
An Analysis of Particle Swarm Optimizers

by

Frans van den Bergh

Submitted in partial fulfillment of the requirements for the degree Philosophiae Doctor

in the Faculty of Natural and Agricultural Science

University of Pretoria

Pretoria

November 2001

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

An Analysis of Particle Swarm Optimizers

by

Frans van den Bergh

Abstract

Many scientific, engineering and economic problems involve the optimisation of a set

of parameters. These problems include examples like minimising the losses in a power

grid by finding the optimal configuration of the components, or training a neural net-

work to recognise images of people’s faces. Numerous optimisation algorithms have

been proposed to solve these problems, with varying degrees of success. The Particle

Swarm Optimiser (PSO) is a relatively new technique that has been empirically shown

to perform well on many of these optimisation problems. This thesis presents a theo-

retical model that can be used to describe the long-term behaviour of the algorithm.

An enhanced version of the Particle Swarm Optimiser is constructed and shown to have

guaranteed convergence on local minima. This algorithm is extended further, resulting

in an algorithm with guaranteed convergence on global minima. A model for construct-

ing cooperative PSO algorithms is developed, resulting in the introduction of two new

PSO-based algorithms. Empirical results are presented to support the theoretical proper-

ties predicted by the various models, using synthetic benchmark functions to investigate

specific properties. The various PSO-based algorithms are then applied to the task of

training neural networks, corroborating the results obtained on the synthetic benchmark

functions.

Thesis supervisor: Prof. A. P. Engelbrecht

Department of Computer Science

Degree: Philosophiae Doctor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

An Analysis of Particle Swarm Optimizers

deur

Frans van den Bergh

Opsomming

Talle wetenskaplike, ingenieurs en ekonomiese probleme behels die optimering van ’n

aantal parameters. Hierdie probleme sluit byvoorbeeld in die minimering van verliese in

’n kragnetwerk deur die optimale konfigurasie van die komponente te bepaal, of om neu-

rale netwerke af te rig om mense se gesigte te herken. ’n Menigte optimeringsalgoritmes

is al voorgestel om hierdie probleme op te los, soms met gemengde resultate. Die Partikel

Swerm Optimeerder (PSO) is ’n relatief nuwe tegniek wat verskeie van hierdie optimer-

ingsprobleme suksesvol opgelos het, met empiriese resultate ter ondersteuning. Hierdie

tesis stel bekend ’n teoretiese model wat gebruik kan word om die langtermyn gedrag van

die PSO algoritme te beskryf. ’n Verbeterde PSO algoritme, met gewaarborgde konver-

gensie na lokale minima, word aangebied met die hulp van dié teoretiese model. Hierdie

algoritme word dan verder uitgebrei om globale minima te kan opspoor, weereens met ’n

teoreties-bewysbare waarborg. ’n Model word voorgestel waarmee koöperatiewe PSO al-

goritmes ontwikkel kan word, wat gevolglik gebruik word om twee nuwe PSO-gebaseerde

algoritmes mee te ontwerp. Empiriese resultate word aangebied om die teoretiese ken-

merke, soos voorspel deur die teoretiese model, toe te lig. Kunsmatige toetsfunksies word

gebruik om spesifieke eienskappe van die verskeie algoritmes te ondersoek. Die verskeie

PSO-gebaseerde algoritmes word dan gebruik om neurale netwerke mee af te rig, as ’n

kontrole vir die empiriese resultate wat met die kunsmatige funksies bekom is.

Tesis studieleier: Prof. A. P. Engelbrecht

Departement Rekenaarwetenskap

Graad: Philosophiae Doctor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Acknowledgements

I would like to thank the following people for their assistance during the production of

this thesis:

• Professor A.P. Engelbrecht, my thesis supervisor, for his insight and motivation;

• Edwin Peer, Gavin Potgieter, Andrew du Toit, Andrew Cooks and Jacques van

Greunen, UP Techteam members, for maintaining the computer infrastructure used

to perform my research;

• Professor D.G. Kourie (UP), for providing valuable insight into some of the math-

ematical proofs;

• Nic Roets (Sigma Solutions), for showing me a better technique to solve recurrence

relations;

I would also like to thank all the people who listened patiently when I discussed some of

my ideas with them, for their feedback and insight.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

‘Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to,’ said the Cat.

‘I don’t much care where—’ said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.

— Alice’s Adventures in Wonderland, by Lewis Carroll (1865)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Methodology . 3

1.4 Contributions . 4

1.5 Thesis Outline . 4

2 Background 6

2.1 Optimisation . 6

2.1.1 Local Optimisation . 7

2.1.2 Global Optimisation . 8

2.1.3 No Free Lunch Theorem . 10

2.2 Evolutionary Computation . 11

2.2.1 Evolutionary Algorithms . 13

2.2.2 Evolutionary Programming (EP) 15

2.2.3 Evolution Strategies (ES) . 15

2.3 Genetic Algorithms (GAs) . 16

2.4 Particle Swarm Optimisers . 21

2.4.1 The PSO Algorithm . 21

2.4.2 Social Behaviour . 25

2.4.3 Taxonomic Designation . 26

2.4.4 Origins and Terminology . 27

2.4.5 Gbest Model . 29

i

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

2.4.6 Lbest Model . 30

2.5 Modifications to the PSO . 30

2.5.1 The Binary PSO . 31

2.5.2 Rate of Convergence Improvements 32

2.5.3 Increased Diversity Improvements 39

2.5.4 Global Methods . 45

2.5.5 Dynamic Objective Functions . 51

2.6 Applications . 55

2.7 Analysis of PSO Behaviour . 58

2.8 Coevolution, Cooperation and Symbiosis 64

2.8.1 Competitive Algorithms . 65

2.8.2 Symbiotic Algorithms . 68

2.9 Important Issues Arising in Coevolution 72

2.9.1 Problem Decomposition . 72

2.9.2 Interdependencies Between Components 73

2.9.3 Credit Assignment . 74

2.9.4 Population Diversity . 75

2.9.5 Parallelism . 76

2.10 Related Work . 77

3 PSO Convergence 78

3.1 Analysis of Particle Trajectories . 78

3.1.1 Convergence Behaviour . 80

3.1.2 Original PSO Convergence . 85

3.1.3 Convergent PSO Parameters . 87

3.1.4 Example Trajectories . 89

3.1.5 Trajectories under Stochastic Influences 93

3.1.6 Convergence and the PSO . 99

3.2 Modified Particle Swarm Optimiser (GCPSO) 100

3.3 Convergence Proof for the PSO Algorithm 102

3.3.1 Convergence Criteria . 102

3.3.2 Local Convergence Proof for the PSO Algorithm 107

ii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

3.4 Stochastic Global PSOs . 115

3.4.1 Non-Global PSOs . 115

3.4.2 Random Particle Approach (RPSO) 118

3.4.3 Multi-start Approach (MPSO) . 118

3.4.4 Rate of Convergence . 123

3.4.5 Stopping Criteria . 124

3.5 Conclusion . 126

4 Models for Cooperative PSOs 127

4.1 Models for Cooperation . 127

4.2 Cooperative Particle Swarm Optimisers 130

4.2.1 Two Steps Forward, One Step Back 130

4.2.2 CPSO-SK Algorithm . 134

4.2.3 Convergence Behaviour of the CPSO-SK Algorithm 137

4.3 Hybrid Cooperative Particle Swarm Optimisers 143

4.3.1 The CPSO-HK Algorithm . 143

4.3.2 Convergence Proof for the CPSO-HK Algorithm 146

4.4 Conclusion . 146

5 Empirical Analysis of PSO Characteristics 148

5.1 Methodology . 148

5.2 Convergence Speed versus Optimality . 151

5.2.1 Convergent Parameters . 151

5.2.2 Miscellaneous Parameters . 156

5.2.3 Discussion of Results . 160

5.3 GCPSO Performance . 164

5.4 Global PSO Performance . 166

5.4.1 Discussion of Results . 171

5.5 Cooperative PSO Performance . 171

5.5.1 Experimental Design . 172

5.5.2 Unrotated Functions . 174

5.5.3 Rotated Functions . 181

iii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

5.5.4 Computational Complexity . 190

5.6 Conclusion . 196

6 Neural Network Training 198

6.1 Multi-layer Feedforward Neural Networks 198

6.1.1 Summation-unit Networks . 200

6.1.2 Product-unit Networks . 202

6.2 Methodology . 203

6.2.1 Measurement of Progress . 204

6.2.2 Normality Assumption . 206

6.2.3 Parameter Selection and Test Procedure 207

6.3 Network Training Results . 209

6.3.1 Iris . 209

6.3.2 Breast Cancer . 212

6.3.3 Wine . 215

6.3.4 Diabetes . 218

6.3.5 Hepatitis . 221

6.3.6 Henon Map . 224

6.3.7 Cubic Function . 227

6.4 Discussion of Results . 230

6.5 Conclusion . 238

7 Conclusion 240

7.1 Summary . 240

7.2 Future Research . 243

A Glossary 263

B Definition of Symbols 267

C Derivation of Explicit PSO Equations 268

D Function Landscapes 272

iv

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

E Gradient-based Search Algorithms 277

E.1 Gradient Descent Algorithm . 277

E.2 Scaled Conjugate Gradient Descent Algorithm 279

F Derived Publications 281

v

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

List of Figures

2.1 The function f(x) = x4 − 12x3 + 47x2 − 60x 9

2.2 General framework for describing EAs 14

2.3 Example recombination operators . 19

2.4 A simple mutation operator . 19

2.5 Pseudo code for the original PSO algorithm 24

2.6 Two lbest neighbourhood topologies . 42

2.7 Stretching f(x) with parameters γ1 = 103, γ2 = 1, µ = 10−10 49

2.8 Stretching f(x) with parameters γ1 = 104, γ2 = 1, µ = 10−10 50

2.9 Stretching f(x) with parameters γ1 = 105, γ2 = 1, µ = 10−10 50

3.1 Visualisation of PSO parameters leading to complex γ values 81

3.2 Visualisation of convergent PSO parameters 84

3.3 A 3D visualisation of convergent PSO parameters 86

3.4 The magnitude max(‖α‖, ‖β‖) for w = 0.7298 and φ1 + φ2 ∈ (0, 4). . . . 89

3.5 Particle trajectory plotted using w = 0.5 and φ1 = φ2 = 1.4 90

3.6 Particle trajectory plotted using w = 1.0 and φ1 = φ2 = 1.999 91

3.7 Particle trajectory plotted using w = 0.7 and φ1 = φ2 = 1.9 92

3.8 Stochastic particle trajectory plotted using w = 1.0 and c1 = c2 = 2.0 . . 94

3.9 Stochastic particle trajectory plotted using w = 0.9 and c1 = c2 = 2.0 . . 95

3.10 Stochastic particle trajectory plotted using w = 0.7 and c1 = c2 = 1.4 . . 97

3.11 Stochastic particle trajectory plotted using w = 0.7 and c1 = c2 = 2.0 . . 97

3.12 Stochastic particle trajectory plotted using w = 0.001 and c1 = c2 = 2.0 . 98

3.13 The Basic Random Search Algorithm . 103

3.14 The sample space associated with particle i 110

vi

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

3.15 The sample space associated with the global best particle 112

3.16 The intersection C ∩B . 114

3.17 Pseudo code for the RPSO algorithm . 119

3.18 Pseudo code for the MPSO algorithm . 122

4.1 A deceptive function . 133

4.2 Pseudo code for the CPSO-S algorithm 135

4.3 Pseudo code for the generic CPSO-SK Swarm Algorithm 136

4.4 A plot of the function f(x) = 5 tanh(x1 + x2) + 0.05(x1 + 2)2 138

4.5 A diagram illustrating the constrained sub-optimality problem 139

4.6 A plot of a function containing a pseudo-minimum 141

4.7 Pseudo code for the generic CPSO-HK algorithm 144

5.1 Rosenbrock’s function error profile: original PSO 161

5.2 Ackley’s function error profile: original PSO 163

5.3 Griewank’s function error profile: global PSOs 170

5.4 A plot of Rastrigin’s function in one dimension. 181

5.5 Unrotated Ackley’s function error profile: CPSO algorithms 182

5.6 Unrotated Ackley’s function error profile: GA and PSO algorithms . . . 183

5.7 Rotated Ackley’s function error profile: CPSO algorithms 188

5.8 Rotated Ackley’s function error profile: GA and PSO algorithms 189

6.1 Summation unit network architecture . 201

6.2 Product unit network architecture . 203

6.3 The Henon map . 225

6.4 Diabetes problem MSET curves, using a summation unit network 231

6.5 Hepatitis problem MSET curves, using a summation unit network 232

6.6 Hepatitis problem MSEG curves, using a summation unit network 233

6.7 Iris problem MSET curves, using a product unit network 234

6.8 Additional Iris problem MSET curves, using a product unit network . . . 235

6.9 A plot of K against
√
W , for the summation unit networks 237

6.10 A plot of K against
√
W , for the product unit networks 238

vii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

D.1 The Spherical function . 273

D.2 Rosenbrock’s function . 273

D.3 Ackley’s function . 274

D.4 Rastrigin’s function . 274

D.5 Griewank’s function . 275

D.6 Schwefel’s function . 275

D.7 The Quadric function . 276

viii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

List of Tables

5.1 Function parameters . 150

5.2 Convergent parameter configurations A0–A9. 152

5.3 Rosenbrock’s function: PSO with convergent parameters 152

5.4 Quadric function: PSO with convergent parameters 153

5.5 Ackley’s function: PSO with convergent parameters 153

5.6 Rosenbrock’s function: GCPSO with convergent parameters 154

5.7 Quadric function: GCPSO with convergent parameters 155

5.8 Ackley’s function: GCPSO with convergent parameters 155

5.9 Miscellaneous parameter configurations B0–B6. 156

5.10 Rosenbrock’s function: PSO with miscellaneous parameters 157

5.11 Quadric function: PSO with miscellaneous parameters 157

5.12 Ackley’s function: PSO with miscellaneous parameters 158

5.13 Rosenbrock’s function: GCPSO with miscellaneous parameters 159

5.14 Quadric function: GCPSO with miscellaneous parameters 159

5.15 Ackley’s function: GCPSO with miscellaneous parameters 160

5.16 Comparing GCPSO and PSO on various functions 165

5.17 Comparing various global algorithms on Ackley’s function 167

5.18 Comparing various global algorithms on Rastrigin’s function 168

5.19 Comparing various global algorithms on Griewank’s function 168

5.20 Comparing various global algorithms on Schwefel’s function 169

5.21 Unrotated Rosenbrock’s function: CPSO comparison 175

5.22 Unrotated Quadric function: CPSO comparison 176

5.23 Unrotated Ackley’s function: CPSO comparison 177

ix

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

5.24 Unrotated Rastrigin’s function: CPSO comparison 178

5.25 Rotated Rosenbrock’s function: CPSO comparison 184

5.26 Rotated Quadric function: CPSO comparison 185

5.27 Rotated Ackley’s function: CPSO comparison 186

5.28 Rotated Rastrigin’s function: CPSO comparison 187

5.29 Parameters used during experiments . 191

5.30 Rosenbrock’s function: Computational complexity 192

5.31 Quadric function: Computational complexity 193

5.32 Ackley function: Computational complexity 194

5.33 Rastrigin function: Computational complexity 195

6.1 Iris summation unit network: CPSO-SK selection 210

6.2 Iris summation unit network: comparison 210

6.3 Iris product unit network: CPSO-SK selection 211

6.4 Iris product unit network: comparison 212

6.5 Breast cancer summation unit network: CPSO-SK selection 213

6.6 Breast cancer summation unit network: comparison 213

6.7 Breast cancer product unit network: CPSO-SK selection 214

6.8 Breast cancer product unit network: comparison 215

6.9 Wine summation unit network: CPSO-SK selection 216

6.10 Wine summation unit network: comparison 216

6.11 Wine product unit network: CPSO-SK selection 217

6.12 Wine product unit network: comparison 218

6.13 Diabetes summation unit network: CPSO-SK selection 219

6.14 Diabetes summation unit network: comparison 219

6.15 Diabetes product unit network: CPSO-SK selection 220

6.16 Diabetes product unit network: comparison 221

6.17 Hepatitis summation unit network: CPSO-SK selection 222

6.18 Hepatitis summation unit network: comparison 222

6.19 Hepatitis product unit network: CPSO-SK selection 223

6.20 Hepatitis product unit network: comparison 224

6.21 Henon map summation unit network: CPSO-SK selection 225

x

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

6.22 Henon map summation unit network: comparison 226

6.23 Henon map product unit network: CPSO-SK selection 226

6.24 Henon map product unit network: comparison 227

6.25 Cubic function summation unit network: CPSO-SK selection 228

6.26 Cubic function summation unit network: comparison 228

6.27 Cubic function product unit network: CPSO-SK selection 229

6.28 Cubic function product unit network: comparison 229

6.29 Summary of the split factors and the number of weights in each problem. 237

xi

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Chapter 1

Introduction

You awaken to the sound of your alarm clock. A clock that was manufactured

by a company that tried to maximise its profit by looking for the optimal

allocation of the resources under its control. You turn on the kettle to make

some coffee, without thinking about the great lengths that the power company

went to in order to optimise the delivery of your electricity. Thousands of

variables in the power network were configured to minimise the losses in the

network in an attempt to maximise the profit of your electricity provider. You

climb into your car and start the engine without appreciating the complexity

of this small miracle of engineering. Thousands of parameters were fine-

tuned by the manufacturer to deliver a vehicle that would live up to your

expectations, ranging from the aesthetic appeal of the bodywork to the specially

shaped side-mirror cowls, designed to minimise drag. As you hit the gridlock

traffic, you think “Couldn’t the city planners have optimised the road layout

so that I could get to work in under an hour?”

Optimisation forms an important part of our day-to-day life. Many scientific, social,

economic and engineering problems have parameters that can be adjusted to produce a

more desirable outcome.

Over the years numerous techniques have been developed to solve such optimisation

problems. This thesis investigates the behaviour of a relatively new technique known

as Particle Swarm Optimisation, a technique that solves problems by simulating swarm

1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

2

behaviour.

1.1 Motivation

It is clear that there will always be a need for better optimisation algorithms, since

the complexity of the problems that we attempt to solve is ever increasing. The Particle

Swarm Optimiser was introduced in 1995 [38, 70], yet very few formal analyses of the be-

haviour of the algorithm have been published. Most of the published work was concerned

with empirical results obtained by changing some aspect of the original algorithm.

Without a formal model of why the algorithm works, it was impossible to determine

what the behaviour of the algorithm would be in the general case. If the algorithm has

been shown to be able to solve 10 difficult optimisation problems, what could be said

about the infinite number of problems that have not yet been studied empirically?

While the results obtained from empirical comparisons provided useful insights into

the nature of the PSO algorithm, it was clear that a general, theoretical description of

the behaviour of the algorithm was needed. This thesis constructs such a model, which

is subsequently used to analyse the convergence behaviour of the PSO algorithm.

Several new PSO-based algorithms were subsequently developed, with the aid of the

theoretical model of the PSO algorithm. These algorithms were constructed to address

specific weaknesses of the PSO algorithm that only became apparent once the theoretical

convergence behaviour of the PSO was understood.

1.2 Objectives

The primary objectives of this thesis can be summarised as follows:

• To develop a theoretical model for the convergence behaviour of the Particle Swarm

Optimisation algorithm, and the various derived algorithms introduced in this

thesis.

• To extend the PSO algorithm so that it becomes a global optimisation technique

with guaranteed convergence on global optima.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

3

• To develop and test cooperative Particle Swarm Optimisation algorithms, based

on models that have proven to be successful when applied to other evolutionary

algorithms.

• To obtain empirical results to support the predictions offered by the theoretical

models.

• To investigate the application of various PSO-based algorithms to the task of train-

ing summation and product unit neural networks.

1.3 Methodology

The theoretical models developed in this thesis are used to characterise the behaviour

of all the newly introduced algorithms. Each new algorithm is theoretically analysed to

show whether it is guaranteed to converge on either a local or global minimum, depending

on whether the algorithm is a local or global search algorithm, respectively.

Empirical results were obtained using various synthetic benchmark functions with

well-known characteristics. These results are used as supporting evidence for the the-

oretical convergence characteristics of the various algorithms. Owing to the stochastic

nature of all these algorithms, it is not always possible to directly observe the character-

istics predicted by the theoretical model, i.e. a stochastic global optimisation algorithm

may require an infinite number of iterations to guarantee that it will find the global min-

imiser. Therefore the probability of observing this algorithm locate a global minimiser

in a finite number of iterations is very small. Despite this problem, it is still possible

to see whether the algorithm is still making progress toward its goal, or whether it has

become trapped in a local minimum.

The results of two Genetic Algorithm-based optimisation techniques are also reported

for the same synthetic benchmark functions. These results provide some idea of the

relative performance of the PSO-based techniques when compared to other stochastic,

population-based algorithms.

A second set of experiments were performed on a real-world problem to act as a

control for the results obtained on the synthetic functions. The task of training both

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

4

summation and product unit neural networks was selected as an example of a real-world

optimisation problem. On these problems the results of the PSO-based algorithms were

compared to that of the GA-based algorithms, as well as that of two efficient gradient-

based algorithms.

1.4 Contributions

The main contributions of this thesis are:

• A theoretical analysis of the behaviour of the PSO under different parameter set-

tings. This analysis led to the development of a model that can be used to predict

the long-term behaviour of a specific set of parameters, so that these parameters

can be classified as leading to convergent or divergent particle trajectories.

• The discovery that the original PSO algorithm is not guaranteed to converge on

a local (or global) minimiser. An extension to the existing PSO algorithm is pre-

sented that enables the development of a formal proof of guaranteed local conver-

gence.

• The development of a technique for extending the PSO algorithm so that it is

guaranteed to be able to locate the global minimiser of the objective function,

together with a formal proof of this property.

• The application of existing cooperative models to the PSO algorithm, leading to

two new PSO-based algorithms. These new algorithms offer a significant improve-

ment in performance on multi-modal functions. The existing cooperation model is

then extended to produce a new type of cooperative algorithm that does not suffer

from the same weaknesses as the original model.

1.5 Thesis Outline

Chapter 2 starts with an introduction to the theory of optimisation, followed by a brief

review of existing evolutionary techniques for solving optimisation problems. This is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

5

followed by a description of the Particle Swarm Optimiser, including a discussion of the

numerous published modifications to the PSO algorithm. The focus then shifts slightly

to the topic of coevolutionary algorithms, since these methods form the basis of the work

presented in Chapter 4.

Chapter 3 presents a theoretical analysis of the behaviour of the PSO algorithm,

including formal proofs of convergence for the various new PSO-based algorithms intro-

duced there.

Several cooperative PSO algorithms, based on the models discussed in Chapter 2, are

introduced in Chapter 4. The convergence properties of these cooperative algorithms are

investigated, with formal proofs where applicable.

Chapter 5 presents an empirical analysis of the behaviour of the various PSO-based

algorithms introduced in Chapters 3 and 4, applied to minimisation tasks involving

synthetic benchmark functions. These synthetic functions allow specific aspects of PSO

behaviour to be tested.

In Chapter 6, the same PSO-based algorithms are used to train summation and

product unit networks. These results are presented to show that the new algorithms

introduced in this thesis have similar performance on both real-world and synthetic

minimisation tasks.

Chapter 7 presents a summary of the findings of this thesis. Some topics for future

research are also discussed.

The appendices present, in order, a glossary of terms, a definition of frequently used

symbols, a derivation of the closed-form PSO equations, a set of 3D-plots of the synthetic

benchmark functions used in Chapter 5, a description of the gradient-based algorithms

used in Chapter 6 and a list of publications derived from the work presented in this

thesis.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Chapter 2

Background & Literature Study

This chapter reviews some of the basic definitions related to optimisation. A brief discussion

of Evolutionary Algorithms and Genetic Algorithms is presented. The origins of the Particle

Swarm optimiser are then discussed, followed by an overview of the various published modifi-

cations to the basic PSO algorithm. Next an introduction to coevolutionary and cooperative

algorithms is presented, followed by a brief overview of the important issues that arise when

cooperative algorithms are implemented.

2.1 Optimisation

The task of optimisation is that of determining the values of a set of parameters so

that some measure of optimality is satisfied, subject to certain constraints. This task

is of great importance to many professions, for example, physicists, chemists and engi-

neers are interested in design optimisation when designing a chemical plant to maximise

production, subject to certain constraints, e.g. cost and pollution. Scientists require

optimisation techniques when performing non-linear curve or model fitting. Economists

and operation researchers have to consider the optimal allocation of resources in indus-

trial and social settings. Some of these problems involve only linear models, resulting in

linear optimisation problems, for which an efficient technique known as linear program-

ming [58] exists. The other problems are known as non-linear optimisation problems,

which are generally very difficult to solve. These problems are the focus of the work

6

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 7

presented in this thesis.

The term optimisation refers to both minimisation and maximisation tasks. A task

involving the maximisation of the function f is equivalent to the task of minimising −f ,

therefore the terms minimisation, maximisation and optimisation are used interchange-

ably.

This thesis deals mostly with unconstrained minimisation tasks, formally defined as

Given f : Rn → R

find x∗ ∈ Rn for which f(x∗) ≤ f(x), ∀x ∈ Rn (2.1)

Some problems require that some of the parameters satisfy certain constraints, e.g. all the

parameters must be non-negative. These types of problems are known as constrained

minimisation tasks. They are typically harder to solve than their equivalent uncon-

strained versions, and are not dealt with explicitly here.

Another class of optimisation problems are known as least-squares problems, which

are of the form

Given r : Rn → Rm, n < m

find x∗ ∈ Rn for which
m∑

i=1

(ri(x))2 is minimised. (2.2)

These optimisation problems present themselves when there are more non-linear require-

ments than there are degrees of freedom. Note that the least-squared problem can be

solved using the same approach as used in solving (2.1), by defining

f(x) =
m∑

i=1

(ri(x))2

and minimising f . Neural Network training is sometimes solved as such a non-linear

least-squares problem (see Chapter 6 for more details).

Techniques used to solve the minimisation problems defined above can be placed into

two categories: Local and Global optimisation algorithms.

2.1.1 Local Optimisation

A local minimiser , x∗B, of the region B, is defined so that

f(x∗B) ≤ f(x), ∀x ∈ B (2.3)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 8

where B ⊂ S ⊆ Rn, and S denotes the search space. Note that S = Rn when dealing

with unconstrained problems. More importantly, note that B is a proper subset of S. A

given search space S can contain multiple regions Bi such that Bi ∩Bj = ∅ when i 6= j.

It then follows that x∗Bi
6= x∗Bj

, so that the minimiser of each region Bi is unique. Any of

the x∗Bi
can be considered a minimiser of B, although they are merely local minimisers.

There is no restriction on the value that the function can assume in the minimiser, so

that f(x∗Bi
) = f(x∗Bj

) is allowed. The value f(x∗Bi
) will be called the local minimum.

Most optimisation algorithms require a starting point z0 ∈ S. A local optimisation

algorithm should guarantee that it will be able to find the minimiser x∗B of the set B if

z0 ∈ B. Some algorithms satisfy a slightly weaker constraint, namely that they guarantee

to find a minimiser x∗Bi
of some set Bi, not necessarily the one closest to z0.

Many local optimisation algorithms have been proposed. A distinction will be made

between deterministic, analytical algorithms and the stochastic algorithms discussed

in Sections 2.2–2.4. The deterministic local optimisation1 algorithms include simple

Newton-Raphson algorithms, through Steepest Descent [11] and its many variants, in-

cluding the Scaled Conjugate Gradient algorithm (SCG) [87] and the quasi-Newton

[11, 30] family of algorithms. Some of the better known algorithms include Fletcher-

Reeves (FR), Polar-Ribiere (PR), Davidon-Fletcher-Powell (DFP), Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [104, 11]. There’s even an algorithm that was designed specif-

ically for solving least-squares problems, known as the Levenberg-Marquardt (LM) al-

gorithm [11].

2.1.2 Global Optimisation

The global minimiser, x∗, is defined so that

f(x∗) ≤ f(x), ∀x ∈ S (2.4)

where S is the search space. For unconstrained problems it is common to choose S = Rn,

where n is the dimension of x. Throughout this thesis the term global optimisation will

refer strictly to the process of finding x∗ as defined in (2.4). The term global minimum will

refer to the value f(x∗), and x∗ will be called the global minimiser . A global optimisation

1see Section 2.1.2 for an explanation as to why these algorithms are classified as local methods here.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 9

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6

y

xx

x∗

x∗B

B

y

Figure 2.1: The function f(x) = x4− 12x3 +47x2− 60x, indicating the global minimiser

x∗, as well as a local minimiser x∗B.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 10

algorithm, like the local optimisation algorithms described above, also starts by choosing

an initial starting position z0 ∈ S.

Contrary to the definition above in (2.4), some texts (e.g. [30]) define a global optimi-

sation algorithm differently, namely an algorithm that is able to find a (local) minimiser

of B ⊂ S, regardless of the actual position of z0. These algorithms consist of two pro-

cesses: “global” steps and “local” steps. Their local steps are usually the application of

a local minimisation algorithm, and their “global” steps are designed to ensure that the

algorithm will move into a region Bi, from where the “local” step will be able to find the

minimiser of Bi. These methods will be referred to as globally convergent algorithms,

meaning that they are able to converge to a local minimiser regardless of their starting

position z0. These methods are also capable of finding the global minimiser, given that

the starting position z0 is chosen correctly. There is no known reliable, general way of

doing this, though.

Figure 2.1 illustrates the difference between the local minimiser x∗B and the global

minimiser x∗. A true global optimisation algorithm will find x∗ regardless of the choice

of starting position z0. Dixon and Szegø have edited two collections of papers on the

topic of true global optimisation algorithms [31, 32]. The topic of global optimisation

algorithms will be revisited in Chapter 3.

2.1.3 No Free Lunch Theorem

One of the more interesting developments in optimisation theory was the publication of

the “No Free Lunch” (NFL) theorem by Wolpert and Macready [144, 145]. This theorem

states that the performance of all optimisation (search) algorithms, amortised over the

set of all possible functions, is equivalent.

The implications of this theorem are far reaching, since it implies that no algorithm

can be designed so that it will be superior to a linear enumeration of the search space,

or even a purely random search. The theorem is only defined over finite search spaces,

however, and it is as yet not clear whether the result applies to infinite search spaces. All

computer implementations of search algorithms will effectively operate on finite search

spaces, though, so the theorem is directly applicable to all existing algorithms.

Although the NFL theorem states that all algorithms perform equally well over the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 11

set of all functions, it does not necessarily hold for all subsets of this set. The set of all

functions over a finite domain includes the set of all the permutations of this domain.

Many of these functions do not have compact descriptions, so that they appear to be

largely “random”. Most real-world functions, however, have some structure, and usually

have compact descriptions. These types of functions form a rather small subset of the

set of all functions. This concern lead to the development of sharpened versions of the

NFL [117], showing that it holds for much smaller subsets than initially believed.

A more constructive approach is to try and characterise the set of functions over

which the NFL does not hold. Christensen et al.proposed a definition of a “searchable”

function [18], as well as a general algorithm that provably performs better than random

search on this set of searchable functions.

This thesis will side with the latter approach, assuming that it is possible to design

algorithms that perform, on average, better than others (e.g. random search) over a

limited subset of the set of all functions. No further attempt will be made to characterise

this subset. Instead, empirical results will be used to show that real-world applications

can benefit from improved algorithms.

2.2 Evolutionary Computation

Evolutionary Computation (EC) defines a number of methods designed to simulate evo-

lution. These methods are all population-based, and rely on a combination of random

variation and selection to solve problems. Several different approaches exist within the

field, including Evolutionary Algorithms (EAs), Evolution Strategies (ES), Evolutionary

Programming (EP), Genetic Algorithms (GAs) and Genetic Programming (GP) [9, 8].

Although the ancient Greeks had some rudimentary grasp of the theory of evolution,

it was Charles Darwin who first popularised the modern theory of evolution. Credit for

this discovery is shared with Alfred Russel Wallace, who independently developed the

same theory concurrently. Although their original work was presented simultaneously

at a meeting of the Linnean Society of London in 1858, it was Darwin’s book [26]

that immortalised his name. The fundamental principle underlying evolution is one of

optimisation, where the goal is survival of the species. This does not mean, however,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 12

that EC methods can only be applied to optimisation problems. The EC paradigms

named above helped solve problems that were previously considered computationally

intractable. Several (somewhat overlapping) categories have been identified to which

EC has successfully been applied [9]:

• planning

• design

• simulation and identification

• control

• classification.

The evolutionary process

The processes responsible for driving the evolutionary process include reproduction, mu-

tation, competition and selection. Reproduction is effected through the transfer of an

individual’s genetic program to its progeny. This way, genetic traits that resulted in a

successful organism are preserved. The transfer of the genetic program is, however, sub-

ject to error. These errors, called mutations, may either improve or impede the resulting

organism. Competition results when the resources in the environment are limited — the

population of organisms cannot expand without bound, thus an organism must strive to

be better than its competitors in order to survive. In the presence of competition, the

replication process leads to selection, so that the more successful individuals survive and

produce offspring; the less successful ones face extinction.

The genetic program referred to above is called the genotype of the population. The

genotype carries the genetic information that is passed from parent to offspring, repre-

senting the experiential evidence gathered by the parent. The population possesses a

second, related set of properties called its phenotype. The phenotype is the behavioural

expression of the genotype in a specific environment. The mapping between the geno-

type and the phenotype can be quite complex, owing to the influence of pleiotropy and

polygeny [83]. Pleiotropy is when the random modification of one piece of information

in the genotype can lead to unexpected variation in the phenotype, affecting more than

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 13

one phenotypic trait. Polygeny is observed when several genes (pieces of genotypic infor-

mation) interact to produce a specific phenotypic trait. Thus, to change the phenotypic

behaviour, all the relevant genes must be modified. Natural evolutionary systems have

no one-to-one mappings between genotype and phenotype; the mapping is a non-linear

function defining the interaction between the genes and the environment.

Several different paradigms to model evolutionary processes on digital computers

have been proposed. A general framework for Evolutionary Algorithms, introduced by

Bäck [7], will be presented next. Two algorithms belonging to this class, Evolutionary

Programming and Evolution Strategies will be discussed in terms of this framework; the

discussion of Genetic Algorithms is deferred until Section 2.3.

2.2.1 Evolutionary Algorithms

The term Evolutionary Algorithm refers to a family of algorithms that can all be de-

scribed in terms of a general evolutionary framework. The exact form of the operators,

as well as the relationship between the sizes of parent and offspring populations, define

the specific instance of EA, e.g. EP, ES or GA. Genetic Programming is treated as a

specialised GA.

Consider a population of µ individuals, P (t) = (x1(t),x2(t), . . . ,xµ(t)) at time t,

where each xi ∈ S represents a potential solution (in the search space S) to the problem

at hand. Let f(x) be a function that determines the quality of a solution, called the

fitness function. The fitness of the whole population can thus be expressed as F (t) =

(f(x1(t)), f(x2(t)), . . . , f(xµ(t))). Given arbitrary parameters µ, λ, Θr, Θm and Θs, the

general EA framework (adapted from [9]) is shown in Figure 2.2. The parameters Θr,

Θm and Θs are the probabilities of applying the operators to which they correspond,

which are the recombination, mutation and selection operators, respectively.

The parameter µ is the size of the parent population; µ+ λ denotes the total popu-

lation size (parents plus offspring) after the recombination and mutation operators have

been applied. The selection operator pares down the resultant population P ′′(t) to the

size of the parent population µ, according to some metric that can be controlled with

the parameter Θs.

Popular choices for the selection operator are based on variants of tournament se-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 14

t← 0

P (t)← initialise(µ)

F (t)← evaluate(P (t), µ)

repeat:

P ′(t)← recombine(P (t),Θr)

P ′′(t)← mutate(P ′′(t),Θm)

F (t)← evaluate(P ′′(t), λ)

P (t+ 1)← select(P ′′(t), F (t), µ,Θs)

t← t+ 1

until stopping criterion is met

Figure 2.2: General framework for describing EAs

lection. For a given value, q, this operator compares the fitness of the member under

consideration to that of q other population members. The individual scores one point

whenever it possesses an equal or better fitness value than the other population member

it is compared with. The population members can then be ranked according to how fre-

quently they “win” the other members they were compared with. If q = λ, each member

is compared with every other member, resulting in unique ordering. This results in very

strong selection pressure, so that only the top µ members survive into the next genera-

tion. If q = 1, selection pressure is weak, leading to slower convergence. The ordering

is no longer unique, since the rank of an individual depends on which other population

member it was compared with. Whenever the value of q is less than λ the tournament

selection process produces non-deterministic results, and is called a probabilistic selection

operator.

The general framework allows either the recombination or the mutation operators

to be identity operators. The purpose of the recombination operator is to take several

(typically only two) elements from the parent population and to produce several offspring

by combining (or mixing) their genotypic traits, and is controlled by the parameter Θr.

The mutation operator takes an element from the population and produces offspring

(usually only one) by perturbing the genotypic traits of its parent, subject to the value

of the control parameter Θm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 15

The values µ, λ, Θr, Θm and Θs are called strategy parameters . Many implementa-

tions keep the values of these parameters fixed during a run, but they can be adapted

dynamically, using a second EA if desired, or even by concatenating them to the search

space parameters.

2.2.2 Evolutionary Programming (EP)

Evolutionary Programming was devised by L. J. Fogel in the context of evolving finite

state-machines to be used in the prediction of time series [45, 46]. Fogel’s original

algorithm did not use recombination; it relied on mutation exclusively. The following

mutation operators were used: change an output symbol, change a state transition, add a

state, delete a state or change the initial state. Mutations were applied randomly using a

uniform probability distribution. His implementation produced one offspring per parent

in every iteration, so that λ = 2µ in the notation introduced above in Section 2.2.1. The

selection operator discarded all the solutions with a fitness value below the median of

the combined population P ′′(t), so that only the best µ members were retained.

Later Evolutionary Programs were extended to include more general representations,

including ordered lists (to solve the Traveling Salesman Problem) and real-valued vectors

for continuous function optimisation [47].

Modern EPs are characterised as EAs without recombination, thus relying exclusively

on mutation and selection. When EPs are applied to real-valued optimisation problems,

they use normally-distributed mutations and usually evolve their strategy parameters

concurrently. The selection operator is probabilistic, in contrast with Fogel’s original

implementation.

2.2.3 Evolution Strategies (ES)

Evolution Strategies, devised by Rechenberg [108, 109] and Schwefel [118, 119], are usu-

ally applied to real-valued optimisation problems. ES programs make use of both mu-

tation and recombination, searching both the search space and the strategy parameter

space simultaneously.

The parent and offspring population sizes usually differ, with the offspring population

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 16

at least as large as the parent population. Two different schemes are often encountered:

the comma strategy and the plus strategy. The comma strategy is identified by the

notation (µ, λ), meaning that µ parents are used to generate λ offspring. Of the λ

offspring, µ of them will be selected to become the parent population in the next iteration

of the algorithm. The implication of this strategy is that good solutions from the previous

generation may be lost, since the original parent population is not preserved. On the

other hand, this approach increases the diversity of the population. The plus strategy is

denoted by (µ + λ). This strategy concatenates the µ parents and the λ offspring into

a single large population. Selection is performed on this combined population, selecting

as the parent population of the next iteration the best solutions found in both µ and λ.

This method preserves the best solutions discovered so far, so that the fitness of the best

individual of the population is a monotonic function.

The relationship between the parent population and the offspring population, espe-

cially in the case of the (µ+ λ) strategy, makes selection deterministic.

2.3 Genetic Algorithms (GAs)

The Genetic Algorithm (GA), originally described by Holland [62, 63] (then called adap-

tive or reproductive plans), is another instance of an Evolutionary Algorithm. The em-

phasis of the GA is usually on recombination, with mutation treated as a ‘background

operator’. Only a brief overview of the Genetic Algorithm will be presented here; the

reader is referred to [51] for an in-depth treatment of the subject.

The canonical GA makes use of a binary format to represent the genotypes. Using

a mapping function, the genotype is converted into the equivalent phenotype, which is

an element of the search space. A simple example will help to illustrate this process.

Assume that the GA is to locate the minimum of the function f(x) = x2 − 10x + 25.

It is known that the minimiser is located in the interval [0, 10). Assume that a 16-bit

representation is used to represent the value of x, so that the genotypes of the elements

in the population are 16-bit strings. Given such a 16-bit representation, b, the equivalent

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 17

phenotype can be obtained using

x = 10× 1

216

15∑
i=0

2ibi

where bi denotes the value of bit i in the bit string b. Note that the factor 10 is to

scale the value from its initial range of [0, 1) to the range [0, 10). The minimiser of this

function is 5, so the genotypic representation, using 16 bits, is

1000000000000000

Although the minimiser has an exact representation in this example, this is not always

the case. Using 16 bits to represent a value in the range [0, 10) results in a granularity of

1.5258×10−4, which may or may not be sufficient, depending on the particular problem.

By increasing the number of bits in the genotype greater accuracy can be obtained, at

the cost of increasing the time needed to perform the genotype-to-phenotype mapping,

as well as increasing the effective search space that the GA has to examine.

Genotypic Representations

The notion of using separate genotypic and phenotypic representations used to be one of

the defining differences between GAs and other types of evolutionary algorithms. This

distinction has blurred somewhat with the advent of non-binary coded GAs. For exam-

ple, a GA could use ordinary real-valued numbers to represent population members [42],

using arithmetic crossover [29] rather than binary crossover. Other possible representa-

tions include permutations [27, 52] and tree-based representations, usually encountered

in Genetic Programming (GP) [74]. The disadvantage of these non-binary coded GAs

is that they require different recombination and mutation operators for each represen-

tation, whereas a single pair of recombination and mutation operators are sufficient for

any binary coded problem.

When using binary coded strings to represent integers (which can be mapped to real

values), there is a choice between either ‘plain’ binary encoding (as used in the example

above), or Gray-coded values. Consider the example problem above, where the minimiser

of the function had a binary value of 1000000000000000 = 215. The next larger value in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 18

this representation is 1000000000000001 = 215 + 1, differing only in the least significant

bit. The Hamming distance between two binary strings is defined as the number of bits

in which they disagree, so that these two strings have a Hamming distance of exactly one.

The value directly preceding the minimiser has the encoding 0111111111111111 = 215−1.

