
Chapter 1 

Introduction: Overview of 

parallel manipulators and 

literature review 

1.1 Introduction 

A parallel manipulator can be defined as 

a closed-loop kinematic chain mechanism whose end-effector is 

linked to the base by several independent kinematic chains (Mer­

let [1]). 

Parallel manipulators have been increasingly studied and developed over the 

last couple of decades (Merlet [2], Dasgupta and Mruthyunjaya [3]) from 

both a theoretical viewpoint as well as for practical applications. Parallel 

structures are certainly not a new discovery, however advances in computer 

technology and development of sophisticated control techniques, amongst 

other factors, have allowed for the more recent practical implementation of 
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2 CHAPTER 1. INTRODUCTION 

Figure 1.1: Parallel manipulator publications by year 1955-2002 

parallel manipulators. This trend is well illustrated by the ever increasing 

number of publications dedicated to parallel manipulators. Figure 1.1 shows 

the approximate annual numbers of publications related to parallel manipu­

lators for the past 50 years as reported by Merlet [4]. 

Interest in parallel manipulators has been stimulated by the advantages of­

fered over traditional serial manipulator architectures. In fact, there exists 

an interesting duality between parallel and serial architectures, both in terms 

of analysis and performance, where parallel manipulators have good charac­

teristics in areas where serial manipulators perform poorly, and vice versa. 

Zamanov and Sotirov [5], Waldron and Hunt [6] and Duffy [7] seek to ex­

plain this duality and Fichter and MacDowell [8] discuss some of the practical 

issues relating to performance of serial and parallel robots. 
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Figure 1.2: The spherical parallel mechanism patented by Gwinnett 

The literature review presented in this chapter provides an overview of the 

development of parallel manipulators, workspace determination, optimal de­

sign, characterization of manipulator performance, and optimization meth­

ods. This selective overview is used in Section 1.6 to motivate the current 

study. 

1.2 Brief history of parallel manipulator de­

velopment 

Some theoretical problems associated with parallel structures were mentioned 

by the English architect Sir Christopher Wren as early as the 17th century. 

Cauchy, Lebesgue, Bricard and Borel aU published papers on problems re­

lated to parallel mechanisms in the 19th and early 20 th century (Merlet [1]) . 

It appears that the first practical application for a parallel manipulator was 

proposed by Gwinnett [9] who was granted a patent in 1931 for a motion plat­

form, based on a spherical parallel mechanism (Bonev [10]). As illustrated 

in Figure 1.2, the motion platform was intended for use in the entertainment 

industry. 
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Figure 1.3: Pollard's spatial industrial robot 

In 1942 a patent was issued to Pollard [11] for what is now known as the 

first industrial parallel robot design. The robot, shown in Figure 1.3, was 

intended for spray painting, but was never built. 

In 1965 Stewart [12], published a paper in which he proposed a six-degree­

of-freedom (six-dof) parallel platform for use as a flight simulator. This 

paper attracted so much attention that many researchers began referring 

to octahedral hexapod parallel manipulators as "Stewart platforms". It is 

somewhat ironic though that similar ideas to Stewart's had already been 

independently conceived by two other researchers. 

Eric Gough, an employee of the Dunlop Rubber Co., England, had con­

structed an octahedral hexapod in 1954 (Gough [13], see communications 

from [12]). This parallel manipulator was used as a universal tyre testing 

machine as shown in Figure 1.4. Interestingly, Bonev [10] notes that this 
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Figure 1.4: The universal tyre-testing machine of Gough 

machine continued to operate until 1999. 

At the same time an American engineer, Klaus Cappel, was also indepen­

dently developing an octahedral hexapod manipulator. A patent for an octa­

hedral hexapod to be used as a motion simulator was filed in 1964 and issued 

in 1967 [14]. The first ever flight simulator based on a octahedral hexapod 

was made under licence from this patent. Figure 1.5 shows a drawing taken 

from Cappel's patent. 

Since these early days, parallel manipulators have proliferated and found 

application in many fields. One of the most promising applications is in 

the manufacturing industry. Prominent early examples of machine tools 

based on parallel architectures are the Giddings and Lewis Variax and the 

Ingersoll Octahedral Hexapod which were both first presented at the 1994 

International Manufacturing Technology Show (IMTS) in Chicago. More 

recent and successful applications of parallel manipulator architectures have 

been the Z3 machining head developed by DS Technologie Gmbh (DST) 

which is shown in Figure 1.6 and the Neos Tricept. Other applications include 

flight simulators, fine positioning devices, overhead cranes (when using cable-
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driven manipulator architectures) and more recently in medical applications 

as surgical robots. 

1.3 	 Workspace determination of parallel ma­

nipulators 

The workspace of a manipulator may loosely be defined as 

regions 	[in output spacel ] which can be reached by a reference 

point located on the mobile platform [of the manipulator] (Merlet 

et al. [15]). 

Based on this definition, the workspace of any manipulator has the same 

dimension as the number of output degrees of freedom of the manipulator. 

