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Chapter 2 

The spherical quadratic 

steepest descent algorithm 

2.1 Introduction 

In this chapter an extremely simple gradient only algorithm is proposed that, 

in terms of storage requirement (only 3 n-vectors need be stored) and com­

putational efficiency, may be considered as an alternative to the conjugate 

gradient methods. The method effectively applies the steepest descent (SD) 

method to successive simple spherical quadratic approximations of the ob­

jective function in such a way that no explicit line searches are performed in 

solving the minimization problem. It is shown that the method is convergent 

when applied to general positive-definite quadratic functions. The method is 

tested by its application to some standard and other test problems. On the 

evidence presented the new method, called the SQSD algorithm, appears to 

be reliable and stable, and very competitive compared to the well established 

conjugate gradient methods. In particular, it does very well when applied to 

extremely ill-conditioned problems. 
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33 CHAPTER 2. THE SQSD ALGORITHM 

2.2 The classical steepest descent method 

Consider the following unconstrained optimization problem: 

min f(x), x E ~n 	 (2.1) 

where f is a scalar objective function defined on ~n, the n-dimensional real 

Euclidean space, and x is a vector of n real components Xl, X2, ••• ,Xn . It 

is assumed that f is differentiable so that the gradient vector V f(x) exists 

everywhere in ~n. The solution is denoted by x*. 

The steepest descent (SD) algorithm for solving problem (2.1) may then be 

stated as follows: 

Initialization: Specify convergence tolerances c9 and cx, select starting point 


xo. Set k 1 and go to main procedure. 


Main procedure: 


1. 	If IIVf(xk-1)11 < (9) then set x* rv XC x k
-

1 and stop; otherwise set 

Uk - V f(Xk- 1). 

2. 	 Let Ak be such that f(xk - 1 + AkUk ) = min.\, f(xk - 1 AUk) subject to 

A 2: a {line search step}. 

3. 	 Set xk Xk- 1 + AkUk; if Ilxk Xk-111 < Cx, then x* """- XC xk and 

stop; otherwise set k := k 1 and go to Step 1. 

It can be shown that if the steepest descent method is applied to a general 

positive-definite quadratic function of the form1 f(x) = ~xTAx + b T X c, 

then the sequence {f(xk)} -----+ f(x*). Depending, however, on the starting 

point Xo and the condition number of A associated with the quadratic form, 

the rate of convergence may become extremely slow. 

1 A superscript T means transpose. 
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It is proposed here that for general functions f(x), better overall performance 

of the steepest descent method may be obtained by applying it successively 

to a sequence of very simple quadratic approximations of f(x). The proposed 

modification, named here the spherical quadratic steepest descent (SQSD) 

method, remains a first order method since only gradient information is used 

with no attempt being made to construct the Hessian of the function. The 

storage requirements therefore remain minimal, making it ideally suitable for 

problems with a large number of variables. Another significant characteristic 

is that the method requires no explicit line searches. 

2.3 	 The spherical quadratic steepest descent 

method 

In the SQSD approach, given an initial approximate solution xo, a sequence of 

spherically quadratic optimization subproblems P[k], k = 0,1,2, ... is solved, 

generating a sequence of approximate solutions xkH. More specifically, at 

each point xk the constructed approximate subproblem is P[k]: 

minA(x) 
x 

(2.2) 

where the approximate objective function ik(X) is given by 

(2.3) 

and Ck diag(ck' Ck, . .. ,Ck) - ckI. The solution to this problem will be 

denoted by x*k, and for the construction of the next subproblem P[k + 
1], X k+1 := x*k. 

For the first subproblem the curvature Co is set to Co:= IIVf(xO)11 Ip, where 

p > 0 is some arbitrarily specified step limit. Thereafter, for k 2': 1, Ck is 

chosen such that j(xk) interpolates f(x) at both xk and xk-l. The latter 
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conditions imply that for k= 1,2, ... 