Note that this value is the complement of the minimiser itself, differing in all its bits, thus

at a Hamming distance of 16 from the minimiser. This discontinuity in the genotypic

representation is called a Hamming cliff [116], and may impede the progress of the GA

because of the way in which the recombination and mutation operators function. Gray

codes solve this problem by using a representation where any two consecutive values differ

in exactly one bit, resulting in a Hamming distance of one. Although this encoding solves

the problem associated with Hamming cliffs, it introduces an artificial nonlinearity in

the relationship between the string representation and the decoded value.

The following sections will discuss the recombination and mutation operators in more

detail.

Recombination

Two popular recombination operators applied to binary-coded representations are the

one- and two-point crossover operators. Two parents are selected for recombination,

and segments of their bit strings are exchanged between the two parents to form the

two offspring. The one-point crossover proceeds by picking a locus randomly in the bit

string and exchanging all the bits after that locus. Two-point crossover is slightly more

conservative, picking two random loci to demarcate the boundaries of the exchange,

resulting on average in a smaller segment than that produced by single-point crossover.

These two operators are graphically illustrated in Figure 2.3. Uniform crossover is yet

another bit-string based operator. Every bit in the one parent string is exchanged with

the corresponding bit in the other parent subject to some probability, usually set to 0.5.

This operator is considered to be more disruptive than the two-point crossover operator.

Another popular recombination operator is called arithmetic crossover . This operator

is used when dealing with real-valued GAs. Let xa(t) and xb(t) denote the two parents.

Then the two offspring are obtained using

xa(t+ 1) = r1xa(t) + (1.0− r1)xb(t)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 19

1 11 0 0 0 1 1 1 0

1 01 0 0 0 1 1 0 1

1 10 1 0 0 1 0 1 0

1 00 1 0 0 1 0 0 1

(a) One-point crossover

1 11 0 0 0 1 1 1 0

1 00 1 0 0 1 0 0 1

1 00 1 0 0 1 1 1 0

1 11 0 0 0 1 0 0 1

(b) Two-point crossover

Figure 2.3: Example recombination operators

1 11 0 0 0 1 1 1 0

1 11 0 0 0 1 1 0 0

Figure 2.4: A simple mutation operator

xb(t+ 1) = r1xb(t) + (1.0− r1)xa(t)

where r1 ∼ U(0, 1) is a uniform random variate.

Mutation

The mutation operator used on bit string representations is particularly simple: Just

invert the value of each bit in the string subject to some small probability, called the

mutation rate. The goal of the mutation operator is to introduce some diversity into the

population, thereby extending the effective area of the search space that the algorithm

considers. This process is illustrated in Figure 2.4. A high mutation rate may destabilise

the population by disrupting the existing good solutions. Since GAs usually rely on

their recombination operators, the mutation rate is usually set quite low. A good value

for the mutation rate is the reciprocal of the string length in bits, so that a 10-bit

representation should have a mutation rate of 0.1. Alternate strategies include starting

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 20

with a high mutation rate, and gradually decreasing it over time.

Selection

Many of the selection operators used in Evolution Strategies or Evolutionary Program-

ming can be used successfully on Genetic Algorithms as well. Most GAs use a selection

operator that selects the next generation only from the offspring population. This can

clearly be seen by the way that the recombination operator functions, since it completely

replaces the parents with the offspring. A GA using this approach is called a generational

genetic algorithm, since none of the parents from the previous generation are explicitly

preserved. This technique usually increases the diversity of the population, and helps to

prevent premature convergence onto a local minimum. Naturally, this approach slows

down the rate of convergence somewhat, since potentially good solutions from the current

generation may not survive into the next generation.

An alternative is the so called elitist strategy . A copy of the parent population is

made before applying the recombination and mutation operators. The algorithm then

selects the next generation, ranked by fitness, from both the parent and the offspring

populations, similar to the (µ+λ) mechanism found in Evolution Strategies. Variations

on this theme include limiting the size of the parent population participating in this

process to k, so that at most k parents are preserved.

A common way of implementing a generational GA is to use fitness-proportionate

selection. The probability of including an individual i in the next generation, denoted

by Pi(t+ 1), is computed using

Pi(t+ 1) =
fi(t)

1
µ

∑µ
j=1 fj(t)

where µ denotes the population size and fi(t) the fitness of the individual i. Clearly

this method assigns a higher probability to individuals with higher fitness values, so that

the probability of a highly fit individual appearing in the next generation is quite good.

Note that due to the possibility of having both highly fit and highly unfit members in

the population, the individual fitness values fi(t) are scaled so that the effective fitness

values are in the range [0, 1].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 21

After the fitness-proportionate selection method has been used to make a fitness-

biased copy of the previous generation, the recombination and mutation operators can

be applied. This is usually implemented by selecting the elements from the copied

population in pairs (based on their index numbers) and applying the recombination

operator, subject to some probability called the crossover probability . The mutation

operator is then probabilistically applied to the result.

This concludes the brief overview of genetic algorithms.

2.4 Particle Swarm Optimisers

The Particle Swarm Optimiser (PSO) is a population-based optimisation method first

proposed by Kennedy and Eberhart [70, 38]. Some of the attractive features of the PSO

include the ease of implementation and the fact that no gradient information is required.

It can be used to solve a wide array of different optimisation problems, including most of

the problems that can be solved using Genetic Algorithms; some example applications

include neural network training [41, 135, 136, 34] and function minimization [121, 124].

Many popular optimisation algorithms are deterministic, like the gradient-based al-

gorithms mentioned in Section 2.1.1. The PSO, similarly to the algorithms belonging to

the Evolutionary Algorithm family, is a stochastic algorithm that does not need gradient

information derived from the error function. This allows the PSO to be used on functions

where the gradient is either unavailable or computationally expensive to obtain.

2.4.1 The PSO Algorithm

The origins of the PSO are best described as sociologically inspired, since the original

algorithm was based on the sociological behaviour associated with bird flocking [70].

This topic will be discussed in more detail below after the basic algorithm has been

described.

The algorithm maintains a population of particles, where each particle represents a

potential solution to an optimisation problem. Let s be the size of the swarm. Each par-

ticle i can be represented as an object with several characteristics. These characteristics

are assigned the following symbols:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 22

xi: The current position of the particle;

vi: The current velocity of the particle;

yi: The personal best position of the particle.

The personal best position associated with particle i is the best position that the particle

has visited (a previous value of xi), yielding the highest fitness value for that particle. For

a minimisation task, a position yielding a smaller function value is regarded as having

a higher fitness. The symbol f will be used to denote the objective function that is

being minimised. The update equation for the personal best position is presented in

equation (2.5), with the dependence on the time step t made explicit.

yi(t+ 1) =

{
yi(t) if f(xi(t+ 1)) ≥ f(yi(t))

xi(t+ 1) if f(xi(t+ 1)) < f(yi(t))
(2.5)

Two versions of the PSO exist, called the gbest and lbest models [37]. The difference

between the two algorithms is based on the set of particles with which a given particle

will interact with directly, where the symbol ŷ will be used to represent this interaction.

The details of the two models will be discussed in full below. The definition of ŷ, as

used in the gbest model, is presented in equation (2.6).

ŷ(t) ∈ {y0(t),y1(t), . . . ,ys(t)} | f(ŷ(t))

= min{f(y0(t)), f(y1(t)), . . . , f(ys(t))}
(2.6)

Note that this definition states that ŷ is the best position discovered by any of the

particles so far.

The algorithm makes use of two independent random sequences, r1 ∼ U(0, 1) and

r2 ∼ U(0, 1). These sequences are used to effect the stochastic nature of the algorithm,

as shown below in equation (2.7). The values of r1 and r2 are scaled by constants

0 < c1, c2 ≤ 2. These constants are called the acceleration coefficients , and they influence

the maximum size of the step that a particle can take in a single iteration. The velocity

update step is specified separately for each dimension j ∈ 1..n, so that vi,j denotes the

jth dimension of the velocity vector associated with the ith particle. The velocity update

equation is then

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] +

c2r2,j(t)[ŷj(t)− xi,j(t)]
(2.7)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 23

From the definition of the velocity update equation is clear that c2 regulates the maximum

step size in the direction of the global best particle, and c1 regulates the step size in the

direction of the personal best position of that particle. The value of vi,j is clamped to

the range [−vmax, vmax] to reduce the likelihood that the particle might leave the search

space. If the search space is defined by the bounds [−xmax, xmax], then the value of vmax

is typically set so that vmax = k × xmax, where 0.1 ≤ k ≤ 1.0 [23].

The position of each particle is updated using the new velocity vector for that particle,

so that

xi(t+ 1) = xi(t) + vi(t+ 1) (2.8)

The algorithm consists of repeated application of the update equations presented above.

Figure 2.5 lists the pseudo-code for the basic PSO algorithm. Note that the two if -

statements are the equivalent of applying equations (2.5) and (2.6), respectively. The

initialisation mentioned in the first step of the algorithm consists the following:

1. Initialise each coordinate xi,j to a value drawn from the uniform random distribu-

tion on the interval [−xmax, xmax], for all i ∈ 1..s and j ∈ 1..n. This distributes the

initial positions of the particles throughout the search space. Many of the pseudo-

random number generators available have flaws leading to low-order correlations

when used to generate random vectors this way, so care must be exercised in choos-

ing a good pseudo-random algorithm. Alternatively, the initial positions can be

distributed uniformly through the search space using sub-random sequences, for

example Sobol’s sequence or a Latin hypercube distribution ([107], chapter 7.7).

2. Initialise each vi,j to a value drawn from the uniform random distribution on the

interval [−vmax, vmax], for all i ∈ 1..s and j ∈ 1..n. Alternatively, the velocities

of the particles could be initialised to 0, since the starting positions are already

randomised.

3. Set yi = xi, ∀i ∈ 1..s. Alternatively, two random vectors can be generated for each

particle, assigning the more fit vector to yi and the less fit one to xi. This would

require additional function evaluations, so the simpler method described first is

usually used.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 24

Create and initialise an n-dimensional PSO : S

repeat:

for each particle i ∈ [1..s] :

if f(S.xi) < f(S.yi)

then S.yi = S.xi

if f(S.yi) < f(S.ŷ)

then S.ŷ = S.yi

endfor

Perform PSO updates on S using equations (2.7–2.8)

until stopping condition is true

Figure 2.5: Pseudo code for the original PSO algorithm

The stopping criterion mentioned in Figure 2.5 depends on the type of problem being

solved. Usually the algorithm is run for a fixed number of function evaluations (thus a

fixed number of iterations) or until a specified error bound is reached.

It is important to realise that the velocity term models the rate of change in the

position of the particle. The changes induced by the velocity update equation (2.7)

therefore represent acceleration, which explains why the constants c1 and c2 are called

acceleration coefficients.

A brief description of how the algorithm works is as follows: Initially, some particle

is identified as the best particle in a neighbourhood of particles, based on its fitness.

All the particles are then accelerated in the direction of this particle, but also in the

direction of their own best solutions that they have discovered previously. Occasionally

the particles will overshoot their target, exploring the search space beyond the current

best particles. All particles also have the opportunity to discover better particles en

route, in which case the other particles will change direction and head towards the new

‘best’ particle. Since most functions have some continuity, chances are that a good

solution will be surrounded by equally good, or better, solutions. By approaching the

current best solution from different directions in search space, the chances are good that

these neighbouring solutions will be discovered by some of the particles.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 25

2.4.2 Social Behaviour

Many interpretations of the operation of the PSO have been suggested. Kennedy

strengthened the socio-psychological view by performing experiments to investigate the

function of the different components in the velocity update equation [67]. The task of

training a neural network to correctly classify the XOR problem was used to compare

the performance of the different models. Kennedy made use of the lbest model (see Sec-

tion 2.4.6 for a complete description of this model), rather than the gbest model outlined

above.

Consider the velocity update equation, repeated here for convenience

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] +

c2r2,j(t)[ŷj(t)− xi,j(t)]

The term c1r1,j(t)[yi,j(t) − xi,j(t)] is associated with cognition since it only takes into

account the particle’s own experiences. If a PSO is constructed making use of the

cognitive term only, the velocity update equation will become

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)]

Kennedy found that the performance of this ‘cognition only’ model was inferior to that

of the original swarm, failing to train the network within the maximum allowed number

of iterations for some parameter settings. One of the reasons for the poor behaviour of

this version of the PSO is that there is no interaction between the different particles.

The third term in the velocity update equation, c2r2,j(t)[ŷj(t) − xi,j(t)], represents

the social interaction between the particles. A ‘social only’ version of the PSO can be

constructed by using the following velocity update equation

vi,j(t+ 1) = vi,j(t) + c2r2,j(t)[ŷi,j(t)− xi,j(t)]

The performance of this model was superior to that of the original PSO on the specific

problem that Kennedy investigated.

In summary, the PSO velocity update term consists of both a cognition component

and a social component. Little is currently known about the relative importance of these

two terms, although initial results seem to indicate that the social component may be

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 26

more significant on some problems. The social interaction between the particles is a

form of cooperation, roughly following the model discussed by Clearwater et al. [19].

Cooperation will be discussed in more detail in Section 2.8.2.

2.4.3 Taxonomic Designation

The PSO is clearly related to some of the evolutionary algorithms. For one, the PSO

maintains a population of individuals representing potential solutions, a property com-

mon to all EAs. If the personal best positions (yi) are treated as part of the population,

then there is clearly a weak form of selection [2]. In a (µ+λ) ES algorithm, the offspring

compete with the parents, replacing them if they are more fit. The update equation (2.5)

resembles this mechanism, with the difference that each personal best position (parent)

can only be replaced by its own current position (offspring), should the current position

be more fit than the old personal best position. To summarise, there appears to be some

weak form of selection present in the PSO.

The velocity update equation resembles the arithmetic crossover operator found in

real-valued GAs. Normally, the arithmetic crossover produces two offspring that are

linear blends of the two parents involved. The PSO velocity update equation, without

the vi,j(t) term (see equation 2.7), can be interpreted as a form of arithmetic crossover

involving two parents, returning a single offspring. Alternatively, the velocity update

equation, without the vi,j(t) term, can be seen as a mutation operator, with the strength

of the mutation governed by the distance that the particle is from its two ‘parents’.

This still leaves the vi,j(t) term unaccounted for, which can be interpreted as a form of

mutation dependent on the position of the individual in the previous iteration.

A better way of modeling the vi,j(t) term is to think of each iteration not as a process

of replacing the previous population with a new one (death and birth), but rather as a

process of adaption [35]. This way the xi values are not replaced, but rather adapted

using the velocity vectors vi. This makes the difference between the other EAs and

the PSO more clear: the PSO maintains information regarding position and velocity

(changes in position); in contrast, traditional EAs only keep track of positions.

Therefore it appears that there is some degree of overlap between the PSO and most

other EAs, but the PSO has some characteristics that are currently not present in other

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 27

EAs, especially the fact that the PSO models the velocity of the particles as well as the

positions.

2.4.4 Origins and Terminology

The movement of the particles has been described as “flying” through n-dimensional

space [37]. This terminology is in part due to experiments with bird flocking simulations

which led to the development of the original PSO algorithm [70]. In fact, studying a paper

by Reynolds [111] (cited in Kennedy and Eberhart’s original PSO paper) reveals some

interesting insights. Reynolds was mainly interested in simulating the flight patterns of

birds for visual computer simulation purposes, observing that the flock appears to be

under central control. It is clear that a natural flock (or school) is unaffected by the

number of individuals participating in the formation, since schools of fish of up to 17

miles in length have been observed. Considering that the birds (or fish) must have finite

‘processing power’, one would expect a sharp upper limit on the size that a natural flock

can reach, if an individual had to track all the members of the flock. Since no such upper

bound is observed in nature, one must conclude that a bird (or fish) only pays attention

to a limited number of its neighbours, implying local rather than global control.

Several reasons have been forwarded for the flocking behaviour observed in nature.

Some evolutionary advantages include: protection from predators, improved survival of

the gene pool, and profiting from a larger effective search area with respect to food. This

last property is invaluable when the food is unevenly distributed over a large region.

Reynolds proceeded to model his flocks using three simple rules: collision avoidance,

velocity matching and flock centering. Note that the flock centering drive will prompt

a bird to fly closer to its neighbours (carefully, so that the velocity matching is not

jeopardised) but still maintaining a safe distance, as governed by the collision avoidance

rule. Reynolds decided to use a flock centering drive calculated by considering only the

nearest neighbours of a bird, instead of using the centroid of the whole swarm, which

he called the “central force model”. This corresponds roughly to the lbest model of the

PSO (described below). It is interesting to note Reynolds’s observation [111]:

“Before the current implementation of localised flock centering behaviour

was implemented, the flocks used a central force model. This leads to un-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 28

usual effects such as causing all the members of a widely scattered flock to

simultaneously converge toward the flock’s centroid.”

This describes quite accurately what happens in the gbest PSO model (also described in

more detail below).

Reynolds’s flocking boids (a word derived from bird-oid, denoting a generic bird-like

object) were a popular example of some of the principles of Artificial Life. The flocking

dynamics were a convincing example of emergent behaviour : complex global behaviour

arising from the interaction of simple rules. This is one of the features that makes the

PSO such a successful optimisation algorithm: a simple implementation that results in

complex (and effective) search behaviour.

Even though the particle movement visually looks like flocking, it does not strictly

comply with certain definitions of flocking behaviour. Matarić defines the following

concepts [81]:

Safe-Wandering: The ability of a group of agents to move about while avoiding colli-

sions with obstacles and each other.

Dispersion: The ability of a group of agents to spread out in order to establish and

maintain some minimum inter-agent distance.

Aggregation: The ability of a group of agents to gather in order to establish and

maintain some maximum inter-agent distance.

Homing: The ability to find a particular region or location.

Based on these definitions, Matarić contends that flocking behaviour consists of homing,

safe-wandering, dispersion and aggregation. The PSO only implements homing and

aggregation, lacking safe-wandering and dispersion. Safe-wandering is not important to

the PSO, since it only applies to entities that can collide physically. Dispersion means

that the particles will fan out when they get too close to one another, something which

is not currently in the PSO model — the PSO encourages the particles to cluster.

The terms “swarm” and “swarming” are much more appropriate. This term was

used by Millonas to describe artificial life models [85]. Millonas suggested that swarm

intelligence is characterised by the following properties:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 29

Proximity: Carrying out simple space and time computations.

Quality: Responding to quality factors in the environment.

Diverse Response: Not falling into a restricted subset of solutions.

Stability: Being able to maintain modes of behaviour when the environment changes.

Adaptability: Being able to change behavioural modes when deemed profitable.

Eberhart et al. [37] presented arguments indicating that the particles in the PSO possess

these properties.

Lastly, the term “particle” requires some justification. The members of the popu-

lation lack mass and volume, thus calling them “points” would be more accurate. The

concepts of velocity and acceleration, however, are more compatible with the term par-

ticle (alluding to a small piece of matter) than they are with the term point. Some

other research fields, notably computer graphics, also use the term “particle systems” to

describe the models used for rendering effects like smoke or fire [110].

2.4.5 Gbest Model

The gbest model offers a faster rate of convergence [37] at the expense of robustness.

This model maintains only a single “best solution,” called the global best particle, across

all the particles in the swarm. This particle acts as an attractor, pulling all the particles

towards it. Eventually all particles will converge to this position, so if it is not updated

regularly, the swarm may converge prematurely. The update equations for ŷ and vi are

the ones presented above, repeated here for completeness.

ŷ(t) ∈ {y0(t),y1(t), . . . ,ys(t)} | f(ŷ(t))

= min{f(y0(t)), f(y1(t)), . . . , f(ys(t))}
(2.9)

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] +

c2r2,j(t)[ŷj(t)− xi,j(t)]
(2.10)

Note that ŷ is called the global best position, and belongs to the particle referred to as

the global best particle.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 30

2.4.6 Lbest Model

The lbest model tries to prevent premature convergence by maintaining multiple attrac-

tors. A subset of particles is defined for each particle from which the the local best

particle, ŷi, is then selected. The symbol ŷi is called the local best position, or the neigh-

bourhood best . Assuming that the particle indices wrap around at s, the lbest update

equations for a neighbourhood of size l are as follows:

Ni = {yi−l(t),yi−l+1(t), . . . ,yi−1(t),yi(t),

yi+1(t), . . . ,yi−1(t),yi+l(t)} (2.11)

ŷi(t+ 1) ∈ Ni| f(ŷi(t+ 1)) = min{f(a)}, ∀a ∈ Ni (2.12)

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)]+

c2r2,j(t)[ŷi,j(t)− xi,j(t)]
(2.13)

Note that the particles selected to be in subset Ni have no relationship to each other in

the search space domain; selection is based purely on the particle’s index number. This is

done for two main reasons: it is computationally inexpensive, since no clustering has to

be performed, and it helps promote the spread of information regarding good solutions

to all particles, regardless of their current location in search space.

Lastly, note that the gbest model is actually a special case of the lbest model with

l = s. Experiments with l = 1 have shown the lbest algorithm to converge somewhat

more slowly than the gbest version, but it is less likely to become trapped in an inferior

local minimum [37].

2.5 Modifications to the PSO

Numerous improvements to the Particle Swarm Optimiser have been proposed. The

improvements listed below are grouped according to the specific shortcoming of the PSO

that they aim to address. Before the improvements are discussed, though, a section

describing a binary version of the PSO is presented.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 31

2.5.1 The Binary PSO

A binary version of the PSO was introduced by Kennedy and Eberhart [71]. The binary

version is useful for making comparisons between binary coded GAs and the PSO, as

well as for representing problems that are binary by nature. One typical application may

be to represent a neural network’s connection graph, where a ‘1’ represents a connection

and a ‘0’ represents the absence of a connection between two nodes in the network. A

binary PSO can then be used to evolve the network architecture.

The binary version restricts the component values of xi and yi to be elements taken

from the set {0, 1}. There is no such restriction on the value of the velocity, vi, of a

particle, though. When using the velocity to update the positions, however, the velocity

is thresholded to the range [0, 1] and treated as a probability. This can be accomplished

by using the sigmoid function, defined as

sig(x) =
1

1 + exp(−x)
(2.14)

The update equation for the velocity term used in the binary swarm is then

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j − xi,j(t)] + c2r2,j(t)[ŷj − xi,j(t)] (2.15)

Note that this velocity update equation does not differ from that used in the original PSO.

Instead of the usual position update equation (e.g. equation 2.8), a new probabilistic

update equation is used, namely

xi,j(t+ 1) =

{
0 if r3,j(t) ≥ sig(vi,j(t+ 1))

1 if r3,j(t) < sig(vi,j(t+ 1))
(2.16)

where r3,j(t) ∼ U(0, 1) is a uniform random variate. By studying equation (2.16), it

becomes clear that the value of xi,j will remain 0 if sig(vi,j) = 0. This will happen when

vi,j is approximately less than −10. Likewise, the sigmoid function will saturate when

vi,j > 10. To prevent this it is recommended to clamp the value of vi,j to the range

±4 [35], resulting in a state-change probability of sig(4) ≈ 0.018. The original paper

describing the binary PSO recommended a slightly larger vmax threshold of ±6, resulting

in a probability of approximately 0.0025 [71].

Note that the velocity update equation corresponds to the original velocity update

equation without the inertia weight or constriction coefficients (see Section 2.5.2). This

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 32

is because the paper describing the binary PSO was published before these modifications

were introduced. A later paper used the binary PSO in a comparison with a GA on a

multi-modal test-function generator [72]. That binary PSO made use of a constriction

coefficient, showing that the techniques usually applied to the continuous PSO are ap-

plicable to the binary PSO as well. The results reported by Kennedy and Spears show

that the binary PSO reached the solution to the problems faster than the GAs on most

of the functions tested, especially when the problem dimensionality was increased.

It is possible to use both binary and continuous values in the same vector simulta-

neously. This version has been called a Hybrid swarm [35], but the term ‘Hybrid’, like

the term ‘Modified’, has been applied to more than one modified PSO already. To pre-

vent any confusion, a swarm using both binary and continuous variables will be called a

‘binary+continuous swarm’ in this work.

Recent papers extended the abilities of the PSO to include arbitrary discrete repre-

sentations [50] by simply discretising the relevant quantities when necessary.

2.5.2 Rate of Convergence Improvements

Several techniques have been proposed for improving the rate of convergence of the PSO.

These proposals usually involve changes to the PSO update equations, without changing

the structure of the algorithm otherwise. This usually results in better local optimisation

performance, sometimes with a corresponding decrease in performance on functions with

multiple local minima.

Inertia weight

Some of the earliest modifications to the original PSO were aimed at further improving

the rate of convergence of the algorithm. One of the most widely used improvements is

the introduction of the inertia weight by Shi and Eberhart [124]. The inertia weight is

a scaling factor associated with the velocity during the previous time step, resulting in

a new velocity update equation, so that

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] +

c2r2,j(t)[ŷj(t)− xi,j(t)]
(2.17)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 33

The original PSO velocity update equation can be obtained by setting w = 1. Shi

and Eberhart investigated the effect of w values in the range [0, 1.4], as well as varying

w over time [124]. Their results indicate that choosing w ∈ [0.8, 1.2] results in faster

convergence, but that larger w values (> 1.2) result in more failures to converge.

The inertia weight governs how much of the previous velocity should be retained from

the previous time step. To briefly illustrate the effect of w, let c1 = c2 = 0. Now, a w

value greater than 1.0 will cause the particle to accelerate up to the maximum velocity

vmax (or −vmax), where it will remain, assuming the initial velocity was non-zero. A w

value less than 1.0 will cause the particle to slowly decelerate until its velocity reaches

zero. When c1, c2 6= 0, the behaviour of the algorithm is harder to predict, but based

on the results of Shi and Eberhart [124] it would appear that w values close to 1.0 are

preferable.

Another set of experiments were performed to investigate the interaction between

vmax and the inertia weight [120]. For the single function studied in this experiment, it

was found that an inertia weight of 0.8 produced good results, even when vmax = xmax.

The best performance, however, was again obtained by using an inertia weight that

decreased from 0.9 to 0.4 during the first 1500 iterations.

Further empirical experiments have been performed with an inertia weight set to

decrease linearly from 0.9 to 0.4 during the course of a simulation, this time using four

different objective functions [121]. This setting allows the PSO to explore a large area

at the start of the simulation run (when the inertia weight is large), and to refine the

search later by using a smaller inertia weight. The inertia weight can be likened to the

temperature parameter encountered in Simulated Annealing [73, 89]. The Simulated

Annealing algorithm has a process called the temperature schedule that is used to grad-

ually decrease the temperature of the system. The higher the temperature, the greater

the probability that the algorithm will explore a region outside of basin of attraction

of the current local minimum. Therefore an adaptive inertia weight can be seen as the

equivalent of a temperature schedule in the Simulated Annealing algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 34

Fuzzy Inertia Weight

Shi and Eberhart recently proposed a technique for adapting the inertia weight dynam-

ically using a fuzzy controller [122, 123]. A fuzzy controller is a mechanism that can

be used to translate a linguistic description of a problem into a model that can be used

to predict a numeric variable, given numeric inputs [37]. In other words, if a human

can describe roughly how a variable should be adjusted when observing the input, that

knowledge can be captured by the fuzzy controller. Some understanding of the effect of

the inertia weight has been accumulated over the many experimental studies that have

been performed, making a fuzzy inertia weight controller a good choice.

The controller proposed by Shi and Eberhart uses as input the current inertia weight

and the function value corresponding to the best solution found so far, f(ŷ). Since most

problems have function values on differing scales, the value of f(ŷ) must be normalised.

Equation (2.18) presents one possible technique for scaling the function values:

fnorm(ŷ) =
f(ŷ)− fmin

fmax − fmin

(2.18)

The values fmax and fmin are problem dependent, and must be known in advance or

some estimate must be available.

Shi and Eberhart chose to use three fuzzy membership functions, corresponding to

three fuzzy sets (low, medium, high) that the input variables can belong to. The output

of the fuzzy controller is the suggested change in the value of the inertia weight. Some

fine-tuning is required to specify the critical values for the fuzzy membership functions,

but that’s the whole point of using a fuzzy controller in the first place: these parameters

are known approximately from previous experience.

The fuzzy adaptive inertia weight PSO was compared to a PSO using a linearly de-

creasing inertia weight. The results indicated that the fuzzy inertia weight PSO exhibited

improved performance on some of the functions tested, for certain parameter settings

[122]. It is interesting to note that the fuzzy inertia weight method had a greater ad-

vantage on the unimodal function in the test suite. This behaviour is easily explained:

unimodal functions have no local minima, so an optimal inertia weight can be determined

at each iteration. Logically, at the start of the run a large inertia weight will allow the

PSO to locate the approximate region in which the minimiser is situated more rapidly.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 35

Upon reaching this area the inertia weight should be gradually decreased to slow down

the movement of the particles, allowing them to locate smaller features on the function’s

surface. This process can be approximated by linearly decreasing the inertia weight

over time, but this mechanism does not ‘know’ whether the PSO has located the region

where a smaller inertia weight should be used yet. Sometimes the PSO may take longer

to reach this region, sometimes it finds it very quickly. The adaptive fuzzy controller is

able to predict approximately what type of behaviour is more suitable. The rules in the

fuzzy controller are effectively reducing the inertia weight at a rate proportional to how

close the PSO is to the minimum, which is measured by how close fnorm(ŷ) is to zero.

When dealing with a function containing multiple local minima, however, it is more

difficult to find an optimal inertia weight. If a particle has already ‘stumbled upon’ the

basin containing the global minimum, the inertia weight can be decreased significantly

to allow the PSO to perform a fine-grained search in that basin. On the other hand, if

the swarm has only managed to find a good nearby local minimum, the correct setting

for the inertia weight would be a somewhat larger value to allow the PSO to escape from

the local minimum’s basin of attraction. The adaptive fuzzy inertia weight controller

cannot tell the difference between being trapped in a good (i.e. small value for fnorm(ŷ))

local minimum, and being close to the minimum of a unimodal function.

The adaptive fuzzy inertia weight controller is a promising technique for optimising

the inertia weight, but implementation difficulties, like knowing the values of fmax and

fmin, makes it hard to implement in a generic fashion.

Constriction Factor

Recently, work by Clerc [20, 23] indicated that a constriction factor may help to ensure

convergence. The constriction factor model describes, amongst other things, a way

of choosing the values of w, c1 and c2 so that convergence is ensured. By choosing

these values correctly, the need for clamping the values of vi,j to the range [−vmax, vmax]

is obviated. A discussion of the different models that Clerc proposed, as well as the

analytical insights gained from his work, follows in Section 2.7. A specific instance of

the constriction model, related to the results discussed below, will be described next.

A modified velocity update equation, corresponding to one of several constriction

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 36

models [23, 20], is presented in equation (2.19).

vi,j(t+ 1) = χ
(
vi,j(t) + c1r1,j(t)(yi,j(t)− xi,j(t)) + c2r2,j(t)(ŷj(t)− xi,j(t))

)
, (2.19)

where

χ =
2∣∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣∣ , (2.20)

and ϕ = c1 + c2, ϕ > 4.

Let c1 = c2 = 2.05. Substituting ϕ = c1 + c2 = 4.1 into (2.20) yields χ = 0.7298.

Substitution into equation (2.19), and dropping the explicit reference to t, results in

vi,j(t+ 1) = 0.7298
(
vi,j + 2.05× r1,j(yi,j − xi,j) + 2.05× r2,j(ŷj − xi,j)

)
,

Since 2.05× 0.7298 = 1.4962, this is equivalent to using the values c1 = c2 = 1.4962 and

w = 0.7298 in the modified PSO velocity update equation (2.17).

Eberhart and Shi compared the performance of a swarm using the vmax clamping

to one using only the constriction factor [39]. Their results indicated that using the

constriction factor (without clamping the velocity) usually resulted in a better rate of

convergence. On some of the test functions, however, the PSO with the constriction

factor failed to reach the specified error threshold for that problem within the allocated

number of iterations. The problem, according to Eberhart and Shi, is that the particles

stray too far from the desired region of search space. To mitigate this effect they decided

to apply clamping to the constriction factor implementation as well, setting the vmax

parameter equal to xmax, the size of the search space. This led to improved performance

for almost all the functions they used during testing — both in terms of the rate of

convergence and the ability of the algorithm to reach the error threshold.

Selection

Angeline introduced a version of the PSO that borrows the concept of selection from the

field of Evolutionary Computation [2] (refer to Section 2.2 for more detail on Evolutionary

Computation). Angeline argues that the current PSO has a weak, implicit form of

selection if one considers the personal best position as additional population members.

In the gbest model (the one used by Angeline for comparison), a particle only has access

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 37

to its own personal best and that of the global best particle. This means the possible

interaction between members from one half of the population (the current positions) and

the other half (the personal best positions) is severely restricted.

The purpose of selection in an Evolutionary Algorithm is to focus the effort of the

algorithm on a specific region of the search space, usually one that delivered promising

solutions in the recent past. A more thorough search of this region then ensues. Angeline

proposed the following method for adding selection to the PSO [2]:

1. Pick an individual from the population. Compare the fitness of this individual with

k other individuals in the population, awarding it with one mark every time that

the current individual has a fitness value superior to that of the one it is compared

with. Repeat this process for every individual.

2. Rank the particles by sorting them according to the marks accumulated in the

previous step.

3. Select the top half of the population, and copy their current positions onto the

current positions of the bottom half of the population. The personal best values

are left untouched.

This process is applied before the PSO velocity update equations are executed.

Angeline presented results comparing the original PSO (without a constriction factor

and without an inertia weight) to the PSO with selection. It was found that the modified

PSO performed significantly better than the original on the unimodal functions as well

as Rastrigin’s function, but worse on Griewank’s function. Note that Griewank’s func-

tion contains many local minima, which means that the selection mechanism actually

promotes convergence onto a local minimum. If some particles discover a reasonable

minimum, the other half of the population could be moved into the basin of the same

local minimum. This affects the ability of the algorithm to explore large regions of search

space, thus preventing it from finding the global minimum.

Selection thus improves the local search abilities of the PSO, but simultaneously

hampers its global search abilities.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 38

Breeding

Following the work of Angeline [2], Løvbjerg et al. applied further Evolutionary Com-

putation mechanisms to the PSO algorithm [79]. They chose to investigate the effect of

reproduction and recombination, of GA parlance, which they collectively referred to as

breeding.

The proposed modification to the PSO proceeds as follows:

1. Calculate the new particle velocities and positions, using, for example, equa-

tions (2.7) and (2.8).

2. Mark each particle as a potential parent, with probability Pb (breeding probability).

3. From the pool of marked particles, select two candidates and perform the arith-

metic crossover operation as detailed in equations (2.21)–(2.24), yielding two new

children, replacing the original parents.

4. The personal best position of each of the particles involved are set to their current

positions, i.e. yi = xi.

Note that the selection of parents is effected in a purely stochastic fashion, no fitness-

based selection is performed. This prevents some of the potential problems associated

with fitness-based selection on functions containing many local minima.

Let a and b denote the indices of the two particles selected as parents. Then the

arithmetic crossover proceeds as follows:

xa(t+ 1) = r1xa(t) + (1.0− r1)xb(t) (2.21)

xb(t+ 1) = r1xb(t) + (1.0− r1)xa(t) (2.22)

va(t+ 1) =
va(t) + vb(t)

||va(t) + vb(t)||
||va(t)|| (2.23)

vb(t+ 1) =
va(t) + vb(t)

||va(t) + vb(t)||
||vb(t)|| (2.24)

where r1 ∼ U(0, 1). The arithmetic crossover of the positions yields two new positions

at random locations within the hypercube of which the parents form the corners. The

velocity crossover normalises the length of the sum of the two parent’s velocities, so that

only the direction and not the magnitude is affected.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 39

The results presented by Løvbjerg et al. [79] show that the breeding slows down the

rate of convergence on unimodal functions, thus making the PSO with breeding a less

efficient local optimiser than the original PSO. The situation is reversed on functions with

multiple local minima, so that the PSO with breeding takes the lead. No comparison

with the lbest model was presented, so it is not clear whether the breeding performs

better than the original lbest algorithm on the multiple-minima functions.

2.5.3 Increased Diversity Improvements

The modifications presented in this section are aimed at increasing the diversity of solu-

tions in the population, a technique often applied to Genetic Algorithms. Most of these

approaches are based on the lbest model, where the neighbourhood of a particle is smaller

than the whole swarm. These improvements usually slow down the rate of convergence,

but produce better results when faced with multiple local minima.

Spatial Neighbourhoods

The original lbest PSO (see Section 2.4.6) partitions the swarm into neighbourhoods

based on their index numbers, that is, particles x1 and x2 are considered to be neigh-

bours in a neighbourhood of radius 1, regardless of their spatial positions. A different

partitioning scheme, based on the spatial location of the particles, has been proposed

by Suganthan [132]. During each iteration of the algorithm the distance from each

particle to every other particle in the swarm is computed, keeping track of the largest

distance between any two particles with a variable called dmax. For each particle the

ratio ||xa − xb||/dmax is computed, where ||xa − xb|| is the distance from the current

particle, a, to another particle b. This ratio can be used to select neighbouring particles,

corresponding to small ratios, or particles further away, corresponding to larger ratios.

Suganthan proposed that the selection threshold should be varied over the number of

iterations, starting with a small ratio (i.e. an lbest model), and gradually increasing the

ratio. Once the ratio reaches 1, the algorithm will effectively be using the gbest model.

Suganthan suggests that the threshold, called frac, should be computed as follows

frac =
3× k + 0.6× kmax

kmax

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 40

where k is the current iteration number, and kmax is the maximum allowed number of

iterations. Another particle b is considered to be in the neighbourhood of the current

particle if ||xa − xb||/dmax < frac. Using the notation introduced in Section 2.4, the

neighbourhood of particle i is defined as

Ni = {yl} |
||xi − xl||
dmax

< frac, l ∈ 1..s

The local best particle is then selected using equation (2.12), after which equation (2.13)

can be used to update the particle’s velocity.

Suganthan also linearly decayed the values of c1, c2 and w over time, but states that

fixed values of c1 and c2 produced better results. It was also found that setting c1 = 2.5

and c2 = 1.5 produced better results on some of the test functions.

The modified neighbourhood rule, combined with time-varying w values, resulted in

improved performance (compared to gbest) on almost all of the test configurations, even

on the unimodal test functions. This last property is somewhat surprising, since gbest is

expected to perform better than lbest on unimodal functions. Judging from the pseudo-

code provided in [132], however, it appears that the gbest algorithm did not enjoy the

benefits of a time-varying w value, which would certainly affect the results significantly.

Neighbourhood Topologies

The lbest model obtained through equations (2.11) and (2.12) with an l value of 1 de-

scribes a ring topology, so that every particle considers its two immediate neighbours (in

index space) to be its entire neighbourhood. All the particles can exchange information

indirectly, since particle i+ 1 is the neighbour of both particles i and i+ 2, who in turn

have neighbours i − 1 and i + 3, and so on. The relatively long path between particles

i and 2i slows down the exchange of information between them. This allows them to

explore different regions of search space, but still be able to share information.

Kennedy has constructed alternative topologies through which the rate of information

flow can be varied [68]. Sociology researchers use the term “small worlds” to describe

the well-known phenomenon that a person indirectly shares information with a vast

number of other persons. Research conducted by Milgram [84] indicated that people in

the United States were only five persons apart, that is, given two random individuals,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 41

the first could locate the second through as few as five people in between. Further,

research by Watts and Strogetz [142] shows that changing a few randomly-selected edges

in a ring topology dramatically reduces the average path length, while still maintaining

a high degree of clustering. Kennedy exploits these findings to construct alternative

neighbourhood topologies for an lbest PSO.

The first topology tested by Kennedy is the original ring-structure, but with a varying

number of randomly interchanged connections. A “wheel” topology is also considered,

where all the particles are connected to a single “hub” particle, but not directly to each

other. Figure 2.6 illustrates these two topologies, before and after some links have been

randomly exchanged. The last two topologies that were considered were a randomly-

connected topology and a star topology. The star topology represents a fully connected

swarm, thus it is actually the gbest model. Kennedy hypothesized that highly connected

topologies (like the star topology) may have difficulty in finding good optima when the

function contains a large number of local optima.

The experimental results presented by Kennedy indicates that the topology signifi-

cantly affects the performance of the algorithm, but it appears that the optimal topology

depends on the specific problem. For example, the wheel topology produced the best

results when applied to a function with many local minima. Kennedy postulated that

this can be attributed to the slower spread of information through the topology, resulting

in a more robust algorithm in the face of many local optima. On the unimodal functions,

however, the star topology (gbest) produced better solutions than the less-interconnected

topologies, owing to the faster spread of information.

Note that all of the topologies considered here were structured in the particle index

space, not in search space.

Social Stereotyping

Kennedy proposed a version of the lbest PSO that is a mixture of the spatial neighbour-

hood and the ring-topology approaches, called social stereotyping [69]. The particles

in the original PSO are attracted to previous best positions discovered by themselves

(the yi’s) or other particles in the swarm (the ŷi’s). Human social interaction studies

indicate that people often attempt to follow the collective beliefs of a group, rather than

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 42

(a) Ring Topology (b) Randomised Ring Topology

(c) Wheel Topology (d) Randomised Wheel Topology

Figure 2.6: A diagrammatic representation of two possible neighbourhood topologies,

before and after edges have been randomly exchanged.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 43

the beliefs of a specific individual in the group. This notion can be implemented in the

PSO as follows: each particle is a member of a cluster in search space. The centroid of

that cluster is analogous to the collective beliefs of the cluster. To simulate the effect of

a human tending toward the group’s collective belief, the particles can be drawn to the

centroids of such clusters, rather than individual best positions.

It is possible to modify the PSO so that the cognitive (relating to the particle’s

personal previous best position) or the social (relating to the best previous position

in the neighbourhood) component, or both, is replaced with the appropriate cluster

centroid. A brief description of the process follows.

A number of clusters Cl, l ∈ 1..#clusters are formed from the personal best values of

the particles, using a k-means clustering algorithm. The number of clusters, #clusters,

is selected beforehand. Let C∗ denote the set of all the clusters. Then map(C∗, i) is a

function returning the value l so that l = map(C∗, i) ⇒ yi ∈ Cl. With this function it

is possible to find the cluster to which particle i belongs.