For example, the workspace of a planar parallel manipulator manipulator, 

which has three degrees of freedom (translations x and y in the plane and 

rotation ¢ about the out of plane axis) is thus most fully represented three­

dimensionally, with two axes used to represent the x and y positional coordi­

nates of the reference point, and the third axis corresponding to the angular 

orientation ¢ of the moving platform. 

Similarly, the workspace of the Cappell, Gough and Stewart platforms (see 

the previous section) can only really be fully described in six-dimensional 

space. Of course, it is difficult for us to conceptualize any space of dimension 

greater than three. In order to obtain descriptions of manipulator positioning 

capabilities that can be easily visualized and understood, subsets of the full 

workspace are defined for which restrictions are placed on some of the output 

degrees of freedom of the manipulator, most commonly on the orientation 

loutput space - positional plus angular orientational dimensions 
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Figure 1.5: Octahedral hexapod motion simulator by Cappel 

Figure 1.6: The Z3 machining head by DST 
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of the moving platform. The various types of workspace commonly used are 

defined in Section 1.3.1. 

Determination of these workspaces for parallel manipulators poses a chal­

lenging problem (Merlet et al. [15]). Various methods proposed by different 

researchers are discussed in Section 1.3.2. 

1.3.1 Classification of workspace types 

Constant orientation workspace 

A specific constant [angular] orientation workspace is defined as (Mer let et 

al. [15]) 

the positional region which can be reached by the reference point 

of the manipulator when the mobile platform has a specific pre­

scribed constant [angular] orientation. 

The constant orientation2 workspace has the same dimension as the number 

of translational [positional] output degrees of freedom of the parallel manip­

ulator. 

For the planar manipulators studied here, the constant orientation workspace 

is two-dimensional, and will be denoted as WG[¢/ix], where ¢fix is the specific 

prescribed and fixed angular orientation of the moving platform associated 

with that particular constant orientation workspace. 

Maximal workspace 

The definition of the maximal workspace adopted here is 

2Hereafter 'orientation' will be considered synonymous with 'angular orientation'. 
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the positional region which can be reached by the reference point 

of the manipulator with no restrictions on the orientation of the 

moving platform. 

9 

This is in agreement with the definition offered by Merlet et 81. [15]. Haug 

et al. [16] also refer to maximal workspaces as "accessible output sets". Es­

sentially, the maximal workspace can be thought of as either the projection 

of the full output workspace onto the positional space of the manipulator, or 

the union of all possible constant orientation workspaces. 

For planar manipulators, the maximal workspace, denoted W M , is two di­

mensional and for spatial manipulators, three-dimensional. 

Dextrous workspace 

The dextrous workspace of a manipulator is 

the region reachable by the reference point of the manipulator 

with all orientations in a given set [4>min, 4>max]. 

This terminology in consistent with that used by Haug et al. [17] and Du 

Plessis and Snyman [18], but differs slightly from that used by Merlet et al. 

[15] who use the term "total orientation workspace" to describe this work­

space, and the term "dextrous workspace" for the special case where the 

moving platform is required to reach all possible orientations. 

Once again the dextrous workspace is two-dimensional for the planar case and 

three-dimensional for the spatial case. The dextrous workspace is denoted 

W D [¢min, ¢max] here for the planar case, and can also be thought of as the 

intersection of all constant orientation workspaces in the orientation interval 

[¢min, ¢max]. 
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Orientation workspace 

Finally a specific orientation workspace is defined as 

the set of angular orientations (orientational region) which can 

be attained by the moving platform for a fixed position of the 

reference point. 

10 

The orientation workspace is difficult to represent for a general spatial ma­

nipulator. Merlet [19] notes that simply plotting the standard Euler angles 

does not lead to intelligible results. He suggests mapping instead the posi­

tions which can be reached by a unit vector, fixed to the moving platform, 

onto a unit sphere. Bonev et al. [20] suggest the use of modified Euler tilt­

and-torsion angles, which result in a compact and intuitive representation 

of the orientation workspace. For the planar manipulator, the orientation 

workspace is one-dimensional and is denoted WO[ufix ], where u fix is a vector 

containing the fixed position of the reference point. 

1.3.2 Methods for workspace determination 

In general, determination of parallel manipulator workspaces poses a more 

challenging problem than for serial manipulators. This is because of the 

strong coupling of the positional and orientational capabilities of parallel 

manipulators. Merlet [1] gives the example of a six-dof serial robot with a 

concurrent axis wrist. For this manipulator the three-dimensional volume, 

which the robot can reach, depends only on the motion capability of the 

first three actuated joints, while the orientational ability depends only on 

the last three joints. Compare this to a hexapod, where orientational and 

positional ability are influenced simultaneously by all the actuators. The 

most prominent and commonly-used methods for workspace determination 

can be grouped into four categories. 
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Geometrical methods 

Geometrical methods are based on the observation that the workspace bound­

ary must necessarily always be associated with a physical limit on the ma­

nipulator input kinematic chains. By separately taking into account the 

constraints on each input kinematic chain and geometrically determining the 

region which can be reached by reference point under these conditions, and 

then determining the intersection of all these regions, the actual workspace 

of the manipulator can be determined. 

