
Chapter 3 

The Dynamic-Q optimization 

algorithm 

3.1 Introduction 

An efficient constrained optimization method is presented in this chapter. 

The method, called the Dynamic-Q method, consists of applying the dynamic 

trajectory optimization algorithm (see Appendix B) to successive quadratic 

approximations of the actual optimization problem. This method may be 

considered as an extension of the unconstrained SQSD method, presented 

in Chapter 2, to one capable of handling general constrained optimization 

problems. 

Due to its efficiency with respect to the number of function evaluations re­

quired for convergence, the Dynamic-Q method is primarily intended for 

optimization problems where function evaluations are expensive. Such prob­

lems occur frequently in engineering applications where time consuming nu­

merical simulations may be used for function evaluations. Amongst others, 

these numerical analyses may take the form of a computational fluid dynam­
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ics (CFD) simulation, a structural analysis by means of the finite element 

method (FEM) or a dynamic simulation of a multibody system. Because 

these simulations are usually expensive to perform, and because the relevant 

functions may not be known analytically, standard classical optimization 

methods are normally not suited to these types of problems. Also, as will 

be shown, the storage requirements of the Dynamic-Q method are minimal. 

No Hessian information is required. The method is therefore particularly 

suitable for problems where the number of variables n is large. 

In the next section sequential quadratic programming (SQP) methods are 

briefly discussed to allow for comparison with the proposed method. Next, 

the Dynamic-Q methodology is presented. Finally the performance of the 

method is tested and compared to that of an SQP method. 

3.2 	 Sequential quadratic programming meth­

ods 

Sequential quadratic programming (SQP) methods have been developed over 

the past thirty years, and are generally considered to be some of the most 

efficient algorithms available today. Based on Lagrangian methods, it can be 

shown that the solution x'" of the nonlinear equality constrained optimization 

problem 

(3.1 ) 

subject to h(x) 0 

where f(x) and h(x) are respectively a scalar and a vector function of x, can 

be obtained by solving, at successive approximations xi to x*, a sequence of 

corresponding quadratic programming (QP) subproblems (QP[i]' i 0,1,2, ...) 
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containing linearized constraints of the following form: 

min f(xi) VT f(xi)s + ~sTWis 	 (3.2) 
s 2 

subject to VTh(Xi)S + h(xi) 0 

where Wi V2 f(x i ) + AiTV2h(xi), with Ai denoting the associated vector 

of Lagrange multipliers. The solution to subproblem QP[i] is denoted by 

Si and the point at which the next subproblem QP[i 1] is constructed is 

Xi+l Xi Si. If successful, the SQP method yields a sequence xO, Xl, x 2, ... 

that converges to x*. The particular QP subproblem given here is one of a 

number of possible forms that may be chosen. 

Based on the above argument, a simple SQP algorithm is as follows (Pa­

palambros and Wilde [117]). 

Algorithm 3.1 Simple SQP algorithm 

Initialization: Select initial point XO and initial Lagrange multipliers AO. Set 

i := 1. 

Main procedure: 

1. 	 Solve the quadratic programming problem QP[i] corresponding to (3.2) 

to determine Si and Ai+l. 

3. If termination criteria are satisfied, set x* = Xi+l and stop; else set 

1, :=~ 1, 1 and go to Step 1. 

Numerous authors have proposed modifications and variations to the above 

basic algorithm. There are four areas in which the differences are most promi­

nent. The first of these is the way in which inequality constraints are also 

included in the algorithm. For optimization problems containing inequality 

constraints an active set strategy may be used. This strategy can be imple­

mented in one of two ways, either on the original problem or by including all 
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of the inequality constraints in the QP subproblem, and applying an active 

set strategy to the subproblem. The second point of difference lies in the 

way the QP subproblem is solved. Almost any method for nonlinear pro­

gramming, such as the augmented Lagrangian method or the dual method, 

may be specially adapted to the solution of the QP subproblem. A third 

way in which SQP algorithms differ from each other is in the computation 

of second derivatives of the problem. In the above simple SQP algorithm it 

is necessary to evaluate the second derivatives of the objective function and 

the constraints in the computation of Wi, which will usually be a computa­

tionally intensive process. In any event, the storage of Hessian information 

is required which implies the availability of O(n2
) storage locations, and the 

determination and manipulation of the elements of the n x n Hessian matrix:. 