The centroid for the cluster containing particle i is defined to be

C(i) =
1

|Cl|
∑
a∈Cl

a, l = map(C∗, i) (2.25)

where |Cl| denotes the number of elements in cluster l. Using the neighbourhood of radius

1, defined as in equation (2.11), a best particle g is selected from the neighbourhood so

that

yg ∈ Ni | f(yg) ≤ f(yb) ∀yb ∈ Ni

The centroid of the cluster containing g is thus C(g), using the definition of the centroid

from equation (2.25). With these definitions, three new variations of the lbest update

equation (2.13) are possible (explicit reference to t omitted on the right-hand side of the

equations):

vi,j(t+ 1) = wvi,j + c1r1,j(C(i)j − xi,j) + c2r2,j(ŷi,j − xi,j) (2.26)

vi,j(t+ 1) = wvi,j + c1r1,j(yi,j − xi,j) + c2r2,j(C(g)j − xi,j) (2.27)

vi,j(t+ 1) = wvi,j + c1r1,j(C(i)j − xi,j) + c2r2,j(C(g)j − xi,j) (2.28)

The first version, presented in equation (2.26), can be interpreted as follows: Instead

of using its own personal experience, the particle uses the collective experience of the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 44

spatial cluster to which it belongs instead. The neighbourhood influence is unchanged

from the original lbest algorithm.

The second version uses the opposite approach: equation (2.27) shows that the neigh-

bourhood influence is now based on the centroid of the cluster to which the most success-

ful particle in the neighbourhood belongs. Note that the neighbourhood is still defined

in terms of the particle’s index (i.e. no spatial relationship). The cognition component

of the update equation is unaffected.

Lastly, equation (2.28) replaces both the cognition and the social component with

their respective centroids. The particle is now drawn to the average of its own clus-

ter, as well as the average of the cluster to which the most successful particle in its

neighbourhood belongs.

The calculations involved with the computation of the cluster centroids take a non-

negligible amount of time, so that the social stereotyping approach is slightly slower than

the original lbest PSO.

Kennedy reported that the first version, corresponding to equation (2.26), was able

to produce better solutions than the original lbest algorithm on some of the problems. A

second set of experiments, where the algorithms were timed to see how long they took to

reach a specified error bound, indicated that the stereotyping algorithms were generally

slower than the original lbest algorithm. The overhead of forming clusters during each

iteration slows down the new algorithms significantly.

The other two algorithms, based on equations (2.27) and (2.28), generally performed

worse, indicating that a particle should not attempt to emulate the centroid of a distant

cluster.

Subpopulations

The idea of using subpopulations to increase the diversity of solutions maintained by

an algorithm has previously been used in Genetic Algorithms [130]. To create subpop-

ulations the original population is partitioned into smaller populations. The algorithm

(e.g. the GA) is applied to the elements in the subpopulation in the usual manner. From

time to time members are exchanged between subpopulations, or some other interaction

scheme is used to facilitate the sharing of information between the subpopulations. The

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 45

idea is to allow each population to thoroughly search a smaller region of search space

without the possibly deleterious influence of solutions from a far-removed region of search

space.

Løvbjerg et al. applied the notion of subpopulations to the PSO [79]. The breeding

operator (an arithmetic crossover operator) that they applied to the PSO, as described

above, is also used to effect the inter-subpopulation communication. They partition

the original swarm into blocks, where each block maintains its own global best particle.

When they select the parents for the crossover operator there is a small probability that

one of the parents will be selected from a different subpopulation. If this probability is

sufficiently small the subpopulations will have time to discover their own solutions, which

they can then share with other subpopulations through inter-subpopulation breeding.

In their actual implementation, the authors chose to keep the number of particles

fixed at 20 while forming subpopulations, so that a 2-subpopulation configuration would

consist of two swarms of 10 particles each. The results reported in [79] indicate that

this method of creating subpopulations does not lead to better performance. The rate

of convergence slowed down as the number of subpopulations was increased.

It seems like the subpopulation technique is of little benefit to the PSO algorithm.

The way in which the subpopulations were formed could possibly be to blame, however,

since the idea is sound and works well when applied to other evolutionary algorithms.

2.5.4 Global Methods

This section describes methods that attempt to find all the global minima of a function.

These approaches can be used in conjunction with most local search algorithms, although

they are easier to implement in conjunction with evolutionary approaches like GAs and

PSOs.

Sequential Niche Technique

Beasley et al. introduced an approach called the sequential niche technique [10] to system-

atically visit each global minimum of the objective function in turn. The local optimiser

that they chose was a GA, not a PSO, but the technique is applicable to the PSO as

well, and would be an interesting topic for future research.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 46

Theoretically, a search algorithm like the PSO can be applied repeatedly to the same

objective function, to eventually yield all the desired minima. This technique only has

an asymptotic probability of one to find all the minima, though, so it could take an

unacceptable number of attempts in a practical application before finding all the desired

minima. The idea proposed by Beasley et al. is to progressively adapt the fitness function

after each minimum has been discovered, so that the algorithm will not return to this

minimum again. By applying this technique repeatedly, each time suppressing one new

minimum, it will allow the search algorithm to enumerate all the minima.

The method used to adapt the fitness function is crucial to the success of the algo-

rithm. Beasley et al. chose to use a set of “derating” functions to suppress the maxima

in the fitness landscape (to a GA, a high fitness value indicates a good solution). A

sample derating function is shown in equation (2.29).

G(x,x∗B) =


(
||x−x∗

B ||
r

)α

if ||x− x∗B|| < r

1 otherwise
(2.29)

where x∗B is the position of the previously discovered maximum (in the fitness landscape),

α is a tunable parameter, indicating the strength of the attenuation, and r is the radius

associated with the derating function.

The derating function results in a radial depression, with radius r, of the fitness

function around the point s. If the strength of the depression is precisely the correct

magnitude, and r is chosen correctly, then the derating function will effectively remove

the presence of the local maximum in the fitness landscape located at x∗B.

Several problems remain with this technique:

1. The derating function assumes that the local maximum in the fitness landscape

has a form matching the inverse of the derating function, i.e. the local maximum

must be a radial “hill”;

2. The position s must be centred exactly on top of the centre of the local maximum;

3. The value of α must be chosen, or determined, correctly;

4. The value of r, called the niche radius, must be chosen or calculated correctly.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 47

The last two issues were addressed by choosing default values for α and r. Clearly this

leads to suboptimal removal of the local maximum, since not all the maxima will have

the same shape and size.

Choosing a value of r that is smaller than the actual radius of the local maximum

(assuming it is has a radial shape) will result in the introduction of more local maxima.

These maxima will usually have a small enough magnitude so that other valid maxima

will be discovered first, but clearly there is no guarantee of this.

On the other hand, choosing a value of r that is larger than the actual radius of the

local maximum may lead to the suppression of a neighbouring local maximum. Even if

this hypothetical neighbouring maximum is not significantly attenuated by the derating

function, the true location of the maximum will shift slightly because of the derating

function’s presence.

At first it would appear that this technique introduces more problems than it solves,

but Beasley et al. have shown that the sequential niche technique can successfully locate

all the maxima, even on so-called “trap” functions designed to mislead Genetic Algo-

rithms. Their experimental results further shown that locating p maxima takes roughly

p times as long as locating a single maximum, implying linear time scaling with the

number of maxima.

One of the major strengths of this technique is that it allows the enumeration of all

the global minima of a multi-modal function, a feature that is especially valuable in a

multi-objective optimisation problem.

Objective Function Stretching

The idea of adapting the objective function to reduce the effort expended to locate

all the global minima has been successfully applied to the PSO by Parsopoulos et al.

[101, 99, 98, 97]. Their approach is reminiscent of that of Beasley et al. [10], although

the details differ significantly.

Parsopoulos et al. propose a two-step “Stretching” process through which the ob-

jective function is modified to prevent the PSO from returning to the just-discovered

local minimum. The goal of the stretching function is to eliminate all local minima

located above the current local minimum, without affecting the minima below it. This

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 48

implies that the true location of the global minimum is unaffected, a property that is

not necessarily shared by the approach suggested by Beasley et al.

Let x∗B be the location in search space of a recently discovered local minimum, so that

a neighbourhood B exists where f(x∗B) ≤ f(x), ∀x ∈ B. Application of the stretching

technique produces a new objective function H, so that

G(x) = f(x) +
γ1

2
||x− x∗B||sign(f(x)− f(x∗B)) + 1), (2.30)

H(x) = G(x) +
γ2(sign(f(x)− f(x∗B)) + 1)

2 tanh(µ(G(x)−G(x∗B)))
(2.31)

where γ1, γ2 and µ are arbitrarily chosen positive constants, and the sign function is

defined as

sign(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

Note that the sign function can also be approximated by the tanh function, so that

sign(x) ≈ tanh(λx), for a suitably large constant λ. Parsopoulos et al. speculate that

the tanh function may result in slightly better performance than the sign function.

Recommended values for the parameters are as follows: γ1 = 104, γ2 = 1, and µ = 10−10.

The stretching algorithm can be added to the PSO with little difficulty. Specifically,

whenever the PSO converges (presumably on a local minimum), the value of x∗B is

recorded. The function f(x) is set equal to H(x) (as defined in equation 2.31), and all

the particles in the swarm are re-initialised. The process of building a new H function

and reinitialising the swarm whenever another minimum is discovered is repeated until

some stopping criterion is met. Re-initialising the swarm involves choosing new random

positions (and personal best positions) for all the particles. This step is required since

the particles will not be able to discover new minima once they have all converged onto

the global best particle, so they are simply scattered through the search space like at

the start of the algorithm. If it is assumed that the algorithm only terminates once the

global minimiser has been found, then x∗B is equal to the value of the global minimiser

at the end of the run.

This technique is not without problems, though. Consider the function f(x) = x4 −
12x3 + 47x2 − 60x, with a local minimiser located at approximately 4.60095589. If

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 49

-1

0

1

2

3

4

5

6

7

8

9

-10 -5 0 5 10

y

x

M(x).
M(u).

x

lo
g

1
0
f
(x

)
H(x)
f(x)

Figure 2.7: The function H(x) represents the objective function, f(x), after stretching.

Parameters settings: γ1 = 103, γ2 = 1, µ = 10−10.

the PSO has converged on this local minimum, the stretching technique will thus set

x∗B = 4.6009558. Figure 2.7 shows the stretched function H(x) with parameter γ1 set

to 103. The local minimum located at x = 4.60095589 is not clearly visible on the scale

at which the graph is presented, though. Note that the global minimiser, located at

x = 0.94345, is situated in what appears to be a deep trench after stretching. All the

function values outside of this trench have been “stretched” higher, with the previously

discovered local minimum located at 4.60095589 now forming a maximum.

The problem with the stretching technique is the introduction of false local minima,

as well as misleading gradients. Even though the PSO does not make use of gradient

information, it still has a tendency to move ‘down’ a slope. Note that, in Figure 2.7,

the slope in the interval −10 < x < 0 leads away from the region in which the global

minimiser is contained. Further, note that the slope of the original f(x) in this region

leads to the global minimum. If the PSO is bounded to the region −10 < x < 10, then it

may converge at either of the edges since the slope would lead them to these boundaries.

Different parameter settings change the shape of H(x), as can be observed in Fig-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 50

-1

0

1

2

3

4

5

6

7

8

-10 -5 0 5 10

y

x

M(x).
M(u).

x

lo
g

1
0
f
(x

)
H(x)
f(x)

Figure 2.8: The function H(x) represents the objective function, f(x), after stretching.

Parameters settings: γ1 = 104, γ2 = 1, µ = 10−10.

-1

0

1

2

3

4

5

6

7

-10 -5 0 5 10

y

x

M(x).
M(u).

x

lo
g

1
0
f
(x

)

H(x)
f(x)

Figure 2.9: The function H(x) represents the objective function, f(x), after stretching.

Parameters settings: γ1 = 105, γ2 = 1, µ = 10−10.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 51

ure 2.8, where γ1 is set to 104. Note that H(x) is now slightly concave in the interval

−10 < x < 0, thus introducing a false minimum to which the PSO may converge. The

boundaries at ±10 still present a problem.

Increasing the value of γ1 even further produces the graph shown in Figure 2.9. Note

that the slope in the interval −10 < x < 0 now leads to the interval containing the global

minimiser, but that two local minima have been introduced in the interval 3.5 < x < 7.

Although this example does not test every possible combination of parameter settings,

it does show that the stretching technique appears to introduce false minima regardless of

the parameter settings, or that the optimal parameter settings may be problem-specific.

Lastly, the technique developed by Beasley et al. can be used to locate all minima

in the function sequentially; in contrast, the technique proposed by Parsopoulos et al.

is at best only able to locate one global minimiser. This presents a problem when the

error function is truly multi-modal, i.e. there exists several minimisers with the same

optimal function value. These different minimisers might reflect different design choices,

so that they may all be of interest. Once the stretching technique has located the first

global minimiser for such a function, it will effectively reduce all other minima with the

same function value to isolated, discontinuous points in search space, making it almost

impossible to locate them. This implies that the stretching technique can not be used

to enumerate the minima of a function.

2.5.5 Dynamic Objective Functions

Much of the research regarding optimisation algorithms is performed in controlled en-

vironments, specifically with respect to the objective functions used. Usually new algo-

rithms are compared to existing algorithms on a set of benchmark objective functions

with known properties. These comparisons can provide useful insights into the perfor-

mance of an algorithm, but the objective functions usually considered are all static over

the duration of the experiment. Many real-world optimisation problems have objective

functions that vary over time, sometimes because of changing environments, measure-

ment error or both. Clearly an algorithm designed to be used in a real-world system

should be tested in an environment most closely resembling the real-world situation.

Dynamic objective functions can be classified based on the nature of the changes over

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 52

time. Two main classes can be identified:

Noisy functions: In some applications the objective function is inherently imprecise,

for example when the function value is obtained through numerical integration over

a convoluted high-dimensional volume. Other examples include measurement or

discretisation errors, making it impossible to approximate the gradient using finite

difference methods. This type of function can be simulated by adding noise to the

function values without changing the location of the minima. For example, a noisy

function fσ(x) can be defined so that

fσ(x) = f(x)(1 + η), η ∼ N(0, σ2) (2.32)

where σ can be used to control the degree of distortion.

Non-stationary functions: This class represents functions where the actual location

of the minimiser in search space changes over time. A typical example might be a

chemical process where the purity of some of the ingredients varies rapidly, shifting

the relative concentrations of other chemicals added to the process. Maximising the

yield of the reaction requires that the optimal solution is found every time that the

relative purity of the input chemicals changes. Since the location of the optimiser

is moving through the search space, an optimisation algorithm is expected to track

it over time. This class of functions can easily be simulated by defining a function

fh(x, t) so that

fh(x, t) = f(x + h(t)) (2.33)

where h is some vector-valued function, possibly a random walk.

Parsopoulos and Vrahatis investigated the performance of the PSO on noisy functions

[100]. They used three 2-dimensional benchmark functions, transformed by rotation of

the coordinate axes and by the addition of Gaussian noise in the form of equation (2.32).

The PSO was not seriously affected on these functions over values of σ ranging from 0 to

0.9, indicating that the standard PSO is able to function in noisy environments without

modification.

Experiments performed by Carlisle and Dozier indicated that the PSO may have

trouble tracking a non-stationary minimiser [16]. They set up an experiment involving

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 53

a very simple error function of the form

f(x) = ||x− g||

where g was the “goal” vector. The value of g was changed linearly at different fixed

velocities. Using a linearly decreasing inertia weight in the range 0.65 down to 0.15, they

found that the PSO was only able to track the goal for velocities up to 0.002, failing

almost completely at velocities greater than 0.1.

Carlisle and Dozier proposed a method for forcing the PSO to forget the outdated

information stored in the personal best position vectors yi. This is achieved by setting

yi = xi (which they referred to as “resetting” a particle) either at regular intervals,

or triggered by some event. Their reasoning was that completely restarting the PSO

discards too much useful information, and that a milder form of “forgetting” can be

achieved by the aforementioned method. They found that resetting all the particles at

regular intervals did improve the ability of the swarm to track minima (up to a velocity

of 0.01), but that too-frequent resets affected the ability of the swarm to successfully

locate the minimum.

They also proposed a “trigger” based method for detecting when the objective func-

tion has changed appreciably, signalling that the particles should be reset. Under some

strong assumptions it was shown that the trigger method performed more consistently

than the periodic approach, but still was only able to track the goal up to a velocity of

0.01.

In a further paper [17] Carlisle and Dozier implemented a version of Clerc’s constric-

tion factor instead of a linearly decreasing inertia weight. They also refined the trigger

mechanism for detecting when the objective function has changed. The new method

marks a particle as a sentry, comparing the value of the objective function of the sentry

particle’s position with a stored copy of the function value at this position (from the

previous iteration). If these two values differ significantly, the particles in the swarm are

reset.

The results obtained using the constriction factor version of the PSO were signifi-

cantly better than those obtained with the linearly decreasing inertia weight. In fact,

this raises the question whether the particles still have to be reset in order for the PSO to

be able to track the goal. Unfortunately, Carlisle and Dozier did not present any results

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 54

of a PSO using a constriction coefficient without the particle-resetting mechanism, so

this question cannot be answered based on their experiments.

This question is partially answered in a paper by Eberhart and Shi, also studying the

ability of the PSO to track a dynamic minimum [36]. Unfortunately, a different objective

function is used in this paper, so a direct comparison to Carlisle and Dozier’s work is not

possible. Eberhart and Shi used the 3-dimensional version of the spherical function in

order to allow comparisons to Angeline and Bäck’s earlier studies involving EP and ES

algorithms, respectively. The minimiser of the function was moved linearly at velocities

ranging from 0.01 up to 0.5, resulting in a total displacement of the minimiser of between

0.5 and 250 along each axis over the duration of the experiment.

Eberhart and Shi chose to use a different type of inertia weight for these experiments.

The value of w is set so that

w = 0.5 + r(t)/2

where r(t) ∼ U(0, 1). This means that the expected value of w is 0.75, which is close

to the constant value 0.729 used previously [39]. The acceleration coefficients were both

set to 1.494.

The results obtained from Eberhart and Shi’s experiments show that the PSO is able

to track a non-stationary minimiser following a linear path to a much greater accuracy

than that reported in the literature for the EP and ES algorithms. These positive results

further call to question the necessity of Carlisle and Dozier’s “resetting” method.

All the experiments described above involving a non-stationary minimum have one

subtle flaw, though. They all assess the performance of the PSO when tracking a min-

imum that starts moving when the experiment starts, rather than waiting for the PSO

to converge before moving the minimum. It is believed that the PSO will have trouble

tracking the minimum if it had been allowed to converge, since the velocity terms of

the particles may be too small. Especially in Carlisle and Dozier’s case, the “resetting”

technique will be of no benefit if the velocity of the particle is too small, since then

xi ≈ yi. One way of breaking free from this scenario is to randomise the positions of

some (say half) of the particles in the swarm at regular intervals, or use some mechanism

to determine a suitable time for re-initialisation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 55

2.6 Applications

The PSO has been applied to a vast number of problems, though not all of these appli-

cations have been described in published material yet. This section will briefly describe

some of the applications that can be found in the literature.

Neural network training was one of the first applications of the PSO. Kennedy and

Eberhart reported that the PSO was successful in training a network to correctly classify

the XOR problem, a process involving the minimisation of function in a 13-dimensional

search space [70]. They also reported that the PSO could train a neural network to

classify Fisher’s Iris Data set [44] (also available from [12]), although few details were

provided. Salerno also applied the PSO to the task of training a neural network to learn

the XOR problem, reporting significantly better performance than that obtained with

a Gradient Descent algorithm [114]. He also showed that the PSO was able to train a

simple recurrent neural network.

In fact, most PSO applications reported in the literature involve neural network

training. Earlier versions of the PSO, before the introduction of the inertia weight or

constriction factor, did not have the ability to perform a fine-grained search of the error

surface [1]. This lead to experiments involving a hybrid between PSO and traditional

gradient techniques. Van den Bergh used the PSO to find a suitable starting position for

the Scaled Conjugate Gradient algorithm [135]. Results showed that the hybrid method

resulted in significantly better performance on both classification problems, using the

UCI Ionosphere problem [12] as example, and function approximation problems, using

the henon-curve time series as example.

Later examples of neural network training include [34]. Here Eberhart and Hu used

the PSO to train a network to correctly classify a patient as exhibiting essential tremor,

or suffering from Parkinson’s Disease. Their PSO implementation used an inertia weight

that decreased linearly from 0.9 to 0.4 over 2000 iterations. An interesting feature of

the neural network they used was that they trained the slope of the sigmoidal activa-

tion functions along with the weights of the network. The slope of a sigmoidal unit is

determined by the parameter γ, where

sig(x) =
1

1 + exp(−γx)
(2.34)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 56

If γ is very large, the sigmoid function approximates the Heaviside step function, and

can thus be replaced with one, resulting in a computationally more efficient network.

Another benefit of the slope parameter is that the inputs to the neural network no

longer have to be rescaled, since the γ parameter performs the required scaling. This

technique is discussed in more detail in [35].

The PSO has also been used to evolve the architecture of a neural network in tandem

with the training of the weights of the network. Zhang and Shao report that their

PSONN algorithm [146] was able to successfully evolve a network for estimating the

quality of jet fuel. Part of the PSONN system involves the optimisation of the number

of hidden units used in the network — a task that is handled by a PSO. Whenever

a new hidden node is added to the network, only the newly added nodes are trained

(again using a PSO) in an attempt to reduce the error, greatly improving the speed of

the algorithm. Unfortunately they do not provide details on which type of PSO they

used, or how they represented the discrete numbers required for the description of the

network architecture.

Product Unit Neural Networks (see Chapter 6) are a type of neural network with an

error function that is notoriously hard to train. Many of the gradient-based optimisation

techniques become trapped in the numerous local minima present in the search space.

Engelbrecht and Ismail studied the ability of various optimisation algorithms to train

product unit networks [41]. In this study, the PSO was found to perform better than

random search, a GA and the LeapFrog algorithm [126, 127] on several product unit

network training problems.

Eberhart et al. describe several other applications of the PSO in [35], including some

more neural network training applications. Tandon used the PSO to train a neural net-

work used to simulate and control an end milling process [133]. End milling involves

the removal of metal in a manufacturing process, using computer numerically controlled

(CNC) machine tools. Another neural network training application described by Eber-

hart et al. is that of training a network to estimate the state-of-charge of a battery pack

[65].

Yet another neural network training application, this time using a Fuzzy Neural

Network, was studied by He et al. [60]. One of the more interesting points regarding

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 57

their research was the fact that they modified the velocity update equation so that it is

no longer accumulative, i.e.

vi,j(t+ 1) = c1r1,j(t)[yi,j(t)− xi,j(t)] +

c2r2,j(t)[ŷj(t)− xi,j(t)]

Results are presented showing that this modified velocity update equation gave rise to

improved performance on some benchmark functions. Note that this modification makes

their version of the PSO very similar to an Evolution Strategies algorithm. They also

showed that their fuzzy neural network was able to produce a set of 15 rules with a

classification accuracy of 97% on the Iris data set. This is a rather large number of rules

for such a simple classification task, compared to other efficient algorithms [139].

At least one application unrelated to neural network training is found in [35]. The

PSO was used to optimise the ingredient mix of chemicals used to facilitate the growth

of strains of microorganisms, resulting in a significant improvement over the solutions

found by previous optimisation methods. One of the strengths of the PSO is the ability

to explore a large area of search space relatively efficiently; this property led the PSO to

discover a better solution in a location in search space very different from the solutions

discovered by other existing techniques.

Another application unrelated to neural network training was published by Fukuyama

and Yoshida [50]. They have shown that the PSO is very effective at optimising both

continuous and discrete variables simultaneously. The PSO velocity update equation can

be adapted for use with discrete variables by simply discretising the values before using

them in the velocity update step (using for example equation 2.7). The position of the

particle is also discretised after equation (2.8) has been used to update it. These discrete

variables can be mixed freely with the continuous variables, as long as the appropriate

(discretised or continuous) update equations are applied to them. The application on

which Fukuyama and Yoshida demonstrated their modified PSO was that of calculating

the correct response to changes in the load on an electric power grid. This problem

requires the simultaneous optimisation of numerous discrete and continuous variables,

and was traditionally solved using the Reactive Tabu Search (RTS) algorithm. The RTS

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 58

algorithm scales very poorly with problem dimensionality, since the number of candidates

for evaluation increases exponentially with the dimension of the problem. To illustrate,

the RTS algorithm required 7.6 hours to solve a problem consisting of 1217 busses. The

same problem was solved in only 230 seconds using a PSO with a linearly decreasing

inertia weight in the range [0.9, 0.4].

Fukuyama et al. also applied Angeline’s Hybrid PSO [2] to the same problem [49],

finding that the Hybrid algorithm appears to be even more effective. They further

report that the same parameter settings for the PSO consistently produced high quality

solutions for different power system problems.

2.7 Analysis of PSO Behaviour

This section will briefly discuss various previous publications concerned with formal

analyses of the behaviour of the PSO algorithm. The focus of much of this work was the

convergence behaviour of the PSO, since no formal proof of convergence existed at the

time of their publication.

Currently there are numerous versions of the PSO that can be classified according

to their convergence behaviour, including the original PSO, the PSO with an inertia

weight and the PSO with a constriction coefficient. Several other PSO variants have

been described in Section 2.5, but the focus here will be on the simpler models that have

been analysed in terms of their convergence behaviour.

Before the different models and their analyses are presented, a definition of conver-

gence is in order. Many of the authors of the papers cited below use the term ‘conver-

gence’ to mean that the algorithm makes progress toward a terminal state. In effect, this

means that the magnitude of the changes in the positions of the particles in the swarm

diminishes over time. This should not be confused with the concept of “convergence onto

a local minimum.” Formally, a sequence {zk}+∞k=1 is said to converge onto a minimiser

(local or global) x∗ if

lim
k→+∞

zk = x∗

For example, to show that the PSO can successfully locate a local minimum x∗B in the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 59

region B, one would have to show that

lim
k→+∞

ŷk = x∗B

That is, the sequence of global best positions of the swarm, over time, must form a

sequence that converges onto x∗B. None of the analyses presented in the sections below

prove anything regarding this type of convergence.

Instead, some of the analyses found in the literature prove a considerably weaker

condition, namely

lim
k→+∞

ŷk = p

where p is an arbitrary point in the search space not guaranteed to coincide with the

global minimum, nor any local minimum, for that matter. While this type of convergence

is not sufficient to show that the PSO is a local (or global) minimisation algorithm, it is

a necessary condition in order for the algorithm to terminate in a finite number of steps.

Original PSO particle trajectory

Ozcan and Mohan have published the first mathematical analyses regarding the trajec-

tory of a PSO particle [91, 90]. The model that they based their analysis on was the

original PSO, without an inertia weight or a constriction coefficient.

To make the problem more tractable, the stochastic components of the update equa-

tions, as well as the personal best position of the particle, yi, were held constant. If the

analysis is restricted to one dimension, the subscript j can be omitted, thus simplifying

the notation. From this simplified model Ozcan and Mohan derived a recursive form of

the PSO position update equation:

xi(t)− (2− φ1 − φ2)xi(t− 1) + xi(t− 2) = φ1yi + φ2ŷ

Note that φ1 = r2(t)c1, and φ2 = r2(t)c2. That is, they are specific instances of the

stochastic variables, held constant during the analysis. The resulting non-homogeneous

recursion relation can be solved to obtain a closed form equation of the form

xi(t) = Λi sin(θit) + Υi cos(θit) + κi (2.35)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 60

where Λi, θi, Υi and κi are constants derived from the initial conditions and the values

of φ1 and φ2, where 0 < φ1, φ2 < 2. The reader is referred to [91] for the details of the

derivation.

What Ozcan and Mohan discovered is that the trajectory of a particle (in the ab-

sence of stochastic influences) traces out a sinusoidal waveform. The frequency and the

amplitude of the waveform depends on the initial position, initial velocity and the values

of φ1 and φ2. When the stochastic component is taken into account, the values of φ1

and φ2 change during every iteration, thus affecting the amplitude and frequency of the

waveform. To quote Ozcan and Mohan [91]:

“We have shown that in the general case, a particle does not ‘fly’ in the search

space, but rather ‘surfs’ it on sine waves. A particle seeking an optimal loca-

tion attempts to ‘catch’ another wave randomly, manipulating its frequency

and amplitude.”

Note that equation (2.35) does not take into account the influence of clamping the

velocity to the interval [−vmax, vmax]. The equation does, however, help in understanding

the purpose of vmax. If the values of φ1 and φ2 are chosen randomly, then the amplitude

of the sine wave may become excessively large, allowing the particle to wander too far

from the intended search space. By applying the vmax clamping the particle cannot move

too far in a single iteration, however, over several iterations it may still escape.

Ozcan and Mohan did not present an in-depth analysis of the influence of the inertia

weight, nor did they address the issue of convergence. Chapter 3 presents an analysis,

involving an inertia weight, that has been derived independently.

Constricted PSO particle trajectory

Clerc and Kennedy published a paper describing several different versions of the PSO, all

guaranteed to converge [21]. Convergence for these models is guaranteed through the use

of a constriction coefficient . In order to simplify the derivation of the equations below,

Clerc chose to use an alternate representation for the PSO update equations. Initially,

the same assumptions that Ozcan and Mohan made apply, i.e. a single particle in one

dimension, with a constant φ1, φ2, y and ŷ is considered. To shorten the notation even

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 61

further, Clerc combined y and ŷ into a single point p, so that

p =
φ1y + φ2ŷ

φ1 + φ2

(2.36)

The derivation of this property is not provided in [21], however, an independently derived

proof of this fact is presented in Chapter 3. Using this simplified notation, the PSO

equations are reduced to

v(t+ 1) = v(t) + φ(p− x(t)) (2.37)

x(t+ 1) = x(t) + v(t+ 1) (2.38)

where φ = φ1 +φ2. This representation is then transformed to the discrete-time dynamic

system

vt+1 = vt + φzt (2.39)

zt+1 = −vt + (1− φ)zt (2.40)

where zt = p−xt. Clerc shows that the convergence behaviour of the system is governed

by the two eigenvalues, denoted e1 and e2, of this system. The system converges when

max(|e1|, |e2|) < 1. A second system of equations can be defined so that its eigenvalues,

denoted e′1 and e′2, are always less than one. This is achieved by defining the system so

that e′1 = χ1e1 and e′2 = χ2e2, where several methods exist for determining the values of

χ1 and χ2. In order to gain more control over the convergence behaviour of the system,

Clerc introduced five control coefficients α, β, γ, δ, and η, resulting in the generalised

system

vt+1 = αvt + βφzt (2.41)

zt+1 = −γvt + (δ − ηφ)zt (2.42)

Different classes of systems have been identified, based on the choice of parameters.

They are:

Class 1 model: This class is characterised by the following relations

α = δ

βγ = η2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 62

Note that these conditions are satisfied by the relation α = β = γ = δ = η. The

constricted version of this model can be implemented using

v(t+ 1) = χ
(
v(t) + φz(t)

)
z(t+ 1) = −χ

(
v(t) + (1− φ)z(t)

)

where

χ =
2κ∣∣∣1− φ−√φ2 − 4φ

∣∣∣ , κ ∈ (0, 1)

Class 1′ model: Related to the class 1 model, this class is defined by the relations

α = β

γ = δ = η

Under the condition χ1 = χ2 = χ, this system has solutions in the form

α = (2− φ)χ+ φ− 1

γ = χ or γ =
χ

φ− 1

The constricted version of this model can be implemented using

v(t+ 1) = χ
(
v(t) + φz(t)

)
z(t+ 1) = −v(t) + (1− φ)z(t)

where

χ =
2κ∣∣∣1− φ−√φ2 − 4φ

∣∣∣ , κ ∈ (0, 1), φ ∈ (0, 2)

Class 1′′ model: Another related model, defined by

α = β = γ = η

where

α =
2δ + (χ1 + χ2)(φ− 2)− (χ1 − χ2)

√
φ2 − 4φ

2(φ− 1)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 63

Usually, the additional constraint δ = 1 is used with this system. The constricted

class 1′′ model follows:

v(t+ 1) = χ
(
v(t) + φz(t)

)
z(t+ 1) = −χv(t) + (1− χφ)z(t)

where

χ =


√

2κ˛̨̨
φ−2+
√

φ2−4φ
˛̨̨ if φ > 4

√
κ otherwise

where κ ∈ (0, 1).

Class 2 model: The second class of models is defined by

α = β = 2δ

η = 2γ

When χ1 = χ2 = χ, and 2γφ ≥ δ, then

δ = χ
2− φ+

√
φ2 − 4φ

2

γ = χ
2− φ− 3

√
φ2 − 4φ

4φ

These different constriction models all have the same aim: Prevent the velocity from

growing without bound, causing the systems to “explode”. The differences between the

models described by Clerc (reproduced above) lie mainly in their rates of convergence.

On a unimodal function a higher rate of convergence usually improves performance; in

contrast, a function with multiple local minima requires more exploration, thus slightly

slower convergence. A major benefit of using any of the constricted models above is that

the velocity of a particle no longer has to be clamped to the range [−vmax, vmax] in order

for the PSO to converge. Since the optimal value of vmax is problem dependent, this

constriction approach generalises the PSO.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 64

Clerc proposed the following explicit forms for the PSO update equations, derived

from the recurrence relations presented in equations (2.39) and (2.40).

v(t) = k1e
t
1 + k2e

t
2 (2.43)

z(t) =
1

φ

(
k1e

t
1(e1 − 1) + k2e

t
2(e2 − 1)

)
(2.44)

where k1 and k2 are constants determined by the initial conditions. Note that these forms

place no restriction on the value of t. That is, t does not have to be an integer. Since the

eigenvectors are complex numbers, a non-integer value of t results in a v(t) and a z(t) with

non-zero imaginary components. The trajectory of a particle in continuous time is thus

a curve in a 5-dimensional space defined by (Re(v(t)), Im(v(t)),Re(z(t)), Im(z(t)), t).

The sinusoidal waveforms observed by Ozcan and Mohan correspond to the trajectory

of the particle for integer values of t.

Several issues regarding PSO convergence remain unaddressed, though. The model

proposed by Clerc does not fully explain the interaction between the different particles.

Further, the convergence obtained by using the constriction coefficients does not guar-

antee that the PSO will converge on a global (or even local) minimum (as will be shown

in Section 3.3), in other words, Clerc’s constriction coefficients produce a sequence of

{ŷk}+∞k=1 values so that

lim
k→+∞

ŷk = p

where p is not guaranteed to be a minimiser of the objective function.

2.8 Coevolution, Cooperation and Symbiosis

This section briefly introduces the topic of coevolutionary and cooperative evolutionary

algorithms, serving as background material for the development of the new algorithms

introduced in Chapter 4.

The evolutionary metaphor used in Evolutionary Algorithms can be extended to

model several different types of organisms (species) living in the same environment, i.e.

sympatric populations. When there’s more than one type of organism they can have

several types of relationships:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 65

Competition: This type of inter-species interaction is sometimes referred to as the

Predator-prey relationship. This name clearly alludes to the fact that one of the

species will improve itself at the cost of the other species. If all the species are

actively trying to improve their performance relative to the others, the fitness of

all the species may improve — unless a species is driven to extinction. An example

from nature would be the relationship between the Cheetah and the Impala: if

the Cheetah evolves to run even faster, the Impala have to respond by either also

evolving to run faster, or to become more alert (e.g. improved hearing). If the

predators become too plentiful, the prey will be exhausted, so that an increase

in the number of predators does not imply an increase in the number of prey,

but rather requires an increase in the number of prey. Artificial predator-prey

relationships (as used in EAs) do not necessarily possess this last property.

Symbiosis: When an increase in fitness of one species also leads to an increase in fitness

of another species, they are said to have a symbiotic relationship. An example from

nature would be the relationship between some insects and flowers: the insects help

the flowers to distribute their pollen, while the insects obtain nourishment from

the nectar provided by the flowers. When there are more insects, more flowers can

be pollinated, leading to a larger population of flowers that can in turn sustain a

larger population of insects.

The following sections will review some implementations of coevolutionary algorithms.

2.8.1 Competitive Algorithms

The design of a competitive coevolutionary algorithm usually starts with the design of

a competitive fitness function [3]. Such a competitive fitness function measures how well

a solution scores when competing with another individual. When dealing with a single

population, the following competition patterns have been suggested:

‘All versus all’: Each individual is tested on all other population members;

Random competition: This pattern tests each individual on a number of randomly-

chosen population members;

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 66

Tournament competition: Another form of probabilistic competition, where mem-

bers compete in rounds using a relative fitness function. This type of fitness func-

tion rates the fitness of an individual relative to the other, and is therefore not a

global measure of an individual’s fitness;

‘All versus best’: All population members are tested with the current best (most fit)

individual.

Since a single invocation of the fitness function only ranks the two participating individ-

uals, one of the above strategies has to be used to rank the whole population. One of

the best-known uses of a competitive fitness function is Axelrod’s experiments with the

iterated prisoner’s dilemma [5, 6].

All these competition patterns, except tournament competition, can be extended to

deal with multiple species. Hillis presented one example of such a multi-species im-

plementation, where he used predator-prey coevolution to evolve sorting networks [61].

The first population he used consisted of sorting networks, which were pitted against

the test-lists evolved by the second population. The sorting networks received as a score

the percentage of test lists they were able to sort correctly; the test lists are scored

according to the number of sorting networks that they’ve defeated. Hillis has shown

that the coevolutionary approach produced better sorting networks than comparable

non-coevolutionary algorithms. The algorithm was also more efficient, since the test-list

population was typically smaller than the test set that would have been used in a non-

coevolutionary implementation. This was because the test-list population focused on the

regions of search space that were harder for the sorting networks to solve.

Coevolutionary Genetic Algorithms

Paredis introduced the term “test-solution problems” [95] as a generalisation of the

approach that Hillis followed for evolving his sorting networks. This term refers to

a problem that has a solution that must satisfy certain a priori criteria. One of the

earliest implementations of a Coevolutionary Genetic Algorithm (CGA) is also due to

Paredis. He used the CGA to train a neural network to perform a classification task [93].

The first population represents the network; the second population represents the test

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 67

data for the classification problem. Each time the network misclassified a test pattern,

that individual in the test data population was awarded a fitness point. This way the

CGA procedure automatically pares down the test set to the patterns that were hardest

to classify (these usually represent the boundary cases).

Other Constraint Satisfaction Problems (CSP) have also been successfully solved

using a CGA, again finding high-quality solutions more efficiently than traditional single-

population GAs [92].

Niching Genetic Algorithms

Fitness sharing, developed by Goldberg and Richardson [53], is another approach to

preserve population diversity, eventually leading to the evolution of different competing

species. Fitness sharing encourages the individuals to find their own ecological niches by

modifying the fitness function to incorporate information regarding individuals already

inhabiting that region of search space. A sharing function is defined as

share(dij) =


1 if dij = 0

1−
(

dij

σs

)α

if dij < σs

0 otherwise

where σs is an adjustable parameter indicating the radius (in the search space) of the

niche, dij represents the distance in search space between individuals i and j, and α is

an adjustable decay rate.

The modified fitness of an individual can then be computed using

f ′i =
fi∑n

j=1 share(dij)
(2.45)

The effect of fitness sharing is that an individual will score lower when it approaches

another population member already occupying that region of search space. Depending

on the decay parameter α and the niche radius σs, several individuals may occupy a

specific niche, however. By forcing the individuals to look elsewhere (when a niche

is already filled), diversity is increased. From equation (2.45) it is clear that a niche

containing individuals with very high fitness values will be able to accommodate more

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 68

individuals, which is intuitively satisfying when one compares this phenomenon to its

biological counterpart.

Note that this is a competitive fitness scheme, since the individuals compete for

positions in the existing niches, or they have to go and establish their own niches. If

an individual joins a niche, all the other members of that niche will suffer a decrease in

their effective fitness values, as computed by equation (2.45).

Another related niching technique, known as crowding, has been introduced by De

Jong [28]. This approach uses a steady state GA, which is similar to a (µ+ 1) Evolution

Strategy. One offspring is produced and compared with every element in the existing

population, replacing the individual it most closely resembles. This resemblance measure

can be computed in genotypic or phenotypic space. The idea behind the crowding

technique is to preserve the existing diversity in the population. Note that crowding

does not take into account the number of individuals already occupying that region of

space, so that there is no competition or associated drop in effective fitness. This implies

that crowding is not a competitive scheme.

Lastly, Beasley et al. [10] have suggested a sequential niching technique. This ap-

proach is discussed in more detail in Section 2.5.4.

2.8.2 Symbiotic Algorithms

Paredis’s CGA has also been employed in a symbiotic environment to co-evolve the

representation used by the GA concurrently with the process of solving the problem

itself [94, 96]. This is a particularly useful approach, since the optimal representation for

a specific problem is not usually known in advance. Many other symbiotic algorithms

have been proposed, some of which are discussed next.

Parallel Genetic Algorithms

Parallel GAs sprung forth from the desire to implement GAs on multi-processor ma-

chines. Two approaches to parallelising a GA have been proposed by Gordon and Whit-

ley [56]. The first is a straightforward implementation on a multi-processor, shared

memory system. This model, sometimes called a global model [15], allows recombination

between any two individuals, and is thus semantically equivalent to a normal GA.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 69

A second model is called the island model (or, alternatively, the migration or coarse-

grained model), first introduced by Grosso [59]. This model maintains separate sub-

populations (on different machines) where each subpopulation functions as a normal GA

population within itself, i.e. crossover and mutation operators are applied on elements in

the subpopulation. From time to time individuals are allowed to migrate from one sub-

population to another, thus sharing information between different subpopulations. This

model reduces the required inter-processor communication bandwidth significantly, and

manages to maintain greater diversity throughout all the subpopulations. This model is

cooperative, since the different subpopulations do not affect each other negatively, nor

do they compete directly for resources.

A third model, known as the neighbourhood model (or, alternatively, as the diffu-

sion or fine-grained model), makes use of overlapping subpopulations [88, 80]. Different

neighbourhood topologies can be used, but the idea is a straightforward extension of

the island model with some individuals belonging to more than one subpopulation at

any given moment. This model clearly increases the inter-processor communication re-

quirements, but it may converge faster than the island model [55]. Because there’s more

interaction between the subpopulations, they all benefit whenever another subpopulation

discovers a good solution, resulting in cooperative behaviour.

In these last two models the subpopulations are sometimes referred to as demes , a

term used in biology to describe such closely-related subpopulations.

Lastly, a fourth model, called the hybrid model, has been described in [15]. This

model uses any combination of the first three methods mentioned above, and has been

shown to offer some advantages. It should be noted that the level of symbiosis in the

parallel GA is quite low, since the subpopulations are arguably of the same species.