The method as applied to parallel manipulators was first introduced by Gos­

selin and Angeles [21] who used a geometrical approach to determine constant 

orientation workspaces of a planar 3-RRR parallel manipulator. In this nota­

tion, the number signifies the number of kinematic chains linking the moving 

platform to the base, and the set of letters defines the sequence of joints used 

in each kinematic chain. A revolute joint is denoted by R and a prismatic 

joint by P. Spatial universal and spherical joints are respectively denoted by 

U (or sometimes RR) and S. Actuated joints are indicated by underlining. 

The geometrical methodology, including the effects of passive joint limits, is 

applied to 3-RPR planar manipulators in Gosselin and Jean [22]. Merlet et 

al. [15] extend the methodology to determining other types of workspaces of 

planar 3-RPR parallel manipulators (see Section 1.3.1). 

Geometric methods have also been used to determine constant orientation 

workspaces of more complex 6-U PS spatial manipulators by Gosselin [23]. 

The effects of passive joint limits and links interference are included in the 

constant orientation methodology by Merlet [24, 1]. Constant orientation 

workspaces of other types of six-dof parallel manipulators including the 6-

PU S (Bonev and Ryu [25]) and 6-RU S (Bonev and Gosselin [26]) parallel 

manipulators have also been determined by means of the geometrical method. 

A hybrid geometrical-numerical method for determining the orientation work-
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spaces of 6-U PS parallel manipulators has been proposed by ~erlet [19]. 

This problem is also addressed by Huang et a1. [27], who propose a closed 

form solution to the problem. 

Bajpai and Roth [28] and Williams and Reinholtz [29] also use geometrical 

reasoning to determine workspaces of specific classes of manipulators. 

Geometrical methods represent the most efficient and accurate methods for 

workspace determination available, since the workspace boundary is expressed 

in analytical terms. It is evident however that the various geometric method 

implementations are specific to distinct classes of manipulators. At present 

there exist no direct geometric methods for determining maximal and dex­

trous workspaces of spatial parallel manipulators. 

Continuation methods 

A broadly applicable method for workspace analysis using continuation meth­

ods has been presented by Jo and Haug [30]. In this method, manipulator 

workspace bOlmdaries are defined as the sets of points for which the Jacobian 

matrix of the kinematic constraints are row rank deficient. A continuation 

method is then used to trace the family of one-dimensional trajectories which 

correspond to the workspace boundary. When determining parallel manipu­

lator workspaces using this methodology, it becomes necessary to use a slack 

variable formulation to represent the unilateral constraints implied by physi­

cal limits to joint motions (Jo and Haug [31.]). This is one of the limitations of 

the continuation method: that the introduction of other constraints limiting 

the workspace, such as limits on the passive joints, and link interferences, 

lead to a very large manipulator Jacobian, which in turn may render the 

procedure difficult to manage (Merlet [1]). 

Jo and Haug [31 J use the continuation method to determine maximal work­

spaces of a 3-RP R planar manipulator, and constant orientation workspaces 
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of a 6-SP S spatial manipulator. Further developments by Haug et al. [16] 

result in the determination of maximal workspaces of 6-SPS spatial parallel 

manipulators. In Haug et al. [32] it is shown that the continuation method 

also provides an effective tool for determining barriers to control within the 

manipulator workspace. 

The determination of dextrous workspaces of 3-RPR and 6-SPS parallel 

manipulators (Haug et al. [17]) has also been addressed by means of the 

continuation method. These authors motivate their approach by stating that 

"numerical methods are required for constructing boundaries of dextrous 

workspaces [of more complex spatial manipulators]", an assertion that is 

borne out by the fact that there are at current no analytical methods available 

for solving this problem. 

Continuation methods have also been applied to the problem of determin­

ing operational envelopes, or the set of points which can be occupied by all 

points on the working body of the manipulator (Haug et al. [33], Adkins 

and Haug [34]). This problem is important in order to avoid interference be­

tween the working body and its surroundings. An associated problem is the 

determination of domains of interference between working bodies and their 

surroundings (Haug et al. [35, 36]). 

An overview of continuation methods applied to determination of workspaces, 

operational envelopes, and domains of interference is given by Haug et al. 

[37]. 

Discretization methods 

Although computationally expensive, discretization methods represent an 

easy and stable method for workspace determination. A large variety of im­

plementations are found in the literature. One approach (Yang and Lee [38], 

Sorli and Ceccarelli [39], Cervantes-Sanchez and Rendon-Sanchez [40]) is to 
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vary the manipulator input parameters discretely between their limits, and 

plot the points reached by the reference point. This approach can provide 

some insight into the effects of design parameters on the manipulator work­

space (Ceccarelli and Sorli [41]), but produces results which can be difficult to 

interpret, and requires the solution of the forward kinematics of the parallel 

manipulator. 