Some authors have avoided the latter difficulties by applying quasi-Newton 

updating formulae to approximate the second derivatives. Powell [118] , for 

example, has proposed using the BFGS formula to approximate these second 

derivatives. A fourth point of difference lies in dealing with the feasibility 

or infeasibility of the constructed subproblems. If the QP subproblem (3.2) 

is constmcted at a point far from the solution x* of the constrained opti­

mization problem (3.1), then the subproblem may have an unbounded or 

infeasible solution. For this reason many modern SQP algorithms rather use 

Si as a search direction. Then the point Xi+l at which the next subproblem 

is constmcted is set at Xi+l := Xi (liSi with the step size (li determined by 

performing a line search on an appropriate merit function in the direction Si. 
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3.3 The Dynamic-Q method 

Consider the general nonlinear optimization problem: 

subject to (3.3) 

9j(X) 0; j = 1,2, ... ,p 

hk(x) 0; k= 1,2, ... ,q 

where f(x), 9j(X) and hk{x) are scalar ftmctions of x. 

In the Dynamic-Q approach, successive subproblems P[i], i 0,1,2, ... are 

generated, at successive approximations Xi to the solution x"', by constructing 

spherically quadmtic approximations /(x), ih(x) and hk(x) to f(x), 9j(X) and 

hk{x). These approximation functions, evaluated at a point Xi, are given by 

/(x) f(x i
) + VT f(xi)(x - Xi) + ~(x - Xi) TA(x Xi) 

gj(X) _ 9j(Xi
) VT9j(Xi)(X Xi) 

21(X - Xi)TB(j X - Xi)', J - 1, ... ,p (3.4) 

hk(x) hk{Xi 
) + VThk(Xi){X - Xi) 

1 . T .
+2'(x - xt) Ck(x - xt), k 1, ... ,q 

with the Hessian matrices A, B j and C k taking on the simple forms 

A diag(a, a, . .. ,a) aI 

B j bjI (3.5) 

Ck ckI 

Clearly the identical entries along the diagonal of the Hessian matrices indi­

cate that the approximate subproblems P[i] are indeed spherically quadratic. 

For the first subproblem (i 0) a linear approximation is formed by setting 

the curvatures a, bj and Ck to zero. Thereafter a, bj and Ck are chosen so 
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that the approximating functions (3.4) interpolate their corresponding actual 

functions at both xi and Xi-I. These conditions imply that for i = 1,2,3, ... 

2 [/(xi
-

I
) 

a 
Ilxi-1 - Xi 112 

19j(Xi ) - VT9j(Xi )(Xi- - Xi)] . 
1, ... ,p (3.6)b·J Ilxi-l_XiI12 , J 


hk(xi) - VThk(Xi)(Xi-l - Xi)] k 

1, ... , q

I\Xi-1 _ x i l1 2 , 

If the gradient vectors VT/, VT 9j and VThk are not known analytically, 

they may be approximated from functional data by means of first-order for­

ward finite differences. 

The particular choice of spherically quadratic approximations in the Dynamic­

Q algorithm has implications on the computational and storage requirements 

of the method. Since the second derivatives of the objective function and 

constraints are approximated using function and gradient data, the O( n2) 

calculations and storage locations, which would usually be required for these 

second derivatives, are not needed. The computational and storage resources 

for the Dynamic-Q method are thus reduced to O(n). At most, 4+p+q+r+s 

n-vectors need be stored (where p, q, rand s are respectively the number 

of inequality and equality constraints and the number of lower and upper 

limits of the variables). These savings become significant when the number 

of variables becomes large. For this reason it is expected that the Dynamic-Q 

method is well suited, for example, to engineering problems such as structural 

optimization problems where a large number of variables are present. 

