-l) 

b i 1-	 , calculate Sli using equation (C.13). Set {3 _S2(i-l}, ui3 bi-I, 

0: ds li and u a = b i + 0:. Choose termination parameter SU(= 10-8 ). 

2. 	 Set "I d(o: + (3)/(l10: (311). If the sign of the z-component of 0: x {3 

is negative, then "I = -"I. 

3. 	 Determine whether u"Y = bi+"Ilies within the workspace by evaluating 

inequalities (6.21) and (6.22) at this point. 

4. 	 If u"Y is feasible, set (3 "I and uP = u"Y, else set 0: = "I and ua u"Y. 

5. 	 If u"Y is feasible, and termination condition II ui3 uall::; SU is satisfied, 

set bi+l u"Y, S2i = "I and stop, else go to Step 2. 

Dynamic-Q, and is thus used exclusively here in mapping the workspace 

boundary. 

Determining the bifurcation points 

As before it is necessary to implement a special procedure for determining 

bifurcation points separately as they are encountered along the workspace 

boundary. The reason for this is illustrated in Figure 6.7(a). The dashed 

line represents the actual workspace boundary, and the solid line the ap­

proximation to the workspace obtained using the chord method. Since the 

chord method maps the workspace boundary at discrete chord lengths d, it 

is evident that bifurcation points will not be accurately determined, and the 

approximation to the workspace will be degraded. Thus determining the 

locations of the bifurcation points is important in order to obtain a more 

accurate representation of the manipulator workspace. 
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3-cable manipulator 

Figure 6.8 gives various constant orientation workspaces for the 3-cable ma­

nipulator computed by the chord method. The workspaces calculated are 

chosen to correspond to those given in Section 6.4.2, to allow for comparison 

with the workspaces computed using the discretization method and depicted 

in Figure 6.4. In calculating these workspaces a chord length of d = 0.05 

was used, except for the workspaces corresponding to ¢p = 0 with load cases 

L2 and L3, where a smaller chord length of d = 0.03 was used in order to 

capture all the significant features of the workspace boundary. Similarly in 

calculating the small left hand part of the workspace for L1 and ¢p = 0.05 

a chord length of d 0.02 was used. The average computational time for 

these workspaces is approximately 0.8s. 

It . is evident that the workspace representations obtained by means of the 

chord method are much more accurate and efficient in terms of informa­

tion stored than those obtained by the discretization method. On the other 

hand the discretization method does present an extremely robust method for 

workspace determination, although limited in terms of accuracy and compu­

tational efficiency. 

4-cable manipulator 

The workspaces for the 4-cable manipulator, determined using the chord 

method with d 0.05 are given in Figure 6.9. A reduced chord length of 

d 0.02 was used to determine the workspace corresponding to load case 

L3 and ¢p -0.2. Average computational time per workspace was 30.12s 

using the constrained .e2-norm approach for determining cable tensions. It 

is evident on comparison with the results using the discretization method 

given in Section 6.4.2 that, for comparable computational effort, the chord 

method yields a much more accurate representation of the workspace. Once 

 
 
 



144 CHAPTER 6. THE PLANAR TDPiW 

¢p 0 ¢p = 0.05 ¢p = 0.1 
1 

W 0.5 

Ll 

0.5 

0"" 0 


-0.5 
 -0.5 

-1-1 
-1 0 -1 0 

0.5o:~. 
0 

-0.5 

L2"" 0 

-0.5 

-1 

\r 

\I 


0 -1 0 

0.5 

0~.~[1J -0.5 

-1 
V 0.5 

-1 0 1 0 
x 

x 

0.5 


0 
 f 
-0.5 

-1 

-1 0 


0.5 q;
0 

-0.5 

-1 
-1 0 


1 


0 

-0.5 V
-1 

-1 0 
x 

Figure 6.8: Workspaces of the 3-cable TDPM determined using the chord 

method 

again use of the constrained f.1-norm approach for determining the cable 

tensions results in a much more economical method, with computational 

times comparable to those of the 3-cable TDPM. 