Since the inverse kinematics are easy to solve for a parallel manipulator, 

seemingly a better approach is to discretize the output space of the manipu­

lator, and then determine whether or not each discrete point belongs to the 

workspace by solving the inverse kinematics and evaluating at that point the 

various constraints acting on the manipulator. Approaches based on this idea 

have been used by Fichter [42], Lee and Shah [43], Masory and Wang [44], 

Arai et 81. [45], Stamper et al. [46] and Wang et al. [47] for determining con­

stant orientation and maximal workspaces of various manipulators. Bonev 

and Ryu [25] propose a discretization method for determining orientation 

workspaces of 6-U P S manipulators. 

The main criticism of discretization methods is their exponential increase in 

computational expense as the required accuracy is increased. 

Optimization methods 

Of the methods discussed in the previous sections, geometric methods are 

highly efficient and accurate, but require a specific formulation for each ma­

nipulator class and workspace type. At the other extreme discretization 

methods are computationally intensive resulting in limited accuracy, but can 

easily be applied to almost any manipulator. Numerical continuation meth­

ods lie somewhere between these two approaches, but including all the con­

straints acting on the manipulator, and the fact that all internal boundary 

curves are also mapped, can make the method difficult to implement for more 

complex manipulators. 
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As an alternative efficient numerical approach for workspace determination, 

optimization methods have been proposed by Snyman ct al. [48]. The basic 

philosophy of the optimization approach is to define the workspace boundary 

in terms of a constrained optimization problem, where the constraints relate 

to various physical conditions which limit the workspace of the manipulator. 

A numerical optimization algorithm is used to solve the optimization problem 

in a number of search directions to obtain a representation of the workspace 

boundary. There are two specific implementations of the optimization ap­

proach, the my method and the chord method. These two methods are 

distinguished from each other by the search geometry used in determining 

the successive discrete points along the workspace boundary. 

The original ray method of Snyman ct al. [48] determines the points of inter­

section of a pencil of rays emanating from a fixed radiating point with the 

workspace boundary. One deficiency of the the ray method is that it can­

not be used to map non-convex manipulator workspaces. The modified ray 

method (Hay and Snyman [49]) addresses this problem by using user interac­

tion together with the original ray method to map sections of the workspace 

which ca~not be mapped automatically. The alternative chord method of 

Hay and Snyman [50] can be used to determine non-convex manipulator 

workspaces automatically. From an initial point on the workspace bound­

ary, the chord method uses fixed radius arc searches to determine successive 

points until closure of the boundary is obtained. 

Previous applications of the optimization approach have focussed on the 

determination of constant orientation (ray methodology - Du Plessis and 

Snyman 118]) and maximal workspaces (ray method - Snyman ct al. [48]; 

modified ray method - Hay and Snyman [49]; chord method - Hay and Sny­

man [50]) of planar 3-RPR and spatial 6-UPS manipulators. An efficient 

indirect method for determining dextrous manipulator workspaces of these 

same manipulators by calculating the intersection of various constant orien­

tation workspaces has also been proposed by Du Plessis and Snyman [18]. 
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In Section 5.5 of this work a direct method for determining dextrous planar 

manipulator workspaces is given. 

In this study, the chord method is used as the method of choice for deter­

mining manipulator workspaces when using the optimization approach. A 

general overview of the chord methodology is given in Appendix C. A de­

tailed presentation and applications of the ray methodology may be found in 

Snyman et al. [48] and Du Plessis [51]. The modified ray and chord methods 

are further discussed in Hay and Snyman [49, 52] and Hay [53]. 

An optimization approach similar to the ray method has also been suggested 

by Wang and Hseih [54]. 

1.4 Optimal design of parallel manipulators 

As already mentioned parallel manipulators possess a number advantages 

over traditional serial manipulators (Merlet [1]). Parallel manipulators are, 

however, difficult to design due to their highly nonlinear and often non­

intuitive behavior. An effective and systematic way of addressing the prob­

lems stated above is through the use of optimization techniques in the design 

process. Depending on the particular application, certain manipulator per­

formance criteria may be of more importance than others. Such criteria 

include design so that the manipulator can reach a certain prescribed work­

space, design for optimum velocity, force or error transmission ratios between 

the actuators and the moving platform, stiffness, isotropy, dynamic behavior 

or dexterity of the manipulator throughout the workspace. 

A distinction can be made between the types of problem studied in the 

current literature in terms of whether or not workspace requirements are 

included in the optimization. In the next section optimization purely with 

respect to some performance measure is discussed. The different synthesis 
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problems, which explicitly include requirements on the workspace, are dis­

cussed in Section 1.4.2. 

1.4.1 Optimization of performance 

This first type of problem involves optimizing the performance of the manip­

ulator with respect to some performance measure without explicit consider­

ation of the workspace. The various performance measures commonly used 

in optimizing manipulators are listed below. 