In many optimization problems, additional simple side constraints of the 

form ki ::; Xi ::; ki occur. Constants ki and ki respectively represent lower 

and upper bounds for variable Xi. Since these constraints are of a simple form 

(having zero curvature), they need not be approximated in the Dynamic-Q 

method and are instead explicitly treated as special linear inequality con­

straints. Constraints corresponding to lower and upper limits are respectively 
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of the form 

hvi XvI::; 0, l = 1,2, ... ,r ::; n (3.7) 

Xwm - kwm ::; 0, m = 1,2, ... , s ::; n 

where vl E j = (vI, v2, ... , vr) the set of r subscripts corresponding to the 

set of variables for which respective lower bounds kvl are prescribed, and 

wm E j = (wI, w2, ... , ws) the set of s subscripts corresponding to the 

set of variables for which respective upper bounds kwm are prescribed. The 

subscripts vl and wm are used since there will, in general, not be n lower 

and upper limits, i.e. usually r nand s #- n. 

In order to obtain convergence to the solution in a controlled and stable 

manner, move limits are placed on the variables. For each approximate sub­

problem P[i] this move limit takes the form of an additional single inequality 

constraint 

(3.8) 

where p is an appropriately chosen step limit and X i - 1 is the solution to the 

previous subproblem. 

The approximate subproblem, constructed at Xi, to the optimization problem 

(3.4) (plus simple side constraints (3.7) and move limit (3.8)), thus becomes 

P[i]: 

subject to 

9j(X) 0, j 1,2, ... ,p 

hk(x) 0, k 1,2, ... , q (3.9) 

gl(X) ::; 0, l 1,2, ... ,r 

9m{X) ::; 0, m 1,2, ... , s 

gp(x) Ilx xi -] 112 - p2 ::; ° 
with solution X*i. The Dynamic-Q algorithm is given by Algorithm 3.2. In 
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the Dynamic-Q method the subproblems generated are solved using the dy­

namic trajectory, or "leap-frog" (LfopC) method of Snyman [101, 102] for un­

constrained optimization applied to penalty function formulations (Snyman 

et al. [119], Snyman [103]) of the constrained problem. A brief description 

of the LfopC algorithm is given in Appendix B. 

Algorithm 3.2 Dynamic-Q algorithm 

Initialization: Select starting point xO and move limit p. Set i O. 

Main procedure: 

1. 	 Evaluate f(xi ), gj{xi ) and hk;(xi) as well as V f(x i ), V gj(xi ) and 

Vhk;(Xi ). If termination criteria are satisfied set x* xi and stop. 

2. 	 Construct a local approximation P[i] to the optimization problem at 

xi using expressions (3.4) to (3.6). 

3. 	 Solve the approximated subproblem P[i] (given by (3.9)) using the 

constrained optimizer LfopC with XO := Xi (see Appendix B) to give 

4. 	 Set i := i + 1, Xi := x*(i-l) and return to Step 2. 

The LfopC algorithm possesses a number of outstanding characteristics, 

which makes it highly suitable for implementation in the Dynamic-Q method­

ology. The algorithm requires only gradient information and no explicit 

line searches or function evaluations are performed. These properties, to­

gether with the influence of the fundamental physical principles underlying 

the method, ensure that the algorithm is extremely robust. This has been 

proven over many years of testing (Snyman [103]). A further desirable char­

acteristic related to its robustness, and the main reason for its application in 

solving the subproblems in the Dynamic-Q algorithm, is that if there is no 

feasible solution to the problem, the LfopC algorithm will still find the best 

possible compromised solution without breaking down. The Dynamic-Q al­

gorithm thus usually converges to a solution from an infeasible remote point 
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without the need to use line searches between subproblems, as is the case 

with SQP. The LfopC algorithm used by Dynamic-Q is identical to that pre­

sented in Snyman [103] except for a minor change to Lfop which is advisable 

should the subproblems become effectively unconstrained. 