6.5 Dextrous workspace determination 

In agreement with the definition given in Section 1.3.1 the dextrous work­

space ~VD r¢min, ¢max] of the planar tendon-driven manipulator is defined as: 

{u E?Jt2 
: ~(u,v,w) = 0; 

min < t· < tmax 
t ,; 1 2 dt _ _ ,. " ••• ,n; an (6.28) 

li 2:: [min i = 1,2, ... ,n for all W E [¢min, ¢max]} 
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Figure 6.9: Workspaces of the 4-cable TDPM determined using the chord 

method 

The dextrous workspace can be thought of as the intersection of all constant 

orientation workspaces in the range [q)min, q)max]. Du Plessis and Snyman [18] 

suggest a numerical approach for determining parallel manipulator dextrous 

workspaces similar to that used in Section 5.7. Firstly constant orientation 

workspaces are determined for a finite number m sl of regularly spaced q)p val­

ues in the range [q)min, q)max]. The intersection of these constant orientation 

workspaces then yields the dextrous workspace of the manipulator. In many 

cases the dextrous workspace may be efficiently and accurately described by 

simply computing the intersection of the two extreme constant orientation 

workspaces corresponding to q)min and q)max. Du Plessis and Snyman point 

out however that it is necessary in this case to also check the validity of this 

efficient approach by ensuring that the constant orientation workspace at 
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the intermediate central value of (¢min ¢max)/2 fully contains the dextrous 

workspace computed using the extreme values. In the case where the above­

mentioned approach is invalid, the dextrous workspace may be progressively 

more accurately approximated by increasing m sl , the number of regularly 

spaced values of ¢p between ¢min and ¢max. The discretization algorithm 

outlined in the previous section can be easily modified to compute the dex­

trous workspace, by testing for compliance in Step 4 for a range of values of 

¢p, instead of just one fixed value, as is the case for the constant orientation 

workspace. This approach is used here instead of that developed in Section 

5.5, due to its ease of implementation and slightly higher efficiency. 

6.6 	 Dimensional synthesis for maximal dex­

trous workspace 

6.6.1 	 Optimization formulation 

It is evident from the above results presented in Section 6.4 that the manip­

ulator workspace is highly dependent on the manipulator design, load on the 

end-effector, and end effector orientation. With this in mind, the problem 

addressed here is to design the manipulator so that it yields the greatest 

dextrous workspace for a given load on the platform. 

It is assumed that the cable frame attachment points ci can be arbitrarily 

positioned anywhere along the fixed square frame. The angle between the 

global x-axis and cable attachment point ci is denoted f3 i
. The design vector 

for the optimization problem is thus d [f31, f32, ... , f3nJT. The only con­

straints imposed on the optimization are that a lower limit f3min is placed on 

the angular separations of the frame cable attachment points. The workspace 
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maximization problem is simply 

mF wD [¢rrUn, ¢max] 

such that 1,8i+1 ,8il:;::: ,8rrUn, i = 1,2, ... , n - 1 (6.29) 

and l,8n - ,811 :;::: ,8min 

where the necessary adjustments are made to the angular measurements 

to ensure that the angle determined between consecutive cable attachment 

points is a minimum. 

6.6.2 Numerical results 

Optimization formulation (6.29) is used in this section to determine optimum 

manipulator designs with respect to maximal dextrous workspace for the 3 

and 4-cable manipulators. For each manipulator type, optimal manipulator 

configurations were determined for the three different load cases L1-L3 as 

given in Table 6.3. It is assumed that these loads are applied at the origin of 

the moving x' - 11 frame. Constrained minimum .e1-norm solutions for cable 

tensions were used and cable tensions limits were t rrUn = 5 and tmax = 100. 

The optimization problem (6.29) was solved using the Dynamic-Q optimiza­

tion algorithm (see Chapter 3). As stated previously, this optimization al­

gorithm is suitable for problems where some numerical noise is present in 

the optimization problem. This is indeed the case here, since the discretiza­

tion method is used for determining the manipulator dextrous workspaces. 