Cooperative Coevolutionary Genetic Algorithms

The Cooperative Coevolutionary Genetic Algorithm (CCGA) was first introduced by

Potter [106, 105]. Potter hypothesised that to evolve more complex structures the no-

tion of modularity should be made explicit. The model he proposed was that complex

solutions should be evolved in the form of interacting co-adapted subcomponents. Each

subcomponent is represented by a separate species, evolving in its own private GA.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 70

Each species represents only a partial solution to the more complex problem, in fact,

the fitness of a subcomponent cannot be evaluated unless there is some associated con-

text. The context is built up by selecting representative members of each of the other

subpopulations and constructing a template solution vector missing exactly one subcom-

ponent. Using this template, each individual from a specific species can be evaluated in

the context of the template solution vector to compute its fitness.

Consider, for example, a problem with a 10-dimensional parameter space, where the

vector can be partitioned into 10 populations corresponding to the 10 parameters. Each

population contains a number of individuals representing possible solutions for that spe-

cific parameter. A potential solution to the 10-dimensional problem can be constructed

by selecting one individual from each of the 10 populations, each one corresponding to a

dimension of the vector. The fitness of this vector can then be computed using the objec-

tive function of the problem. Now consider, for example, the 8th dimension of the search

space, corresponding to the 8th population. To compute the fitness of each individual

in this population, we substitute the individual into the 8th dimension of the template

vector, which is then evaluated. In the simplest case, the fitness of each individual can

be set to the fitness obtained by substituting it into the template solution vector (see

Section 2.9 for a detailed discussion of alternatives).

How to build a good template vector, representing a favourable context, is not imme-

diately clear. A greedy approach is to use the best individual from each population as

a representative for the corresponding parameter in the template vector. Potter called

this algorithm CCGA-1. A second algorithm, CCGA-2, considered two contexts for

each fitness evaluation: one using the ‘greedy’ template vector as context, and a second

template vector constructed by selecting one random individual from each population.

The individual’s fitness is then set to the better of that obtained using the greedy and

random contexts.

This dimension-based partitioning technique was applied to compare the CCGA-

1 algorithm to a standard GA when optimising functions with multiple local minima

[106]. On separable functions the CCGA-1 algorithm succeeded in locating the minima

of the functions significantly faster than the standard GA. The performance of CCGA-1

was mixed on non-separable functions, performing less well on one of two such functions

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 71

tested (Rosenbrock’s function). The CCGA-2 algorithm, using a randomly constructed

context vector, performed better than CCGA-1 on Rosenbrock’s function.

Note that the approach proposed by Potter is more general than simply partitioning

the parameter vector into its constituent components. In later work, Potter applied the

CCGA algorithm to a string covering problem [105]. The purpose of this experiment

was to determine whether the different species can cooperate so that the best solution

produced by each population is distinct from that of another population. In other words,

if the problem requires 10 different strings to cover (match) the target set, will the CCGA

algorithm be able to find the 10 targets using only 10 populations? The results obtained

by Potter indicated that CCGA was able to locate many of the required environmental

niches, showing that evolutionary pressure alone was sufficient to coerce the species to

cooperate. The CCGA technique has also been applied successfully to evolve a cascade

neural network [105].

Note that cooperation is achieved by partitioning the search space into disjoint sub-

spaces. The results obtained by one subpopulation in one of the subspaces influences the

characteristics of the search space as seen by the other subpopulations in their own sub-

spaces. The subpopulations thus cooperate by mutually focusing their efforts on more

promising regions of the search space.

Blackboard Information Sharing

Clearwater et al. [19] define cooperation as follows:

Cooperation involves a collection of agents that interact by communicating

information to each other while solving a problem.

and they further state

The information exchanged between agents may be incorrect, and should

sometimes alter the behaviour of the agent receiving it.

This is a rather general framework within which a wide range of algorithms can be

classified as being cooperative. For example, even a standard GA can be viewed as a

cooperative algorithm, rather than a competitive algorithm, using Clearwater’s defini-

tion. If individuals in a GA population are seen as agents, and the crossover operator

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 72

as information exchange, then the GA is certainly a cooperative algorithm. This view

is shared by other researchers as well, showing that under the assumption of certain

parameter settings, the GA is indeed a cooperative learner [22].

Another form of cooperation, as used by Clearwater et al. [19], is the use of a “black-

board”. This device is a shared memory where agents can post hints, or read hints

from. It is possible that an agent can combine the hints read from the blackboard with

its own knowledge to produce a better partial solution, or hint, that may lead to the

solution more quickly than the agent would have been able to discover on its own. Using

the blackboard model they have been able to show a super-linear increase in speed by

increasing the number of agents, given that the agents were sufficiently diverse. The

increase is attributed to the large “jumps” in search space that cooperation facilitates,

sometimes with detrimental effect, but usually improving the exploration ability of the

search algorithm. If the agents were non-diverse, only a linear speed-up was observed.

2.9 Important Issues Arising in Coevolution

New challenges are introduced when a problem is to be solved using a cooperative coevo-

lutionary approach. Potter suggested several categories of issues that must be addressed

by the algorithm [105]. These categories are briefly outlined next.

2.9.1 Problem Decomposition

The divide-and-conquer strategy used in some sorting algorithms (e.g. merge-sort) is a

prime example of a successful problem decomposition. For example, using merge-sort, the

list of values is split into to shorter sublists, recursively, until only two elements remain

in each sublist. These sublists are easy to sort, and it’s almost a trivial task to combine

two sorted lists so that their union remains sorted. Experience and knowledge of the

domain led to the discovery of the merge-sort algorithm’s successful decomposition into

simpler subtasks.

An example of a decomposition in an optimisation problem is that of the relaxation

method [129, 48]. This method can be used to solve an optimisation problem in n

variables by holding n− 1 of the variables constant while optimising the remaining one.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 73

This process is repeated by cycling through the combinations of n− 1 variables that can

be held constant. Effectively the problem of optimising n variables has been reduced to n

subtasks of optimising a single variable, thereby reducing the complexity of the original

problem.

Unfortunately, little is known about many of the complex problems that we may

encounter, making it difficult to find such highly effective decompositions. When the vari-

ables involved in a multi-dimensional optimisation problem are independent a component-

wise decomposition like the relaxation method can easily be applied. Many optimisation

problems, however, involve variables with non-linear dependencies, making decomposi-

tion a difficult if not impossible task.

Ideally, the optimisation algorithm must be able to evolve the most efficient decom-

position as part of the learning process.

2.9.2 Interdependencies Between Components

A function f in an n-dimensional optimisation problem is said to be separable if it can

be rewritten as the sum of n functions, each involving only a single component of the

vector, so that

f(x) = g1(x1) + g2(x2) + · · ·+ gn(xn)

Such problems can easily be decomposed into n independent problems, where the solution

of f will coincide with the vector obtained by concatenating the n solutions of the

gi functions. Separable functions are the one extreme, representing problems with no

interdependencies between the components. For example, the function

f(x) = x2
1 + x2

2

clearly has no interdependencies between its components. It can be decomposed into

two separate problems, e.g.

f(x) = g1(x) + g2(x)

g1(x) = x2
1

g2(x) = x2
2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 74

Clearly, the minimum of g1 can be found independently of g2, so that the value of x1

that minimises g1 will coincide with the value of x1 that forms part of the minimiser of

f .

A problem that appears no more difficult to solve (by looking at the graphical plots)

can be constructed by adding a product term, so that

f(x) = x2
1 + x2

2 + 0.25(2− x1)(1− x2)

This is still a relatively easy problem, but note that a change in the value of x1 affects

the term 0.25(2 − x1)(1 − x2), possibly requiring that a new optimal value for x2 must

be computed. One possible attempt at decomposing the function is

f(x) = g1(x) + g2(x)

g1(x) = x2
1 + 0.25(2− x1)(1− x2)

g2(x) = x2
2 + 0.25(2− x1)(1− x2)

where x2 and x1 are treated as constants in g1 and g2 respectively. This implies that the

minimiser of g1 is influenced by the (constant) value of x2, and g2’s minimiser will be

influenced similarly by x1. Clearly the minimiser of f cannot be found in one iteration

by simply minimising g1 followed by g2; multiple iterations will be required.

The interdependencies between variables can be significantly more complex than

illustrated in this simple example. It is usually not possible to determine the relationship

between the variables beforehand, especially if the interdependencies are highly non-

linear in nature.

2.9.3 Credit Assignment

The credit assignment problem is an important hurdle to overcome in the design of a

coevolutionary problem, since it increases the complexity of measuring the fitness of an

individual solution. The credit assignment problem can be defined as follows:

Given a solution x consisting of n subcomponents, and a fitness f associated

with x, what percentage of the credit associated with f must each of the

subcomponents receive for their contribution towards x?

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 75

Consider, for example, a chemical reaction yielding y units of the desired product per

time unit per unit measure of reacting substances. If the temperature of the reaction is

increased and a catalyst is added, production is increased to 2y. Did the reaction produce

a higher yield because of the increased temperature, the addition of the catalyst, or both?

Assuming that both the increased temperature and the catalyst are responsible, what

is the relationship between the addition of the catalyst and the resulting increase in

reaction yield? How much of the increased yield can be attributed to the increased

temperature?

Clearly, these questions cannot be answered without further knowledge about the

reaction or without running controlled experiments. It may even be the case that the

combination of the catalyst and the increased temperature results in a larger yield than

either of them produces alone.

Decomposing a complex solution into interacting subcomponents results in a credit

assignment problem similar to the chemical reaction example described above. Many

evolutionary algorithms (e.g. GAs) base their decisions on the fitness of an individual,

typically by allowing more copies of the fit individual to survive into the next generation.

Consider the following problem: Individuals of a population represent subcomponents of

a more complex problem. The fitness of a subcomponent cannot be evaluated directly,

but only when viewed in the context of the complete solution vector, consisting of several

subcomponents. How much credit should an individual, representing only one possible

choice for a specific subcomponent, receive for its contribution to the solution?

Usually this information is not available in advance, nor is it feasible to run con-

trolled experiments to determine the exact solutions for a specific credit assignment

problem. Some acceptable approximate solution to the credit assignment problem must

be considered in order to construct a practical algorithm for coevolving subcomponents.

2.9.4 Population Diversity

It is important that the population of potential solutions remain sufficiently diverse in

order for them to remain representative. Consider the coevolution of sorting networks

and test-lists, like those studied by Hillis [61]. If the test-list population discovers a

particular pattern, say pattern a, that is difficult for the sorting networks to sort, then the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 76

test-list population will gradually evolve to contain mostly minor variations on pattern a.

The sorting networks evolve so that they can defeat as many individuals in the test-list

population as possible. The test-list population, however, is no longer representative of

the original problem (that of sorting arbitrary lists), but has converged on a small subset

of the original problem space surrounding pattern a. Even though the sorting networks

will appear to continue to improve over previous generations, they will no longer be

quality solutions to the original problem.

To prevent the coevolutionary system from converging on a subset of the problem

space the diversity of all the populations involved must be maintained. Several techniques

have been proposed for GA, including crowding and niching, as described in Section 2.8.

2.9.5 Parallelism

Several models suggested for extending the GA to exploit multi-processor machines have

been discussed in Section 2.8. The island model, in particular, appears to be ideally

suited to a problem that can be decomposed into subcomponents. Each species, cor-

responding to a subcomponent of the solution vector, can be evolved on a separate

processor. Note that the island model, in this sense, is not limited to genetic algorithms,

but can be applied to the PSO or other evolutionary algorithms.

The original island model allowed migration between islands relatively infrequently.

The island model can be adapted to support a coevolutionary approach where each pop-

ulation represents a subcomponent of the solution. In order to evaluate the fitness of

an individual in such a subcomponent population, a template vector consisting of repre-

sentatives from the other populations must be available. The vector can be maintained

centrally, but this would result in unwanted overhead since each species would have to

access it every time they want to compute the fitness of an individual. A better approach

would be to keep a copy of this template vector on every machine, updating all template

vectors when necessary using broadcasts.

If the template vector has to be updated frequently the resulting broadcast traffic

could become a problem. A topic for future research is an investigation of the influ-

ence that network delays will have on the performance of such a cooperative algorithm

implemented in a networked, multi-computer environment.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 2. BACKGROUND 77

2.10 Related Work

Much of the work in the field of optimisation is related to the topics investigated in

this thesis. A vast number of new algorithms can be constructed by simply connecting

different optimisation algorithms in the correct way. For example, a GA can be used

during the early stages of the optimisation process, switching over to say the Scaled

Conjugate Gradient (SCG) algorithm to perform a rapid local search to refine a solution

when necessary. Replacing the Scaled Conjugate Gradient algorithm with some other

local method yields yet another new hybrid algorithm. This example illustrates how a

local method (the SCG algorithm) can be made a global optimisation algorithm with

the aid of a GA. Such hybrid algorithms are closely related to Memetic Algorithms [24].

One algorithm’s weakness may be another’s strength, so that no method can be said to

be irrelevant in the study of optimisation algorithms.

Chapter 3 investigates the convergence characteristics of the PSO algorithm. Some

of the analysis techniques used in that chapter are based on previous work by Ozcan

and Mohan [91], as well as work by Clerc [21]. Chapter 3 further introduces a new PSO

algorithm with guaranteed convergence on local minima. This algorithm is extended,

resulting in a PSO algorithm with guaranteed convergence on global minima. Formal

proofs are presented to support these claims, using the technique for proving convergence

properties of stochastic algorithms used by Solis and Wets [128].

Chapter 4 investigates several techniques for constructing cooperative PSO algo-

rithms. Potter introduced a novel technique for designing a cooperative Genetic Algo-

rithm, called CCGA [106]. Potter postulated that his model for cooperation could be

extended to include many other Evolutionary Algorithms. The first cooperative PSO

introduced in Chapter 4 was inspired by Potter’s model. Other researchers have since ex-

tended the CCGA-approach to other types of search algorithm, including a cooperative

algorithm based on generation stochastic search methods [131].

Clearwater et al. investigated the “blackboard” model of cooperation [19]. Their

approach models a generic communication mechanism between cooperating agents. This

model was used in Chapter 4 to construct a second type of cooperative PSO algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Chapter 3

Particle Swarm Optimiser

Convergence Characteristics

This chapter presents an analysis of the convergence behaviour of the PSO. First an explicit

equation describing the trajectory of a particle is developed. This explicit equation is then

used to show for which parameter settings the movement of the PSO will not “explode”.

A modification to the PSO is then presented, for which a proof of guaranteed convergence

onto a local minimiser is developed. A technique for extending the convergent PSO to locate

global minimisers is developed, with a corresponding proof of guaranteed convergence onto

these global minimisers.

3.1 Analysis of Particle Trajectories

This section presents an analysis of the trajectory of a particle in the PSO algorithm,

as well as providing further insights regarding the choice of the parameters c1, c2 and w.

The term convergence will be used in this section to refer to the property that the limit

lim
t→+∞

x(t) = p

exists, where p is an arbitrary position in search space, and x(t) is the position of a

particle at time t. The ability of the PSO algorithm to locate minima (local or global)

is discussed in Section 3.3.

78

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 79

For convenience, the velocity and position update equations for the PSO with an

inertia weight are repeated here:

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] +

c2r2,j(t)[ŷj(t)− xi,j(t)]
(3.1)

xi(t+ 1) = xi(t) + vi(t+ 1) (3.2)

The implicit form of the velocity update equation, presented in equation (3.1), is used for

multi-particle PSOs working in a multi-dimensional search space. For ease of notation,

the analysis below will be restricted to a single dimension so that the subscript j is

dropped. This can be done without loss of generality since there is no interaction between

the different dimensions in the PSO. The notation can be simplified even more by looking

at the trajectory of a single particle in isolation, thus dropping the subscript i. This

simplification assumes that the other particles in the swarm will remain “frozen” in

space while the trajectory of a single particle is analyzed. The trajectory of a particle

will be considered in discrete time steps, so that xt denotes the value of x(t).

Now, by substituting (3.1) into (3.2), the following non-homogeneous recurrence re-

lation is obtained (details are provided in Appendix C):

xt+1 = (1 + w − φ1 − φ2)xt − wxt−1 + φ1y + φ2ŷ, (3.3)

where φ1 = c1r1(t) and φ2 = c2r2(t); φ1, φ2 and w are assumed to be constant. The

values φ1 and φ2 are thus specific instances of c1r1(t) and c2r2(t), respectively.

When the initial conditions x(0) = x0 and x(1) = x1 have been specified, the closed

form of (3.3) can be obtained using any suitable technique for solving non-homogeneous

recurrence relations [125]. A complete derivation of the equations below can be found in

Appendix C. The closed form equation is given by

xt = k1 + k2α
t + k3β

t, (3.4)

where

k1 =
φ1y + φ2ŷ

φ1 + φ2

(3.5)

γ =
√

(1 + w − φ1 − φ2)2 − 4w (3.6)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 80

α =
1 + w − φ1 − φ2 + γ

2
(3.7)

β =
1 + w − φ1 − φ2 − γ

2
(3.8)

x2 = (1 + w − φ1 − φ2)x1 − wx0 + φ1y + φ2ŷ (3.9)

k2 =
β(x0 − x1)− x1 + x2

γ(α− 1)
(3.10)

k3 =
α(x1 − x0) + x1 − x2

γ(β − 1)
(3.11)

Note that the above equations assume that y and ŷ remain constant while t changes. The

actual PSO algorithm will allow y and ŷ to change through equations (2.5) and (2.6),

respectively. Thus the closed form of the update equation presented above remains valid

until a better position x (and thus y, ŷ) is discovered, after which the above equations

can be used again after recomputing the new values of k1, k2 and k3. The exact time

step at which this will occur depends on the objective function, as well as the values

of y and ŷ. To allow the extrapolation of the sequence it is convenient to rather keep

y and ŷ constant; by implication k1, k2 and k3 will be constant as well. Although it is

unlikely that this scenario will be encountered in a real PSO application, it aids us in

the elucidation of the convergence characteristics of the PSO.

An important aspect of the behaviour of a particle concerns whether its trajectory

(specified by xt) converges or diverges. The conditions under which the sequence {xt}+∞t=0

will converge will thus be considered next.

3.1.1 Convergence Behaviour

The analysis of the convergence of a particle’s trajectory can easily be performed for

constant values of φ1 and φ2. It should be remembered, though, that the actual PSO

algorithm uses pseudo-random values for these parameters, rather than constant values.

As will be shown later, however, the behaviour of the system is usually specified by the

upper bound associated with these values. Thus by using the largest values that φ1 and

φ2 can assume, the worst-case behaviour (in terms of convergence) can be studied.

Equation (3.4) can be used to compute the trajectory of a particle, under the as-

sumption that y, ŷ, φ1, φ2 and w remain constant. Convergence of the sequence {xt}+∞t=0

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 81

w

0 4.0

1

phi
2.0

w

φ1 + φ2

Figure 3.1: The dark paraboloid-shaped region represents the region for which

(1 + w − φ1 − φ2)
2 < 4w, so that all the points in this region result in a γ (and thus

also α and β) value with a non-zero imaginary component.

is determined by the magnitude of the values α and β, as computed using equations (3.7)

and (3.8). From equation (3.6) it is clear that γ will be a complex number with a non-zero

imaginary component whenever

(1 + w − φ1 − φ2)
2 < 4w (3.12)

or equivalently, when

(φ1 + φ2 − w − 2
√
w − 1)(φ1 + φ2 − w + 2

√
w − 1) < 0

A complex γ results in α and β being complex numbers with non-zero imaginary compo-

nents as well. Figure 3.1 depicts the range of φ1, φ2 and w values for which relation (3.12)

holds. One might wonder at this point how the recurrence relation presented in equa-

tion (3.3) can yield complex numbers. The answer is that the values obtained using the

explicit form of equation (3.4) are real when t is an integral number, since the imaginary

components in k2, k3, α and β cancel out.

The magnitude of α and β is measured using the L2 norm for vectors. For an arbitrary

complex number, z, the L2 norm is expressed as

‖z‖ =
√

(<e(z))2 + (=m(z))2 (3.13)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 82

Keep in mind that R ⊂ C, so that the above metric remains valid even if α is a real

number.

Any complex number zt can be written as

zt =
(
‖z‖eı̂θ

)t

= ‖z‖teı̂θt

= ‖z‖t(cos(θt) + ı̂ sin(θt))

where θ = arg(z). The limit,

lim
t→+∞

zt = lim
t→+∞

‖z‖t(cos(θt) + ı̂ sin(θt))

exists only when ‖z‖ < 1, in which case the limits assumes the value 0.

Consider now the value of xt (from equation 3.4) in the limit, thus

lim
t→+∞

xt = lim
t→+∞

k1 + k2α
t + k3β

t (3.14)

Clearly, equation (3.14) implies that the trajectory of a particle, {xt}+∞t=0 , will diverge

whenever max(‖α‖, ‖β‖) > 1, since then the limit does not exist. Conversely, {xt}+∞t=0

will converge when max(‖α‖, ‖β‖) < 1, so that

lim
t→+∞

xt = lim
t→+∞

k1 + k2α
t + k3β

t = k1 (3.15)

since limt→+∞ αt = 0 if ‖α‖ < 1 and limt→+∞ βt = 0 if ‖β‖ < 1. Further, let z represent

either α or β. Then, if ‖z‖ = 1, the limit

lim
t→+∞

ct = lim
t→+∞

1t(cos(θt) + ı̂ sin(θt)) (3.16)

does not exist, so the sequence {xt}+∞t=0 diverges.

Note that the above calculations assumed that φ1, φ2 remained constant, which is

not the case in the normal PSO. The values of c1 and c2 can, however, be considered an

upper bound for φ1 and φ2. The average behaviour of the system can be observed by

considering the expected values of φ1 and φ2, assuming uniform distributions:

E[φ1] = c1

∫ 1

0

x

1− 0
dx = c1

x

2

∣∣∣1
0

=
c1
2

(3.17)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 83

and

E[φ2] = c2

∫ 1

0

x

1− 0
dx = c2

x

2

∣∣∣1
0

=
c2
2

(3.18)

Assume that φ1, φ2 and w were chosen so that max(‖α‖, ‖β‖) < 1; in other words, they

were chosen so that the sequence {xt}+∞t=0 converges. This means, from equations (3.15)

and (3.5), that

lim
t→+∞

xt = k1

=
φ1y + φ2ŷ

φ1 + φ2

(3.19)

If the expected values of φ1 and φ2 (from equations 3.17 and 3.18) are substituted in

equation (3.19), the following results:

lim
t→+∞

xt =
c1
2
y + c2

2
ŷ

c1
2

+ c2
2

=
c1y + c2ŷ

c1 + c2

The trajectory of the particle thus converges onto a weighted mean of y and ŷ. To

illustrate, if c1 = c2, then

lim
t→+∞

xt =
y + ŷ

2

A more general solution can be obtained for arbitrary values of c1 and c2, as follows

lim
t→+∞

xt =
c1y + c2ŷ

c1 + c2

=
c1

c1 + c2
y +

c2
c1 + c2

ŷ

=

(
1− c2

c1 + c2

)
y +

c2
c1 + c2

ŷ

= (1− a)y + aŷ (3.20)

where a = c2/(c1 + c2), therefore a ∈ [0, 1]. Equation (3.20) implies that the particle

converges to a value derived from the line connecting the personal best to the global

best. This result is intuitively satisfying, since it implies that the particle will search

for better solutions in the area between its personal best position and the global best

position.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 84

0 4.0

1

2.0
z1phi

w
z2

w

φ1 + φ2 z1

z 2

Figure 3.2: The black triangle to the bottom right represents the values for which the

particle strictly diverges, i.e. max(‖α‖, ‖β‖) > 1. This is the region for which w <

0.5(φ1 + φ2) − 1. The lighter regions represent the magnitude of max(‖α‖, ‖β‖), with

white representing magnitude 1. The darker regions (outside of the divergent region)

represent values leading to more rapid convergence.

Figure 3.2 is an experimentally obtained map visualising the φ1, φ2 and w values

leading to convergence or divergence. The map was constructed by sampling the values

of φ1 + φ2 and w on a regular grid, using 1000 horizontal samples and 500 vertical sam-

ples. The intensity of each point on the grid represents the magnitude max(‖α‖, ‖β‖),
with lighter shades representing larger magnitudes, except for the black triangular shape

observed in the bottom right corner of the map. This triangle corresponds to the values

of φ1, φ2 and w resulting in max(‖α‖, ‖β‖) > 1, which implies that the trajectory of

the particle will diverge when using these values. Figure 3.2 should also be compared

to Figure 3.1 to see the relationship between the magnitude max(‖α‖, ‖β‖) and whether

γ has a non-zero imaginary component. Note that all the parameter values leading to

a divergent trajectory have real-valued γ values, since the entire divergent triangle falls

inside the white area of Figure 3.1. The parameters that correspond to real-valued γ val-

ues that do fall inside the convergent area of Figure 3.2 have relatively large magnitudes,

as can be seen from their lighter shading.

The trajectory of a particle can be guaranteed to converge if the parameters φ1, φ2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 85

and w are chosen so that the corresponding point on the map in Figure 3.2 always falls in

the convergent region. Let z1 represent the horizontal axis, associated with φ1 + φ2 and

z2 the vertical axis, associated with w. If we take into account that c1 and c2 represent

the upper limits of φ1 and φ2, respectively, so that φ1 ∈ [0, c1] and φ2 ∈ [0, c2], then the

range of values that φ1 + φ2 can assume (to ensure convergence) occur to the left of the

vertical line z1 = c1 + c2 in the figure. Searching vertically along line z1 = c1 + c2 for

the point where it exits the black divergent triangle yields the smallest w value that will

result in a convergent trajectory (i.e. a point outside of the divergent triangular region).

The coordinates of this intersection are (c1 + c2, 0.5(c1 + c2) − 1). All w values larger

than this critical value will also lead to convergent trajectories, so the general relation

w >
1

2
(c1 + c2)− 1 (3.21)

can be defined to characterise these values.

Figure 3.3 is an alternate representation of Figure 3.2. Note that the magnitude

max(‖α‖, ‖β‖) gradually increases from 0 to about 2.5 — this is especially visible in the

furled right-hand bottom corner. Keep in mind that all magnitudes greater or equal to

1.0 lead to divergent trajectories.

3.1.2 Original PSO Convergence

The original particle swarm, with c1 = c2 = 2 and w = 1, is a boundary case, with

0.5(2 + 2)− 1 = 1 = w. Further insight can be gained by directly calculating the value

of max(‖α‖, ‖β‖) using explicit formulae (3.7) and (3.8). This is achieved by setting

φ1 = φ2 = 2, since the maximum of these two values are determined by their respective

upper bounds with values c1 = c2 = 2, yielding ‖α‖ = ‖β‖ = 1. This would seem

to imply that the original PSO equations resulted in divergent trajectories, according

to equation (3.16). This verdict does not take into account the stochastic component,

though. Now, considering the stochastic component with φ1 = r1(t)c1 and φ2 = r2(t)c2,

where r1(t), r2(t) ∼ U(0, 1), it is clear that 0 < φ1, φ2 < 2 when c1 = c2 = 2. Substituting

φ = φ1 + φ2 into equation (3.6) yields

γ =
√

(2− φ)2 − 4

= ı̂
√

4φ− φ2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 86

0
1

2
3

4

Φ1 + Φ2

0

0.2

0.4
0.6

0.8
1

Ω

0

1

2

3

MaxH°Α´, °Β´L

0
1

2
3

4

Φ1 + Φ2

0

0.2

0.4
0.6

0.8
1

Ω

Figure 3.3: A 3-dimensional representation of the value max(‖α‖, ‖β‖). Note that the

elevation of the furled right-hand bottom corner exceeds 1.0.

which in turn yields

‖α‖ =

√
(2− φ)2

4
+

4φ− φ2

4

=

√
4− 4φ+ φ2

4
+

4φ− φ2

4
= 1 (3.22)

Because α and β are complex conjugates when γ is complex, this implies that ‖β‖ = 1 as

well, so that max(‖α‖, ‖β‖) = 1. This means that the trajectory of the particle will be

divergent regardless of the value of φ, which explains why the original PSO algorithm had

to clamp the velocities to the range [−vmax, vmax] to prevent the system from diverging.

Although the intuitive understanding of the concept of a divergent trajectory calls to

mind the image of a sequence that grows without bound, a divergent trajectory need not

be unbounded. A sequence may oscillate through a set of values without ever converging.

This is exactly what happens in the case of the original PSO. Consider the value of α

when c1 = c2 = 2, that is,

α =
(2− φ)2 + ı̂

√
4φ− φ2

2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 87

Recall that a complex number zt can be represented in exponential form, so that

zt = ‖z‖t(cos(θt) + ı̂ sin(θt)) (3.23)

where θ = arg(z). Since ‖α‖ = 1, as shown in equation (3.22), equation (3.23) can be

reduced to (after substituting α for z)

αt = cos(θt) + ı̂ sin(θt)

This implies that the trajectory of the particles is described by

xt = k1 + k2α
t + k3β

t

= k1 + k2(cos(θt) + ı̂ sin(θt)) + k3(cos(θt)− ı̂ sin(θt))

= k1 + (k2 + k3) cos(θt) + ı̂(k2 − k3) sin(θt)

where θ = arg(α), and arg(β) = −θ, since α and β are complex conjugates. The

imaginary components cancel for integral values of t, as usual. The trajectory of a

particle using the original PSO parameter settings thus traces out a superposition of two

sinusoidal waves; their amplitudes and frequencies depend on the initial position and

velocity of the particle. This is consistent with the findings of Ozcan and Mohan for

equivalent parameter settings [91].

This clearly shows that the original PSO parameters led to divergent particle tra-

jectories. The next section investigates the characteristics of trajectories obtained using

parameter settings from the convergent region indicated in Figure 3.2.

3.1.3 Convergent PSO Parameters

Above it was shown that the parameter settings of the original PSO would cause the

trajectories of its particles to diverge, were it not for the effect of the vmax clamping

strategy. An infinite number of parameter settings exist that do ensure a convergent

trajectory, so more information is needed to decide on a particular choice. A brief

example will now show that certain parameter choices leads to convergent behaviour

without having to clamp the velocities to the range [−vmax, vmax].

One popular choice of parameters is c1 = c2 = 1.49618 and w = 0.7298 [39]. First,

note that it satisfies relation (3.21) since 0.5(1.49618 + 1.49618)− 1 = 0.49618 < 0.7298.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 88

The stochastic behaviour can also be predicted using this relation, so that 0.5(φ1 +φ2)−
1 < 0.7298, which is trivially true for φ1 + φ2 ∈ (0, 2 × 1.49618). Substitution into the

explicit formulae for α and β, with φ = φ1 + φ2, confirms this. Two sets of calculations

follow: one for the real-valued γ values, and another set for complex γ values. When

φ ∈ [0, 0.02122], implying a real-valued γ, then

γ =
√

(1 + w − φ)2 − 4w

≈
√

0.073− 3.4596φ+ φ2

max(‖α‖, ‖β‖) ≈ 1.7298− φ+
√

0.073− 3.4596φ+ φ2

2
< 1

Otherwise, when φ ∈ (0.02122, 2.992], resulting in complex γ values,

γ =
√

(1 + w − φ)2 − 4w

≈ ı̂
√
−0.073 + 3.4596φ− φ2

‖α‖ = ‖β‖ =

√
(1 + w − φ)2

4
+
−0.073 + 3.4596φ− φ2

4
≈ 0.8754

Again, note that ‖β‖ = ‖α‖ when γ is complex, since they are complex conjugates.

Figure 3.4 is a cross-section of Figure 3.3 along the line w = 0.7298. The figure clearly

confirms the values derived above. Note that the figure indicates that the maximum value

of φ can be increased to approximately 3.45 without causing the trajectory to diverge.

The benefit of increasing φ will be discussed below. To summarise, this example shows

that a popular choice of parameter settings leads to a convergent trajectory without

having to clamp the velocities of the particles.

To ensure convergence, the value for w should thus be chosen so that it satisfies

relation (3.21). This relation can also be reversed to calculate the values of c1 and c2

once a suitable w has been decided on. Note, however, that there is an infinite number

of φ1 and φ2 values that satisfy φ = φ1 + φ2, all exhibiting the exact same convergence

behaviour under the assumptions of this analysis, so it is customary to set φ1 = φ2.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 89

0 1 2 3 4
Φ1 + Φ2

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

M
ax

H°Α´,°
Β´L

Figure 3.4: The magnitude max(‖α‖, ‖β‖) for w = 0.7298 and φ1 + φ2 ∈ (0, 4).

The trajectory of a particle obtained by using a set of parameters leading to conver-

gent behaviour can be associated with a physical phenomenon. First, equation (3.4) is

re-written using the alternate representational form for complex numbers to yield

x(t) = k1 + k2α
t + k3β

t

= k1 + k2‖α‖t(cos(θ1t) + ı̂ sin(θ1t)) + k3‖β‖t(cos(θ2t) + ı̂ sin(θ2t))

where θ1 = arg(α) and θ2 = arg(β). When γ is complex, α and β will be complex

conjugates. This leads to the simplified form

x(t) = k1 + ‖α‖t(k2 + k3) cos(θt) + ı̂‖α‖t(k2 − k3) sin(θt)

In this form it is immediately clear that the trajectory of a particle is analogous to

the dampened vibrations observed in a spring-dashpot system [14]. The characteristic

waveform associated with dampened vibrations is also clearly visible in Figure 3.5 below.

3.1.4 Example Trajectories

This section presents several plots of trajectories that have been obtained using equa-

tion (3.4). These trajectories were computed without any stochastic component; plots

taking the stochastic component into account are presented in Section 3.1.5. Figures 3.5,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 90

-40

-30

-20

-10

0

10

20

30

0 50 100 150 200 250

xt

tt

x
(t

)

(a) Time domain

-6e-16
-40 -30 -20 -10 0 10 20 30

im

re

Im
(x

)

Re(x)

(b) Phase space

Figure 3.5: A convergent particle trajectory, obtained with the parameter settings w =

0.5 and φ1 = φ2 = 1.4. Figure (a) plots the particle position over time; Figure (b) shows

the real and complex components of the particle trajectory over the same duration.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 91

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 50 100 150 200 250

xt

tt

x
(t

)

(a) Time domain

-6e-16
-500 -400 -300 -200 -100 0 100 200 300 400 500

im

re

Im
(x

)

Re(x)

(b) Phase space

Figure 3.6: A cyclic particle trajectory, obtained with the parameter settings w = 1.0

and φ1 = φ2 = 1.999. Figure (a) plots the particle position over time; Figure (b) shows

the real and complex components of the particle trajectory over the same duration.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 92

-1e+07

-8e+06

-6e+06

-4e+06

-2e+06

0

2e+06

4e+06

6e+06

0 50 100 150 200 250

xt

tt

x
(t

)

(a) Time domain

-1.2e+100

-1e+100

-8e+99

-6e+99

-4e+99

-2e+99

0

2e+99

4e+99

6e+99

8e+99

-6e+99 -4e+99 -2e+99 0 2e+99 4e+99 6e+99 8e+99 1e+100

im

re

Im
(x

)

Re(x)

(b) Phase space

Figure 3.7: A divergent particle trajectory, obtained with the parameter settings w = 0.7

and φ1 = φ2 = 1.9. Figure (a) plots the particle position over time; Figure (b) shows

the real and complex components of the particle trajectory over the same duration.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 93

3.6 and 3.7 show examples of the three types of behaviour that the non-stochastic PSO

equations can exhibit: convergent, cyclic (a special form of divergent behaviour) and di-

vergent. All these figures have been obtained experimentally, using 80-bit floating point

numbers, with constant values y = 1.0 and ŷ = 0. The initial conditions were x(0) = 10,

and x(1) = 10− 9φ1 − 10φ2, with φ1 and φ2 as listed for each figure.

Figure 3.5 is a plot of a particle trajectory obtained with a set of parameters that

leads to convergence. In Figure 3.5 it is clear that the amplitude of the oscillations decays

over time. This represents the radius of the search pattern of a particle in search space.

Initially the particle will explore a larger area, but the amplitude decreases rapidly until

the particle searches a small neighbourhood surrounding (c1y + c2ŷ)/(c1 + c2). In the

complex representation of x(t), Figure 3.5(b), where t is any real number (instead of

being restricted to integral values), the particle traces out a convergent spiral.

Figure 3.6 illustrates the second type of observed behaviour, namely that leading to

cyclic trajectories. Some comments on Figure 3.6(b) are in order. Ideally, the figure

would be a perfect ellipse since the superimposed sine waves should trace out a smooth

curve. Because the figure was obtained experimentally, however, the points are somewhat

“noisy” due to numerical inaccuracies. Instead of connecting the successive points using

line segments (as was done for the other two figures), it was decided, for the sake of

clarity, to plot only the points. Figure 3.6(a) clearly shows the non-convergent sinusoidal

waveform of the particle trajectory.

Figure 3.7 exhibits the classic notion of divergence: as time passes, the particle moves

(or more accurately, oscillates) further and further from ŷ, the global best position of

the swarm. The spiral in Figure 3.7(b) is divergent, and although it looks similar to the

one in Figure 3.5(b), the scale of the axes clearly show the divergent behaviour. For a

search algorithm this type of trajectory is not generally desirable, since the trajectory

will rapidly exceed the numerical range of the machine.

3.1.5 Trajectories under Stochastic Influences

In the previous section the stochastic component was treated as a constant by fixing the

values of φ1 and φ2. Although it was shown that some characteristics of the trajectory

can be applied to whole ranges of φ values, it is still not clear what the influence of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 94

-800

-600

-400

-200

0

200

400

600

800

0 50 100 150 200 250

x(
t)

t

Figure 3.8: Stochastic particle trajectory, obtained using w = 1.0 and c1 = c2 = 2.0.

Note that the y-axis scale of this figure is on the order of 102.

randomness will be on the trajectory. To investigate these phenomena, several sample

trajectories are presented. The following parameters were used for all the experiments:

y = 1.0, ŷ = 0, x(0) = 10 and x(1) = 10−9φ1−10φ2, with φ1, φ2 and w set to the values

indicated for each experiment. The stochastic values for φ1 and φ2 were sampled so that

0 ≤ φ1 ≤ c1 and 0 ≤ φ2 ≤ c2. Because of the stochastic component, the plots presented

in this section were obtained using PSO update equations (3.1) and (3.2), instead of the

closed form solution offered by equation (3.4). This implies that discrete time was used,

so that no phase plots were drawn. The notation xt in this section therefore refers to

the value of x at (discrete) time step t.

Figure 3.8 is a plot of the trajectory of a particle using the original PSO parameters,

i.e. w = 1.0 and c1 = c2 = 2.0. Notice how the amplitude of the oscillations increases

towards the right of the graph, a clear indication of the divergent behaviour of this

configuration. This is in agreement with observations in the previous section, where

these parameter settings led to cyclic (i.e. divergent) behaviour. The observed increase

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 95

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250

x(
t)

t

Figure 3.9: Stochastic particle trajectory, obtained using w = 0.9 and c1 = c2 = 2.0

in amplitude is caused by the randomness in the values of φ1 and φ2. A simple example

will illustrate the nature of the problem. Assume the following (quite arbitrary) values

for the parameters: xt = 10, xt−1 = 11, φ1 = c1r1(t) = 1.9, and φ2 = c2r2(t) = 1.8. The

new position of the particle can be calculated (using equation 3.3) as

xt+1 = −1.7xt − xt−1 + 1.9y + 1.8ŷ

thus xt+1 = −26.1. If another iteration is executed, then

xt+2 = −1.7xt+1 − xt + 1.9y + 1.8ŷ

which yields xt+2 = 35.27. If, however, different stochastic values are used so that

φ1 = 0.1 and φ2 = 0.2, then

xt+2 = 1.7xt+1 − xt + 0.1y + 0.2ŷ

resulting in xt+2 = −55.27. What this example illustrates is that alternating between

large and small values for φ1 and φ2 may increase the distance between xt and (1−a)y+aŷ,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 96

instead of decreasing it (or oscillating around it). This is caused in part by the negative

sign associated with the xt−1 term, which changes the direction that the particle moves

in at every alternate time step. A large distance at time step t may result in an almost

doubling of the distance in the next time step. If φ1 and φ2 remain constant, then the

particle is able to return to its previous position, since the step size is bounded.

Figure 3.9 was plotted using w = 0.9 and c1 = c2 = 2.0, again using stochastic values

for φ1 and φ2. Notice how the oscillations first appear to increase in amplitude, but then

gradually decrease. Near the end of the sample the amplitude increases again, but it

eventually decreases at time t = 300 (not shown in the figure). Applying relation (3.21)

to the parameters yields 0.5(2 + 2) − 1 = 2 > 0.9, which implies that the trajectory

will diverge when the upper bounds of φ1 and φ2 are considered. Convergent behaviour

emerges when φ1 + φ2 < 3.8. This happens with a probability of 3.8/4 = 0.95, since

0 < φ1 + φ2 < 4 under a uniform distribution. In short, this implies that the trajectory

of the particle will converge most of the time, occasionally taking divergent steps. The

relative magnitude of the divergent steps versus the convergent steps must be taken into

account to predict correctly whether the system will converge. Since this information

is not available (because of the randomness) it is not possible to make this prediction

accurately.

Figure 3.10 represents the trajectory of a particle using the parameter settings w =

0.7 and c1 = c2 = 1.4. Applying relation (3.21) shows that 0.5(1.4+1.4)−1 = 0.4 < 0.7,

so that the trajectory is expected to converge. This is clearly visible in the figure since

the initial oscillations decay very rapidly. Minor oscillations, caused by the stochastic

influence, remain present though. The parameter settings are now changed so that

w = 0.7 and φ1 = φ2 = 2.0, as reflected in Figure 3.11. Note that relation (3.21) dictates

that the upper bound for this trajectory is divergent, since 0.5(2 + 2) − 1 = 1 > 0.7.

When φ1 + φ2 < 3.4, however, convergent behaviour surfaces again. This happens with

probability 3.4/4 = 0.85, a lower figure than that obtained above with parameter settings

w = 0.9 and φ1 = φ2 = 2. The trajectory in Figure 3.11 appears to have a faster rate of

convergence than the one in Figure 3.9, though. This is offset by the fact that there are

more large “bumps” in Figure 3.11, indicating that divergent steps occur more frequently.