3.4 Numerical results and conclusion 

The Dynamic-Q method requires very few parameter settings by the user. 

Other than convergence criteria and specification of a maximum number of 

iterations, the only parameter required is the step limit p. The algorithm is 

not very sensi ti ve to the choice of this parameter, however) p should be chosen 

of the same order of magnitude as the diameter of the region of interest. For 

the problems listed in Table 3.1 a step limit of p 1 was used except for 

problems 72 and 106 where step limits and p 100 were used respectively. 

Given specified positive tolerances CX) and cc, then at step i termination 

of the algorithm occurs if the normalized step size 

(3.10) 


or if the normalized change in function value 

IP jbestl < (3.11)
1 -j- Ijbest I cf 

where jbest is the lowest previous feasible function value and the current 

xi is feasible. The point xi is considered feasible if the absolute value of 

the violation of each constraint is less than Cc' This particular function 

termination criterion is used since the Dynamic-Q algorithm may at times 

exhibit oscillatory behavior near the solution. 

In Table 3.1, for the same starting points, the performance of the Dynamic­

Q method on some standard test problems is compared to results obtained 

for Powell's SQP method as reported by Hock and Schittkowski [120]. The 
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n SQP Dynamic-QProb. # fact 

rr E rNjg NjgE" 
16~2 S.04E-022 2.S4E+Ol 2.70E+0l 7* <1.00E-OS 

10 

4.94E+00 

2 -1.00E+OO 12 S.OOE-OS 13-1.00E+00 -1.00E+00 <1.00E-OS 

12 -3.00E+OI 12 <l.OOE-OS 92 -3.00E+0l -3.00E+Ol <1.00E-OS 

13 2 S.OOE-OS1.00E+00 4S SO$ 9.S9E-Ol 2.07E-02 

14 

1.00E+00 

2 1.39E+00 6 1.39E+00 S.07E-09 S 7.S6E-07 

15 

1.39E+00 

2 3.07E+02 5 15* 5.55E-07 

16 

3.07E+02 <1.00E-OS 3.60E+02 

2 2.50E-0l 6* 2.31E+0l <1.00E-OS 5* 2.31E+01 <1.00E-OS 

17 2 1.00E+OO 12 1.00E+00 <l.OOE-OS 16 <1.00E-OSl.OOE+oO 

20 2 3.S2E+01 20 3.82E+01 4.83E-09 4* 4.02E+Ol <1.00E-08 

22 2 1.00E+OO 9 l.OOE+OO <l.OOE-OS 3 1.00E+oO <1.00E-08 

23 2 2.00E+OO S7 2.00E+00 <l.OOE-OS 2.00E+OO <1.00E-OS 

24 2 -l.OOE+OO 5 -1.00E+00 <l.OOE-OS 4 -l.OOE+OO 1.00E-08 

26 3 19 4.05E-08O.OOE+OO 4.05E-08 27 1.79E-07 1.79E-07 

27 3 4.00E-02 25 4.00E-02 1.73E-08 2S 4.00E-02 9.62E-I0 

2S 3 O.OOE+OO 5 2.98E-21 2.98E-21 12 7.56E-10 7.S6E-1O 

29 3 -2.26E+0l 8.S9E-1113 -2.26E+0l 11 -2.26E+0l 8.59E-ll 

330 1.00E+00 14 1.00E+OO <1.00E-OS 5 1.00E+OO <1.00E-08 

331 6.00E+00 10 6.00E+OO <l.OOE-OS 10 6.00E+00 1.43E-08 

332 1.00E+00 3 <l.OOE-OS1.00E+OO 4 1.00E+OO <1.00E-08 

33 3 -4.59E+00 5* -4.00E+OO <l.OOE-OS 3* <1.00E-08-4.00E+OO 
36 -3.30E+033 4 -3.30E+03 <1.00E-OS 15 -3.30E+03 <1.00E-08 

45 5 1.00E+OO S 1.00E+00 <1.00E-OS 7 1.00E+00 1.00E-OS 

52 5 5.62E-095.33E+OO S 5.33E+OO 12 5.33E+oO 1.02E-OS 
1~SS 6 6.33E+OO 4.54E-0 2 6.00E+00 2* 1.30E-096.66E+OO 

56 7 -3. 46E+OO 11 -3.46E+00 <1.00E-OS 20 6.73E-OS-3.46E+00 