Parameters used for the Dynamic-Q method are a move limit of p = 0.1, 

a finite difference interval of r = 0.05 for determining the gradients for the 

3-cable manipulator, and r = 0.1 for the 4-cable manipulator. Central finite 

differences were used in calculating these gradients. For the 3-cable manipu­

lator the [-0.1,0.1] dextrous workspac'C was computed using a resolution m 

of 100 points, and m sl of 3. For the 4-cable manipulator, which is capable 

of reaching a larger workspace, the [-0.2,0.2] dextrous workspace was com­

puted using a resolution m of 50 points, and m sl of 21. Note that the number 
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of intermediate values of cpp used for the 3- and 4-cable manipulator differs 

significantly. This is because just three values of cp p can be used to calcu­

late the 3-cable manipulator dextrous workspaces accurately and efficiently. 

For the 4-cable manipulator, however, m sl must be increased in order to ob­

tain an accurate description of the dextrous workspace. For both the three 

and four-cable manipulator and each load case, five feasible random start­

ing designs were chosen for the numerical optimisation embodied in equation 

(6.29). 

3-cable manipulator 

Results obtained for the three load cases for 3-cable manipulator are given 

in Tables 6.5 to 6.7. Each Table gives the number of gradient evaluations 

Ng of the Dynamic-Q algorithm required to find the solution, the randomly 

chosen starting design dO and area A~ of the associated dextrous workspace, 

the optimized design d* and area A~ of the optimized dextrous workspace. 

Figures 6.10 to 6.12 show results of the dimensional synthesis for representa­

tive optimization runs R3, R3 and Rl respectively for load cases L1-L3. In 

each case Figure (a) shows the starting design and associated workspace, and 

Figure (b) the optimal design and workspace. Interestingly, for the 3-cable 

case the dextrous workspace increases in size if a torque is applied to the 

moving platform. Also of interest when examining the results is the presence 

of local maxima in the design space. As an example of this see run 4 for L2 

(Table 6.6) the solution of which corresponds to a local maxima. The solu­

tion obtained by run 4 of L1 (Table 6.5) is the mirror image (about x = 0) of 

the other solutions. The optimization problem thus has two global minima. 

4-cable manipulator 

Optimization results for the 4-cable manipulator are reported in Tables 6.8 

to 6.10. Figures 6.13 to 6.15 once more show representative results from 
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Run NY dO d* 

1 52 [0.6607,2.748,4.367F 0.0660 [0.7676,3.430,3.605jT 0.3152 

2 34 [0.6725,2.880,4.633]T 0.0880 [0.7631,3.519,3.693]T 0.3168 

3 39 [0.2814,3.978,4.278F 0.1996 [0.7645,3.477,3.651 F 0.3172 

4 50 [0.735,2.418,5.159jT 0.0024 [-0.3146,2.379,5.794]T 0.3168 

Table 6.5: 3-cable TDPM optimized designs for L1 

Run NY dO A~ d* A*d 

1 17 [0.9758, 4.056, 4.225]T 0.0216 [0.6179,3.703,3.878] T 0.5136 

2 21 [0.5014, 2.808, 3.616jT 0.0524 [0.7728,3.348,3.523jT 0.5120 

3 41 [0.6861,2.431,4.461jT 0.0812 [0.7667,3.454,3.628jT 0.5228 

4 55 [1.864,2.621,4.251 F 0.0100 [1.683,1.858,4.3891T 0.2504 

Table 6.6: 3-cable TDPM optimized designs for L2 

Run NY dO d* 

1 83 [0.7983,1.281,3.373F 0.0500 [0.6543,2.357,4.252]T 1.024 

3 5 [0.6097,2.319,4.197]T 0.8364 [0.6550,2.371,4.2151T 1.019 

3 48 [0.3040,1.220,5.0401 T 0.0028 [0.6358,2.366,4.263F 1.019 

4 45 [0.5922, 1.718,4.8651T 0.1736 [0.6500,2.369,4.233]T 1.021 

Table 6.7: 3-cable TDPM optimized designs for L3 
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Figure 6.10: 3-cable TDPM (a) starting and (b) optimized design for L1 (R3) 
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Figure 6.11: 3-cable TDPM (a) starting and (b) optimized design for L2 (R3) 
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Figure 6.12: 3-cable TDPM (a) starting and (b) optimized design for L3 (Rl) 
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d d 