2 [f(Xk- 1) - f(xk) VT f(xk)(Xk- 1 xk)] 
2 (2.4)

Ilxk-1 - xkl1 

Clearly the identical curvature entries along the diagonal of the Hessian, 

mean that the level surfaces of the quadratic approximation jk(X), are indeed 

concentric hyper-spheres. The approximate subproblems P[k] are therefore 

aptly referred to as spherical quadratic approximations. 

It is now proposed that for a large class of problems the sequence xo, xl, ... 

will tend to the solution of the original problem (2.1), i.e. 

lim x = x* (2.5)
k->oo 

For subproblems P[k] that are convex, i.e. ek > 0, the solution occurs where 

V jk(X) = 0, that is where 

(2.6) 

The solution to the subproblem, X*k is therefore given by 

k V f(xk
)

X - -'-'---'- (2.7)
ek 

Clearly the solution to the spherical quadratic subproblem lies along a line 

through Xk in the direction of steepest descent. The SQSD method may 

formally be stated in the form given in Algorithm 2.2. 

Step size control is introduced in Algorithm 2.2 through the specification 

of a step limit p and the test for "xII:: Xk-111 > p in Step 2 of the main 

procedure. Note that the choice of Co ensures that for prO] the solution xl 

lies at a distance p from Xo in the direction of steepest descent. Also the test 

in Step 3 that ek < 0, and setting ell:: := 10-60 where this condition is true 

ensures that the approximate objective function is always positive-definite. 
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Algorithm 2.2 SQSD algorithm 

Initialization: Specify convergence tolerances eg and ex, step limit p > 0 and 

select starting point xo. Set Co := IIVf(xO)II/p. Set k := 1 and go to main 

procedure. 

Afain procedure: 

1. If IIVf(Xk-1)11 < egl then x* rv XC Xk- 1 and stop; otherwise set 

k k-l V f(Xk- 1)
x :=X - . 

Ck-l 

2. If Ilxk - Xk-111 > p, then set 

V f(Xk- 1) 

p IIVf(xk - 1) II ; 

3. Set 

if Ck < 0 set Ck := 10-6°. 

4. Set k k + 1 and go to Step 1 for next iteration. 
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2.4 Convergence of the SQSD method 

An analysis of the convergence rate of the SQSD method, when applied to 

a general positive-definite quadratic function, affords insight into the con­

vergence behavior of the method when applied to more general functions. 

This is so because for a large class of continuously differentiable functions, 

the behavior close to local minima is quadratic. For quadratic functions the 

following theorem may be proved. 

THEOREM. The SQSD algorithm (without step size control) is convergent 


when applied to the general quadratic function of the form f(x) 


b T x, wherc A is a n x n positive-definite matrix and b E 3'in . 


PROOF. Begin by considering the bivariate quadratic function, f(x) = xi + 
I'x~, I' 2:: 1 and with xO 

.- [a,,8]T. Assume Co > 0 given, and for convenience 

in what follows set Co = l/b,b > O. Also employ the notation fk f(xk). 

Application of the first step of the SQSD algorithm yields 

xl XO - V fa 
Co 

= [a(l - 2b), ,8(1 - 2l'b)r (2.8) 

and it follows that 

(2.9) 

and 

(2.10) 

For the next iteration the curvature is given by 

(2.11) 

L"tilizing the information contained in (2.8)-(2.10), the various entries in 

expression (2.11) are known, and after substitution CI simplifies to 

(2.12) 
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In the next iteration, Step 1 gives 

1 ViI x ---	 (2.13)
Cl 

And after the necessary substitutions for Xl, ViI and Cl , given by (2.8), 

(2.10) 	and (2.12) respectively, (2.13) reduces to 

x2 [a(l 2b')/-l1, j1(1 - 2,O")Wll T (2.14) 

where 

III 1 
1 
1 

,2j12/a2 

,3j12/a2 
(2.15) 

and 

WI 1 
, ,3j12/a 2 

1 ,3j12/a 2 
(2.16) 

Clearly if , = 1, then /-ll o and WI O. Thus by (2.14) x2 o and 

convergence to the solution is achieved within the second iteration. 