These results indicate that it is not strictly necessary to choose the values of c1 and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 97

-15

-10

-5

0

5

10

0 50 100 150 200 250

x(
t)

t

Figure 3.10: Stochastic particle trajectory, obtained using w = 0.7 and c1 = c2 = 1.4

-15

-10

-5

0

5

10

0 50 100 150 200 250

x(
t)

t

Figure 3.11: Stochastic particle trajectory, obtained using w = 0.7 and c1 = c2 = 2.0

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 98

-6e+07

-4e+07

-2e+07

0

2e+07

4e+07

6e+07

8e+07

0 50 100 150 200 250

x(
t)

t

Figure 3.12: Stochastic particle trajectory, obtained using w = 0.001 and c1 = c2 = 2.0.

Note that the y-axis scale of this figure is on the order of 107.

c2 so that relation (3.21) is satisfied for all values of 0 < φ1 + φ2 < c1 + c2, for a given w

value. Let φcrit denote the largest value of φ1 + φ2 for which relation (3.21) holds. Then

φcrit = supφ | 0.5φ− 1 < w, φ ∈ (0, c1 + c2] (3.24)

All values of φ1 + φ2 ≤ φcrit then satisfy relation (3.21). As long as the ratio

φratio =
φcrit

c1 + c2
(3.25)

is close to 1.0, the trajectory will converge without too many disruptions. As shown

above, even a φratio of 0.85 resulted in a system that converges without excessively large

oscillations.

Extreme cases, like w = 0.001 and c1 = c2 = 2.0, results in φratio ≈ 1/2. This system

will take divergent steps 50% of the time, but as Figure 3.12 shows, the system always

“recovers” after taking large divergent steps. The recovery is caused by the fact that

roughly 50% of the time the particle will take a step along a convergent trajectory. The

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 99

probabilistically divergent behaviour can have a positive influence on the diversity of the

solutions that the particle will examine, thereby improving its exploration capabilities.

This property is especially valuable when optimising functions that contain many local

minima.

Holland discussed the balance between exploration and exploitation that an algorithm

must maintain [63]. Exploration ability is related to the algorithm’s tendency to explore

new regions of the search space, while exploitation is the tendency to search a smaller

region more thoroughly. By choosing the PSO parameters carefully, a configuration can

be found that maintains the balance reasonably well.

The rule of thumb for choosing the parameters w, φ1 and φ2 is that smaller w values

result in faster rates of convergence. This is offset by how frequently a divergent step

will be taken, as measured by the value φratio, which is influenced by c1 and c2. If a w

value is selected, then a truly convergent system can be constructed by choosing c1 and

c2 so that φratio = 1. This results in a system with rapid convergence and little or no

“exploration” behaviour. Choosing slightly larger c1 and c2 values (and keeping w fixed)

results in a smaller φratio. Such a system will have more “exploration” behaviour, but it

will have more trouble with the “exploitation” phase of the search, i.e. it will have more

disruptions to its trajectory.

3.1.6 Convergence and the PSO

It is important to note at this stage that if the trajectory of the particle converges, then

it will do so towards a value derived from the line between its personal best position and

the global best particle’s position (see equation 3.20). Due to update equation (2.5),

the personal best position of the particle will gradually move closer to the global best

position, so that the particle will eventually converge on the position of the global best

particle. At this point, the algorithm will not be able to improve its solution, since the

particle will stop moving. This has no bearing on whether the algorithm has actually

discovered the minimum of the function f — in fact, there’s no guarantee that the

position on which the particle has converged is even a local minimum. The next section

deals with a modified PSO algorithm that addresses this problem.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 100

3.2 Modified Particle Swarm Optimiser (GCPSO)

The different versions of the PSO algorithm introduced in Chapter 2, including the

inertia weight and constriction factor versions, all have a potentially dangerous property:

if xi = yi = ŷ, then the velocity update will depend only on the value of wvi,j(t). In other

words, if a particle’s current position coincides with the global best position/particle, the

particle will only move away from this point if its previous velocity and w are non-zero. If

their previous velocities are very close to zero, then all the particles will stop moving once

they catch up with the global best particle, which may lead to premature convergence

of the algorithm. In fact, this does not even guarantee that the algorithm has converged

on a local minimum — it merely means that all the particles have converged on the best

position discovered so far by the swarm.

To address this issue a new parameter is introduced to the PSO algorithm. Let τ be

the index of the global best particle, so that

yτ = ŷ

For reasons that will become clear in Section 3.3, a new velocity update equation for the

global best particle (i.e. particle τ) is suggested, so that

vτ,j(t+ 1) = −xτ,j(t) + ŷj(t) + wvτ,j(t) + ρ(t)(1− 2r2,j(t)) (3.26)

where ρ is a scaling factor defined below. The other particles in the swarm continue using

the usual velocity update equation (e.g. equation 3.1). Briefly, the −xτ,j(t) term “resets”

the particle’s position to the position ŷj. To this position a vector representing the current

search direction, represented by the term wvτ,j(t), is added. The ρ(t)(1− 2r2,j(t)) term

generates a random sample from a sample space with side lengths 2ρ(t).

Combining the position update step (equation 3.2) and the new velocity update step

(equation 3.26) for the global best particle τ results in the new position update equation

xτ,j(t+ 1) = ŷj(t) + wvτ,j(t) + ρ(t)(1− 2r2(t)) (3.27)

The addition of the ρ term causes the PSO to perform a random search in an area

surrounding the global best position ŷ. The diameter of this search area is controlled by

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 101

the parameter ρ. The value of ρ(t) is adapted after each time step, using

ρ(t+ 1) =


2ρ(t) if #successes > sc

0.5ρ(t) if #failures > fc

ρ(t) otherwise

(3.28)

where the terms #failures and #successes denote the number of consecutive failures

or successes, respectively, where a failure is defined as f(ŷ(t)) = f(ŷ(t− 1)). A default

initial value of ρ(0) = 1.0 was found empirically to produce acceptable results. The

values sc and fc are threshold parameters, discussed in more detail below. The following

additional rules must also be implemented to ensure that equation (3.28) is well-defined:

#successes(t+ 1) > #successes(t)⇒ #failures(t+ 1) = 0

and

#failures(t+ 1) > #failures(t)⇒ #successes(t+ 1) = 0

Thus, on a success the failure count is set to zero, and likewise the success count is reset

when a failure occurs.

The optimal choice of values for the parameters fc and sc depend on the objective

function. In high-dimensional search spaces it is difficult to obtain better values using

a random search in only a few iterations, so it is recommended to set fc = 5, sc = 15.

These settings imply that the algorithm is quicker to punish a poor ρ setting than it is

to reward a successful ρ value; a strategy found empirically (in Section 5.3) to produce

acceptable results.

Alternatively, the optimal values for fc and sc can be learnt dynamically. For example,

the value of sc can be increased every time that #failures > fc, in other words, it

becomes more difficult to reach the success state if failures occur frequently. This prevents

the value of ρ from oscillating rapidly. Using this scheme the parameters can adapt to

the local conditions of the error surface, with the ability to learn new settings when the

error surface changes. A similar strategy can be designed for fc.

The value of ρ is adapted in an attempt to learn the optimal size of the sampling

volume given the current state of the algorithm. When a specific ρ value repeatedly re-

sults in a success, a larger sampling volume is selected to increase the maximum distance

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 102

traveled in one step. Conversely, if ρ produces fc consecutive failures, then the sampling

volume is too large and must be reduced.

When ρ becomes sufficiently small (compared to the machine’s precision, for example)

the algorithm can either halt or keep ρ fixed at this lower bound until some other stopping

criterion is met. Note that halting may not be the best option, as information regarding

the position of the other particles must also be taken into account. A typical example

might be where some of the particles are still exploring a distant region of the search

space, while the global best particle has already converged on the local minimum closest

to it. In this case the distant particles may still be able to discover a better minimum,

so the algorithm should continue until the maximum allowed number of iterations have

been reached.

The PSO algorithm using equation (3.26) to update the position of its global best

particle is called the Guaranteed Convergence Particle Swarm Optimiser (GCPSO), for

reasons that will become clear in Section 3.3.

3.3 Convergence Proof for the PSO Algorithm

This section presents a proof showing that the Guaranteed Convergence Particle Swarm

Optimiser (GCPSO), introduced in Section 3.2, is a local search algorithm that is guar-

anteed to converge on a local minimiser. Before the proof is presented, though, some

convergence criteria are defined. A local search algorithm is only guaranteed to find a

local minimiser of the objective function. In contrast, a global search algorithm is one

that is guaranteed to find the global minimiser of the objective function.

3.3.1 Convergence Criteria

The stochastic nature of the particle swarm optimiser makes it more difficult to prove

(or disprove) properties like global convergence. Solis and Wets have studied the con-

vergence of stochastic search algorithms, most notably that of pure random search algo-

rithms, providing criteria under which algorithms can be considered to be global search

algorithms, or merely local search algorithms [128]. Solis and Wets’s definitions are used

extensively in the study of the convergence characteristics of the PSO presented below.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 103

For convenience, the relevant definitions from [128] have been reproduced below.

Global Convergence Criteria

Proposition 1 Given a function f from Rn to R and S a subset of Rn. We seek a point

z in S which minimizes f on S or at least which yields an acceptable approximation of

the infimum of f on S.

This proposition provides a definition of what a global optimiser must produce as output,

given the function f and the search space S. The simplest stochastic algorithm designed

to perform this task is the basic random search algorithm. In the kth iteration, this

algorithm requires a probability space (Rn,B, µk), where µk is a probability measure

[134] (corresponding to a distribution function on Rn) on B, and B is the σ-algebra of

subsets of Rn. The support of the probability measure µk will be denoted Mk. That is,

Mk is the smallest closed subset of Rn of measure 1 under µk. The algorithm also needs

a random initial starting point in S, called z0.

Step 0: Find z0 in S and set k = 0.

Step 1: Generate a vector ξk from the sample space (Rn,B, µk).

Step 2: Set zk+1 = D(zk, ξk), choose µk+1, set k := k+ 1 and return to step 1.

Figure 3.13: The Basic Random Search Algorithm

The basic random search algorithm is outlined in Figure 3.13, where D is a function

that constructs a solution to the problem. The solution suggested by D carries the

guarantee that the newly constructed solution will be no worse than the current solution.

Therefore it satisfies the condition:

H 1 f(D(z, ξ)) ≤ f(z) and if ξ ∈ S, then f(D(z, ξ)) ≤ f(ξ)

Different D functions lead to different algorithms, but condition (H1) must be satisfied

for an optimisation algorithm to work correctly.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 104

Global convergence of any algorithm means that the sequence {f(zk)}∞k=1 converges

onto the infimum of f on S. A pathological case would be a function f that has a

minimum consisting of a single discontinuous point on an otherwise smooth function, for

example,

f =

{
x2 ∀x 6= 1

−10 if x = 1

To compensate for such cases, instead of searching for the infimum, a search is undertaken

for the essential infimum ψ, defined as

ψ = inf(t : v[z ∈ S|f(z) < t] > 0) (3.29)

where v[A] is the Lebesgue measure [134] on the set A. Equation (3.29) means that

there must be more than one point in a subset of search space yielding function values

arbitrarily close to ψ, so that ψ is the infimum of the function values from this nonzero v-

measurable set. Typically, v[A] is the n-dimensional volume of the set A. This definition

of ψ avoids the problem with the pathological case mentioned above by defining a new

infimum so that there is always a non-empty volume surrounding it containing points of

S, the search space. This way it is possible to approach the infimum without having to

sample every point in S.

Now, an optimality region can be defined as

Rε = {z ∈ S|f(z) < ψ + ε} (3.30)

where ε > 0. If the algorithm finds a point in the optimality region, then it has found

an acceptable approximation to the global minimum of the function.

It is now possible to consider whether an algorithm can in fact reach the optimality

region of the search space. A local search method has µk with bounded support Mk so

that v[S ∩Mk] < v[S] for all k, except for possibly a finite number of k values. Thus

not all the Mk span all of the search space — this implies that a region of search space

may never be visited. On the other hand, a true global search algorithm satisfies the

following assumption:

H 2 For any (Borel) subset A of S with v[A] > 0, we have that

∞∏
k=0

(1− µk[A]) = 0 (3.31)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 105

where µk[A] is the probability of A being generated by µk.

This means that for any subset A of S with positive measure v, the probability of

repeatedly missing the set A using random samples (e.g. the ξk above), must be zero.

Since Rε ⊂ S, this implies that the probability of sampling a point in the optimality

region must be nonzero.

The following theorem is due to Solis and Wets [128].

Theorem 1 (Global Search) Suppose that f is a measurable function, S is a measur-

able subset of Rn and (H1) and (H2) are satisfied. Let {zk}+∞k=0 be a sequence generated

by the algorithm. Then

lim
k→+∞

P [zk ∈ Rε] = 1

where P [zk ∈ Rε] is the probability that at step k, the point zk generated by the algorithm

is in Rε.

Proof: From (H1) it follows that zk or ξk in Rε implies that xk′ ∈ Rε for all k′ > k.

Thus

P [zk ∈ Rε] = 1− P [zk ∈ S \Rε] ≥ 1−
k∏

l=0

(1− µl[Rε])

(where S \Rε denotes the set S with Rε removed) and hence

1 ≥ lim
k→+∞

P [zk ∈ Rε] ≥ 1− lim
k→+∞

k−1∏
l=0

(1− µl[Rε])

By (H2) we have that
∏∞

k=0 (1− µk[A]) = 0, thus

1 ≥ lim
k→+∞

P [zk ∈ Rε] ≥ 1− 0 = 1

This completes the proof.

By the Global Search theorem, we thus have that an algorithm satisfying (H1) and

(H2) is a global optimisation algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 106

Local Convergence Criteria

The previous section described the conditions under which an algorithm can be said to

be a stochastic global optimiser. Although the basic random search algorithm described

there satisfies these conditions, it is far too slow to use as a practical algorithm. Lo-

cal stochastic optimisers have better rates of convergence, at the expense of no longer

guaranteeing that the global optimum will be found. This section describes the crite-

ria required for local convergence, with the aim of proving in the next section that the

GCPSO is a local optimisation algorithm with sure convergence.

For an algorithm that fails to satisfy the global search condition (H2), a local search

condition can be defined [128]:

H 3 To any z0 ∈ S, there corresponds a γ > 0 and an 0 < η ≤ 1 such that:

µk[(dist(D(z, ξ), Rε) < dist(z, Rε)− γ) or (D(z, ξ) ∈ Rε)] ≥ η (3.32)

for all k and all z in the compact set L0 = {z ∈ S|f(z) ≤ f(z0)}.

In equation (3.32), dist(z, A) denotes the distance between a point z and a set A, being

defined as

dist(z, A) = inf
b∈A

dist(z,b)

Therefore, an algorithm is a local optimisation algorithm if a nonzero η can be found

such that at every step the algorithm can move z closer to the optimality region by at

least distance γ, or z is already in the optimality region, with a probability greater or

equal to η.

Combining conditions (H1) and (H3) leads to the desired local convergence theorem

[128].

Theorem 2 (Local Search) Suppose that f is a measurable function, S is a measur-

able subset of Rn and (H1) and (H3) are satisfied. Let {zk}∞k=0 be a sequence generated

by the algorithm. Then,

lim
k→∞

P [zk ∈ Rε] = 1

where P [zk ∈ Rε] is the probability that at step k, the point zk generated by the algorithm

is in the optimality region, Rε.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 107

Proof: Let z0 be the point generated in Step 0 of the search algorithm. Since L0 is

compact, there always exists an integer p such that (by assumption H3)

γp > dist(a,b) ∀a,b ∈ L0.

By (H3) it follows that

P [z1 ∈ Rε] ≥ η

and

P [z2 ∈ Rε] ≥ η × P [z1 ∈ Rε] ≥ η2.

These probabilities are disjoint, so repeated application (p times) of (H3) yields

P [zp ∈ Rε] ≥ ηp

Applying (H3) another p times results in

P [z2×p ∈ Rε] ≥ η2×p

Hence, for k = 1, 2, . . .

P [zkp ∈ Rε] = 1− P [zkp /∈ Rε] ≥ 1− (1− ηp)k.

Now (H1) implies that z1, . . . , zp−1 all belong to L0 and by the above it then follows that

P [zkp+l ∈ Rε] ≥ 1− (1− ηp)k for l = 0, 1, . . . , p− 1.

This shows that all steps between kp and (k+1)p satisfy (H3). This completes the proof,

since (1− ηp)k tends to 0 as k goes to +∞.

3.3.2 Local Convergence Proof for the PSO Algorithm

The proof presented here casts the PSO into the framework of a local stochastic search

algorithm, thus allowing the use of Theorem 2 to prove convergence. Thus it remains to

show that the PSO satisfies both (H1) and (H3). The proof will first be presented for

unimodal optimisation problems, after which the multi-modal case will be discussed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 108

Unimodal functions

The proof for the PSO starts by choosing the initial value

x0 = arg max
xi

{f(xi)}, i ∈ 1..s,

where xi represents the position of particle i. That is, x0 represents the worst particle,

yielding the largest f value, of all particles in the swarm. Now define L0 = {x ∈ S|f(x) ≤
f(x0)}, the set of all points with f values smaller than that of the worst particle x0. It is

assumed that all the particles lie in the same ‘basin’ of the function, so that xi,yi ∈ L0,

with L0 compact. In the next section this will be extended to the general case with

multiple basins.

From equations (2.7)–(2.8), function D (as introduced in assumption H1) is defined

for the PSO as

D(ŷk, xi,k) =

{
ŷk if f(g(xi,k)) ≥ f(ŷk)

g(xi,k) if f(g(xi,k)) < f(ŷk)
(3.33)

The notation g(xi,k) denotes the application of g, the function performing the PSO

updates, the definition of which follows below. Further, the symbol xi,k will be used

instead of the usual notation xi(t), to stress the discrete nature of the time step. The

definition of D above clearly complies with (H1), since the sequence ŷ is monotonic by

definition.

Note that the dependence on the time step, k, has been made explicit above. The

sequence {ŷl}kl=0 is a sequence of the best positions amongst all the positions that all

the particles visited up to and including step k.

It is permissible to view the computation of the value of xi,k+1 as the successive

application of three functions g1, g2 and g3, each function adding a term to the previous

result. Thus:

xi,k+1 = g(xi,k) = g1(xi,k) + g2(xi,k) + g3(xi,k) (3.34)

where

g1(xi,k) = xi,k + wvi,k (3.35)

Since g is a vector function, the next two equations will be specified component-wise to

simplify the notation, thus g2(xi,k)j denotes the jth dimension of the function g2. Two

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 109

uniform pseudo-random number sequences, r1(t) and r2(t), are used below, as defined

for equations (2.7) and (2.8).

g2(xi,k)j = c1r1,j(t)[yi,j,k − xi,j,k] ∀j ∈ 1..n (3.36)

g3(xi,k)j = c2r2,j(t)[ŷj,k − xi,j,k] ∀j ∈ 1..n (3.37)

By the definition of L0, and the assumption that all the particles are initially in L0, we

have that:

yi,0,xi,0 ∈ L0

Let gN(xi,k) denote N successive applications of g on xi,k. Then,

Lemma 1 There exists a value 1 ≤ N ≤ +∞ so that ||gn(xi,k)− gn+1(xi,k)|| < ε,∀n ≥
N, ε > 0, subject to choices of w, φ1 and φ2 so that max(||α||, ||β||) < 1.

Proof: In Section 3.1 it was shown that

lim
t→+∞

x(t) = lim
t→+∞

k1 + k2α
t + k3β

t =
φ1y + φ2ŷ

φ1 + φ2

(3.38)

and from equation (2.8) it follows that x(t+ 1)− x(t) = v(t+ 1). Therefore

lim
t→+∞

v(t+ 1) = lim
t→+∞

x(t+ 1)− x(t)

= lim
t→+∞

k2α
t(α− 1) + k3β

t(β − 1)

= 0 (3.39)

when ||α||, ||β|| < 1. Now it follows, from equations (2.7) and (2.8), that

x(t+ 1) = x(t) + v(t+ 1)

= x(t) + wv(t)− x(t)(φ1 + φ2) + yφ1 + ŷφ2

But by equation (3.38), we see that x(t + 1) = x(t) in the limit of t. Further, by

equation (3.39), v(t) = 0 as t→ +∞. Thus, in the limit

x(t) = x(t)− x(t)(φ1 + φ2) + yφ1 + ŷφ2

⇒ −x(t)(φ1 + φ2) + yφ1 + ŷφ2 = 0

This is certainly true when x(t) = y = ŷ. Thus the system will converge (but not

necessarily on the local minimiser) when both y and x(t) coincide with ŷ.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 110

c1r1,1(yi,1 − xi,1)

ŷ

M ′′
i,k

yi

x′i

c 1
r 1

,2
(y

i,
2
−
x

i,
2
)

Figure 3.14: A depiction of the hyper-rectangular support of the space sampled by the

function g2. Note that yi need not be included in M ′′
i,k — this depends on the value of

c1.

In short, once the PSO algorithm reaches the state where all xi = yi = ŷ, ∀i ∈ 1..s,

then the algorithm must stop, since no further progress can be made. The danger exists

that the algorithm may reach this state before ŷ reaches the minimiser (local or global)

of the function.

To better understand how the PSO generates new solutions, the components of g

can be regarded separately. The application of function g2 can be seen as the action of

sampling a point from a distribution with hyper-rectangular support M ′′
i,k, as shown in

Figure 3.14. The side lengths of the hyper-rectangle M ′′
i,k are dependent on the distance

that xi,k is from yi. Lemma 1 shows that this distance tends to zero, since in the

limit xi,k = yi,k = ŷi,k. This clearly violates assumption (H3), since the probability of

sampling a point closer to the optimality region Rε becomes zero before ŷ necessarily

reaches Rε. Note that the same argument applies to g3 and ŷ, and is commonly referred

to as premature convergence.

Examples of states that converge prematurely can easily be constructed. Consider a

two-dimensional search space and a swarm with only two particles. One of the particles,

say particle 0, will be the global best particle. Let the symbols a1..a5 and p1..p2 denote

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 111

arbitrary constants. Then the swarm will stagnate whenever it reaches the state

v0 = a1(0, 1)

v1 = a2(0, 1)

x0 = (p1, p2)

x1 = (p1, p2) + a3(0, 1)

y0 = (p1, p2) + a4(0, 1)

y1 = (p1, p2) + a5(0, 1)

This is the state where all the particles are constrained to move only along one of the

dimensions of the search space. There is a non-zero probability that the swarm could

reach this state, or it could even have been initialized to this state. If the minimiser of

the function is not of the form (p1, p3), where p3 is an arbitrary value, then the swarm

will not be able to reach it. The fundamental problem here is that all movement in

the swarm is relative to other particles in the swarm — there is no “external force” to

“bump” the particles to break free of the state described above.

In summary, there exists initial states in which the original PSO algorithm can start

that will lead to a stagnant state in a finite number of steps. By using a large number of

particles, the probability of becoming trapped in such a stagnant state is reduced dra-

matically. It is shown experimentally in Section 5.4, however, that with only 2 particles

the swarm can rapidly stagnate. This implies that the basic PSO algorithm is not a

local search algorithm, since it is not guaranteed to locate a minimiser from an arbitrary

initial state.

One solution to the problem of stagnation is to use the modified velocity update step

for the global best particle as presented in equation (3.26). The resulting algorithm is

called the GCPSO, or Guaranteed Convergence PSO. Consider the new position update

step derived by substituting (3.26) into (2.8):

xτ,j(t+ 1) = ŷj(t) + wvτ,j(t) + ρ(t)(1− 2r2(t))

This represents the action of sampling a point from a hypercube with side lengths 2ρ

centered around ŷ + wv. Let Mk denote this hypercube, and let µk denote the uniform

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 112

2ρk

ŷk + wvτ,k

ŷk

Mk
xτ,k+1

Figure 3.15: The hyper-cubic support Mk of the sample space µk, centered around the

point ŷk + wvk, as defined by the position update step of the GCPSO. The point xk+1

is an example of a point sampled by the new velocity update step.

probability measure defined on the hypercube Mk. Figure 3.15 illustrates how a new

sample xτ,k+1 is generated. Stagnation is prevented by ensuring that ρ > 0 for all time

steps. Before proving that the GCPSO is a local search algorithm, a few details regarding

xτ,k must first be discussed.

Note that ŷ is always in L0. It is possible, however, that xτ,k /∈ L0, due to the

cumulative effect of a growing v vector, so that ŷ+wvk /∈ L0. One of two scenarios now

unfolds: ŷ ∈Mk or ŷ /∈Mk. In the first case, this means that a point arbitrarily close to

ŷ may be sampled, including ŷ itself. Since ŷ ∈ L0, this means that v[Mk ∩L0] > 0, that

is, the intersection of Mk and L0 is not empty. The second case implies that ρ is such

that Mk does not include ŷ. This happens when vτ (t) points outwards from L0. Since ŷ

is only updated when a better solution is found, and from the definition of L0, it is clear

that none of the points outside of L0 will be selected to replace ŷ. On the other hand,

xτ (t) is able to move outside of L0 because of the residual velocity vτ (t). Assume for

the moment that ρ is insignificantly small. Equation (3.26) shows that, if w < 1, then

clearly ||xτ (t + 1)− ŷ|| < ||xτ (t)− ŷ||, assuming that xτ (t) 6= ŷ. After a finite number

of time steps l, xτ (t+ l) will be in L0 once more. This implies that v[Mk+l ∩L0] > 0, so

that a point arbitrarily close to ŷ can be sampled once more.

Both cases imply that a new sampled point arbitrarily close to ŷ, and thus in L0,

can be generated. Note that the second case only comes into play when ŷ is close to the

boundary of L0. The first case, where Mk ⊂ L0, can be considered the norm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 113

The existence of a non-degenerate sampling volume µk with support Mk has thus

been shown for the GCPSO algorithm. Using this fact, it is now possible to consider the

local convergence property of the GCPSO algorithm.

If we assume that S is compact and has a non-empty interior, then L0 will also

be compact with a non-empty interior. Further, L0 will include the essential infimum,

contained in the optimality region Rε, by definition. Now Rε is compact with a non-

empty interior, thus we can define a ball B′ centered at c′ contained in Rε, as shown

in Figure 3.16. Now pick the point x′ ∈ arg maxx{dist(c′,x)|x ∈ L0}, as illustrated in

Figure 3.16. Let B be the hypercube centered at c′, with sides of length 2(dist(c′,x′)−
0.5ρ).

Let C be the convex hull of x′ and B′ (see Figure 3.16). Consider a line tangent to

B′, passing through x′ (i.e. one of the edges of C). This line is the longest such line,

for x′ is the point furthest from B′. This implies that the angle subtended by x′ is the

smallest such angle of any point in L0. In turn, this implies that the volume C ∩ B is

smaller than that of C ′ ∩B for any other convex hull C ′ defined by any arbitrary point

x ∈ L0.

Then for all x in L0

µk[dist(D(ŷ,xτ), Rε) < dist(x, Rε)− 0.5ρ] ≥ η = µ[C ∩B] > 0 (3.40)

where µk is the uniform distribution on the hypercube centered at x, with side length

2ρ. It was shown above that the modified PSO can provide such a hypercube.

Since µ[C ∩ B] > 0, the probability of selecting a new point x so that it is closer to

the optimality region Rε is always nonzero.

This is sufficient to show that the Guaranteed Convergence Particle Swarm Optimiser

(GCPSO) complies with (H3), because

1. The GCPSO can always generate a sample around a point in L0, assuming ŷ,yi ∈
L0;

2. Given any starting point in L0, the GCPSO algorithm guarantees a non-degenerate

sampling volume with a nonzero probability of sampling a point closer to the

optimality region, Rε.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 114

C

Rε

x′

c′

B′

ŷy

B
C ∩B

0.5ρ

2ρ

Figure 3.16: The intersection C ∩B

The GCPSO algorithm thus satisfies both (H1) and (H3).

This completes the proof that the sequence of values {ŷk}∞k=0 generated by the

GCPSO algorithm will converge to the optimality region, under the constraints of a

local optimisation algorithm, regardless of the initial state of the swarm.

Functions with multiple minima

It was assumed above that L0 was convex-compact. A non-unimodal function, with S

including multiple minima, will result in a non-convex set L0. Even if all the particles

are contained in the same convex subset, the modified PSO is not guaranteed to yield

a point in the same convex subset as it started from, especially not during the earlier

iterations. This is because the velocity update can yield a value larger than the diameter

of the basin in which the particle currently resides. If the point found in a different

convex subset yields a function value smaller than the current global best value, then

the algorithm will move its global best position to this new convex subset of L0. By

Lemma 1, all the particles will eventually move into the new convex subset. This process

could continue until the algorithm converges onto the essential infimum contained in its

convex subset, at which point it will no longer be able to ‘jump’ out of the convex subset

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 115

if the diameter of the subset is greater than 2ρ, since the velocity update (i.e. the step

size) will be smaller than ρ. The process of jumping between basins cannot continue

ad infinitum, since all the particles will converge onto the position of the global best

particle, as illustrated in Section 3.1.

What this implies is that a non-convex set L0 does not preclude the algorithm from

converging, but it illustrates that the algorithm will converge onto some local minimum,

instead of the global minimum.

3.4 Stochastic Global PSOs

In the previous section it was proved that the GCPSO algorithm converges on a local

minimiser with probability 1, as the number of iterations approaches infinity. It is

possible to extend the GCPSO to become a stochastic global search algorithm, so that

it will locate the global minimiser of the objective function. Unfortunately, the requisite

number of iterations (and thus the time) to reach this global minimiser is unbounded

when dealing with search spaces containing an infinite number of points. All computer

implementations of search algorithms will work in a finite-precision approximation of

Rn, however, so it is possible to say that the upper bound is equal to the number of

iterations required to examine every location in the search space. A technique that

examines every location in search space is highly impractical — unfortunately this is

the only way to obtain 100% certainty that the global minimiser has been found. This

implies that algorithms that don’t examine every point have at best only an asymptotic

probability of 1 of locating the global minimiser as the number of iterations approaches

infinity (or the number of points in search space). Two algorithms with this property

are introduced below, but first it is shown that the GCPSO, as well as the original PSO,

are not global search algorithms.

3.4.1 Non-Global PSOs

Theorem 1, defined in Section 3.3, specifies under which conditions an algorithm can be

considered to be a global method. More importantly, from this theorem one can conclude

that an algorithm that fails to satisfy (H2) is not a global search method. Recall the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 116

definition of (H2):

For any (Borel) subset A of S with v[A] > 0, we have that

∞∏
k=0

(1− µk[A]) = 0

where µk[A] is the probability of A being generated by µk.

This means that any arbitrary set A ⊂ S must have a non-zero probability of being

examined by the algorithm infinitely often. In other words, the condition must hold

for all time steps t, with only a finite number of exceptions. Since Rε ⊂ S this clearly

implies that an algorithm that has a non-zero probability of generating samples from

an arbitrary subset of S will thus (eventually) generate a sample ξ ∈ Rε. Conversely,

any algorithm that consistently ignores any region of search space is not guaranteed

to generate a sample ξ ∈ Rε, unless the algorithm had a priori information regarding

the location of the global minimiser. This implies that a general algorithm, without a

priori knowledge, must be able to generate an infinite number of samples distributed

throughout the whole of S in order to guarantee that it will find the global minimiser

with asymptotic probability 1.

Lemma 2 The PSO algorithm does not satisfy (H2).

Proof: Consider the mechanism that the original PSO uses to generate new samples.

To satisfy (H2), the union of the sample spaces of the particles must cover S, so that

S ⊆ ∪s
i=1Mi,k

at time step k, where Mi,k denotes the support of the sample space of particle i. The

shape of Mi,k is defined as follows (derived from equation 3.3):

Mi,k = (1 + w − φ1 − φ2)xi,j,k−1 − wxi,j,k−2 + φ1y + φ2ŷ

= xi,j,k−1 + w(xi,j,k−1 − xi,j,k−2) + φ1(y − xi,j,k−1) + φ2(ŷ − xi,j,k−1)

where 0 ≤ φ1 ≤ c1 and 0 ≤ φ2 ≤ c2, and xi,j,k denotes the value of dimension j of the

position of particle i at time step k. Mi,k is a hyper-rectangle parameterised by φ1 and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 117

φ2, with one corner specified by φ1 = φ2 = 0 and the other by φ1 = c1 and φ2 = c2.

Regardless of the location of these corners it is clear that v[Mi,k ∩ S] < v[S] whenever

max(c1|y − xi,j,k−1|, c2|ŷ − xi,j,k−1|) < 0.5× diamj(S)

where diamj(S) denotes the length of S along dimension j. In Section 3.1 it was shown

that xi converges on (c1yi + c2ŷ)/(c1 + c2), so that the side lengths of Mi,k tend to 0

as k tends to infinity. Since the volume of each individual Mi,k becomes smaller with

increasing k values, it is clear that the volume of their union, v[∪s
i=1Mi,k], must also

decrease. This shows that, except for k < k′, with k′ finite,

v[∪s
i=1Mi,k ∩ S] < v[S]

so that the Mi,k cannot cover S. Note that k′ = 0 is also a valid state. Therefore there

exists a finite k′ so that for all k ≥ k′ there will be a (possibly disjoint) set A ⊂ S with∑s
i=0 µi,k[A] = 0, which implies that the PSO fails to satisfy (H2).

Since the original PSO fails, by Lemma 2, to satisfy (H2) it thus fails to satisfy

Theorem 1 and is therefore not a global search algorithm.

Lemma 3 The GCPSO algorithm does not satisfy (H2).

Proof: It was shown in Lemma 2 that the update equations used by the original

PSO fail to satisfy (H2). These equations are used in the GCPSO without modification

to update all the particles except the global best particle, thus this update equation must

now be examined. The support Mτ,k of the global best particle is described by

xτ,j,k = ŷj,k + wvτ,j,k + ρk(1− 2rk))

where 0 ≤ rk ≤ 1. The side length of the sampling volume is thus determined by ρk,

which implies that v[Mτ,k ∩ S] < v[S] whenever

ρk < diam(S)

The parameter ρ is updated according to the rules presented in Section 3.2. These rules

cause ρ to decrease whenever the PSO consistently fails to improve the best solution

discovered so far. This will happen once the GCPSO converges on a local minimum, so

lim
k→+∞

ρk = ρmin

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 118

where ρmin is an arbitrarily small value, with ρmin typically several orders of magnitude

smaller than the diameter of S. Keeping in mind that τ ∈ 1..s, this implies that

v[∪s
i=1Mi,k ∩ S] < v[S]

The GCPSO consequently fails to satisfy (H2).

By Theorem 1 we thus see that the GCPSO is not a global search algorithm, since

it fails to satisfy (H2). The following section will propose some methods for extending

the GCPSO to become a global search algorithm.

3.4.2 Random Particle Approach (RPSO)

The simplest way to construct a PSO-based global search algorithm is to directly address

(H2). This can be achieved by adding randomised particles to the swarm. Particle i can

be made a randomised particle by simply resetting its position to a random position in

search space periodically.

Any number of particles in the swarm can be made random particles, but the optimal

ratio of random versus normal particles depends on the swarm size. Let srand denote

the number of random particles in the swarm. One possible implementation of the

random particle approach is outlined in Figure 3.17. This implementation resets a specific

particle’s position only every srand iterations, allowing the particle to explore the region

in which it was initialised before resetting it again. The resulting algorithm is called the

Randomised Particle Swarm Optimiser, or RPSO.

It is trivial to show that the new RPSO algorithm is a global search algorithm.

The personal best position update equations are unaltered, thus the algorithm clearly

satisfies (H1), as was shown for the original PSO in Section 3.3. During each iteration

one particle assumes a random position in the search space. The sample space from

which this sample is drawn has support Mk = S, so that v[Mk] = v[S]. This satisfies

(H2), so by Theorem 1 this is a global search algorithm.

3.4.3 Multi-start Approach (MPSO)

A different method of extending the GCPSO algorithm to become a global search algo-

rithm can be constructed as follows:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 119

Create and initialise an n-dimensional PSO : P

sidx ← 0

repeat:

if sidx 6= τ

then P.xsidx
= random vector()

sidx = (sidx + 1) modulo srand

for each particle i ∈ [1..s] :

if f(P.xi) < f(P.yi)

then P.yi = P.xi

if f(P.yi) < f(P.ŷ)

then P.ŷ = P.yi

endfor

Perform PSO updates on P using equations (2.7–2.8)

until stopping condition is true

Figure 3.17: Pseudo code for the RPSO algorithm

1. Initialise all the particles to random positions in the search space

2. Run the GCPSO algorithm until it converges on a local minimiser. Record the

position of this local minimiser, and return to step 1.

There exist several criteria that can be used to determine whether the GCPSO algorithm

has converged.

Maximum Swarm Radius: The maximum swarm radius can be computed directly

using

r = ‖xm − xτ‖, m ∈ 1..s

where

‖xm − xτ‖ ≥ ‖xi − xτ‖, ∀i ∈ 1..s

The normalised radius

rnorm =
r

diam(S)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 120

can then be used to decide how close the particles are to the global best particle.

The analysis in Section 3.1 suggests that the swarm stagnates when all the particles

coincide with the global best particle in search space. When rnorm is close to zero,

the swarm has little potential for improvement, unless the global best particle is

still moving. Alternatively, a single particle may still be wandering around while all

the other particles have already coincided with the global best particle. Therefore

this method is not reliable enough, especially since it does not take the objective

function values into account.

It was found empirically that re-starting the swarm when rnorm < 10−6 produced

acceptable results on a test set of benchmark functions. Clearly smaller thresholds

will increase the sensitivity of the algorithm, but note that re-starting the swarm

too frequently will prevent it from performing a fine-grained search.

Cluster Analysis: A more aggressive variant of the Maximum Swarm Radius method

can be constructed by clustering the particles in search space. The clustering

algorithm works as follows:

1. Initialise the cluster C to contain only the global best position

2. All particles such that dist(xi, C) < rthresh are added to the cluster

3. Repeat steps 2–3 about 5 times.

The ratio |C|/s is then computed, where |C| denotes the number of particles in the

cluster — note that only a single cluster is grown. If the ratio is greater than some

threshold, say 0.6, then the swarm is considered to have converged. Note that this

method has the same flaws as the Maximum Swarm Radius technique, except that

it will more readily decide that the swarm has converged.

Empirical results obtained on a small set of test functions indicated that a value

of rthresh = 10−6 produced acceptable results; the swarm was declared to have

converged when more than 60% of the particles were clustered around the global

best particle. Using a ratio of more than 60% decreases the sensitivity of the

algorithm, bringing with it the possibility of failing to detect stagnation. Smaller

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 121

rthresh values will increase the sensitivity, similarly to the corresponding threshold

value in the Maximum Swarm Radius technique.

Objective Function Slope: This approach does not take into account the relative

positions of the particles in search space; instead it bases its decision solely on the

rate of change in the objective function. A normalised objective function value is

obtained by using

fratio =
f(ŷ(t))− f(ŷ(t− 1))

f(ŷ(t))

If this normalised value is smaller than some threshold, a counter is incremented.

Once the counter reaches a certain threshold, the swarm is assumed to have con-

verged. This approach is superior to the other two methods mentioned first in that

it actually determines whether the swarm is still making progress, instead of trying

to infer it from the positions of the particles. There is one remaining flaw with this

approach, though. If half of the particles (including the global best particle) are

trapped in the basin of some minimum, the other half may yet discover a better

minimum in the next few iterations. This possibility can be countered for by using

one of the first two methods to check for this scenario.

The optimal threshold for the fratio value depends on the range of the objective

function values, as well as the machine precision of the platform on which the

algorithm is implemented. Empirical results indicated that a value of 10−10 works

well. Smaller thresholds increases the sensitivity of the algorithm, possibly causing

the algorithm to mistake a period of slow progress for stagnation.

Figure 3.18 is the outline of an algorithm making use of the multi-start (or restart)

approach. Any of the convergence criteria mentioned above can be used. This type of

algorithm is called the Multi-start Particle Swarm Optimiser (MPSO).

The MPSO algorithm is a global search algorithm, a property that will now be proved

using Theorem 1. The MPSO satisfies (H1), similarly to the RPSO in the previous

section. To satisfy (H2), the MPSO must be able to restart an infinite number of

times. This requires that the GCPSO algorithm converges onto a local minimum, which

was proved in Section 3.3, and that the convergence-detection mechanism subsequently

detects this. The Maximum Swarm Radius and Cluster Analysis methods indicate that

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 122

Create and initialise an n-dimensional PSO : P

repeat:

if f(P.ŷ) < f(z)

then z = P.ŷ

if P has converged

then re-initialise all particles

for each particle i ∈ [1..s] :

if f(P.xi) < f(P.yi)

then P.yi = P.xi

if f(P.yi) < f(P.ŷ)

then P.ŷ = P.yi

endfor

Perform PSO updates on P using equations (2.7–2.8)

until stopping condition is true

Figure 3.18: Pseudo code for the MPSO algorithm

the swarm has converged when the particles are arbitrarily close to the global best

position, ŷ. In Section 3.3 it was shown that the particles tend to the state xi = yi = ŷ,

where this property was called stagnation. Since the swarm is guaranteed to reach this

state, these two convergence criteria will always detect convergence and trigger a restart.

The Objective Function Slope criterion will detect convergence whenever the value of

f(ŷ) stops changing. This state is guaranteed, upon discovery of a local minimum,

by the local convergence property of the GCPSO. This implies that, regardless of the

convergence-detection criterion used, the MPSO algorithm will be able to re-initialise

the positions of all the particles an infinite number of times, if it is allowed to run for an

infinite number of iterations.

The re-initialisation process assigns to each particle a position sampled from the

whole search space S. Since the support of this sample space, Mk, is equal to the search

space, we have that v[Mk] = v[S]. This satisfies (H2), which means that, by Theorem 1,

the MPSO is a global search algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 123

It is interesting to note that global convergence can be proved without requiring the

local part to be a guaranteed local search algorithm. All that is required is that the

local part of the algorithm must be able to satisfy some termination criterion — not

necessarily convergence onto a local minimiser. As long as the algorithm re-initialises

the population an infinite number of times the algorithm will satisfy (H2). This means

that the GCPSO component in the MPSO algorithm can be replaced with the original

PSO, and it will still be a global search algorithm. Note that the rate of convergence

will be affected by this substitution, though.