Stiffness 

Bhattacharya et al. [55], investigate the effect of design parameters on the 

stiffness of a 6-U P S manipulator. Since these authors consider only two vari­

ables, the optimization is performed by plotting various stiffness measures as 

functions of the design parameters and then selecting the most appropriate 

design by inspection of these graphs. A method for synthesizing a manipu­

lator with respect to link and joint stiffnesses so that the end effector has a 

desired stiffness is suggested by Chakarov [56]. Hayward et al. [57] notice the 

importance of manipulator stiffness in designing a parallel mechanism-based 

hand controller. 

The optimal design of 3-dof spherical manipulator with respect to both stiff­

ness and conditioning is undertaken by Liu et al. [58]. Again, since there are 

only two design parameters, the optimization is done by inspection of plots of 

these performance measures against the design parameters. Zhang et al. [59] 

use a genetic algorithm to optimize the stiffness of a 5-dof revolute actuated 

parallel manipulator with passive constraining leg. Simaan and Shoham [60] 

determine the configurations of a variable geometry 3-RPR planar parallel 

manipulator which yield a desired stiffness of the end-effector. 
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Static and dynamic behavior 

A mechanism is said to be statically balanced when the weights of the links 

do not produce any torque (or force) at the actuators under static conditions 

(Gosselin [61]). Such balancing is achieved through the use of counterweights 

or springs. Static balancing of various spatial parallel mechanisms has been 

performed analytically by Wang and Gosselin [62, 63], Gosselin and Wang 

[64] and Gosselin ct al. [65J. Herder [66] provides a general discussion on 

statically balanced parallel mechanisms. 

Dynamic behavior is mentioned by Merlet [1] as a measure to be used when 

quantifying manipulator performances. In many practical applications opti­

mization of acceleration and inertial characteristics may be of importance. 

Weck and Giesler [67] include dynamic properties in their multi-objective 

optimization of a 2-RPR planar machine tooL 

Conditioning of the Jacobian matrix and dexterity 

The condition number of the Jacobian matrix of the manipulator can be used 

as a measure of accuracy of control of the manipulator, or manipulator dex­

terity. Here the term dexterity refers to a measurement of fine end-effector 

motion in a local sense (Klein and Blaho [68]). When viewed as a measure 

of accuracy, the condition number can be thought of as a factor amplifying 

errors in the actuators, and thus affecting the natural precision of the ma­

nipulator. The best conditioning is obtained when the Jacobian matrix is 

orthogonal, and the manipulator is said to be in an isotropic configuration. 

Gosselin and Angeles [21, 69J study planar and spherical3-RRR manipulators 

and determine, amongst other conditions, designs so that these manipulators 

are isotropic in their home configurations. Gosselin and Lavoie [70] deter­

mine designs of spherical 3-dof manipulators so that they have at least one 

isotropic configuration. Pittens and Podhorodeski [71] and Zanganeh and 
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Angeles [72] undertake the isotropic design of 6-UPS spatial and 3-RRR 

planar manipulators. It is noted by these authors and by Merlet [1] that it is 

necessary, if the Jacobian contains both rotational and translational terms, 

to scale the translational terms by a chosen characteristic length, since the 

Jacobian is not invariant under any choice of dimensional units. This is a 

criticism of the use of the condition number as a performance measure in 

these cases (Merlet [73]). 

Of course, isotropy of the Jacobian matrix is a local, configuration-dependent 

property of the manipulator. Gosselin and Angeles [74] propose a global 

conditioning index (GCI), evaluated over the entire workspace of the ma­

nipulator, which they used to optimize the global conditioning of parallel 

3-dof planar and spherical manipulators using the complex method3 • The 

GCI is aimed at obtaining better performance of the manipulator through­

out its workspace. Stamper et al. [46] and Tsai and Joshi [75] use the global 

condition index to numerically optimize a spatial 3-dof translational paral­

lel manipulator. Kurtz and Hayward [76] and Leguay-Durand and Reboulet 

[77] use similar principles in optimizing redundantly-actuated spherical mech­

anisms. In this case since the number of design variables is low the optimiza­

tion can be performed graphically. Stoughton and Arai [78] argue against 

averaging the conditioning over the entire workspace and propose instead 

optimizing the average dexterity over a centralized subregion of the work­

space of a 6-UPS spatial manipulator. The optimization is performed using 

the numerical BFGS algorithm. 

Other 

In Lee et al. [79, 80], Zhang and Duffy [81] and Lee et al. [82] the concept 

of using the quality index to determine optimal designs and configurations is 

proposed and developed for various 3-RPRand n-UP S manipulators. The 

3The complex method is a constrained version of the simplex method (Box 1965) 
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quality index is a measure of proximity to a singularity. Carretero et al. [83] 

minimize the parasitic motion of a 3-P RS spatial parallel manipulator using 

a quasi-Newton optimization method. 

1.4.2 Workspace synthesis 

The second type of problem is concerned with the workspace of the manipula­

tor. Essentially this type of problem, concerned with manipulator synthesis, 

is the inverse of the analysis problem. Analysis is concerned with determin­

ing the workspace of the manipulator for a given design and dimensioning. 