1 48 [1.829,2.321,3.392,3.741]T 0.0256 [O.8205,2.338,4.595,4.769F 1.1040 

2 47 [2.139, 3.124, 3.216, 5.478]T 0.1904 [0.7878, 3.112, 3.287, 5.582F 0.9568 

3 48 [2.288,2.601,3.876,4.117]T 0.0144 [0.8207, 2.335, 4.601, 4.775F 1.0992 

4 14 2.219,4.795, 0.9472 2.325,4.625,4.799F 1.0992 

Table 6.8: 4-cable TDPM optimized designs for L1 

NgRun dO d* 

1 34 [0.0924,2.607,2.813,5.982]T 0.1424 [0.7403,3.173,3.348,5.564F 0.9760 

2 39 [1.917,3.369, 3.745, 3.828F 0.0272 [0.8215,2.334,4.585,4.760F 1.1504 

3 56 [0.4313, 3.742, 4.899, 5.242]T 0.0368 [0.8194,2.334,4.591,4.765F 1.1504 

4 82 [0.5235,2.065, 4.784, 4.913F 0.5088 [0.8146,2.326,4.609,4.783F 1.1472 

Table 6.9: 4-cable TDPM optimized designs for L2 

the synthesis. For the 4-cable case, local maxima are also found during the 

design optimization. See for example run 2 for L1, run 1 for L2 and run 3 

for L3. 

6.7 Conclusion 

The new constrained i 2- and iI-norm approaches for determining cable ten­

sions in overconstrained tendon-driven manipulators are reliable, and indeed 

critical for the accurate and correct determination of tendon-driven manipu­

lator works paces. Two methodologies for determining workspaces of planar 

Run NY dO d* 

1 

2 

3 

4 

55 

17 

37 

23 

[1.347, 1.622,2.036, 5.416]T 

[0.4202, 2.962, 3.531, 6. 158F 

[0.6810,0.9393, 3.676, 5.416F 

2.683,4.338, 

0.0048 

0.1968 

0.0016 

0.2032 

[0.7572,2.922,3.097,5.449F 

[0.7636,2.929,3.104,5.439]T 

[1.452, 1.626, 3.843, 5.406jT 

2.330,4.444, 

1.3008 

1.2944 

0.8304 

1.1920 

Table 6.10: 4-cable TDPM optimized designs for L3 
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Figure 6.13: 4-cable TDPM (a) starting and (b) optimized design for Ll (R3) 
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Figure 6.14: 4-cable TDPM (a) starting and (b) optimized design for L2 (R2) 
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Figure 6.15: 4-cable TDPM (a) starting and (b) optimi7£d design for UJ (R1) 

tendon-driven manipulators are presented and evaluated by application to 

the 3-cable and 4-cable tendon-driven parallel manipulators. The discretiza­

tion method is robust and reliable, but has a high computational requirement 

in comparison to the accuracy of the workspace determination. The chord 

method is accurate, reliable and efficient, but may require some user interac­

tion in selecting the initial point for starting the workspace computation. In 

practice a combination of the two methods proves to be the most reliable and 

accurate, first using the discretization method at a low resolution to obtain 

a rough estimate of the workspace, and then reverting to the chord method 

to obtain an accurate and efficient mapping of the workspace boundary. 

The dimensional synthesis yields TDPM designs with maximal dextrous 

workspaces for given static loads on the platform. The high dependance 

of TDPM workspaces on their design is illustrated, demonstrating the im­

portance of dimensional synthesis of such manipulators. 

 
 
 