Now for, > 1, and for any choice of a and j1, it follows from (2.15) that 

(2.17) 


which implies from (2.14) that for the first component of x 2: 

or introducing a notation (with ao a), that 

(2.19) 

{Note: because Co 1/0" > 0 is chosen arbitrarily, it cannot be said that 

lall < laol· However al is finite.} 

The above argument, culminating in result (2.19), is for the two iterations 

Xo 2 
-4 Xl -4 x . Repeating the argument for the sequence of overlapping 

x2 x 2pairs of iterations Xl -4 x3
; -4 x3 x4

; .•. , it follows similarly -4 

that la31 = 1/-l2a 21 < la21; la41 1/-l3a 31 < la31;···, since 0 :s /-l2 :s 1; 0 :s 
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f-t3 :::; 1; ... , where the f-ts are given by (corresponding to equation (2.15) for 

f-tl) : 
2{32 j 21 I j-l aj_l

f-tl = 1 - (2.20)
"",3{32 ja21 I j-l j-I 

Thus in general 

(2.21) 

and 

(2.22) 

For large positive integer m it follows that 

(2.23) 

and clearly for I > 0, because of (2.21) 

(2.24) 

Now for the second component of X2 in (2.14), the expression for WI, given 

by (2.16), may be simplified to 

(2.25) 

Also for the second component: 

(2.26) 

or introducing {3 notation 

(2.27) 

The above argument is for XO ---7 Xl x2 and again, repeating it for the---7 

sequence of overlapping pairs of iterations, it follows more generally for j = 

1,2, ... , that 

(2.28) 
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where Wj is given by 

(2.29) 

Since by (2.24), ic);ml 0, it follows that if l,8ml -+ 0 as m -+ 00, the theorem 

is proved for the bivariate case. Make the assumption that l,8m Idoes not tend 

to zero, then there exists a finite positive number [; such that 

(2.30) 

for all j. This allows the following argument: 

1-, 1 1 1-, 1 1(1-,)0:;_11 (2.31)IWjl = 11+,3,8;_1/0:;_1 S; 1+,3[;2/O:J_1 = 0:;_1 +,3[;2 

Clearly since by (2.24) 100ml -+ 0 as m -+ 00, (2.31) implies that also 

Iwml -+ O. This result taken together with (2.28) means that l,8ml -+ 0 

which contradicts the assumption above. With this result the theorem is 

proved for the bivariate case. 

Although the algebra becomes more complicated, the above argument can 

clearly be extended to prove convergence for the multivariate case, where 
n 

f(x) L ,iX;,,1 1 < ,2 <'3 < ... < ,n (2.32) 
i=l 

Finally since the general quadratic function 

1
f(x) '2xT Ax + b T x, A positive definite (2.33) 

may be transformed to the form (2.32), convergence of the SQSD method is 

also ensured in the general case. 

2.5 Numerical results and conclusion 

The SQSD method is now demonstrated by its application to some test prob­

lems. :For comparison purposes the results are also given for the standard SD 
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method and both the Fletcher-Reeves (FR) and Polak-Ribiere (PR) conju­

gate gradient methods. The latter two methods are implemented using the 

CG+ FORTRAN conjugate gradient program of Gilbert and Nocedal [111]. 

The CG+ implementation uses the line search routine of More and Thuente 

[112]. The function and gradient values are evaluated together in a single 

subroutine. The SD method is applied using CG+ with the search direction 

modified to the steepest descent direction. The FORTRAN programs were run 

on a 266 MHz Pentium 2 computer using d.ouble precision computations. 