Synthesis seeks to find the dimensions of the manipulator so that is has a 

required workspace. Since there is not necessarily a unique solution to this 

problem, additional requirements are sometimes introduced, where required, 

to ensure a desired performance of the mechanism as welL 

Synthesis with respect to workspace only 

Gosselin and Guillot [84J use the complex method to optimize a planar 2-

RP R parallel manipulator so that the workspace of the manipulator is as 

close as possible to a prescribed workspace. This methodology is extended 

by Boudreau and Gosselin [85, 86J and is applied, now using a genetic al­

gorithm, to planar 3-RP Rand 3-RRR manipulators, and a spatial 6-U P S 

manipulator. 

Murray et ai. [87J use a quaternion approach which allows them to determine 

many 3-RPR planar manipulator designs, the workspaces of which include 

a number of prescribed points. In this approach the set of serial chains 

(forming the links between the base and moving platform) that can reach the 

desired poses are first determined. The feasible parallel manipulator designs 

which can also reach these poses are then assembled from these chains. The 

quaternion approach is extended to other parallel manipulator types, both 
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planar and spatial in Murray and Hanchak [88], and Perez and McCarthy 

[89]. 

Another approach proposed by Merlet [90,91] is used to determine all spatial 

manipulator geometries, the workspaces of which include prescribed points 

or line segments. The method presented takes into account leg length con­

straints, limits on the passive joint angles, and interference between links. 

The basic approach is to use each constraint separately to restrict the design 

variable domain. The region where all constraints are satisfied then corre­

sponds to the set of manipulator designs which can reach the desired poses. 

Merlet [92, 1] later extends the methodology to include constraints on the 

articular velocities. 

The effects of the design parameters on workspaces of various spatial parallel 

manipulators is also studied by Ji [93]. 

Multi-objective optimization 

The algorithm for workspace synthesis proposed by Merlet [91] has been 

extended in Merlet [92], resulting in the DEMOCRAT design methodology. 

Once the design space has been reduced to all the robot designs, which can 

reach the required workspace as described in the previous section (referred 

to by Merlet as the "cutting phase"), the "refining phase" then consists of 

discretizing this reduced design space, and evaluating robot performances 

with respect to various performance criteria at each resulting node. The 

advantage of the DEMOCRAT methodology is its ability to determine all 

possible designs which fulfill the designer's requirements. It would appear 

though, that as the number of design variables increase, the methodology 

becomes increasingly more difficult to handle. 

Kirchner and Neugebauer [94J have combined many performance criteria in 

optimizing a spatial manipulator with 13 design variables. These authors 
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determine the Pareto-optimal set with respect to these criteria using a ge­

netic algorithm. Similarly Weck and Giesler [67] perform multi-objective 

optimization of a planar manipulator to be used in machining applications. 

Finally, Gallant and Boudreau (95] propose a method which uses a genetic 

algorithm for synthesizing planar parallel 3-RP R manipulators for a desired 

workspace, including avoidance of singularities and using the global condi­

tioning index. 

1.5 Numerical optimization methods 

The sustained increase in computing power has led to numerical optimization 

techniques becoming more and more popular in many fields, including me­

chanical engineering. Most current optimization algorithms can be broadly 

classified as either deterministic or stochastic methods (Chedmail [96]). The 

methods discussed in this section are in general for nonlinear optimization 

problems, since these are the sorts of problems which occur in the mechanism 

synthesis field. 

1.5.1 Deterministic methods 

Deterministic methods use knowledge of the local topography of the objective 

(and constraint) function to travel towards the optimum design. Such meth­

ods include classical optimization techniques, line search methods, gradient­

based methods and methods such as the simplex method and the method of 

moving asymptotes. Although many such methods exist, the discussion here 

is limited to methods which have direct relevance to this study. 
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Line search methods 

The method of steepest descent is one of the most fundamental procedures 

for minimizing a differentiable function of several variables. The method, 

proposed by Cauchy in the middle of the nineteenth century, continues to be 

the basis of several gradient-based solution procedures (Bazaraa et al. [97], 

p.300). The performance of the steepest descent method is disappointing, 

however) compared to other first-order (gradient only) line search methods. 

In spite of using what appears to be the "best" search direction, i.e. that 

which gives the maximum rate of decrease at the point of application, the 

method is not really effective in most problems. The method of steepest 

descent usually works quite well during the early stages of the optimization 

process, depending on the point of initialization. However, as a stationary 

point is approached, the method often behaves poorly, taking small and 

nearly orthogonal steps. Steepest descent methods are discussed more fully 

in Section 2.2. 