3.4.4 Rate of Convergence

The rate of convergence of a stochastic global method like the MPSO is directly depen-

dent on the volume of the sample space, since the number of points in the sample space

grows exponentially with the dimension of the search space. This implies that the MPSO

algorithm will easily find the global minimiser of a 2-dimensional objective function in

a relatively small number of iterations. If a function of comparable complexity in 20

dimensions is considered, the algorithm will take significantly longer to find the global

minimiser. An indication of the severity of the problem can be obtained by considering

the following simple example. Let d be the side length of a hypercube defining the opti-

mality region Rε. The volume of the optimality region is then dn, where n is the number

of dimensions. If the search space S is a hypercube with side lengths l, then its volume

will be ln. The probability of generating a sample in the optimality region in the first

iteration of the algorithm, assuming a uniform distribution function on S, is then

dn

ln
=

(
d

l

)n

Since the optimality region is certainly smaller than the search space itself, this implies

that d/l < 1, so that

lim
n→+∞

(
d

l

)n

= 0

If a pseudo-random number algorithm is used to generate the samples used by the search

algorithm, and the period of the generator is sufficiently large, then the sampling process

will be equivalent to sampling without replacement. The probability of hitting the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 124

optimality region will thus increase slightly on successive samples, but this will not

have a significant impact since the number of points in the search space still grows

exponentially with the number of dimensions. This implies that the ability of the MPSO

to find the global minimiser of a function in a finite number of iterations deteriorates

very rapidly as the number of dimensions is increased.

The stretching technique proposed by Parsopoulos et al., described in Section 2.5,

uses the equivalent of a MPSO using the original PSO instead of the GCPSO for the

local search component of their algorithm. They do not provide any proofs of global

convergence, but they present empirical results to claim that their method is global.

Their algorithm modifies the objective function, and re-initialises the particles once a

local minimiser is discovered. It is important to realise, though, that their algorithm’s

ability to locate the global minimiser comes from the periodic re-initialisation, and not

from the transform that they apply to the objective function. This means that their

algorithm is subject to the same limitation that the MPSO suffers: the curse of dimen-

sionality. The examples they present are all restricted to two dimensions, which means

that the re-initialisation method will have a good chance of finding the global minimiser

within a small number of iterations. These results are misleading, since the algorithm

will perform significantly worse on say 100-dimensional problems.

3.4.5 Stopping Criteria

While it’s relatively simple to design a stopping criterion for a local search algorithm, it

is rather hard to do so for a global search algorithm, unless the value of the objective

function in the global minimiser is known in advance. To illustrate: when the GCPSO

algorithm fails to improve the value of f(ŷ) over many consecutive iterations, it is rela-

tively safe to assume that it has found a local minimum. When the MPSO exhibits the

same behaviour, that is, it fails to improve on the best solution discovered so far after,

say, 100 restarts, no such conclusion can be drawn. As illustrated above, the probability

of hitting the optimality region decreases exponentially as the number of dimensions

increases. This means that the number of restarts required before giving up must grow

accordingly, as will now be shown.

Solis and Wets provided some guidelines for choosing the correct number of iterations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 125

required for a stochastic search algorithm to discover the global minimiser [128]. For

example, they defined the number of iterations required to reach the optimality region,

Nλ, with at least probability 1− λ as follows:

P [ŷk /∈ Rε] ≤ λ, ∀k > Nλ

Let k denote the number of restarts in the MPSO algorithm. Then, if a value m is known

so that 0 < m ≤ µk[Rε] for all k, then

P [ŷk /∈ Rε] ≤ (1−m)k

Choosing an integer

Nλ ≥
⌈

lnλ

ln(1−m)

⌉
yields the required property, since when k ≥ Nλ, then lnλ/ ln(1 − m) ≤ k, because

(1 − m)k ≥ λ. Note that this calculation requires that a lower bound m is known for

µk[Rε], which implies that the size and shape of Rε is known in advance.

If the example from Section 3.4.4 is continued, we can use the value m = (d/l)n as

such a lower bound. This implies that the number of iterations required to reach Rε

with probability 1− λ is

Nλ ≥
lnλ

ln
(
1−

(
d
l

)n)
However, ln

(
1−

(
d
l

)n) → 0 as n → +∞, which means that Nλ → +∞, confirming our

earlier suspicions.

Some methods have been proposed to approximate the distribution of the function

f(ŷk) in an attempt to model µk[Rε]. This approach requires that a sufficient number

of samples in the neighbourhood of Rε are available, with ε sufficiently small [4]. Unfor-

tunately, this precludes the design of a stopping criterion based on this approximation,

since we don’t know where Rε is when trying to minimise f .

The only viable stopping criterion appears to be one that specifies some arbitrary,

problem specific, fixed number of iterations. Although this does not guarantee that

the global minimiser will be discovered, it is easy to implement and corresponds to the

real-world requirement that the algorithm must terminate after a specified duration of

time.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 3. PSO CONVERGENCE 126

3.5 Conclusion

This chapter discussed various issues related to the convergence behaviour of the Particle

Swarm Optimiser. Section 3.1 presented some arguments related to the convergence of

the trajectory of a PSO system. A trajectory that converges can be seen as a type of

termination criterion for the PSO, but it does not help to determine whether the PSO has

converged onto a global or local minimiser. That being said, it is still desirable to choose

the PSO parameters so that the trajectory is convergent, since this is an indication of

the rate of convergence of the algorithm. The analysis presented in Section 3.1 yields a

useful rule for choosing these crucial PSO parameters.

A modified PSO algorithm, called the Guaranteed Convergence Particle Swarm Op-

timiser (GCPSO), was introduced in Section 3.2. This algorithm incorporates some

features of a pure random search algorithm into the PSO, giving it the ability to break

free from so called stagnant states. The importance of this property was illustrated

in Section 3.3, where a formal proof was presented, showing that the GCPSO is a lo-

cal search algorithm. This result means that the GCPSO is guaranteed to be able to

find a local minimiser. Some other useful definitions regarding local and global search

algorithms were also discussed in Section 3.3.1.

Although it has often been assumed to be true in the literature, the PSO algorithm is

not in fact a global search algorithm. Section 3.4 proved that the PSO does not satisfy the

requirements of a global search algorithm. Two methods of extending the PSO algorithm

so that it does satisfy these requirements were presented, along with the relevant proofs.

It was also shown that although these algorithms now have the ability to discover the

global minimiser of any objective function, the number of iterations required to do so

becomes infinite as the number of dimensions approach infinity. This implies that the

performance of these techniques degrades considerably as the number of dimensions in

the objective function increases.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Chapter 4

Models for Cooperative PSOs

This chapter introduces two models for constructing a cooperative Particle Swarm Optimiser.

The first model, called CPSO-SK, is similar to Potter’s CCGA cooperative Genetic Algorithm;

the second further adds “blackboard” style cooperation, and is called CPSO-HK . Several

algorithms based on these models are then presented, with their associated convergence

proofs, where possible.

4.1 Models for Cooperation

This section briefly reviews some of the cooperative models introduced in Section 2.8.

The focus of this section is on population-based cooperative algorithms. Other methods,

involving solitary agents, exist, but fall outside the scope of this thesis [140].

A popular model for cooperation is the island model , due to Grosso[59]. This model

is used to partition a large population into several smaller subpopulations, so that each

subpopulation can be evolved on a separate machine. Periodically some individuals

“migrate” from one subpopulation to another, allowing the subpopulations to share in-

formation regarding the solutions discovered so far. This model can also be simulated

on a single processor; the aim is then to preserve diversity by maintaining several sub-

populations with little communication between them, effectively preventing premature

convergence.

If the island model is modified to allow some degree of overlap between the subpop-

127

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 128

ulations, the resulting model is called the neighbourhood model [88, 80]. This model

increases the rate of information exchange between the subpopulations, effectively in-

creasing the rate of convergence of the algorithm. Note that the lbest PSO algorithm

makes use of this model.

Both the island and the neighbourhood models are merely increasing the effective size

of the population, with some restrictions on which individuals can communicate directly

with one another. This means that any individual, taken from any of the subpopulations,

contains enough information to be used as a potential solution to the problem being

solved.

The Cooperative Coevolutionary Genetic Algorithm (CCGA), due to Potter [106,

105], takes a different approach to the decomposition problem. Instead of distributing

complete individual solutions over a set of subpopulations, the CCGA algorithm dis-

tributes the subcomponents of individual solutions over a set of subpopulations. For

example, a function optimisation problem with n parameters is partitioned into n sub-

populations, each subpopulation corresponding to one of the parameters. Potential solu-

tions to the optimisation problem are constructed by taking one representative from each

of the n subpopulations to build an n-dimensional vector. The different subpopulations

are thus cooperating to find the solution, since no single subpopulation has the necessary

information to solve the problem by itself.

Clearwater et al. [19] investigated the behaviour of cooperating agents in the context

of constraint-satisfaction problems. The model they proposed is that of a “blackboard”;

a shared memory to which each individual can post hints to or read hints from. Note

that the blackboard is simply a metaphor for inter-agent communication — in this case,

global communication. Clearwater et al. observed a super-linear speedup when their

agents were cooperating via the blackboard, versus a linear speedup when multiple non-

interacting agents were used. They also found that a group of non-cooperating agents,

each searching in a different non-overlapping region of search space, resulted only in

a linear speedup, similar to the overlapping non-cooperating agents. In the discrete

constraint-satisfaction problem they investigated, the inter-agent cooperation had the

effect of dynamically pruning the search space, which effectively decreased the time

needed for the first agent to find the correct solution.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 129

The model proposed by Clearwater et al. was later used to show that GAs can be seen

as cooperative algorithms [22]. Note that the island model GA can easily be interpreted

as a group of cooperating agents. Each subpopulation represents an agent, and the

periodic migration of individuals between subpopulations acts as a “shared memory” for

the whole population.

At first it appears that Potter’s CCGA algorithm cannot be described by the model

of Clearwater et al. The CCGA algorithm partitions the search space into disjoint

subspaces, and each subpopulation (agent) is constrained to one such subspace. The

local solution found in one subspace is of little direct use to an individual in another

subpopulation, so there is no direct communication between the subpopulations. One

interpretation is that the CCGA algorithm bypasses the inter-agent communication pro-

cess by directly constraining the search spaces of all the other subpopulations. Consider

again the function optimisation problem in n dimensions. A vector x is constructed by

taking a representative from each of the n subpopulations. The algorithm now attempts

to find a better solution for component j of this vector by using subpopulation j as an

optimiser in a search space constrained by the other n − 1 components of the vector

x. Subpopulation j will observe different fitness landscapes when different x vectors are

used. The net result is that the subpopulations do exert an influence on one another by

constraining the search space, although they do not share information directly.

Another CCGA-style algorithm, based on stochastic generational search methods,

has been introduced by Subbu and Sanderson [131]. The stochastic generational search

method constructs a distribution using randomly sampled points from the search space.

This distribution is then used to focus the sample space from which new random samples

are drawn. This method has provable stochastic global convergence behaviour. Subbu

and Sanderson partition the search space into disjoint components, just like the CCGA

algorithm. They modeled their algorithm in a network environment, where each subpop-

ulation represents a node in the network. Each node has access to local information, and

indirectly (at increased delay) to the information in other nodes. An experiment was

constructed to compare a centralised algorithm to a distributed CCGA-style algorithm.

In the centralised algorithm, one designated node requests information from all the other

nodes in the network. This node then performs traditional, i.e. non-cooperative, optimi-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 130

sation. In their distributed algorithm, each node periodically collects information from

the other nodes, followed by CCGA-style cooperative optimisation of the subspace rep-

resented by that node. Their results show that the cooperative algorithm locates the

minimum of the test functions in their experiment significantly faster than the centralised

algorithm.

The rest of this chapter deals with the adaption of some of the above models for

cooperation for use in a Particle Swarm Optimisation algorithm.

4.2 Cooperative Particle Swarm Optimisers

This section introduces a CCGA-style cooperative Particle Swarm Optimiser. The orig-

inal CCGA model is generalised to allow more flexible partitioning of the search space.

4.2.1 Two Steps Forward, One Step Back

Before looking at cooperative swarms in depth, let us first consider one of the weaknesses

of the standard PSO optimiser.

In the standard PSO algorithm, each particle represents a complete vector that can be

used as a potential solution. Each update step is also performed on a full n-dimensional

vector. This allows for the possibility that some components in the vector moved closer

to the solution, while others actually moved away from the solution. As long as the

effect of the improvement outweighs the effect of the components that deteriorated, the

standard PSO will consider the new vector an overall improvement, even though some

components of the vector may have moved further from the solution.

A simple example to illustrate this concept follows: Consider a 3-dimensional vector

x, and the error function f(x) = ‖x− a‖2, where a = (20, 20, 20). This implies that the

global minimiser of the function x∗, is equal to a.

Now consider a particle swarm containing, amongst others, a vector x2, and the global

best position, ŷ. If t represents the current time step, then, with a high probability,

‖x2(t+ 1)− ŷ(t+ 1)‖ < ‖x2(t)− ŷ(t)‖

if it is assumed that ŷ does not change during this specific iteration. That is, in the next

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 131

time step, t + 1, particle 2 (represented by x2) will be drawn closer to ŷ, as stipulated

by the PSO update equations.

Assume that the following holds:

ŷ(t) = (17, 2, 17)

x2(t) = (5, 20, 5)

Application of the function f to these points shows that f(ŷ(t)) = 342 and f(x2(t)) =

450. In the next epoch, the vector x2 will be drawn closer to ŷ, so that the following

configuration may result:

ŷ(t+ 1) = (17, 2, 17)

x2(t+ 1) = (15, 5, 15)

Note that the actual values of the components of x2(t + 1) depend on the stochastic

influence present in the PSO update equations. The configuration above is certainly one

possibility. This implies that f(x2(t + 1)) = 275, even better than the function value

of the global best position. Although the fitness of the particle improved considerably,

note that the second component of the vector has changed from the correct value of

20, to the rather poor value of 5; valuable information has thus been lost unknowingly.

This example can clearly be extended to a general case involving an arbitrary number

of components.

This undesirable behaviour is a case of taking two steps forward, and one step back.

It is caused by the fact that the error function is computed only after all the components

in the vector have been updated to their new values. This means an improvement in

two components (two steps forward) will overrule a potentially good value for a single

component (one step back). Note that this is reminiscent of a rule of thumb when

repairing computer hardware: never change two components at once, because then you

won’t know which component was responsible for solving/causing the problem.

One way to overcome this behaviour is to evaluate the error function more frequently,

for example, once for every time a component in the vector has been updated, resulting

in much quicker feedback. This increase in the number of times that the objective

function must be evaluated can clearly have a negative impact on the running time

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 132

of the algorithm. The potential improved rate of convergence of the algorithm must be

greater than the associated increase in processor usage if the proposed scheme is to be an

overall improvement. Section 4.2.2 presents an algorithm that implements a variation

of this scheme. Before this algorithm will be presented, though, a brief discussion of

deceptive functions is in order.

Deceptive Functions

Most optimisation algorithms have specific biases, that is, certain assumptions that they

make about the functions they are expected to minimise. This is why certain algorithms

appear to defy the No Free Lunch theorem: they are biased towards the suite of test

functions on which they outperform all other existing optimisation methods. To obtain

the best possible performance in a specific problem (e.g. Neural Network training), an

algorithm must be selected so that its biases coincide with the properties of the function

being optimised.

On the other hand, some optimisation methods have specific biases that can be

exploited during comparisons to other methods. One example of this phenomenon is

that of deceptive functions . These are functions that exhibit deceptive behaviour [54],

where good solutions, or even good directions of search, must be abandoned since they

lead to suboptimal solutions.

In the GA context, this means a function that exploits, for example, the weaknesses

of the crossover operator. The unitation of a bit-string is the number of “one”s in the

string, expressed as a ratio with respect to the length of the string. An example deceptive

function could have the global maximum of the function at minimum unitation; the sub-

optimal solution is found at maximum unitation. For example, the function

f(b) =

{
0.5× unitation(b)− 0.1 if unitation(b) > 0.2

−5× unitation(b) + 1.0 if unitation(b) ≤ 0.2

where b is a bit-string, can be considered deceptive. This function is shown in Figure 4.1.

If two bit-strings b1 and b2 have unitation 0.6 and 0.8 respectively, then their offspring

will have a unitation value of at least 0.4; the expected value is 0.7. The crossover

operator may even produce offspring of unitation 1.0. This implies that the offspring

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 133

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(b
)

unitation(b)

Figure 4.1: A deceptive function

will tend to have larger unitation, eventually (mis)leading the population to the sub-

optimal solution.

Grefenstette contends that the concern regarding deception is of little worth, as a

simple modification to the GA can make deceptive functions easy to solve [57]. For ex-

ample, if the GA converged on the solution b, then simply evaluate f(b) and f(b), where

b is the bitwise complement of b, and choose the better solution. This approach allows

the GA to solve all deceptive functions similar to the one discussed above. Grefenstette

further describes a more complicated solution that is guaranteed to solve any function

that is deceptive in its unitation space.

Note that deception only affects local search algorithms, since true global search

algorithms cannot be mislead. One of the more elegant solutions to the problem of

multi-modal (including deceptive) functions is the one presented by Beasley et al. [10],

where all extrema (local and global) are identified and then suppressed to allow the

identification of other extrema. Clearly this approach can avoid any number of deceptive

features in the objective function.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 134

Although most of the research regarding deception focused on Genetic Algorithms

(and their susceptibility to deception), it is certainly possible to construct deceptive func-

tions to fool most non-global algorithms. A normal PSO algorithm can also be mislead,

since it is a local minimisation algorithm, as shown in Section 3.4.1. The cooperative

PSO algorithm introduced in the next section is more susceptible to deception than the

original PSO, since it makes more assumptions regarding the nature of the objective

function. Even though it is possible to show that many algorithms can easily be tricked

by a deceptive function, it is still not easy to determine whether such deceptive functions

are commonly found in real-world applications.

4.2.2 CPSO-SK Algorithm

The original PSO uses a population of n-dimensional vectors. These vectors can be par-

titioned into n swarms of one-dimensional vectors, each swarm representing a dimension

of the original problem. Each swarm attempts to optimise a single component of the

solution vector, essentially a one-dimensional optimisation problem. This decomposition

is analogous to the decomposition used in the relaxation method [129, 48].

One complication to this configuration is the fact that the function to be minimised,

f , requires an n-dimensional vector as input. If each swarm represents only a single

dimension of the search space, it is clearly not possible to directly compute the fitness

of the individuals of a single population considered in isolation. A context vector is

required to provide a suitable context in which the individuals of a population can be

evaluated. The simplest scheme for constructing such a context vector is to take the

global best particle from each of the n swarms and concatenating them to form such

an n-dimensional vector. To calculate the fitness for all particles in swarm j, the other

n − 1 components in the context vector are kept constant (with their values set to the

global best particles from the other n−1 swarms) while the jth component of the context

vector is replaced in turn by each particle from the jth swarm.

Figure 4.2 presents the Cooperative PSO-Split (CPSO-S) algorithm, first introduced

by Van den Bergh and Engelbrecht in [136], a PSO that splits the search space into

exactly n subspaces. Extending the convention introduced in Figure 2.5 (Page 24), Pj.xi

now refers to the position of particle i of swarm j, which can therefore be substituted

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 135

define b(j, z) ≡ (P1.ŷ, P2.ŷ, . . . , Pj−1.ŷ, z, Pj+1.ŷ, . . . , Pn.ŷ)

Create and initialise n one-dimensional PSOs : Pj, j ∈ [1..n]

repeat:

for each swarm j ∈ [1..n] :

for each particle i ∈ [1..s] :

if f(b(j, Pj.xi)) < f(b(j, Pj.yi))

then Pj.yi = Pj.xi

if f(b(j, Pj.yi)) < f(b(j, Pj.ŷ))

then Pj.ŷ = Pj.yi

endfor

Perform PSO updates on Pj using equations (3.1–3.2, 3.26)

endfor

until stopping condition is true

Figure 4.2: Pseudo code for the CPSO-S algorithm

into the jth component of the context vector when needed. Each of the n swarms now

has a global best particle Pj.ŷ. The function b(j, z) returns an n-dimensional vector

formed by concatenating all the global best vectors across all swarms, except for the

jth component, which is replaced with z, where z represents the position of any particle

from swarm Pj.

This algorithm has the advantage that the error function f is evaluated after each

component in the vector is updated, resulting in much finer-grained credit assignment.

The current “best” context vector will be denoted b(1, P1.ŷ). Note that f(b(1, P1.ŷ)) is

a strictly non-increasing function, since it is composed of the global best particles Pj.ŷ

of each of the swarms, which themselves are only updated when their fitness improves.

Each swarm in the group only has information regarding a specific component of

the solution vector; the rest of the vector is provided by the other n − 1 swarms. This

promotes cooperation between the different swarms, since they all contribute to b, the

context vector. Another interpretation of the cooperative mechanism is possible: Each

particle i of swarm j represents a different context in which the vector b(j, ·) is evaluated,

so that the fitness of the context vector itself is measured in different contexts. The

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 136

define b(j, z) ≡ (P1.ŷ, . . . , Pj−1.ŷ, z, Pj+1.ŷ, . . . , PK .ŷ)

K1 = n mod K

K2 = K − (n mod K)

Initialise K1 dn/Ke-dimensional PSOs : Pj, j ∈ [1..K1]

Initialise K2 bn/Kc-dimensional PSOs : Pj, j ∈ [(K1 + 1)..K]

repeat:

for each swarm j ∈ [1..K] :

for each particle i ∈ [1..s] :

if f(b(j, Pj.xi)) < f(b(j, Pj.yi))

then Pj.yi = Pj.xi

if f(b(j, Pj.yi)) < f(b(j, Pj.ŷ))

then Pj.ŷ = Pj.yi

endfor

Perform PSO updates on Pj using equations (3.1–3.2, 3.26)

endfor

until stopping condition is true

Figure 4.3: Pseudo code for the generic CPSO-SK Swarm Algorithm

most successful context, corresponding to the particle i yielding the highest fitness, is

retained for future use. For example, a 30-dimensional search space results in a CPSO-

S algorithm with 30 one-dimensional swarms. During one iteration of the algorithm,

30×30 = 900 different combinations are formed, compared to only 30 variations produced

by the original PSO. The advantage of the CPSO-S approach is that only one component

is modified at a time, yielding the desired fine-grained search, effectively preventing the

“two steps forward, one step back” scenario. There is also a significant increase in the

amount of diversity in the CPSO-S algorithm, because of the many combinations that

are formed using different members from different swarms.

Note that, should some of the components in the vector be correlated, they should be

grouped in the same swarm, since the independent changes made by the different swarms

will have a detrimental effect on correlated variables. This results in some swarms having

one-dimensional vectors and others having c-dimensional vectors (c < n), something

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 137

which is easily allowed in the framework presented above. Unfortunately, it is not always

known in advance how the components will be related. A simple approximation would

be to blindly take the variables c at a time, hoping that some correlated variables will

end up in the same swarm. Figure 4.3 presents the CPSO-SK algorithm, where a vector

is split into K parts. Note that the CPSO-S algorithm presented in Figure 4.2 is really

a special case of the CPSO-SK algorithm with K = n. The number of parts, K, is also

called the split factor .

There is no explicit restriction on the type of PSO algorithm that should be used

in the CPSO-SK algorithm. Because it has been shown that the GCPSO algorithm

has guaranteed convergence on local minimisers, it will be assumed that the CPSO-SK

algorithm consists of K cooperating GCPSO swarms, unless otherwise noted.

4.2.3 Convergence Behaviour of the CPSO-SK Algorithm

Before discussing the local convergence behaviour for the CPSO-SK algorithm, some

examples will be presented to illustrate the concepts that will be used below.

Consider a function f , defined as

f(x) = 5 tanh(x1 + x2) + 0.05(x1 + 2)2 (4.1)

This function has the property that for a constant x1, chosen from the range x1 ∈ [5, 10],

the value of f(x) is approximately equal to 5 for any x2 ∈ [−2, 10], since the function is

reduced to 5 tanh(5 + x2) ≈ 5, for x2 ≥ −2. This property is visible in Figure 4.4.

Assume that a CPSO-S2 swarm (i.e. two cooperating swarms) will be used to min-

imise f , constrained to the region x1 ∈ [−10, 10], and x2 ∈ [−2, 10]. Consider now that

the global best particles of the two cooperating swarms, P1 and P2, are at positions

P1.ŷ = 7.5 and P2.ŷ = 0. Note that this implies that b(1, P1.ŷ) = (7.5, 0); this point

belongs to the region yielding approximately constant f -values, as described in the pre-

vious paragraph. The value of P2.ŷ has no influence on the value of f(b), since all points

in this region have approximately the same f -value if the x1 variable remains constant.

This implies that it is not possible for the P2 swarm to improve its position, in fact, all

possible positions in the range x2 ∈ [−2, 10] are equally optimal.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 138

-10
-5

0

5

10
x1

0

2.5
5

7.5
10

x2

-10
-5
0

5

10

f HxL
-10

-5
0

5

10
x1

0

2.5
5

7.5
10

x2

Figure 4.4: A plot of the function f(x) = 5 tanh(x1 + x2) + 0.05(x1 + 2)2

The same is not true for the x1 axis, however. Clearly a value of x1 < 0 will allow

the algorithm to “drop down” into the lower region containing the minimum. This

means that the swarm P1 has the opportunity to improve the position of its global best

particle, P1.ŷ. After “dropping down” into the region x1 < 0, it may become possible for

the swarm P2 to find a better solution in the range x2 ∈ [−2, 0], ultimately leading to

the discovery of the minimiser of the function, in this case, the position (−2.2356,−2).

What this example illustrates is that it is quite possible that the context vector b(j, ·)
may constrain swarm j to a subspace where it is not possible for that swarm to make

any significant improvement. This effect could be temporary, so that a change in the

context vector (due to another swarm) may allow another swarm to discover further

improvements. It is possible, however, for the algorithm to become trapped in a state

where all the swarms are unable to discover better solutions, but the algorithm has not

yet reached the local minimum. This is another example of stagnation, caused by the

restriction that only one swarm is updated at a time, i.e. only one subspace is searched

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 139

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

x1

x2

(0, 0)

ε

x∗

Figure 4.5: A diagram illustrating the constrained sub-optimality problem

at a time.

An example function will now be presented to show a scenario in which the CPSO-

SK algorithm stagnates. The example will again assume that a CPSO-S2 algorithm is

used to minimise the function. Figure 4.5 illustrates in two dimensions the nature of the

problem. The figure is a top-down view of the search space, with the shaded triangular

area representing a region that contains f -values that are smaller than any other values

in the search space. This region has a slope that runs downward from the point (0, 0) to

the point x∗, the global minimiser. The symbol ε denotes the distance from the origin

to the tip of the triangular region; ε can be made arbitrarily small so that the triangle

touches the origin in the limit. To simplify the discussion, assume that the function has

the form f(x) = ‖x‖2, except for the shaded triangular region, which contains points

yielding negative f -values.

If the swarm P1 (constrained to the subspace x1 ∈ R) reaches the state where P1.ŷ =

0, the context vector b will be of the form b(2, P2.xi) = (0, P2.xi), so that f(b) =

‖(0, P2.xi)‖2 = (P2.xi)
2. This function can easily be minimised by the second swarm P2,

which is constrained to the subspace x2 ∈ R. The second swarm will find the minimum

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 140

located at x2 = 0, so that the algorithm will terminate with a proposed solution of (0, 0),

which is clearly not the correct answer, since x∗ 6= (0, 0). Both P1 and P2 have guaranteed

convergence onto the local minimum of their respective subspaces, since they are using

the GCPSO algorithm internally. When the algorithm reaches the step where P1.ŷ = 0

and P2.ŷ = 0, the GCPSO algorithm will examine a non-degenerate sample space around

each of these global best particles. The problem is that the algorithm will find that 0 is in

fact the local minimiser when only one dimension is considered at a time. The sequential

nature of the algorithm, coupled with the property that f(b(1, P1.ŷ) is a strictly non-

increasing sequence, prevents the algorithm from temporarily taking an “uphill” step,

which is required to solve this particular problem. Even if ε is made arbitrarily small,

the algorithm will not be able to sample a point inside the shaded area, since that would

require the other swarm to have a global best position (i.e. Pj.ŷ) other than zero, which

would require a step that would increase f(b(1, P1.ŷ)). What has happened here is

that a local optimisation problem in R2 has become a global optimisation problem when

considering the two subspaces x1 and x2 one at a time.

Note that the point (0, 0) is not a local minimiser of the search space, although it

is the concatenation of the individual minimisers of the subspaces x1 and x2. The fact

that (0, 0) is not a local minimiser can easily be verified by examining a small region

around the point (0, 0), which clearly contains points belonging to the shaded region

as ε approaches zero. The term pseudo-minimiser will be used to describe a point in

search space that is a local minimiser in all the pre-defined subspaces of Rn, but not a

local minimiser in Rn considered as a whole. This shows that the CPSO-SK algorithm

is not guaranteed to converge on the local minimiser, because there exists states from

which it can become trapped in the pseudo-minimiser located at (0, 0). Due to the

stochastic components in the PSO algorithm, it is unlikely that the CPSO-SK algorithm

will become trapped in the pseudo-minimiser every time. The existence of a state that

prevents the algorithm from reaching the minimiser destroys the guaranteed convergence

property, though.

In contrast, the normal GCPSO would not have the same problem. If the global

best particle of the GCPSO algorithm is located at this pseudo-minimum position, i.e.

ŷ = (0, 0), then the sample space from which the global best particle could choose its

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 141

-10

-5

0

5

10
x1

-10

-5

0

5

10

x2

-200

-150

-100

-50

0

f HxL
-200

-150

-100

-50

0

f HxL

Figure 4.6: An inverted plot of the function f(x), as defined in equation (4.2), rotated

through a 75-degree angle. Note that the raised ridge is not parallel to either of the coor-

dinate axes, causing the CPSO-SK algorithm to become trapped in a pseudo-minimum.

next position would be a square with side lengths ρ, centered at (0, 0). Since ρ > 0 per

definition, this square would always include points from the triangular shaded region in

Figure 4.5. This implies that the GCPSO will be able to move away from the point (0, 0)

toward the local minimiser in R2 located at x∗.

Equation (4.2) defines an example function that can trap the CPSO-SK algorithm in

a suboptimal position.

f(h(x,θ)) = (x2
1 + x2

2) −

(tanh(10x1) + 1)(tanh(−10x2) + 1) exp

(
(x1 + x2)

3

)
(4.2)

where h represents the rotation operator

h(x,θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
x1

x2

]

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 142

The search space is artificially restricted to the range S = [−10, 10]2 so that there is a

unique minimum at the edge of the search space. This function is graphically represented

in Figure 4.6, with a rotation angle θ = −75 degrees. Note that this function exhibits

deceptive behaviour when the CPSO-SK algorithm is applied to it, since it misleads the

algorithm to converge on a pseudo-minimum. When the GCPSO algorithm is used to

minimise this function, it is not mislead by the deceptive nature of the function. This

illustrates that deception usually targets one of the assumptions that the algorithms

make with regard to the functions they attempt to optimise. The CPSO-SK algorithm

assumes that it is able to find the minimum by searching in disjoint subspaces, which

turns out to be a flawed strategy for some functions. A typical example of such a function

is the one in Figure 4.6, where the raised ridge is not parallel to the coordinate axes,

causing the CPSO-SK algorithm to become trapped in a pseudo-minimum.

There are several ways to augment the CPSO-SK algorithm to prevent it from be-

coming trapped in such pseudo-minima. The original CCGA-1 algorithm, due to Potter

[106, 105], suffers from the same problem, although Potter did not identify the problem

as such. Potter suggested that each element of the population Pj should be evaluated

in two contexts. He called this approach the CCGA-2 algorithm. One context is con-

structed using the best element from the other populations, similar to the CCGA-1 and

CPSO-SK algorithms. The second context is constructed using a randomly chosen ele-

ment from each of the other populations. The individual under consideration receives

the better of the two fitness values obtained in the two contexts. This approach is a

compromise between the CCGA-1 approach and an exhaustive evaluation, where each

element is evaluated against all other possible contexts that can be constructed from the

current collection of populations. The exhaustive approach would require sK−1 function

evaluations to determine the fitness of a single individual, where s is the population size,

and K the number of populations. This rather large increase in the number of function

evaluations would outweigh the advantage of using a cooperative approach.

The CCGA-2 approach has the disadvantage that the fitness of an individual is still

only evaluated against a sample of possible values obtained from a search restricted to a

subspace of the complete search space. In other words, it could still become trapped in

a pseudo-minimiser, although this event is significantly less likely than for the CCGA-1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 143

algorithm. The next section introduces a different solution that allows the CPSO-SK

algorithm to escape from pseudo-minima.

4.3 Hybrid Cooperative Particle Swarm Optimisers

In the previous section it was shown that the CPSO-SK algorithm can become trapped

in sub-optimal locations in search space. This section introduces an algorithm that com-

bines the CPSO-SK algorithm with the PSO in an attempt to retain the best properties

of both algorithms. The term “hybrid” has been used to describe at least three different

PSO-based algorithms [2, 136, 79]. In [136] the algorithm presented in Figure 4.7 was

called the Hybrid PSO. This algorithm will now be called the CPSO-HK algorithm in

this thesis to resolve the ambiguity.

4.3.1 The CPSO-HK Algorithm

Given that the GCPSO has certain desirable properties, e.g. the ability to guarantee

convergence on a local minimiser, and that the CPSO-SK algorithm has faster conver-

gence on certain functions (see Section 5.5), it would be ideal to have an algorithm that

could exploit both of these properties. In principle one could construct an algorithm that

attempts to use a CPSO-SK algorithm, but switches over to a GCPSO algorithm when

it appears that the CPSO-SK algorithm has become trapped. While this approach is a

sound idea, it is difficult to design robust, general heuristics to decide when to switch

between algorithms.

An alternative is to interleave the two algorithms, so that the CPSO-SK algorithm

is executed for one iteration, followed by one iteration of the GCPSO algorithm. Even

more powerful algorithms can be constructed by exchanging information regarding the

best solutions discovered so far by either component at the end of each iteration. This

information exchange is then a form of cooperation between the CPSO-SK component

and the GCPSO component. Note that this is a form of “blackboard” cooperation,

similar to the type described by Clearwater et al. [19].

A simple mechanism for implementing this information exchange is to replace some

of the particles in one half of the algorithm with the best solution discovered so far by

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 144

define b(j, z) ≡ (P1.ŷ, . . . , Pj−1.ŷ, z, Pj+1.ŷ, . . . , PK .ŷ)

K1 = n mod K

K2 = K − (n mod K)

Initialise K1 dn/Ke-dimensional PSOs : Pj, j ∈ [1..K1]

Initialise K2 bn/Kc-dimensional PSOs : Pj, j ∈ [(K1 + 1)..K]

Initialise an n-dimensional PSO : Q

repeat:

for each swarm j ∈ [1..K] :

for each particle i ∈ [1..s] :

if f(b(j, Pj.xi)) < f(b(j, Pj.yi))

then Pj.yi = Pj.xi

if f(b(j, Pj.yi)) < f(b(j, Pj.ŷ))

then Pj.ŷ = Pj.yi

endfor

Perform PSO updates on Pj using equations (3.1–3.2, 3.26)

endfor

Select random k ∼ U(1, s/2) | Q.yk 6= Q.ŷ

Q.xk = b(1, P1.ŷ)

for each particle j ∈ [1..s] :

if f(Q.xj) < f(Q.yj)

then Q.yj = Q.xj

if f(Q.yj) < f(Q.ŷ)

then Q.ŷ = Q.yj

endfor

Perform PSO updates on Q using equations (3.1–3.2, 3.26)

for swarm j ∈ [1..K] :

Select random k ∼ U(1, s/2) | Pj.yk 6= Pj.ŷ

Pj.xk = Q.ŷj

endfor

until stopping condition is true

Figure 4.7: Pseudo code for the generic CPSO-HK algorithm

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 145

the other half of the algorithm. Specifically, after one iteration of the CPSO-SK half

(the Pj swarms in Figure 4.7) of the algorithm, the context vector b(1, P1.ŷ) is used to

overwrite a randomly chosen particle in the GCPSO half (the Q swarm in Figure 4.7)

of the algorithm. This is followed by one iteration of the Q swarm component of the

algorithm, which yields a new global best particle, Q.ŷ. This vector is then split into

sub-vectors of the right dimensions and used to overwrite the positions of randomly

chosen particles in the Pj swarms.

Although the particles that are overwritten during the information exchange process

are randomly chosen, the algorithm does not overwrite the position of the global best

position of any of the swarms, since this could potentially have a detrimental effect on

the performance of the affected swarm. Empirical studies also indicated that too much

information exchange using this mechanism can actually impede the progress of the

algorithm. By selecting a particle (targeted for replacement) using a uniform random

distribution it is highly likely that a swarm of s particles will have had all its particles

overwritten in, say 2s, information exchange events, except for the global best particle,

which is explicitly protected. If the Pj swarms are lagging behind the Q swarm in terms

of performance, this means that the Pj swarms could overwrite all the particles in the Q

swarm with inferior solutions in only a few iterations. On the other hand, the Q swarm

would overwrite particles in the Pj swarms at the same rate, so the overall best solution

in the algorithm will always be preserved. The diversity of the particles will decrease

significantly because of too-frequent information exchange, though. A simple mechanism

to prevent the swarms from accidentally reducing the diversity is implemented by limiting

the number of particles that can actively participate in the information exchange. For

example, if only half of the particles are possible targets for being overwritten, then at

most half of the diversity of the swarm can be jeopardised. This does not significantly

affect the positive influence of the information exchange process. For example, if the Q

swarm overwrites an inferior particle Pj.xi with a superior value (from Q), then that

particle i will become the global best particle of swarm j. During subsequent iterations

more particles will be drawn to this new global best particle, possibly discovering better

solutions along the way, i.e. the normal operation of the swarm is not disturbed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 146

4.3.2 Convergence Proof for the CPSO-HK Algorithm

The following trivial lemma follows directly from the definition of the CPSO-HK algo-

rithm.

Lemma 4 The CPSO-HK algorithm produces a sequence of points {ŷ}+∞k=1 that converges

on the local minimiser of the search space S, with asymptotic probability one.

Proof: The information exchange process between the Pj swarms and the Q does

not affect the value of f(Q.ŷ) negatively, since the exchange cannot overwrite the value

of Q.ŷ. This implies that the swarm Q still satisfies (H1) and (H3), so that by Theorem 2

the swarm Q is guaranteed to converge on a local minimiser in the search space S. Thus,

regardless of whether the Pj swarms converge or not, the Q swarm is still guaranteed to

converge, so that overall the algorithm is also guaranteed to converge.

Since the Q swarm is guaranteed to converge, i.e. it is able to avoid pseudo-minima

like those encountered in Section 4.2.3, the algorithm as a whole can clearly avoid such

pitfalls. Because the Q swarm shares its best solution with the Pj swarms, they will have

knowledge of locations in search space that they could not reliably reach on their own.

This means that the CPSO-SK component of the swarm is now less likely to become

trapped in pseudo-minima.

Further, the CPSO-SK algorithm is by design better able to maintain diversity, re-

sulting in a more thorough search than what the GCPSO algorithm is capable of on its

own. This information is shared with the Q swarm, although only in a restricted fashion,

since only the best context vector is ever visible to the Q swarm.

4.4 Conclusion

In Section 4.1 a brief overview of some models for cooperation that have been used pre-

viously was presented. These cooperation techniques have been applied to Evolutionary

Algorithms (e.g. GAs), as well as more deterministic methods for solving constraint-

satisfaction problems. The property that all cooperative algorithms have in common is

that they use the information gathered by the other agents to restrict their own search

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 4. MODELS FOR COOPERATIVE PSOS 147

to a subspace of the whole search space, thereby reducing the complexity of the problem

as observed by each agent.

Section 4.2 presented a cooperative PSO algorithm, called the CPSO-SK, that is

based on the CCGA model. This section also discussed the problems that deceptive

functions present to search algorithms, culminating in an example that shows that the

CPSO-SK algorithm does not have the desired guaranteed convergence property that the

GCPSO algorithm has. The CPSO-SK makes stronger assumptions about the nature of

the functions it is expected to minimise, thus it is more susceptible to deception.

An extension of the CPSO-SK algorithm, called the CPSO-HK algorithm, was intro-

duced in Section 4.3. It was shown that this algorithm has the ability to escape from

the pseudo-minima that can trap the CPSO-SK algorithm, so that the CPSO-HK algo-

rithm recovers the desired guaranteed convergence property of the GCPSO algorithm,

while retaining the improved diversity offered by the CPSO-SK algorithm. The CPSO-

HK algorithm is also more interesting to study, since it now adds an additional level of

cooperation to the existing CPSO-SK structure.

The various cooperative PSO algorithms introduced in this section are studied empir-

ically in Section 5.5, where they are compared to the various other PSO-based algorithms

encountered in this thesis.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Chapter 5

Empirical Analysis of PSO

Characteristics

This chapter investigates several key properties of the original PSO algorithm, as well as the

properties of many PSO-based algorithms. The effects of different parameter settings are

investigated to determine their effect on the quality of solutions and the rate of convergence.

A comparison between the original PSO algorithm and the GCPSO is presented, followed

by an investigation of the characteristics of various global PSO algorithms. An in-depth

investigation of the properties of various cooperative PSO algorithms studies the efficacy of

these algorithms on several benchmark functions.

5.1 Methodology

This chapter investigates the performance of various PSO-based algorithms using several

benchmark functions. Although these functions may not necessarily give an accurate

indication of the performance of an algorithm on real-world problems, they can be used

to investigate certain aspects of the algorithms under consideration. Chapter 6 presents

the results of applying the same algorithms tested in this chapter on several neural

network training tasks to verify the results of the experiments presented here.