The standard (references [113, 114, 115, 116]) and other test problems used 

are listed in Appendix A and the results are given in Tables 2.1 and 2.2. The 

convergence tolerances applied throughout are eg 10-5 and ex = 10-8 , ex­

cept for the extended homogenous quadratic function with n = 50000 (Prob­

lem 12) and the extremely ill-conditioned Manevich functions (Problems 14). 

For these problems the extreme tolerances eg 0(= 10-75 ) and ex = 10- 12 , 

are prescribed in an effort to ensure very high accuracy in the approxima­

tion XC to x*. For each method the number of function-cum-gradient-vector 

evaluations (Nlg) are given. For the SQSD method the number of itera­

tions is the same as N Ig. For the other methods the number of iterations 

(Nit) required for convergence, and which corresponds to the number of line 

searches executed, are also listed separately. In addition the relative error 

(Er) in optimum function value, defined by 

C 

E r = If(x*) - f(x ) I (2.34)
1 If(x*) I 

where XC is the approximation to x* at convergence, is also listed. For the 

Manevich problems, with n ;::: 40, for which the other (SD, FR and PR) 

algorithms fail to converge after the indicated number of steps, the infinite 

norm of the error in the solution vector (/00), defined by Ilx* - xClloo is also 

tabulated. These entries, given instead of the relative error in function value 

(Er), are made in italics. 

Inspection of the results shows that the SQSD algorithm is consistently com­
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Prob. # n SQSD Steepest Descent 

p fg E'r Nfg Nit E r lIDO 

1 3 1 12 3.E-14 41 20 6.E-12 

2 2 1 31 1.E-14 266 131 9.E-11 
3 2 1 33 3.E-08 2316 1157 4.E-08 

4 2 0.3 97 1.E-15 > 20000 3.E-09 

5(a) 3 1 11 1.E-12 60 29 6.E-08 
5(b) 3 1 17 1.E-12 49 23 6.E-08 

6 4 1 119 9.E-09 > 20000 2.E-06 

7 3 1 37 1.E-12 156 77 3.E-11 
8 2 10 39 1.E-22 12050* 6023* 26* 
9 2 0.3 113 5.E-14 6065 3027 2.E-10 
10 2 1 43 1.E-12 1309 652 1.E-1O 
11 4 2 267 2.E-11 16701 8348 4.E-11 
12 20 1.E+04 58 1.E-11 276 137 l.E-11 

200 1.E+04 146 4.E-12 2717 1357 1.E-11 
2000 1.E+04 456 2.E-1O > 20000 2.E-08 

20000 1.E+04 1318 6.E-09 > 10000 8.E+01 
50000 1.E+lO 4073 3.E-16 > 10000 5.E+02 

13 10 0.3 788 2.E-10 > 20000 4.E-07 
100 1 2580 1.E-12 > 20000 3.E+01 
300 1.73 6618 1.E-I0 > 20000 2.E+02 
600 2.45 13347 1.E-l1 > 20000 5.E+02 
1000 3.16 20717 2.E-1O > 30000 9.E+02 

14 20 1 3651 2.E-27 > 20000 9.E-Ol 
10 3301 9.E-30 

40 1 13302 5.E-27 > 30000 l.E+OO 

10 15109 2.E-33 
60 1 19016 7.E-39 > 30000 1.E+OO 

10 16023 6.E-39 
100 1 39690 1.E-49 > 50000 1.E+OO 

10 38929 3.E-53 
200 1 73517 5.E-81 > 100000 1.EI-OO 

10 76621 4.E-81 

* Convergence to a local minimum with f(x C
) = 48.9. 