Amongst the methods that use only gradient information and perform suc­

cessive line searches, the most popular method is probably the conjugate 

gradient method of Fletcher and Reeves [98]. This method generates mu­

tually conjugate directions by taking, at each successive point, a suitable 

convex combination of the current gradient and the direction used at the 

previous iteration, as search direction. A slight variation of the Fletcher­

Reeves method is the method of Polak and Ribiere [99], which is argued to 

be preferable for non-quadratic functions (Bazaraa et al. [97], p.357). Gra­

dient only methods, such as the Fletcher-Reeves method, remain of great 

importance because they become indispensable when the problem size (num­

ber of variables) becomes very large. 

Second order methods, using Hessian information and based on Newton's 

method, have also been proposed. For large numbers of variables the full 

evaluation of the Hessian matrix, required by Newton's method at each step, 
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becomes time-consuming. In order to avoid this difficulty, quasi-Newton 

methods, which approximate the Hessian matrix by means of an update 

formula after each step, have been proposed. Two implementations of such 

quasi-Newton methods are the Davidon-Fletcher-Powell (DFP), and the more 

recent Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods. These methods 

exhibit fast convergence. When the number of variables exceed approxi­

mately 100, however, attempts to update the Hessian become impractical 

because of the size of the matrix (Bazaraa et a1. [97], p.328). 

Lagrangian-based methods 

In 1760 Lagrange developed the classical method for solving equality con­

strained optimization problems by the introduction of Lagrange multipliers 

and solution of the resulting unconstrained optimization problem (Snyman 

[100]). This method can be extended to inequality constrained problems by 

the use of auxiliary variables. Karush (1939) and Kuhn and Tucker (1951) 

derived the necessary Karush-Kuhn-Tucker (KKT) conditions, expressed in 

terms of the Lagrangian, that must be satisfied at the solution of an inequal­

ity constrained problem. Analytical determination of the stationary point of 

the Lagrangian is not always practical, or possible. In order to address this 

problem, augmented Lagrange multiplier methods combine the classical La­

grangian method with a penalty function approach in solving the constrained 

problem. Here successive approximations to the Lagrange multipliers are 

used in order to obtain the solution via an iterative procedure. 

Sequential quadratic programming (SQP) methods are based on the applica­

tion of Newton's method to determine the optimum from the KKT conditions 

of the constrained problem. The method relies on the solution of a quadratic 

programming problem at each step, in order to determine the next approxi­

mate solution and associated Lagrange multipliers. A complete discussion of 

SQP methods is given in Section 3.2. 
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The dynamic trajectory method 

An alternative optimization algorithm, based on modelling the dynamic tra­

jectory followed by a particle of unit mass in a conservative force field has 

been proposed by Snyman [101, 102, 103]. This method, called the dynamic 

trajectory, or Leap-Frog (LfopC) optimization algorithm, has a number of 

properties which make it suitable for implementation in solving practical 

engineering optimization problems. A detailed discussion of this method 

appears in Appendix B. 

1.5.2 Stochastic methods 

In contrast to deterministic methods, stochastic methods only use gradient 

information indirectly, and use instead random processes for finding new 

points in the design space. Such methods usually rely on modelling natural 

phenomena as the basis of the algorithm. Examples of this type of method 

are the genetic, simulated annealing and particle swarm algorithms. 

Genetic algorithms 

Genetic algorithms were first introduced by Holland (1965). Their use has 

subsequently been encouraged by Goldberg [104] and Michalewicz [105]. 

These algorithms mimic the process of evolution found in nature. From 

an initial, random population, where each individual is characterized by a 

specific design vector, subsequent generations are created by "inheriting" 

features, or parts of the design vector, from the previous generation. The 

best individuals in each generation are given a better chance of passing on 

their features to subsequent generations, thus driving the entire population 

towards an optimum design. Various strategies, such as introducing random 

perturbations or "mutations" into the design vector of certain individuals, 
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are also employed. Genetic algorithms have gained tremendous popularity 

due to their high ease of programming, and ability to take into account 

discrete and continuous design variables (Chedmail [96]). These algorithms 

are however computationally very demanding, and often require the exper­

imental selection of many optimization parameters in order to obtain good 

performance for a given problem. 

Simulated annealing 

Optimization by simulated annealing was proposed by Kirkpatrick et al. [106] 

who credit Metropolis et al. [107] for the basic idea. The problem studied 

by Metropolis and his colleagues was to determine the equilibrium state of a 

material, composed of a number of particles, by simulating the thermal mo­

tion of these particles at a given temperature. In order to use this simulation 

as a component in an optimization technique, the temperature is used as 

a control parameter, and under systematic reduction of this, the algorithm 

asymptotically and statistically converges to the global optimum of the sys­

tem being optimized. The difficulty associated with such algorithms is that 

the efficiency of the algorithm, and accuracy of results, are affected by the 

choice of parameters, such as the rate of decreasing the control temperature. 

As with genetic algorithms, some initial experimentation is necessary to de­

termine the best settings for a given problem. Many function evaluations are 

also required in comparison to deterministic methods. 