60 3 3.26E-02 9 3.26E-02 3.17E-OS 11 3.26E-02 l.21E-09 

61 3 -1.44E+02 1.52E-OS10 -1.44E+02 10 -1.44E+02 1.52E-OS 

363 9.62E+02 9 9.62E+02 2.1SE-09 6 2.1SE-099.62E+02 

3 11~65 9.54E-0l 2.S0E+OO 9.47E-01 9 9.54E-01 2.90E-OS 

71 4 51.70E+0l 1.67E-081.70E+0l 6 1.70E+01 1.67E-OS 

72 4 7.2SE+02 35 1.37E-OS7.2SE+02 30 7.2SE+02 1.37E-OS 
76 -4.6SE+004 6 -4.6SE+OO 3.34E-09 S 3.34E-09-4.6SE+00 

7S 5 -2.92E+00 9 2.5SE-09-2.92E+OO 6 -2.92E+00 2.SSE-09 

S S.39E-02SO 7 S.39E-02 7.S9E-1O 6 S.39E-02 7.59E-1O 

Sl 5 5.39E-02 8 5.39E-02 1.71E-09 12 S.39E-02 l.90E-1O 

100 7 6.S0E+02 20 6.S0E+02 <1.00E-OS 16 6.S0E+02 1.46E-I0 

104 S 3.9SE+OO 19 S.00E-093.95E+00 42 3.95E+00 5.26E-OS 

106 S 7.0SE+03 44 1.1SE-OS7.0SE+03 79 l.1SE-057.05E+03 

-S.66E-0llOS 9 9* -6.97E-Ol 1.32E-02 26 -S.66E-01 3.32E-09 

15 ~ ~ ~I1S 6.65E+02 3S 6.65E+02 3.00E-OS 

Svan 21 2.S0E+02 150 9.96E-052.S0E+02 93 2.80E+02 l.59E-06i 

* Converges to a local minimum - listed E1' relative to function value at local minimum; 

~ Fails; $ Terminates on maximum number of steps 

Table 3.1: Performance of the Dynamic-Q and SQP optimization algorithms 
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problem numbers given correspond to the problem numbers in Hock and 

Schittkowski's book. For each problem, the actual function value fact is given, 

as well as, for each method, the calculated function value 1* at convergence, 

the relative function error 

Ifact - 1*1 (3.12)
1 + Ifact I 

and the number of function-gradient evaluations (N19) required for conver­

gence. In some cases it was not possible to calculate the relative function 

error due to rounding off of the solutions reported by Hock and Schittkowski. 

In these cases the calculated solutions were correct to at least eight significant 

figures. For the Dynamic-Q algorithm, convergence tolerances of C1 = 10-8 

on the function value, Cx 10-5 on the step size and Cc = 10-6 for constraint 

feasibility, were used. These were chosen to allow for comparison with the 

reported SQP results. 

The result for the 12-corner polytope problem of Svanberg [121] is also given. 

For this problem the results given in the SQP columns are for Svanberg's 

Method of Moving Asymptotes (MMA). The recorded number of function 

evaluations for this method is approximate since the results given corre­

spond to 50 outer iterations of the MMA, each requiring about 3 function 

evaluations. 

A robust and efficient method for nonlinear optimization, with minimal stor­

age requirements compared to those of the SQP method, has been proposed 

and tested. The particular methodology proposed is made possible by the 

special properties of the LfopC optimization algorithm (Snyman [103]), which 

is used to solve the quadratic subproblems. Comparison of the results for 

Dynamic-Q with the results for the SQP method show that equally accurate 

results are obtained with comparable number of function evaluations. 

 
 
 