Table 2.1: Performance of the SQSD and SD optimization algorithms when 

applied to the test problems listed in Appendix A 
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Prob. # n Fletcher-Reeves Polak-Ribiere 
Nfg Nit ErjI= N/g Nit ErjI= 

1 3 7 3 0$ 7 3 0$ 

2 2 30 11 2.E-11 22 8 2.E-12 

3 2 45 18 2.E-08 36 14 6.E-11 

4 2 180 78 1.E-l1 66 18 1.E-14 

5(a) 3 18 7 6.E-08 18 8 6.E-08 

5(b) 3 65 31 6.E-08 26 11 6.E-08 

6 4 1573 783 8.E-1O 166 68 3.E-09 
7 3 132 62 4.E-12 57 26 1.E-12 

8 2 72* 27* 26* 24* 11* 26* 

9 2 56 18 5.E-11 50 17 1.E-15 

10 2 127 60 6.E-12 30 11 1.E-11 

11 4 193 91 1.E-12 99 39 9.E-14 

12 20 42 20 9.E-32 42 20 4.E-31 

200 163 80 5.E-13 163 80 5.E-13 

2000 530 263 2.E-13 530 263 2.E-13 

20000 1652 825 4.E-13 1652 825 4.E-13 
50000 3225 1161 1.E-20 3225 1611 1.E-20 

13 10 > 20000 2.E-02 548 263 4.E-12 

100 > 20000 8.E+Ol 1571 776 2.E-12 

300 > 20000 3.E+02 3253 1605 2.E-12 

600 > 20000 6.E+02 5550 2765 2.E-12 

1000 > 30000 l.E+03 8735 4358 2.E-12 

14 20 187 75 8.E-24 1088 507 2.E-22 
40 > 30000 1.E+OO > 30000 1.E+00 

60 > 30000 1.E+00 > 30000 1.E+00 

100 > 50000 1.E+00 > 50000 1.E+OO 

200 > 100000 1.E+OO > 100000 1.E+OO 

* Convergence to a local minimum with f(xC
) = 48.9; $ Solution to machine accuracy. 

Table 2.2: Performance of the FR and PR algorithms when applied to the 

test problems listed in Appendix A 
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petitive with the other three methods and performs notably well for large 

problems. Of all the methods the SQSD method appears to be the most 

reliable one in solving each of the posed problems. As expected, because line 

searches are eliminated and consecutive search directions are no longer forced 

to be orthogonal, the new method completely overshadows the standard SD 

method. What is much more gratifying, however, is the performance of the 

SQSD method relative to the well-established and well-researched conjugate 

gradient algorithms. Overall the new method appears to be very competi­

tive with respect to computational efficiency and, on the evidence presented, 

remarkably stable. 

In the implementation of the SQSD method to highly non-quadratic and 

non-convex functions, some care must however be taken in ensuring that the 

chosen step limit parameter p, is not too large. A too large value may result 

in excessive oscillations occurring before convergence. Therefore a relatively 

small value, p 0.3, was used for the Rosenbrock problem with n = 2 

(Problem 4). For the extended Rosenbrock functions of larger dimensionality 

(Problems 13), correspondingly larger step limit values (p ylnjlO) were 

used with success. 

For quadratic functions, as is evident from the convergence analysis of Section 

2.4, no step limit is required for convergence. This is borne out in practice by 

the results for the extended homogenous quadratic functions (Problems 12), 

where the very large value p 104 was used throughout, with the even more 

extreme value of p = 1010 for n = 50000. The specification of a step limit in 

the quadratic case also appears to have little effect on the convergence rate, 

as can be seen from the results for the ill-conditioned Manevich functions 

(Problems 14), that are given for both p 1 and p = 10. Here convergence is 

obtained to at least 11 significant figures accuracy (1Ix* - xClloo < 10-11 
) for 

each of the variables, despite the occurrence of extreme condition numbers, 

such as 1060 for the Manevich problem with n 200. 

The successful application of the new method to the ill-conditioned Manevich 
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problems, and the analysis of the convergence behavior for quadratic func­

tions, indicate that the SQSD algorithm represents a powerful approach to 

solving quadratic problems with large numbers of variables. In particular, the 

SQSD method can be seen as an unconditionally convergent, stable and eco­

nomic alternative iterative method for solving large systems of linear equa­

tions, ill-conditioned or not, through the minimization of the sum of the 

squares of the residuals of the equations. 

 
 
 