1.6 Motivation for the study 

1.6.1 Optimization of parallel manipulators 

Some of the advantages offered by parallel manipulators, when properly de­

signed, include an excellent load to weight ratio, high stiffness and positioning 
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accuracy and good dynamic behavior (Merlet [2, 1], Fichter and MacDowell 

[8]). These characteristics are, to a large extent, the result of the load on 

the platform being distributed more or less equally among the actuators, as 

opposed to the serial case where the full load is carried by each actuator. In 

addition, depending on the exact parallel manipulator design, the stress in 

the actuators is mostly tension or compression, which means that the ma­

nipulator can be made very rigid, especially when using linear actuators. In 

contrast, for a serial manipulator the load is often carried in a cantilever 

fashion, and the mechanism must be designed to carry the resulting bending 

loads, often resulting in bulky links. Another factor influencing the accuracy 

of parallel manipulators is that the positioning accuracy of the end-effector 

is only slightly affected by errors in the actuators. Errors tend to average in 

the parallel case, whereas they are cumulative for a serial robot. All of these 

factors, and the availability of new control and component technologies, have 

resulted in the increasing popularity of parallel manipulators. 

There are, however, also some disadvantages associated with parallel manip­

ulators, which have inhibited their application in some cases. Most serious 

of these is that the particular architecture of parallel manipulators leads to 

smaller manipulator workspaces than their serial counterparts. This is due 

to the additional constraints imposed by the closed kinematic chains of such 

mechanisms. Parallel manipulators can also be difficult to design (Gosselin 

et a1. [108]), since the relationships between design parameters and the work­

space, and behavior of the manipulator throughout the workspace, are not 

intuitive by any means. In addition, parallel manipulator performances are 

highly dependent on their dimensions. Merlet [73] gives the example that 

changing the radius of a Gough-Stewart platform by 10% results in a 700% 

change in the minimal stiffness of the robot. For all of these reasons, Merlet 

[1] argues that customization of parallel manipulators for each application 

is absolutely necessary in order to ensure that all performance requirements 

can be met by the manipulator. 
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1.6.2 The need for new methodologies 

In their recent review paper Dasgupta and Mruthyunjaya [3] survey 214 

relevant publications, and at the end of the paper state that, amongst others, 

the following open problems exist: 

1. A detailed and easy-to-use description of the workspace. 

2. Workspace synthesis for the Stewart platform. 

3. Optimum kinematic synthesis of the Stewart platform for well-condi­

tioned workspace. 

These notions are supported even more recently by Merlet, who devotes a 

keynote address to "the need for a systematic methodology for the evaluation 

and optimal design of parallel robots" [109]. In a later paper the same author 

[110] states that "none of [the existing dimensional synthesis methods] are 

appropriate for parallel robots, which usually have a large number of design 

parameters" . 

Of the synthesis methods discussed in Section 1.4.2, genetic algorithm ap­

proaches are capable of synthesizing manipulators with large numbers of 

design variables. These methods are however disadvantaged by their reliance 

on weighting the contributions of individual performance measures when per­

forming the multi-objective optimization, and the high computational expense 

of these optimization algorithms. Alternative approaches, while efficient, are 

limited by their need to derive a specific formulation for various manipulator 

types. In addition, increasing the number of manipulator variables leads to 

dramatically increasing complexity of the methods. It is thus felt that there 

is a need for a design methodology, based on efficient numerical optimiza­

tion techniques, which is generally applicable to a variety of manipulator 

architectures. 
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1.6.3 Objectives of this study 

In an effort to address the points highlighted in the previous section, the 

following issues are addressed in this study: 

1. The development of efficient numerical optimization algorithms capable 

of handling engineering problems. 

2. The development and refinement of numerical methods for workspace 

determination of various parallel manipulators. 

3. The development of alternative numerical methods for manipulator di­

mensional synthesis, and the investigation of the applicability of the 

new optimization algorithms, mentioned in 1, to such problems. 

This work is split into two parts: 

PART I: OPTIMIZATION ALGORITHMS is devoted to the development of 

new optimization algorithms (item 1 above). Two separate numerical opti­

mization algorithms are presented. The spherical quadratic steepest descent 

(SQSD) algorithm, presented in Chapter 2 is intended for unconstrained 

problems. In Chapter 3 an optimization algorithm for constrained prob­

lems, called the Dynamic-Q algorithm, is presented. 

PART II: MANIPULATOR OPTIMIZATION is devoted to workspace determi­

nation and development of new methods for manipulator optimization (items 

2 and 3 above). In Chapter 4 various optimization algorithms are applied 

to the problem of synthesizing a 2-RP R planar parallel manipulator. Various 

forms of the optimization problem statement are developed and evaluated. 

Building on these results, Chapter 5 contains application of the methodol­

ogy to a planar 3-RPR manipulator, together with some new developments 

for dextrous workspace determination of such manipulators. A different class 

of manipulator, tendon-driven parallel manipulators, are studied in Chap­

ter 6. New analysis methods for this class of manipulator are introduced, 
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and optimization of such manipulators is performed. Finally in Chapter 7 

conclusions are drawn from the work performed, and recommendations for 

future research are made. 

 
 
 