The following functions were used to test the algorithms (3D-plots of the various

functions are provided in Appendix D):

148

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 149

Spherical: A very simple, unimodal function with its global minimum located at x∗ = 0,

with f(x∗) = 0. This function has no interaction between its variables.

f1(x) =
n∑

i=1

x2
i (5.1)

Rosenbrock: A unimodal function, with significant interaction between some of the

variables. Its global minimum of f(x∗) = 0 is located at x∗ = (1, 1, . . . , 1).

f2(x) =

n/2∑
i=1

(
100(x2i − x2

2i−1)
2 + (1− x2i−1)

2
)

(5.2)

Ackley: A multi-modal function with deep local minima. The global minimiser is x∗ =

0, with f(x∗) = 0. Note that the variables are independent.

f3(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e (5.3)

Rastrigin: A multi-modal version of the Spherical function, characterised by deep local

minima arranged as sinusoidal bumps. The global minimum is f(x∗) = 0, where

x∗ = 0. The variables of this function are independent.

f4(x) =
n∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

(5.4)

Griewank: A multi-modal function with significant interaction between its variables,

caused by the product term. The global minimiser, x∗ = 0, yields a function value

of f(x∗) = 0.

f5(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1 (5.5)

Schwefel: A multi-modal function with very deep sinusoidal indentations. The global

minimiser is located near the one corner of the search space, so that

x∗ = (−420.9687,−420.9687, . . . ,−420.9687)

with a function value f(x∗) = 0.

f6(x) = 418.9829n+
n∑

i=1

xi sin
(√
|xi|
)

(5.6)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 150

Function n domain

Spherical 30 100

Rosenbrock 30 2.048

Ackley 30 30

Rastrigin 30 5.12

Griewank 30 600

Schwefel 30 500

Quadric 30 100

Table 5.1: Function parameters

Quadric: Another variation of the Spherical function, but with significant interaction

between its variables. The global minimiser is located at x∗ = 0, so that f(x∗) = 0.

f7(x) =
n∑

i=0

(
i∑

j=0

xj

)2

(5.7)

Table 5.1 lists the parameter settings for the functions in the benchmark suite. Note

that all functions were tested using 30-dimensional search spaces. The PSO algorithms

were initialised so that the initial particles in the swarm were distributed throughout the

search space using a uniform random number generator. The value of each dimension j

of particle i was thus sampled from a distribution of the form

xi,j ∼ U(−d, d)

where d is the appropriate domain value for the function under consideration.

The simulation-quality mt-19937 “Mersenne Twister” random number generator [82]

was used to generate the uniform random numbers. This generator has a period of

around 106000 and is equi-distributed in 623 dimensions if successive numbers are used

as vector components. The same random seed was used for all experiments.

All the results presented in this chapter are the mean values computed over 50 runs.

Unless otherwise noted, the inertia weight of the PSO algorithm was set to the value

w = 0.72; the acceleration coefficients were set so that c1 = c2 = 1.49. These values

lead to convergent trajectories, as can be seen by applying relation (3.21); they further

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 151

correspond to popular values used in other publications [39, 36]. All experiments were

run for 2 × 105 objective function evaluations, which is equivalent to 10000 iterations

of a standard PSO algorithm using a swarm size of 20. Unless specified otherwise, all

algorithms used a default swarm size of 20.

5.2 Convergence Speed versus Optimality

In Chapter 3 it was shown that certain choices of c1, c2 and w leads to a system with

a convergent trajectory. The analysis indicated that the trajectory is convergent if

max(‖α‖, ‖β‖) < 1, with the obvious implication that smaller values will lead to more

rapid convergence. What was not clear from the analysis presented in Chapter 3 was

how the rate of convergence of an individual particle’s trajectory influences the searching

ability of the swarm as a whole. This section will investigate the behaviour of the

PSO algorithm by methodically manipulating the parameters that influence the rate of

convergence.

The two types of experiment that were performed used the following labels:

fixed: The values of w, c1 and c2 were kept constant throughout the simulation run.

linear: Both c1 and c2 were held constant, but the value of w was decreased linearly

from 1.0 down to the value specified for the experiment (specified in Tables 5.2

and 5.9 for each experiment), over the duration of the first 1000 iterations of the

algorithm. All the algorithms were run for 10000 iterations.

The motivation for using the linearly decreasing inertia weight is that a larger inertia

weight during the earlier iterations may allow the particles to explore a larger region

before they start to converge. The validity of this conjecture was tested below.

5.2.1 Convergent Parameters

It was shown in Chapter 3 that the PSO algorithm is guaranteed to terminate if a set

of convergent parameters were selected, since the algorithm will reach a state in which

no further improvement can be achieved. This section investigates the searching ability

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 152

Parameter Label

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

w 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

c1, c2 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Table 5.2: Convergent parameter configurations A0–A9.

Config Fixed Linear

A0 6.95e+02 ± 2.60e+01 6.98e+02 ± 2.84e+01

A1 3.29e+02 ± 1.19e+01 3.31e+02 ± 1.54e+01

A2 1.76e+01 ± 1.16e+00 2.22e+01 ± 1.60e+00

A3 2.02e−01 ± 3.02e−02 2.45e−01 ± 4.13e−02

A4 8.03e+00 ± 1.17e+00 6.61e+00 ± 1.03e+00

A5 2.25e+01 ± 1.70e+00 1.39e+01 ± 1.46e+00

A6 5.79e+01 ± 9.01e+00 1.63e+01 ± 1.38e+00

A7 2.07e+02 ± 1.96e+01 1.71e+01 ± 1.34e+00

A8 3.38e+02 ± 2.96e+01 1.91e+01 ± 1.18e+00

A9 3.82e+02 ± 2.99e+01 1.78e+01 ± 1.28e+00

Table 5.3: PSO performance on Rosenbrock’s Function using convergent parameter con-

figurations

of the swarm using different values of c1, c2 and w, subject to the constraint that the

choice of parameters leads to convergent behaviour. Relation (3.21) (page 85) presents

a convenient way to generate parameters that lead to a convergent trajectory. First, a

w value is chosen arbitrarily. Then, by applying relation (3.21), a value for c1 + c2 is

determined to ensure convergence. For the experiments conducted in this section, 10

different configurations were tested. These configurations are listed in Table 5.2.

Tables 5.3 and 5.4 show that the PSO performs best on unimodal functions when

using parameter configuration A3, regardless of whether a fixed or linearly decreasing

w parameter was used. On some functions the result is dramatic, as can be observed

in Table 5.4, where the difference in performance between the A3 configuration and the

next closest competitor was about 100 orders of magnitude.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 153

Config Fixed Linear

A0 6.32e+06 ± 1.39e+05 6.16e+06 ± 1.47e+05

A1 2.89e+06 ± 8.97e+04 2.94e+06 ± 9.52e+04

A2 3.33e+02 ± 1.41e+02 4.14e+02 ± 1.25e+02

A3 1.61e−101 ± 1.04e−98 1.29e−89 ± 1.17e−90

A4 7.44e+02 ± 2.84e+03 1.50e−02 ± 9.55e−01

A5 2.99e+05 ± 3.58e+04 2.50e+00 ± 2.80e+02

A6 1.73e+06 ± 9.43e+04 7.18e+01 ± 3.27e+02

A7 2.77e+06 ± 1.70e+05 8.94e+02 ± 1.33e+03

A8 4.24e+06 ± 2.06e+05 3.02e+03 ± 3.19e+03

A9 3.90e+06 ± 2.01e+05 1.10e+04 ± 4.52e+03

Table 5.4: PSO performance on the Quadric Function using convergent parameter con-

figurations

Config Fixed Linear

A0 1.86e+01 ± 7.24e−02 1.85e+01 ± 7.69e−02

A1 1.63e+01 ± 9.65e−02 1.62e+01 ± 8.41e−02

A2 1.42e+00 ± 1.92e−01 1.95e+00 ± 1.61e−01

A3 2.01e+00 ± 1.98e−01 2.12e+00 ± 1.76e−01

A4 5.86e+00 ± 3.71e−01 1.90e+00 ± 1.47e−01

A5 1.08e+01 ± 3.90e−01 2.45e+00 ± 1.83e−01

A6 1.38e+01 ± 2.57e−01 3.03e+00 ± 2.02e−01

A7 1.56e+01 ± 1.91e−01 3.62e+00 ± 2.18e−01

A8 1.66e+01 ± 1.57e−01 4.40e+00 ± 2.29e−01

A9 1.67e+01 ± 1.67e−01 4.99e+00 ± 2.98e−01

Table 5.5: PSO performance on Ackley’s Function using convergent parameter configu-

rations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 154

Config Fixed Linear

A0 6.49e+02 ± 3.52e+01 4.98e+02 ± 4.26e+01

A1 1.19e+02 ± 2.59e+01 3.28e+02 ± 2.86e+01

A2 1.74e+01 ± 1.35e+00 2.20e+01 ± 1.51e+00

A3 1.84e−01 ± 3.22e−02 1.30e−01 ± 1.01e−01

A4 3.89e−02 ± 5.68e−03 1.94e+00 ± 9.89e−01

A5 8.24e−02 ± 2.74e−02 9.49e+00 ± 1.61e+00

A6 2.54e−01 ± 1.23e−02 1.36e+01 ± 1.70e+00

A7 8.08e−01 ± 2.75e−02 1.42e+01 ± 1.67e+00

A8 1.61e+00 ± 2.02e−01 1.13e+01 ± 1.83e+00

A9 2.38e+00 ± 3.94e−01 1.40e+01 ± 1.68e+00

Table 5.6: GCPSO performance on Rosenbrock’s Function using convergent parameter

configurations

Functions containing multiple minima require that the algorithm examines the search

space more thoroughly, so that exploration behaviour becomes more important with

respect to exploitation behaviour. Table 5.4 shows that configuration A2 performed

better than A3 on Ackley’s function. Note that configuration A2 has slower theoretical

convergence, since its max(‖α‖, ‖β‖) value would be greater than that of configuration

A3. The slower convergence allows it to explore a bit more before converging, which

improves its performance on functions containing multiple minima. For the linearly

decreasing inertia weight there was no significant difference in performance between

the A2, A3 and A4 configurations, since the linearly decreasing inertia weight promotes

exploration during the earlier iterations. Note, however, that the fixed A2 configuration

still performed significantly better than the linear A2, A3 or A4 configurations.

The experiments were repeated using the GCPSO algorithm, mainly to see if it

responds similarly when different parameter configurations were used. A more detailed

comparison between the PSO and the GCPSO is presented in Section 5.3.

Tables 5.6 and 5.7 show that the GCPSO also generally performed better on uni-

modal functions with parameter configuration A3, except for the fixed w configuration

on Rosenbrock’s function, where the A4 configuration performed significantly better.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 155

Config Fixed Linear

A0 5.23e+06 ± 2.90e+05 5.28e+06 ± 3.38e+05

A1 3.13e+06 ± 2.11e+05 2.83e+06 ± 1.86e+05

A2 4.52e+00 ± 1.03e+01 7.94e+01 ± 7.14e+01

A3 1.37e−133 ± 5.38e−135 1.85e−129 ± 1.92e−87

A4 1.53e−133 ± 9.10e−124 1.20e−102 ± 1.98e+01

A5 1.48e−91 ± 1.37e−91 2.13e−75 ± 6.99e+01

A6 1.50e−75 ± 1.73e−72 1.36e+02 ± 1.49e+03

A7 1.55e−52 ± 2.59e−41 2.10e+02 ± 1.40e+03

A8 5.40e−07 ± 1.21e+00 8.11e+02 ± 3.32e+03

A9 3.81e+01 ± 1.58e+01 1.62e+03 ± 5.06e+03

Table 5.7: GCPSO performance on the Quadric Function using convergent parameter

configurations

Config Fixed Linear

A0 1.84e+01 ± 1.27e−01 1.83e+01 ± 1.06e−01

A1 1.60e+01 ± 1.66e−01 1.63e+01 ± 1.67e−01

A2 2.55e+00 ± 2.35e−01 2.12e+00 ± 2.05e−01

A3 2.41e+00 ± 1.74e−01 2.12e+00 ± 1.52e−01

A4 2.32e+00 ± 5.69e−01 2.81e+00 ± 1.62e−01

A5 8.18e+00 ± 5.64e−01 3.30e+00 ± 2.07e−01

A6 1.30e+01 ± 2.90e−01 4.31e+00 ± 2.49e−01

A7 1.48e+01 ± 2.23e−01 4.97e+00 ± 2.67e−01

A8 1.58e+01 ± 1.74e−01 6.01e+00 ± 2.59e−01

A9 1.57e+01 ± 1.58e−01 7.27e+00 ± 3.64e−01

Table 5.8: GCPSO performance on Ackley’s Function using convergent parameter con-

figurations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 156

Parameter Label

B0 B1 B2 B3 B4 B5 B6

w 0.7 0.7 0.7 0.7 0.7 0.65 0.75

c1, c2 1.7 1.6 1.5 1.71 1.789 1.7 1.7

Table 5.9: Miscellaneous parameter configurations B0–B6.

Table 5.8 presents the results of minimising Ackley’s function using the GCPSO

algorithm. There was no statistically significant difference in performance between the

A2, A3 and A4 with fixed w configurations; for the linearly decreasing inertia weight,

the A2 and A3 configurations also performed similarly. On this function there was no

significant difference overall between the fixed and linear algorithms using their respective

best configurations, indicating that the linear algorithm provided no real advantage on

this function.

The results presented so far show that an inertia weight of about 0.7 usually resulted

in the best performance. The next section will investigate some more configurations in

this region of parameter space.

5.2.2 Miscellaneous Parameters

Table 5.9 lists the parameter values for some arbitrary configurations with w values in

the vicinity of 0.7. Configuration B0–B2 and B6 all satisfy relation (3.21), so that these

configurations all yield convergent trajectories. It is expected that B2 will be more prone

to premature convergence than B0, owing to its smaller max(‖α‖, ‖β‖) value. The B6

configuration, on the other hand, will have a slower rate of convergence than any of the

B0–B2 configurations. Configuration B3 has a φratio of 0.99 (see equation 3.25, page 98),

so that it is expected to take a step along a divergent trajectory with probability 0.01.

Similarly, configuration B4 has a φratio of 0.95, so that it has a 5% chance of taking

divergent steps at every iteration. Lastly, configuration B5 has a φratio of 0.97, but with

a w value of 0.65, compared to the larger w value of 0.7 used in configurations B3 and B4.

It is therefore expected that the B5 configuration will have slightly faster convergence.

The miscellaneous parameter configurations resulted in widely differing results. Ta-

ble 5.10 indicates that the faster rate of convergence of the B2 configuration allowed

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 157

Config Fixed Linear

B0 1.90e−01 ± 2.26e−02 2.73e−01 ± 4.42e−02

B1 1.96e−02 ± 5.47e−03 2.61e−02 ± 3.73e−02

B2 6.79e−03 ± 7.83e−03 2.59e−03 ± 8.20e−03

B3 2.64e−01 ± 2.67e−02 3.28e−01 ± 4.72e−02

B4 7.54e−01 ± 2.02e−01 7.65e−01 ± 3.85e−01

B5 1.74e−02 ± 6.80e−03 2.73e−02 ± 1.38e−02

B6 9.83e−01 ± 2.76e−01 1.26e+00 ± 5.05e−01

Table 5.10: PSO performance on Rosenbrock’s Function using miscellaneous parameter

configurations

Config Fixed Linear

B0 3.31e−102 ± 3.64e−094 1.68e−091 ± 3.72e−090

B1 1.60e−121 ± 8.08e−111 1.67e−107 ± 1.79e−104

B2 1.64e−036 ± 5.83e−004 1.92e−019 ± 7.08e−011

B3 1.47e−091 ± 3.94e−092 1.89e−087 ± 1.89e−086

B4 1.66e−071 ± 6.70e−068 2.94e−064 ± 1.67e−063

B5 1.89e−128 ± 4.30e−117 1.40e−116 ± 1.56e−108

B6 1.93e−054 ± 1.40e−051 1.81e−049 ± 2.41e−047

Table 5.11: PSO performance on the Quadric Function using miscellaneous parameter

configurations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 158

Config Fixed Linear

B0 2.49e+00 ± 2.24e−01 2.62e+00 ± 1.90e−01

B1 2.85e+00 ± 2.74e−01 1.78e+00 ± 1.60e−01

B2 4.12e+00 ± 3.12e−01 2.01e+00 ± 1.61e−01

B3 2.07e+00 ± 1.75e−01 4.44e−15 ± 1.80e−01

B4 6.66e−15 ± 8.03e−02 4.44e−15 ± 8.74e−02

B5 2.41e+00 ± 2.71e−01 1.90e+00 ± 1.74e−01

B6 6.66e−15 ± 3.23e−02 6.66e−15 ± 5.21e−02

Table 5.12: PSO performance on Ackley’s Function using miscellaneous parameter con-

figurations

it to achieve above average performance on Rosenbrock’s function, although it was not

significantly better than B1 and B5. The trend seems to be that smaller c1 and c2 val-

ues (chosen so that the trajectory is convergent), for a fixed w value, resulted in better

performance. The linear versions of these configurations did not exhibit significantly

different behaviour.

Table 5.11 presents a different picture: notice how large the variance of the B2 config-

uration has become. The B5 configuration still delivered good performance, significantly

better than B0 and B1. Note that B5 sometimes takes divergent steps, increasing the

diversity of the solutions it examines.

Ackley’s function, with multiple local minima, favours algorithms with a tendency

to explore more widely (see Table 5.12). This explains why configuration B2 performed

worse than B1, which in turn performed worse than B0, since B0 tends to converge more

slowly. The B4 and B6 configurations produced much better results, but they had very

large variances associated with their mean performance. This indicates that some of

the runs discovered very good local minima (or even the global minimum), while other

runs discovered only average solutions. The algorithms with a tendency to take divergent

steps performed better on average (owing to their enhanced exploration ability), with the

exception of B6, which performed very well, despite the fact that it was a configuration

with a convergent trajectory. The linear versions of the algorithm performed better

on average, as expected for the Ackley function, since they favoured more exploration

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 159

Config Fixed Linear

B0 2.46e−01 ± 3.49e−02 1.18e−01 ± 5.66e−02

B1 3.57e−02 ± 1.39e−02 5.43e−03 ± 1.09e−02

B2 3.68e−03 ± 4.10e−03 1.40e−01 ± 2.93e−01

B3 2.31e−01 ± 4.56e−02 2.07e−01 ± 4.00e−02

B4 7.90e−01 ± 2.16e−01 5.95e−01 ± 9.21e−02

B5 2.86e−02 ± 1.41e−02 8.14e−03 ± 1.63e−02

B6 9.97e−01 ± 2.73e−01 8.74e−01 ± 3.90e−01

Table 5.13: GCPSO performance on Rosenbrock’s Function using miscellaneous param-

eter configurations

Config Fixed Linear

B0 1.97e−136 ± 3.39e−137 1.71e−089 ± 1.61e−86

B1 1.47e−154 ± 2.79e−151 1.34e−137 ± 4.93e−04

B2 1.61e−146 ± 1.69e−140 1.26e−099 ± 8.31e−01

B3 1.33e−132 ± 1.26e−128 1.92e−126 ± 1.03e−91

B4 3.05e−108 ± 4.21e−103 1.59e−095 ± 3.93e−80

B5 1.67e−155 ± 2.01e−154 1.56e−030 ± 1.94e−04

B6 1.24e−087 ± 3.61e−087 1.78e−082 ± 5.10e−67

Table 5.14: GCPSO performance on the Quadric Function using miscellaneous parameter

configurations

during earlier iterations.

The experiments were repeated for the GCPSO. Table 5.13 shows that there were no

unexpected surprises; the different configurations responded similarly as they did when

applied to the standard PSO.

Table 5.14 shows that the GCPSO tends to be more forgiving, since the B2 configura-

tion, using a fixed w value, improved relative to the other configurations when compared

to the results obtained using a standard PSO. Configuration B5 remained the top per-

former, although it was not significantly better than B1. The B3 and B4 configurations

still performed worse than the convergent ones, with the exception of B6. Using linearly

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 160

Config Fixed Linear

B0 2.36e+00 ± 2.00e−01 2.01e+00 ± 1.13e−01

B1 2.41e+00 ± 3.03e−01 2.32e+00 ± 1.42e−01

B2 2.41e+00 ± 3.84e−01 2.89e+00 ± 1.62e−01

B3 2.41e+00 ± 2.14e−01 1.96e+00 ± 1.56e−01

B4 2.01e+00 ± 1.64e−01 2.17e+00 ± 1.73e−01

B5 2.41e+00 ± 2.46e−01 2.32e+00 ± 1.49e−01

B6 2.01e+00 ± 1.74e−01 4.44e−15 ± 1.55e−01

Table 5.15: GCPSO performance on Ackley’s Function using miscellaneous parameter

configurations

decreasing inertia weights appears to degrade the performance of the GCPSO on this

function, across all configurations.

Interestingly enough, the GCPSO appears to be relatively insensitive to its parameter

settings when used to minimise Ackley’s function. Table 5.15 indicates that all the

fixed inertia weight configurations had approximately the same mean performance. The

GCPSO’s strong local convergence properties are responsible for this phenomenon —

this point will be addressed in more detail in Section 5.3. With the exception of B6, all

linear configurations also had comparable performance.

5.2.3 Discussion of Results

The results presented above indicate that there was a mild trade-off between the per-

formance of a specific configuration on a unimodal function, and the same configuration

applied to a function with many local minima. This behaviour was especially noticeable

in the results obtained with the original PSO. Configuration A3, with an inertia weight

of 0.7 and acceleration coefficients c1 = c2 = 1.7, produced very good results on the uni-

modal functions. In contrast, the best performance on Ackley’s function was obtained

with parameter settings B4 and B6, both of which performed average or below average on

the unimodal functions. It appears that no parameter setting tested above could achieve

the best of both worlds, suggesting that some alternate mechanism must be introduced

to improve the performance of the PSO algorithm on multi-modal functions. Section 5.4

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 161

0 50000 100000 150000 200000

0
1

2
3

Function Evaluations

lo
g(

f(x
))

A2 fixed
A3 fixed
A3 linear
A4 fixed
A6 fixed
B4 fixed

Figure 5.1: The Rosenbrock function error profile, obtained using the original PSO

algorithm.

investigates the performance of the global PSO algorithms, MPSO and RPSO, on the

some non-unimodal functions.

The linearly decreasing inertia weight helped the PSO to find better solutions on

Ackley’s function, but generally it had a negative impact on the performance of the

algorithm when applied to unimodal functions. The linearly decreasing weight will thus

be excluded from further experiments, unless explicitly noted otherwise.

Overall, the performance of the GCPSO was more consistent, indicating that it was

less sensitive to the choice of parameters (within limits), but that this could affect the

performance of the GCPSO on multi-modal functions negatively. From now on, it will

be assumed that the local convergence behaviour of the PSO and GCPSO are similarly

affected by the choice of parameters.

The effect of different parameter settings are clearly visible in a plot of the function

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 162

value over time. Figure 5.1 shows the error profile of the original PSO algorithm, ob-

tained by minimising the Rosenbrock function. Notice how the A4 and A6 configurations

had relatively steep slopes during the first few iterations, but then they rapidly leveled

off without making any further progress during the rest of the simulation run. Clearly,

these configurations suffered from premature convergence. The A2 configuration had a

much slower rate of convergence, as can clearly be seen in the plot. Although its rate of

progress gradually slowed down, it did not completely level off, indicating that if it was

allowed to run for much longer it may have discovered better solutions. The A3 config-

uration started with a rapid descent that slowed down after about 1/3 of the time had

passed. Note that the slope did not level off towards the end, so that some improvement

was still possible. The linearly decreasing inertia weight version of the algorithm had a

slower start, mostly because the inertia weight was close to 1.0 during the earlier itera-

tions, effectively preventing the trajectories of the particles from converging. After the

inertia weight stabilised, the curve looks similar to that of the fixed inertia weight, but

shifted slightly to the right and upwards. The B4 parameter configuration resulted in

performance that was similar to A3, but exhibiting somewhat slower convergence owing

to the disruptive influence of the divergent steps.

Figure 5.2 is the error profile of Ackley’s function, obtained using the original PSO

algorithm with different parameter configurations. The A4 and A6 parameter config-

urations both caused the PSO algorithm to converge prematurely. The slower rate of

convergence offered by the A2 configuration allowed the PSO to keep on improving its

solution, although the rate of improvement was rather slow. Note that it almost reached

the same solution discovered by the A3 fixed inertia weight configuration. Note that

both the fixed A3 configuration and the A3 linearly decreasing inertia weight configura-

tion stagnated after the first 50000 function evaluations. This is a clear indication that

they had become trapped in local minima, and could not escape.

The usefulness of the linearly decreasing inertia weight can clearly be observed in

the figure: although it started slower, it usually picked a better local minimum before it

became trapped. The B4 algorithm produced better results than any other configuration,

but it still became trapped in a local minimum. Note that the rate of improvement

of the B4 configuration during the earlier training stages was similar to that of the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 163

0 50000 100000 150000 200000

−0
.5

0.
0

0.
5

1.
0

Function Evaluations

lo
g(

f(x
))

A2 fixed
A3 fixed
A3 linear
A4 fixed
A6 fixed
B4 fixed

Figure 5.2: The Ackley function error profile, obtained using the original PSO algorithm.

A3 configuration because they have very similar parameter settings. The occasional

divergent step taken by the B4 configuration allowed it to avoid becoming trapped in

a local minimum during the earlier iterations. Later, however, as the particles in the

swarm moved closer to one another, the magnitude of these divergent steps began to

decrease until they were too small to allow the swarm to escape from a local minimum,

thus the swarm became trapped just like the A3 configuration.

These plots reinforce the statements made above: a faster rate of convergence (i.e. A3)

works well on unimodal functions, but the swarm could become trapped in sub-optimal

minima on multi-modal functions. A slower rate of convergence, like that offered by

configuration A2, allowed the swarm to avoid becoming trapped in a local minimum, but

the rate of convergence was so slow that the algorithm was not competitive over shorter

simulation runs. The occasional divergent step taken by the B4 algorithm allowed it to

avoid local minima for a while, thus improving its performance on functions similar to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 164

Ackley’s. This benefit came at the cost of slower convergence on unimodal functions. In

short, there appears to be no single parameter setting that resulted in the best overall

performance. The user must know in advance whether the function will contain many

local minima, and choose the appropriate parameter configuration. That being said, the

A3 parameter configuration did consistently perform well, so further experiments made

use of similar settings.

5.3 GCPSO Performance

In the previous section the PSO and GCPSO were tested using various parameter con-

figurations. This section presents a side-by-side comparison of the GCPSO and PSO al-

gorithms. All experiments were conducted with the parameter settings of c1 = c2 = 1.49

and w = 0.72, a popular choice in recent publications [39, 36]. Note that these values

correspond approximately to parameter configuration B2 of the previous section.

Table 5.16 presents the results of minimising various functions using both the PSO

and GCPSO algorithms. The column labeled “s” lists the number of particles in the

swarm for each row. When comparing the results in the table, keep in mind that both the

Ackley and Rastrigin functions contain many local minima, and that both the GCPSO

and PSO algorithms are not explicitly designed to deal with this type of function without

some mechanism to help them to locate the global minimiser. This implies that the

quality of the solutions discovered by the algorithms are highly dependent on the initial

positions of the particles, which were randomly chosen.

On the Ackley function, the GCPSO performed significantly better than the PSO

when using only two particles, but there was no significant difference between the per-

formance of the algorithms when 20 particles were used. The Rastrigin function produced

similar results in the two-particle case, but the original PSO performed significantly bet-

ter on the 20-particle experiment. Keep in mind that the results for both the Ackley

and Rastrigin functions are presented only for completeness, since no valid conclusions

can be drawn from these results.

The two unimodal functions in Table 5.16 clearly show the stronger local convergence

property of the GCPSO. The Spherical function is exceedingly simple, having no inter-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 165

Function s GCPSO PSO

Ackley 2 1.85e+01 ± 1.99e−01 1.93e+01 ± 2.03e−01

20 2.70e+00 ± 6.36e−01 3.40e+00 ± 4.58e−01

Rastrigin 2 1.81e+02 ± 2.13e+01 2.93e+02 ± 1.46e+01

20 7.61e+01 ± 5.07e+00 6.52e+01 ± 4.84e+00

Spherical 2 6.54e−084 ± 1.44e−007 4.03e+004 ± 2.80e+003

20 2.09e−201 ± 0.00e+00 1.15e−110 ± 1.37e−097

Quadric 2 2.87e+003 ± 1.90e+003 1.14e+007 ± 1.14e+006

20 9.45e−152 ± 3.87e−146 3.65e−107 ± 4.20e−098

Table 5.16: Comparing GCPSO and PSO on various functions

action between the variables and only a single (thus global) minimum. The GCPSO is

able to minimise this function to a very high degree when using only two particles; in

contrast, the original PSO struggles with premature convergence if only two particles

are used. This is a clear example of the stagnation mentioned in Section 3.3. Note that

adding more particles allowed the standard PSO to perform significantly better; even the

GCPSO benefitted from the increased diversity offered by the larger number of particles.

The last unimodal function, Quadric, illustrates the same concept, but to a less

striking degree. This function has significant interaction between its variables, making

this problem harder to solve than the Spherical function. Note that there was a large

jump in performance between using 2 particles and 20 particles, even when using the

GCPSO. This implies that the greater diversity provided by the additional particles helps

the PSO to solve the problem more quickly.

Note that the GCPSO has some additional parameters that can be fine-tuned. The

default parameters, specified in Section 3.2, were used throughout. Although these

parameters may not be optimal, they have been found to produce acceptable results on

a small set of test functions.

To summarise, the GCPSO algorithm has significantly faster convergence on uni-

modal functions, especially when smaller swarm sizes are used. This improved perfor-

mance is not visible on multi-modal functions, because the GCPSO can still become

trapped in local minima, just like the original PSO. In fact, the GCPSO may be slightly

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 166

more prone to becoming trapped because of its faster rate of convergence. The next

section studies the efficacy of several mechanisms designed to help the GCPSO (and

PSO) to escape from such local minima.

5.4 Global PSO Performance

This section compares the two different strategies for introducing global search behaviour

into the PSO algorithm. These two strategies were implemented as the MPSO and

RPSO algorithms, introduced in Section 3.4. The MPSO algorithm has three different

mechanisms (see Section 3.4.3) that can be used to detect convergence, signalling that the

algorithm must re-start. These three convergence-detection methods are also compared.

The four stochastic global PSO algorithms used in the experiments below are:

MPSOradius: The MPSO algorithm, using the maximum swarm radius convergence de-

tection technique described in Section 3.4.3. The algorithm was configured so that

the swarm was declared to have stagnated when rnorm < 10−6. This value was

found (informally) to produce good results on a small set of test functions.

MPSOcluster: The MPSO algorithm, using the cluster analysis convergence detection

technique described in Section 3.4.3. The value of rthresh was set to 10−6; the swarm

was re-initialised whenever more than 60% of the particles were clustered around

the global best particle. Again, these values were found empirically to result in

acceptable performance on a small set of test functions.

MPSOslope: The MPSO algorithm, using the objective function slope convergence detec-

tion technique described in Section 3.4.3. The algorithm re-initialised the swarm

whenever fratio < 10−10 for more than 500 consecutive iterations. These values

were chosen based on previous experience with the algorithm, where it was found

that they result in acceptable performance.

RPSO: The RPSO algorithm, described in Section 3.4.2. No extra particles were added

to act as randomised particles, so that three of the 20 normal particles in the swarm

were converted into randomised particles, leaving only 17 normal particles. This

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 167

Algorithm Mean f(x) Median f(x)

GCPSO 2.96e+00 ± 6.36e−01 2.70e+00

MPSOradius 7.51e−01 ± 1.35e−01 9.31e−01

MPSOcluster 1.65e+00 ± 1.46e−01 9.31e−01

MPSOslope 1.65e+00 ± 1.70e−01 1.34e+00

RPSO 2.96e+00 ± 3.53e−01 2.96e+00

Table 5.17: Comparing various global algorithms on Ackley’s function

value was chosen to limit the possibly disruptive influence that the randomised

particles could have on the overall behaviour of the swarm. Note that a single ran-

domised particle is sufficient to achieve the theoretical global convergence property

of this algorithm.

All experiments were performed using a swarm size of 20.

These algorithms are all stochastic global optimisers, thus they are not guaranteed

to find the global (or even a good local) minimum on every run. Since only one poor

solution, say on the order of 10−3, can skew the mean of a population otherwise consisting

of values on the order of 10−19, the median of each simulation run is also provided along

with the mean.

Table 5.17 presents the results of applying the four global PSO-based algorithms

to the task of minimising Ackley’s function. The MPSOradius algorithm performed sig-

nificantly better than any other algorithm. Note that all three the MPSO algorithm

performed significantly better than the GCPSO and RPSO algorithms. On this func-

tion it does not appear that the RPSO algorithm had any positive influence on the

performance of the algorithm, since it had the same mean performance as the GCPSO

algorithm.

The results in Table 5.18 were obtained by minimising Rastrigin’s function using

the various algorithms. Note that there was once again no significant difference be-

tween the performance of the RPSO algorithm and that of the GCPSO algorithm. All

three the MPSO algorithms performed significantly better than the GCPSO. Amongst

themselves the MPSOradius and MPSOcluster algorithms performed significantly better

than the MPSOslope algorithm, although there was no significant difference between the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 168

Algorithm Mean f(x) Median f(x)

GCPSO 7.61e+01 ± 5.07e+00 7.61e+01

MPSOradius 4.58e+01 ± 1.45e+00 4.58e+01

MPSOcluster 4.48e+01 ± 1.41e+00 4.48e+01

MPSOslope 4.97e+01 ± 1.59e+00 4.97e+01

RPSO 7.41e+01 ± 3.49e+00 7.41e+01

Table 5.18: Comparing various global algorithms on Rastrigin’s function

Algorithm Mean f(x) Median f(x)

GCPSO 2.21e−02 ± 4.84e−03 1.23e−02

MPSOradius 1.99e−09 ± 1.87e−10 1.52e−09

MPSOcluster 3.69e−02 ± 8.19e−03 1.48e−02

MPSOslope 1.68e−03 ± 7.39e−04 2.17e−19

RPSO 4.53e−02 ± 7.72e−03 1.23e−02

Table 5.19: Comparing various global algorithms on Griewank’s function

performance of the MPSOradius and MPSOcluster algorithms.

Table 5.19 presents the results of minimising Griewank’s function using the various

algorithms. Both the MPSOcluster and RPSO algorithms performed significantly worse

than the GCPSO. Clearly, the MPSOcluster algorithm had no beneficial effect on this

function, most likely because it failed to trigger, i.e. it could not detect that the swarm

has stagnated. This phenomenon can be attributed to the fact that the adjustable pa-

rameter (rthresh) in the MPSOcluster algorithm was set to a value that was too small for

Griewank’s function. If the function contains many local minima very close to one an-

other, the swarm could stagnate with a few particles scattered over several neighbouring

minima. In this case, the cluster detection algorithm could fail, since there are too few

particles close to the global best particle. The RPSO algorithm basically prevents some

of the particles from performing their usual role in the minimisation process, so it is

quite probable that the RPSO may perform worse than the GCPSO on some functions.

Note the large difference between the mean and the median values of the MPSOslope

algorithm results. Based on the median, it is clear that the MPSOslope algorithm per-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 169

Algorithm Mean f(x) Median f(x)

GCPSO 4.87e+03 ± 1.31e+02 4.87e+03

MPSOradius 3.71e+03 ± 8.07e+01 3.71e+03

MPSOcluster 4.85e+03 ± 1.32e+02 4.85e+03

MPSOslope 4.08e+03 ± 8.25e+01 4.08e+03

RPSO 4.73e+03 ± 1.38e+02 4.73e+03

Table 5.20: Comparing various global algorithms on Schwefel’s function

formed better than the MPSOradius algorithm on most of the runs, although the mean

does not reflect this. This is an indication that the MPSOslope algorithm did not trigger

often enough to detect stagnation during all the simulation runs. This suggests that

future research should investigate automated methods for adjusting the sensitivity of

the MPSOslope algorithm.

Applying the various algorithms to the task of minimising Schwefel’s function yielded

the results presented in Table 5.20. The RPSO and MPSOcluster algorithms did not

perform significantly better than the baseline GCPSO algorithm. The other two MPSO

algorithms, MPSOslope and MPSOradius, did show a significant improvement over the

GCPSO algorithm. The MPSOradius algorithm further showed a significant improvement

in performance over the MPSOslope algorithm, making it the overall best algorithm on

this function.

Figure 5.3 further elucidates the characteristics of the various algorithms when ap-

plied to Griewank’s function. The GCPSO, MPSOcluster and RPSO algorithm all behave

similarly, clearly failing to make any further improvements after about 10000 function

evaluations. This behaviour is normal for the GCPSO, since it is not explicitly designed

to deal with multiple local minima. For the RPSO, this implies that the randomised

particles have no effect. In fact, on none of the problems did the RPSO offer any im-

provement in performance over the GCPSO.

The MPSOcluster algorithm fails to trigger, thus it remains trapped in a local min-

imum. The other two MPSO algorithms performed significantly better, as can clearly

be seen in Figure 5.3. Note that the MPSOradius algorithm was able to detect stag-

nation more quickly than the MPSOslope algorithm. While this appears to work well

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 170

0 50000 100000 150000 200000

−8
−6

−4
−2

0

Function Evaluations

lo
g(

f(x
))

GCPSO
MPSO_slope
MSPO_radius
MPSO_cluster
RPSO

Figure 5.3: The Griewank function error profile, obtained using the various global PSO

algorithms.

on Griewank’s function, MPSOradius may be too hasty in declaring stagnation on other

functions. Keep in mind that these curves represent the mean value of the objective

function at each time step, thus the MPSOslope algorithm’s curve does not accurately

portray its true behaviour. Recall that there is a large difference between the MPSOslope

algorithm’s mean and median values for this particular function. If the graph was drawn

using the median values, instead of the mean values, then the MPSOslope algorithm would

have been correctly been portrayed as the better of the MPSOslope and MPSOradius algo-

rithms. The reason for choosing to display this particular plot was that it clearly shows

how some algorithms (e.g. MPSOcluster) fail to detect stagnation on some functions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 171

5.4.1 Discussion of Results

The results presented in this section indicate that the MPSO family of algorithms have

the ability to improve the performance of the GCPSO on functions containing multiple

minima. The effectiveness of the MPSO algorithm depends on the algorithm used to de-

termine when to re-initialise the swarm. From the results it is clear that the MPSOslope

and MPSOradius algorithms were able to improve on the performance of the GCPSO

consistently, while the MPSOcluster algorithm sometimes failed to deliver improved per-

formance.

The next section investigates the performance of the cooperative PSO algorithms.

Because of the improved diversity present in these algorithms, they are expected to

perform well on multi-modal functions.

5.5 Cooperative PSO Performance

This section compares the performance of the various CPSO-S and CPSO-H algorithms.

Since the CPSO-S and CPSO-H algorithms make strong assumptions about the de-

composability of the functions they minimise, several test functions will be evaluated

in both their original and their rotated versions. Rotating the coordinate axes of the

search space through random angles induces a high degree of correlation between the

dimensions, making the problems considerably harder for CCGA-style algorithms (which

includes the CPSO-S and CPSO-H algorithms) to solve [115, 105].

All the algorithms were tested using both the standard PSO update equations, as

well as the GCPSO update equations. In the tables below these two versions will simply

be indicated with the column labels “GCPSO” and “PSO”. The normal non-CPSO

algorithms will be identified with the label “Standard”, so that, for example, an entry

with a row label of “Standard” and a column label of “GCPSO” will refer to the GCPSO

algorithm as introduced in Section 3.2.

It is expected that the performance of a CPSO algorithm using the standard PSO

update equations will be different from that of the same CPSO algorithm using the

GCPSO update equations, since the former has slower convergence, thus implying greater

diversity.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 172

5.5.1 Experimental Design

The standard PSO algorithms perform significantly less work during a single iteration of

the algorithm’s outer loop, compared to the amount of work done during one iteration

of the outer loop of a CPSO algorithm. Some other measure of the amount of work

done must therefore be considered. Instead of counting the number of iterations that

the outer loop is executed, the number of times that the objective function is evaluated

is counted. In practice, a maximum number of function evaluations is specified for a

simulation run. This value is then used to compute the requisite number of iterations

that the specific algorithm must use. First, observe that, for a standard PSO,

F = s× I

where F is the number of times the objective function is evaluated, s is the swarm size

and I the number of iterations that the algorithm is run. To ensure a fair comparison

between two non-cooperative algorithms the value F must be held constant by computing

the value of I so that I = F/s.

This approach can be used to compare the influence of the swarm size on the per-

formance of the PSO algorithm. For example, if a budget of 10000 function evaluations

is available, then a swarm with 10 particles must run for 10000/10 = 1000 iterations.

Using 20 particles decreases the number of iterations, so that the larger swarm may only

run for 10000/20 = 500 iterations.

When comparing the performance of a CPSO algorithm to that of a standard PSO

algorithm, the same principle must be observed. If a CPSO algorithm splits the search

space into K parts, then

F = s×K × I

This implies that the number of iterations available to the CPSO algorithm is reduced by

a factor K — a significant reduction if K = n, where n is the number of dimensions of the

search space. The number of allowed iterations for a CPSO-HK algorithm is computed

similarly by using a factor of K + 1 rather than K, to compensate for the extra swarm

that is used in the algorithm (see Section 4.3.1 for details).

The practical implication of this approach is that each individual particle in a PSO

swarm has the opportunity to update its positionK times more frequently than a particle

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 173

in a CPSO-SK algorithm, if both algorithms use the same swarm size. The only way

to increase the number of opportunities each particle in the CPSO swarm receives to

update its position is to decrease the swarm size. For example, if a split factor of K = 2

is selected, then the CPSO-S2 algorithm can run for 10000/(2 × 20) = 250 iterations

using a swarm size of 20. By reducing the swarm size to 10, the algorithm is allowed

to run for 10000/(2 × 10) = 500 iterations, the same number as a standard PSO using

a swarm size of 20. This means that the CPSO-SK algorithm usually performs better

when using smaller swarm sizes than the corresponding standard PSO.

All the experiments conducted in this thesis used this method for determining the

correct number of iterations for each type of algorithm to ensure that the PSO and CPSO

algorithms were compared on equal footing.

The following algorithms were compared in the results presented below:

Standard: A standard PSO algorithm, using a fixed inertia weight of w = 0.72 and

acceleration coefficients c1 = c2 = 1.49. These values were selected to correspond

with settings often encountered in the literature [39, 36].

CPSO-S: The CPSO-S algorithm introduced in Section 4.2.2, with acceleration coef-

ficients c1 = c2 = 1.49. The inertia weight was configured to decrease linearly

from 1.0 down to 0.72 during the first 1000 iterations. Note that this algorithm is

equivalent to a CPSO-SK algorithm with K = n, where n = 30 for all the functions

tested here.

CPSO-H: The CPSO-H algorithm introduced in Section 4.3.1. The same parameter

settings as the CPSO-S algorithm were used.

CPSO-S6: A CPSO-SK algorithm with K = 6. The value 6 was chosen so that the

number of swarms and the number of variables searched by each swarm was ap-

proximately the same. Previous experience with the CPSO-SK algorithm indicated

that this split factor produces acceptable results [138]. This swarm also used the

same parameter settings as the CPSO-S algorithm.

CPSO-H6: A CPSO-HK algorithm with K = 6. Again, the same parameter settings

as the CPSO-S algorithm were used.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 174

GA: A binary-coded Genetic Algorithm with a population size of 100, using 16 bits

to encode each variable. A two-point bitwise crossover algorithm, together with

a single-bit mutation operator, was used. Selection pressure was applied using a

fitness-proportionate model, with a one-element elitist strategy. The crossover rate

was set to 0.6 and the mutation rate to 0.02. This algorithm was configured to

correspond to the GA used by Potter during his CCGA experiments [106].

CCGA: A CCGA-1 algorithm [106], where each of the functions was split into 30 com-

ponents, resulting in 30 cooperating swarms. The same settings as used for the GA

algorithm were implemented. This configuration was again chosen to correspond

to Potter’s experiments.

Note that all the PSO algorithms were tested using both the standard PSO update

equation for the global best particle, as well as the GCPSO update equation for the

global best particle.

5.5.2 Unrotated Functions

Tables 5.21 and 5.22 present the results of minimising two unimodal functions using the

different algorithms. On Rosenbrock’s function the standard GCPSO was less sensitive

to the swarm size than the standard PSO. These two standard algorithms also produced

better results than any of the other algorithms on this problem, with the standard

PSO taking the lead. Both the GA-based algorithms performed significantly worse than

the PSO-based algorithms, despite their larger population sizes (which correspond to

the population size used by Potter [106, 105]). All the CPSO algorithms exhibited a

general tendency to produce better results with smaller swarm sizes, except the CPSO-

H6 algorithm, which seemed to favour larger swarm sizes.

The Quadric function was considerably easier to solve than Rosenbrock’s function,

as can clearly be seen in Table 5.22. The standard GCPSO performed significantly

better than any other algorithm by a rather large margin, followed by the PSO-version

of the CPSO-S algorithm. Note that the PSO-version of the CPSO-S algorithm (using

a swarm size of 10) performed better than the Standard PSO algorithm. This was

unexpected, since this function has significant correlation between its variables. It is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 175

Algorithm s GCPSO PSO

Standard 10 4.16e−02 ± 6.43e−03 1.30e−01 ± 1.45e−01

15 2.55e−02 ± 7.77e−03 5.53e−03 ± 6.19e−03

20 2.73e−02 ± 1.04e−02 9.65e−03 ± 7.28e−03

CPSO-S 10 6.89e−01 ± 3.58e−02 7.58e−01 ± 1.16e−01

15 6.73e−01 ± 3.23e−02 7.36e−01 ± 3.04e−02

20 7.70e−01 ± 1.29e−01 9.06e−01 ± 3.56e−02

CPSO-H 10 2.56e−01 ± 2.27e−02 2.92e−01 ± 2.19e−02

15 2.93e−01 ± 2.08e−02 3.14e−01 ± 1.74e−02

20 4.12e−01 ± 3.13e−02 4.35e−01 ± 2.48e−02

CPSO-S6 10 2.05e+00 ± 6.88e−01 1.41e+00 ± 4.73e−01

15 2.03e+00 ± 6.20e−01 2.47e+00 ± 7.00e−01

20 1.80e+00 ± 5.92e−01 1.59e+00 ± 5.03e−01

CPSO-H6 10 7.62e−02 ± 1.32e−02 1.94e−01 ± 2.63e−01

15 5.83e−02 ± 5.87e−03 2.59e−01 ± 2.47e−01

20 1.02e−01 ± 1.76e−02 4.21e−01 ± 3.21e−01

GA 100 6.32e+01 ± 1.19e+01

CCGA 100 3.80e+00 ± 1.93e−01

Table 5.21: Unrotated Rosenbrock’s function: mean value after 2× 105 function evalua-

tions

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 176

Algorithm s GCPSO PSO

Standard 10 6.40e−159 ± 1.25e−158 1.08e+00 ± 1.41e+00

15 4.59e−166 ± 1.03e−167 2.85e−72 ± 5.41e−72

20 2.13e−146 ± 3.87e−146 2.17e−98 ± 4.20e−98

CPSO-S 10 2.99e−75 ± 5.84e−75 2.55e−128 ± 4.98e−128

15 8.42e−61 ± 1.07e−60 7.26e−89 ± 1.14e−88

20 6.57e−50 ± 1.24e−49 3.17e−67 ± 2.21e−67

CPSO-H 10 3.61e−61 ± 7.08e−61 5.41e−95 ± 1.05e−94

15 1.91e−58 ± 3.20e−58 6.74e−81 ± 8.92e−81

20 3.14e−48 ± 4.68e−48 1.45e−63 ± 1.98e−63

CPSO-S6 10 2.18e−09 ± 3.84e−09 4.63e−07 ± 6.14e−07

15 6.39e−07 ± 8.80e−07 1.36e−05 ± 1.76e−05

20 3.26e−06 ± 4.01e−06 1.20e−04 ± 8.99e−05

CPSO-H6 10 6.92e−38 ± 1.35e−37 2.63e−66 ± 5.08e−66

15 1.01e−32 ± 1.99e−32 9.00e−46 ± 1.09e−45

20 8.36e−33 ± 1.61e−32 1.40e−29 ± 1.15e−29

GA 100 1.68e+06 ± 2.56e+05

CCGA 100 1.38e+02 ± 9.20e+01

Table 5.22: Unrotated Quadric function: mean value after 2× 105 function evaluations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 177

Algorithm s GCPSO PSO

Standard 10 7.90e+00 ± 8.86e−01 7.33e+00 ± 6.23e−01

15 4.06e+00 ± 5.26e−01 4.92e+00 ± 5.81e−01

20 3.27e+00 ± 6.36e−01 3.57e+00 ± 4.58e−01

CPSO-S 10 2.91e−14 ± 1.65e−15 2.90e−14 ± 1.60e−15

15 2.93e−14 ± 1.43e−15 3.01e−14 ± 1.42e−15

20 2.96e−14 ± 1.69e−15 3.05e−14 ± 1.84e−15

CPSO-H 10 2.85e−14 ± 1.41e−15 2.78e−14 ± 1.71e−15

15 3.10e−14 ± 1.66e−15 2.92e−14 ± 1.67e−15

20 3.13e−14 ± 1.88e−15 2.98e−14 ± 1.56e−15

CPSO-S6 10 6.94e−08 ± 5.21e−08 1.12e−06 ± 4.01e−07

15 1.35e−06 ± 6.53e−07 1.11e−05 ± 4.35e−06

20 3.15e−06 ± 1.44e−06 5.42e−05 ± 1.66e−05

CPSO-H6 10 2.21e−10 ± 3.24e−10 9.42e−11 ± 7.58e−11

15 1.29e−11 ± 1.41e−11 9.57e−12 ± 7.96e−12

20 2.08e−12 ± 2.15e−12 2.73e−12 ± 2.03e−12

GA 100 1.38e+01 ± 4.04e−01

CCGA 100 9.51e−02 ± 3.39e−02

Table 5.23: Unrotated Ackley’s function: mean value after 2× 105 function evaluations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 178

Algorithm s GCPSO PSO

Standard 10 8.76e+01 ± 5.60e+00 8.27e+01 ± 5.64e+00

15 7.64e+01 ± 5.29e+00 7.44e+01 ± 5.66e+00

20 7.42e+01 ± 5.07e+00 6.79e+01 ± 4.84e+00

CPSO-S 10 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

15 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

20 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

CPSO-H 10 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

15 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

20 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

CPSO-S6 10 3.81e−01 ± 1.92e−01 1.39e−01 ± 1.12e−01

15 2.60e−01 ± 1.66e−01 6.00e−02 ± 6.62e−02

20 1.79e−01 ± 1.28e−01 1.46e−01 ± 1.03e−01

CPSO-H6 10 2.37e+00 ± 5.22e−01 1.47e+00 ± 3.16e−01

15 1.18e+00 ± 2.80e−01 8.77e−01 ± 2.20e−01

20 9.40e−01 ± 2.59e−01 7.78e−01 ± 1.87e−01

GA 100 1.29e+02 ± 7.00e+00

CCGA 100 1.22e+00 ± 2.35e−01

Table 5.24: Unrotated Rastrigin’s function: mean value after 2×105 function evaluations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 179

also interesting to note that the GCPSO-version of the CPSO-S algorithm performed

significantly worse than the PSO-version. This is because the GCPSO-version had a

faster rate of convergence, so that the diversity of each of the constituent swarms was

lower than that of the PSO-version, leading to a decrease in performance.

The CPSO-S6 algorithm exhibited exactly the opposite behaviour: the GCPSO-

version performed better than the PSO-version. Note that the CPSO-S6 algorithm used

six swarms with 5-dimensional search spaces each. Since the rate of convergence of a PSO

algorithm in a 5-dimensional search space is clearly slower than its rate of convergence

of in a 1-dimensional search space, diversity was better preserved. This meant that the

CPSO-S6 algorithm did not suffer from the same premature convergence problem that

the GCPSO-version of the CPSO-S algorithm had.

Observe that the CPSO-H6 algorithm performed significantly better than the CPSO-

S6 algorithm, but still significantly worse than the non-CPSO algorithms. There are two

possible interpretations of its intermediate level of performance: either the CPSO-SK

component had a negative influence on the performance of the non-CPSO component of

the algorithm, or the non-CPSO component improved the performance of the CPSO-SK

component. The performance of this algorithm on the non-unimodal functions (discussed

below) provides the necessary clues for deciding which interpretation is more likely.

Overall, it appears that the standard (i.e. non-CPSO) algorithms had better per-

formance on unimodal functions. When considering some functions with multiple lo-

cal minima, like Ackley and Rastrigin’s functions, the roles were reversed. Table 5.23

presents results obtained by minimising Ackley’s function using the various algorithms.

It is immediately clear that the CPSO algorithms performed significantly better than

the standard ones on this function. One possible explanation is the increased diversity

offered by the group of cooperating swarms, thus reducing the probability of falling into

an inferior local minimum during the earlier iterations of the algorithm. Note that there

was not much of a difference between the performance of the PSO and GCPSO versions

of the CPSO-S and CPSO-H algorithms, unlike the behaviour observed on the unimodal

functions.

The GCPSO-version of the CPSO-S6 algorithm again performed better than the

PSO-version; for the CPSO-H6 algorithm, the performance of the the two variations was

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 180

not significantly different. The CCGA algorithm performed significantly better than the

standard PSO-based algorithms, even though the standard GA algorithm had the worst

performance overall.

Another trend can be observed on Ackley’s function: Larger swarm sizes (thus more

diversity) improves the performance of the standard PSO and GCPSO algorithms signif-

icantly. The opposite trend can be observed in the behaviour of the CPSO-S, CPSO-H

and CPSO-S6 algorithms. The explanation for this behaviour is that the CPSO al-

gorithms (with the exception of the CPSO-H6 algorithm) generate sufficient diversity

through their cooperative structure, and therefore they need the extra iterations1 more

than they need the extra diversity.

Table 5.24 shows the results of minimising Rastrigin’s function, another non-unimodal

function. A dramatic difference was observed between the performance of the CPSO-S

(and CPSO-H) algorithms, and that of the standard PSO-based algorithms. A likely ex-

planation for the superior performance of the CPSO-S algorithm is that an n-dimensional

Rastrigin function can be decomposed into n components of the form

f(x) = x2 − 10 cos(2πx) + 10

This function is depicted in Figure 5.4. Note how the distance between successive

local minima remains constant. If the swarm starts with some particles located near dif-

ferent local minima, some of the particles may assume velocities that are approximately

a multiple of the distance between two local minima. The quadratic term in Rastrigin’s

function ensures that the particles move in the direction of the global minimum. Under

these circumstances a particle will quickly be able to find the interval [−0.5, 0.5] in which

the global minimum is located. This explains why the CPSO-S and CPSO-H algorithms

are able to locate the global minimum so easily.

It is far less likely that the CPSO-S6 algorithm will find a 5-dimensional velocity

vector with the “optimal step size” property. Therefore, neither the CPSO-S6 nor the

CPSO-H6 algorithms exhibited the same level of performance as the CPSO-S and CPSO-

H swarms.

Figure 5.5 plots the performance of some of the algorithms on Ackley’s function over

time. All algorithms shown in the plot were the GCPSO-versions. Note how the standard

1recall the description of the experimental set-up in Section 5.5.1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 181

0

5

10

15

20

25

30

35

40

45

-4 -2 0 2 4

f(x
)

x

Figure 5.4: A plot of Rastrigin’s function in one dimension.

GCPSO quickly becomes trapped in a local minimum, just as observed previously in

Section 5.4. The CPSO algorithms were clearly able to avoid becoming trapped in local

minima for longer than the standard PSO.

Figure 5.6 shows how the CPSO-S and CPSO-S6 algorithms perform compared to

the GA-based algorithms, as well as the MPSO algorithm (using the maximum swarm

radius convergence detection algorithm). Although the MPSO algorithm is guaranteed

to find the global minimiser eventually, the CPSO algorithms are clearly more efficient.

The performance plots for other non-unimodal functions exhibited similar properties.

5.5.3 Rotated Functions

All the CPSO algorithms make the assumption that a function can be minimised by

decomposing it into disjoint subspaces, and minimising each subspace separately. This

means that they assume there is little or no correlation between the different components

which they decomposed the search space into. By testing these algorithms on functions

that have highly correlated variables it is possible to see how robust the CPSO algorithms

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 182

0 50000 100000 150000 200000

−1
0

−5
0

Function Evaluations

lo
g(

f(x
))

Standard
CPSO−S
CPSO−H
CPSO−S6
CPSO−H6

Figure 5.5: The unrotated Ackley Function error profile, obtained using the various

CPSO algorithms.

are when they are faced with functions that target their main weakness. If a function

with uncorrelated variables is rotated through arbitrary angles, its variables become

highly correlated [115]. This method was used to obtain the results presented in this

section.

The results of minimising the rotated version of Rosenbrock’s function are presented

in Table 5.25. All the algorithms performed worse than they did on the unrotated version

of this function. The standard PSO and both variations of the CPSO-S algorithms

experienced the most severe degradation of performance, though. This is an indication

of the fact that the CPSO-S algorithm suffers from the increased correlation between

the variables. Even though the CPSO-S algorithm did suffer a significant decrease in

performance, it was still able to solve the problem more effectively than either of the two

GA-based algorithms.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 183

0 50000 100000 150000 200000

−1
0

−5
0

Function Evaluations

lo
g(

f(x
))

GA
CCGA
CPSO−S
CPSO−S6
MPSO_radius

Figure 5.6: The unrotated Ackley Function error profile, obtained using some of the

CPSO algorithms, with the profile of the MPSO and GA-based algorithms included for

comparison.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 184

Algorithm s GCPSO PSO

Standard 10 1.03e−01 ± 3.46e−02 3.32e−01 ± 9.50e−02

15 9.59e−02 ± 7.56e−03 2.84e−01 ± 5.17e−02

20 1.50e−01 ± 1.21e−02 3.16e−01 ± 3.41e−02

CPSO-S 10 3.70e+00 ± 8.98e−01 3.23e+00 ± 7.78e−01

15 3.32e+00 ± 8.00e−01 2.58e+00 ± 5.36e−01

20 4.24e+00 ± 9.02e−01 4.37e+00 ± 8.51e−01

CPSO-H 10 5.50e−01 ± 1.71e−01 4.26e−01 ± 3.83e−02

15 5.80e−01 ± 1.49e−01 4.96e−01 ± 4.53e−02

20 7.31e−01 ± 1.20e−01 1.06e+00 ± 2.96e−01

CPSO-S6 10 3.14e+00 ± 7.51e−01 2.65e+00 ± 6.69e−01

15 2.47e+00 ± 5.51e−01 3.84e+00 ± 9.81e−01

20 3.94e+00 ± 8.21e−01 4.27e+00 ± 7.73e−01

CPSO-H6 10 2.43e−01 ± 5.63e−02 1.77e−01 ± 3.62e−02

15 2.28e−01 ± 3.06e−02 3.73e−01 ± 2.07e−01

20 2.89e−01 ± 3.78e−02 4.73e−01 ± 1.35e−01

GA 100 6.15e+01 ± 1.42e+01

CCGA 100 1.32e+01 ± 2.19e+00

Table 5.25: Rotated Rosenbrock’s function: mean value after 2×105 function evaluations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 185

Algorithm s GCPSO PSO

Standard 10 2.43e+00 ± 2.40e+00 6.02e+03 ± 2.17e+03

15 1.35e+00 ± 9.90e−01 3.35e+02 ± 1.35e+02

20 1.36e+00 ± 8.95e−01 1.12e+02 ± 4.91e+01

CPSO-S 10 1.73e+03 ± 5.62e+02 1.47e+03 ± 4.77e+02

15 1.50e+03 ± 4.65e+02 1.28e+03 ± 3.88e+02

20 1.86e+03 ± 5.09e+02 1.72e+03 ± 5.91e+02

CPSO-H 10 2.86e+02 ± 1.55e+02 2.15e+02 ± 8.75e+01

15 2.16e+02 ± 9.16e+01 3.45e+02 ± 9.92e+01

20 3.42e+02 ± 1.12e+02 4.10e+02 ± 1.32e+02

CPSO-S6 10 1.61e+03 ± 4.59e+02 2.89e+03 ± 1.07e+03

15 2.52e+03 ± 9.36e+02 2.99e+03 ± 1.07e+03

20 2.44e+03 ± 8.49e+02 4.64e+03 ± 1.55e+03

CPSO-H6 10 1.29e+02 ± 7.08e+01 2.40e+02 ± 1.04e+02

15 1.70e+02 ± 7.33e+01 7.06e+02 ± 3.24e+02

20 3.46e+02 ± 1.22e+02 1.03e+03 ± 5.24e+02

GA 100 1.07e+06 ± 2.09e+05

CCGA 100 6.53e+03 ± 2.38e+03

Table 5.26: Rotated Quadric function: mean value after 2× 105 function evaluations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 186

Algorithm s GCPSO PSO

Standard 10 8.08e+00 ± 8.20e−01 7.54e+00 ± 5.82e−01

15 4.61e+00 ± 6.85e−01 5.09e+00 ± 5.11e−01

20 3.42e+00 ± 5.17e−01 3.42e+00 ± 3.74e−01

CPSO-S 10 1.92e+01 ± 9.86e−02 1.73e+01 ± 1.45e+00

15 1.85e+01 ± 8.18e−01 1.81e+01 ± 1.09e+00

20 1.87e+01 ± 7.58e−01 1.85e+01 ± 7.76e−01

CPSO-H 10 1.53e+01 ± 1.05e+00 1.43e+01 ± 1.57e+00

15 1.56e+01 ± 1.48e+00 1.43e+01 ± 1.48e+00

20 1.61e+01 ± 1.20e+00 1.60e+01 ± 1.42e+00

CPSO-S6 10 1.95e+00 ± 1.55e+00 7.98e−01 ± 1.06e+00

15 1.91e+00 ± 1.60e+00 1.14e+00 ± 1.26e+00

20 4.17e−01 ± 7.40e−01 1.54e+00 ± 1.46e+00

CPSO-H6 10 8.70e−01 ± 9.95e−01 8.23e−01 ± 1.04e+00

15 1.20e+00 ± 1.27e+00 8.12e−01 ± 1.05e+00

20 1.11e+00 ± 1.23e+00 8.51e−01 ± 1.83e+00

GA 100 1.27e+01 ± 1.55e+00

CCGA 100 1.57e+01 ± 1.87e+00

Table 5.27: Rotated Ackley’s function: mean value after 2× 105 function evaluations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 187

Algorithm s GCPSO PSO

Standard 10 9.68e+01 ± 7.95e+00 9.76e+01 ± 5.90e+00

15 8.89e+01 ± 6.24e+00 8.48e+01 ± 5.42e+00

20 8.36e+01 ± 5.44e+00 7.87e+01 ± 6.79e+00

CPSO-S 10 8.59e+01 ± 7.49e+00 7.55e+01 ± 7.53e+00

15 8.56e+01 ± 8.73e+00 8.15e+01 ± 6.26e+00

20 8.02e+01 ± 6.47e+00 7.89e+01 ± 6.41e+00

CPSO-H 10 8.16e+01 ± 7.25e+00 7.91e+01 ± 6.97e+00

15 8.49e+01 ± 6.77e+00 8.21e+01 ± 6.49e+00

20 8.47e+01 ± 8.18e+00 8.12e+01 ± 5.92e+00

CPSO-S6 10 4.84e+01 ± 4.42e+00 5.41e+01 ± 5.18e+00

15 5.06e+01 ± 3.79e+00 4.66e+01 ± 3.84e+00

20 4.91e+01 ± 4.71e+00 5.04e+01 ± 5.50e+00

CPSO-H6 10 6.20e+01 ± 5.83e+00 6.16e+01 ± 5.08e+00

15 5.62e+01 ± 4.40e+00 5.94e+01 ± 5.04e+00

20 5.86e+01 ± 5.69e+00 5.41e+01 ± 4.63e+00

GA 100 1.37e+02 ± 1.78e+01

CCGA 100 6.93e+01 ± 1.02e+01

Table 5.28: Rotated Rastrigin’s function: mean value after 2× 105 function evaluations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 188

0 50000 100000 150000 200000

0.
0

0.
5

1.
0

Function Evaluations

lo
g(

f(x
))

Standard
CPSO−S
CPSO−H
CPSO−S6
CPSO−H6

Figure 5.7: The rotated Ackley Function error profile, obtained using the various CPSO

algorithms.

Table 5.26 shows an even more dramatic degradation in performance for the Quadric

function. The best-performing algorithm remains to be the standard GCPSO, although

its performance was significantly worse (by about 160 orders of magnitude) than what it

achieved on the unrotated version of this function. The relative ranking of the different

algorithms on this function remained roughly the same as observed on the unrotated

function.

Overall, the CPSO algorithms exhibited a severe degradation in performance, com-

pared to their previous performance on the unrotated versions of the unimodal functions.

On the other hand, the standard algorithms experienced a similar decrease in perfor-

mance — but they still retained the lead over the CPSO algorithms. The GCPSO

versions of all the algorithms showed a slightly smaller performance decrease, especially

the standard GCPSO. This phenomenon is caused by the stronger local convergence

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 189

0 50000 100000 150000 200000

0.
4

0.
6

0.
8

1.
0

1.
2

Function Evaluations

lo
g(

f(x
))

GA
CCGA
CPSO−S
CPSO−S6
Standard

Figure 5.8: The rotated Ackley Function error profile, obtained using the various PSO

and GA algorithms.

ability of the GCPSO.

Repeating the experiment on the non-unimodal functions produced some interesting

results. Table 5.27, obtained by minimising the rotated Ackley function, shows that the

CPSO-S6 and CPSO-H6 algorithms took over the lead from the CPSO-S and CPSO-H

algorithms. The performance of the standard GCPSO and PSO algorithms was not

significantly affected by the rotation, unlike the case was with the unimodal functions.

Table 5.28 presents the results of applying the different algorithms to the rotated

version of Rastrigin’s function. Clearly the performance of all the CPSO algorithms

degraded significantly. The CPSO-S6 remained the algorithm with the best performance

on this function. The significant degradation in the performance of the CPSO-S and

CPSO-H algorithms was a direct consequence of the high degree of inter-variable cor-

relation caused by the rotation of the coordinate axes. Since synchronisation between

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 190

the different swarms in the CPSO-S and CPSO-H algorithms is limited, they lose the

advantages offered by the smaller search spaces assigned to each swarm.

Figures 5.7 and 5.8 show how the different algorithms were affected by the coordinate

rotation. Figure 5.7 clearly shows how the CPSO-S algorithm becomes trapped during

the earlier iterations. The CPSO-H algorithm is able to improve its best solution some-

what, owing to the help of the standard PSO component integrated into it. Both the

CPSO-S6 and CPSO-H6 algorithms were able to steadily improve their solutions.

Compared to the two GA-based algorithms, the standard GCPSO and CPSO-S6

algorithms were clearly superior (see Figure 5.8). Note how the CCGA algorithm and

the CPSO-S algorithms were trapped at approximately the same function value. The

standard GA does not appear to have stagnated, showing a slow but steady improvement

throughout the simulation run.

Based on the performance of the algorithms on both the rotated and unrotated

functions, it appears as if the CPSO-S6 and CPSO-H6 algorithms are good alternatives to

the standard GCPSO or PSO. These two CPSO algorithms suffered less degradation on

the rotated functions than the CPSO-S and CPSO-H algorithms did, and they performed

significantly better than the standard GCPSO and PSO algorithms on the non-unimodal

functions, especially when the variables of the function were correlated.

5.5.4 Computational Complexity

The results presented so far in this section only considered the mean function value

at the end of a fixed number of function evaluations. A different type of experiment

can be performed to measure the convergence speed (complexity) and robustness of an

algorithm, i.e. how often is it able to reach a specific performance level.

Table 5.29 lists the threshold values that were used for the various functions tested.

These values correspond to the threshold values used by Eberhart et al. in [39], except the

threshold for the Quadric function, which was selected to correspond to the threshold of

the Spherical function used by Eberhart et al. The algorithm terminated as soon as the

objective function value dropped below the threshold value specified in the table. Each

algorithm was allowed a maximum of 2× 105 function evaluations. The average number

of function evaluations required by each algorithm was recorded, excluding the runs that

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 191

Function Threshold

Rosenbrock 100

Ackley 5.00

Rastrigin 100

Quadric 0.01

Table 5.29: Parameters used during experiments

were not able to reach the threshold within 2× 105 evaluations. Tables 5.30–5.33 report

these results, where the Ns column indicates the number of successful runs (out of 50),

and the F column lists the average number of function evaluations the algorithm needed

to reach the threshold on each successful run.

Table 5.30 shows that none of the algorithms had any trouble reaching the threshold

on either the normal or the rotated version of Rosenbrock’s function, with the CPSO

algorithms performing better than the standard PSO algorithms. In fact, these results

show that Rosenbrock’s function is relatively insensitive to rotation.

The results obtained by minimising the Quadric function, presented in Table 5.31,

show a different trend. Although none of the algorithms (except the standard PSO with

only 10 particles) had any difficulty in reaching the threshold on the unrotated version

of the Quadric function, almost all of them failed on the rotated version. The obvious

explanation for this phenomenon is that the threshold value was too small for the algo-

rithms to reliably reach it on the rotated function. The standard GCPSO algorithm was

the top performer on the rotated function, an indication of the strong local convergence

abilities of the GCPSO extension.

Ackley’s function produced some interesting results, as can be seen in Table 5.32.

Note how the standard GCPSO and PSO algorithms had difficulty reaching the threshold

even on the unrotated function; in contrast, all the CPSO algorithms could reliably reach

it. When the function was rotated, though, the CPSO-S and CPSO-H algorithms

failed completely; the standard GCPSO and PSO algorithms mostly maintained the

same level of performance. One explanation for the poor performance of the CPSO-S

and CPSO-H algorithms is that the rotation caused the different swarms to become

unsynchronised, since the sinusoidal bumps no longer appeared in a regular grid with

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 192

Unrotated Rotated

GCPSO PSO GCPSO PSO

Algorithm s Ns F Ns F Ns F Ns F

Standard 10 50 548 50 609 50 591 50 661

15 50 751 50 820 50 776 50 790

20 50 943 50 861 50 973 50 855

CPSO-S 10 50 316 50 320 50 408 50 420

15 50 427 50 424 50 552 50 532

20 50 558 50 562 50 670 50 672

CPSO-H 10 50 317 50 332 50 408 50 411

15 50 424 50 426 50 558 50 525

20 50 562 50 556 50 686 50 653

CPSO-S6 10 50 526 50 436 50 524 50 516

15 50 489 50 453 50 622 50 581

20 50 506 50 521 50 746 50 660

CPSO-H6 10 50 691 50 511 50 692 50 609

15 50 659 50 661 50 765 50 723

20 50 688 50 685 50 965 50 910

Table 5.30: Rosenbrock’s function: Computational complexity

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 193

Unrotated Rotated

GCPSO PSO GCPSO PSO

Algorithm s Ns F Ns F Ns F Ns F

Standard 10 50 9284 38 34838 12 167765 0 N/A

15 50 9599 50 16735 12 162369 1 26161

20 50 11347 50 14574 3 154956 2 175788

CPSO-S 10 50 65642 50 70215 0 N/A 0 N/A

15 50 71594 50 77265 0 N/A 0 N/A

20 50 77345 50 83168 0 N/A 0 N/A

CPSO-H 10 50 39827 50 40056 1 90211 0 N/A

15 50 48691 50 53341 0 N/A 0 N/A

20 50 55240 50 61430 0 N/A 0 N/A

CPSO-S6 10 50 47540 50 77818 1 59911 0 N/A

15 50 58125 50 101565 0 N/A 0 N/A

20 50 74698 50 115687 1 91848 0 N/A

CPSO-H6 10 50 15478 50 21693 0 N/A 0 N/A

15 50 22059 50 31068 6 123157 0 N/A

20 50 38121 50 44086 0 N/A 0 N/A

Table 5.31: Quadric function: Computational complexity

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 194

Unrotated Rotated

GCPSO PSO GCPSO PSO

Algorithm s Ns F Ns F Ns F Ns F

Standard 10 12 1586 11 2099 11 1570 6 1988

15 35 2018 32 3019 25 2040 32 3385

20 46 2480 37 2986 40 2628 41 3200

CPSO-S 10 50 967 50 935 0 N/A 5 6240

15 50 1078 50 1053 3 2468 2 11644

20 50 1211 50 1227 2 4332 2 43314

CPSO-H 10 50 1089 50 1068 2 1976 4 24420

15 50 1150 50 1154 1 2212 2 5836

20 50 1246 50 1245 2 2407 2 2401

CPSO-S6 10 50 2734 50 3264 43 12760 50 6670

15 50 3508 50 4136 47 3859 47 4533

20 50 4054 50 4994 47 5187 46 5686

CPSO-H6 10 50 2540 50 3170 45 3199 45 3758

15 50 3831 50 3706 44 4945 43 4568

20 50 3936 50 4492 47 5028 41 5692

Table 5.32: Ackley function: Computational complexity

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 195

Unrotated Rotated

GCPSO PSO GCPSO PSO

Algorithm s Ns F Ns F Ns F Ns F

Standard 10 36 1636 45 2112 29 2046 41 2403

15 45 1985 43 2525 37 2432 39 2912

20 45 2326 49 3341 39 3348 41 3142

CPSO-S 10 50 380 50 375 39 4815 40 3516

15 50 430 50 436 39 5921 37 5187

20 50 539 50 546 38 7428 41 4817

CPSO-H 10 50 389 50 388 39 3785 40 4484

15 50 430 50 430 35 4186 39 5366

20 50 542 50 545 37 4261 37 5658

CPSO-S6 10 50 2060 50 2226 49 6458 48 7562

15 50 2439 50 2750 49 8275 50 7517

20 50 2846 50 3029 50 9782 50 9874

CPSO-H6 10 50 2568 50 1966 47 21525 46 4613

15 50 2594 50 2843 47 10467 44 9566

20 50 2812 50 3456 48 4603 45 5639

Table 5.33: Rastrigin function: Computational complexity

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 196

respect to the coordinate axes (and thus the subspaces searched by the CPSO-S and

CPSO-H algorithms). The CPSO-S6 and CPSO-H6 algorithms were able to reliably

reach the threshold despite the rotation of the coordinate axes, without a significant

increase in the required number of function evaluations in most cases.

Table 5.33 presents the results of a similar experiment conducted using Rastrigin’s

function. The general trend was the same as that observed on Ackley’s function, but

less dramatic. The CPSO-S6 and CPSO-H6 algorithms still produced the best results,

both in terms of speed and robustness.

Overall, the standard GCPSO, CPSO-S6 and CPSO-H6 algorithms were the most

robust algorithms on the set of test functions considered in this section.

5.6 Conclusion

Section 5.2 studied the influence of different parameter settings on the performance of

the PSO and GCPSO algorithms. The results indicate that there is a trade-off between

parameter settings that perform well on unimodal functions, and those that perform

well on multi-modal functions. This is related to the amount of diversity in the swarm:

high diversity is desirable when dealing with multi-modal functions, but not equally

important when minimising unimodal functions. If a parameter configuration leads to

rapid convergence on unimodal functions, it may not be able to maintain sufficient

diversity for optimising multi-modal functions effectively. It was found that acceptable

performance on both unimodal and multi-modal functions can be achieved by using an

inertia weight of 0.7. Choosing different values for the acceleration coefficients so that

c1 = c2 = d, where d ∈ [1.5, 1.8], results in behavior ranging from rapid convergence on

unimodal functions, to more robust behaviour on multi-modal functions.

Section 5.3 showed that the GCPSO algorithm has significantly better convergence

properties on unimodal functions, compared to the original PSO algorithm. The dif-

ferences between the GCPSO and PSO were especially pronounced when small swarm

sizes were considered, implying that the original PSO algorithm is prone to premature

convergence unless it has a sufficiently large swarm size. Both algorithms performed

equally well on multi-modal functions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 5. EMPIRICAL ANALYSIS OF PSO CHARACTERISTICS 197

Several techniques for extending the PSO (or GCPSO) to become a global search

algorithm, with guaranteed convergence on the global minimiser, were investigated in

Section 5.4. The results showed that the RPSO algorithm, which introduces randomised

particles to the swarm, offers no discernible advantage over the standard PSO algorithm.

In contrast, the MPSO algorithm, which re-initialises the swarm when it perceives that

too little progress is being made, performed significantly better than the standard PSO

algorithm. These results provide experimental support of the proven global convergence

property of the MPSO algorithm.

Section 5.5 studied the performance of the various cooperative PSO algorithms. Ini-

tial results indicated that the CPSO-S and CPSO-H algorithms have superior perfor-

mance on multi-modal functions with low inter-variable correlation, compared to the

standard PSO algorithms. The CPSO-S6 and CPSO-H6 also had better performance

than the standard PSO algorithms, but somewhat worse performance than the CPSO-S

and CPSO-H algorithms.

The experiments were repeated using the same functions, but rotating them through

arbitrary angles to increase the degree of inter-variable correlation. As could be expected,

the CPSO-S and CPSO-H algorithms suffered a severe degradation in performance, com-

pared to their performance on the unrotated functions. On the rotated functions they

performed significantly worse than the standard PSO algorithms. In contrast, the CPSO-

S6 and CPSO-H6 algorithms did not perform much worse on the rotated functions, so

that they still produced better results than the standard PSO algorithms.

The robustness of the various CPSO algorithms was also investigated, with similar

results: The CPSO-S6 and CPSO-H6 algorithms were able to consistently perform better

than the standard PSO on multi-modal functions, regardless of the degree of inter-

variable correlation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Chapter 6

Neural Network Training

This chapter presents an application of the PSO-based optimisation techniques presented in

Chapters 3 and 4. These algorithms are applied to the problem of training feedforward Neural

Networks to solve classification problems, as well as training the networks to approximate cer-

tain example functions. The experiments are performed using both summation unit networks

and product unit networks. The product unit networks experiments are included because

these networks are typically more difficult to train than the summation unit networks.

6.1 Multi-layer Feedforward Neural Networks

Neural Networks (NNs), or more correctly, Artificial Neural Networks (ANNs), provide

a general method for learning arbitrary mappings between two data sets. These data

sets can be real-valued, discrete or vector valued, may contain incorrect examples or

they may be noisy — the Neural Network is still able to learn the mapping. Past

applications include, amongst others, the recognition of handwritten characters [77],

learning to recognise spoken words [75] and recognising images of faces [25].

The term Neural Network describes a large family of general mapping techniques,

and it is beyond the scope of this thesis to discuss the various details regarding the

different types of neural networks in existence. Books by Mitchell [86] and Bishop [11]

are recommended as starting points for further investigation.

The aspect of Neural Networks relevant to this thesis is the process of training the

198

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 199

network. A typical Neural Network contains a number of adjustable parameters called

weights. In particular, supervised learning involves finding a set of weights that minimises

the mapping error. The data set used to train the network contains a set of input vectors

(called input patterns) and their corresponding output values. The mapping error is then

the difference between the output value specified in the data set, and the output of the

network when the corresponding input pattern is presented to it.

For most real-world problems it is not possible to obtain the complete set of input

patterns and their respective output values, so that the data set used to train the network

is only a sample taken from the true population. The objective of training the network

is to minimise the mapping error of the network in real-world scenarios, which implies

that the performance of the network on input patterns it has never seen before is more

important than the error of the network on the patterns in the training data set. If a

second sample of input patterns (and their respective output values) is available it is

possible to obtain an approximation of the network’s error with respect to unseen data.

This second data set is called the test set; the mapping error of the network measured

over this set is called the test set error, or more commonly, the generalisation error.

The number of weights in the network is one of the factors that determines its learning

ability. Assuming a fixed type of network, e.g. a two-layer feed-forward summation

unit network with sigmoidal activation functions (see Section 6.1.1 for a more detailed

description of this type of network), the number of hidden units determines the number

of weights in the network, since the number of input and output units are determined

by the problem under consideration. This implies that a network with more hidden

units will potentially be able to learn more complex mappings — if a suitable training

algorithm is available. The difficulty with Neural Network training is that the data set

may be such that a network trained to fit the training set may perform poorly on the

test set, thus also performing poorly in the real-world application from which the data

set was sampled. This phenomenon is called overfitting , which typically occurs when the

network has too many adjustable weights. Several ways exist for preventing the network

from overfitting the data in the training set. For example, if the true population (from

which the training set was sampled) has a given level of complexity, then the network

should preferably have the correct number of hidden units to match the complexity of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 200

the true population. If the training set contains some noise, then the a network with

too many hidden units will be able to learn the noise as well, reducing the generalisation

ability of the network. By limiting the number of hidden units in the network so that

the network is unable to learn the noise, generalisation performance will improve. This

is the approach taken by the Optimal Brain Damage algorithm [78], which attempts to

discard extraneous hidden units until only the minimum required number of hidden units

remain. The network may also have extraneous input units that can have a detrimental

effect on the learning ability of the network. A method for pruning irrelevant hidden

and input units has been developed by Engelbrecht [40].

Other approaches include regularisation [11] (chapter 9), where the assumption is

made that smoother network mappings have a smaller probability of overfitting the data.

For summation unit networks this implies that the network weights (excluding the bias

weights) should be small — this form of regularisation is often called weight decay. This

topic will be revisited in the context of summation units in Section 6.1.1. Alternatively,

the network can start with a very simple architecture, and add more hidden units until

the error becomes sufficiently small. This approach is called growing ; an example of an

architecture that uses this approach is the cascade-correlation network [43].

The aim of this chapter is to show that the Particle Swarm Optimiser, and the various

derived algorithms presented in this thesis, are suitable for training Neural Networks.

The aim is not to find the optimal architecture for each of the test problems, nor is the aim

to design and train the networks until the best generalisation errors possible are reached,

but simply to show that the PSO-based algorithms can train the networks as well as

other existing techniques are able to. Two types of Neural Networks, namely summation

unit networks and product unit networks, are trained on a variety of classification and

function approximation problems using various training algorithms.

6.1.1 Summation-unit Networks

A depiction of a two-layer summation unit network (also called a Multi-Layer Perceptron,

or MLP) is presented in Figure 6.1. This network is called a two-layer network because

of the two layers of weights found in the network: those running from the input units to

the hidden units, and those running from the hidden units to the output units.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 201

1 1 1

D+1 M+1

D CM

X Z Y

X Z

X Z Y

Figure 6.1: Summation unit network architecture

The network consists of D input units (plus a bias unit), M hidden units (plus a

bias unit) and C output units.1 Linear functions serve as the activation functions in the

output layer, obviating the need for rescaling the output data. The hidden units make

use of standard sigmoidal activation functions.

A forward propagation through the network is defined in equation (6.1):

yk(x) =
M+1∑
j=1

wkj g

(
D+1∑
i=1

wji xi

)
(6.1)

where

g(a) =
1

1 + exp(−a)
(6.2)

The following convention is used for labeling the weights: wkj is a weight in the

second layer of weights, between the output unit k and the hidden layer unit j, and wji

is a first-layer weight between hidden unit j and input unit i. Note that 1 ≤ i ≤ D + 1,

1 ≤ j ≤M + 1 and 1 ≤ k ≤ C.

The mapping error of the network is computed using the Mean Squared Error (MSE)

1Please note the new meanings associated with some symbols, e.g. x. These new meanings are only

applicable to this section (Section 6.1), and should not be confused with the regular meaning of the

symbols as used throughout the rest of the thesis.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 202

function,

E =
1

2n

n∑
p=1

C∑
k=0

(yk,p (xp)− tk,p)
2 . (6.3)

The symbol tk,p refers to the target value for output unit k, belonging to pattern p. This

implies that the network makes use of a supervised training algorithm. For a classification

problem, the value of tk must be either 0 or 1, since a 1-of-C coding scheme is used. This

means that the target vector t is of the form t = (0, 0, . . . , 1, 0, . . . , 0).

Note that the sigmoid function, g(a), saturates when |a| > 10, so that the output of

the activation function becomes g(a) ≈ 0 or g(a) ≈ 1, almost like a step function. When

the network weights in the input-to-hidden layer are small, so that |a| < 2, the response

of the sigmoid function is approximately linear, resulting in a relatively smooth network

mapping.

Summation units have the desirable property that they can approximate any contin-

uous function to arbitrary accuracy if a large enough number of hidden units are used

[66, 13].

6.1.2 Product-unit Networks

The product unit network was first introduced by Durbin and Rumelhart [33], and can

be used in more or less any situation where the better known summation unit back-

propagation networks have been used.

A product unit network with D inputs, M hidden units and C output units is shown

in Figure 6.2, assuming that product units are used only in the hidden layer, followed by

summation units in the output layer, with linear activation functions throughout. The

value of an output unit yk for pattern p is calculated using

yk =
M+1∑
j=0

wkj

D∏
i=1

x
wji

i,p (6.4)

where wkj is a weight from output unit yk to hidden unit zj, wji is a weight from hidden

unit zj to input unit xi and zM+1 ≡ 1.0, the hidden-to-output layer bias unit. The

mapping error of the network is computed in the same way as used for the summation

unit networks, using equation (6.3).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 203

1 1 1

M+1

D CM

X Z Y

Z

X Z Y

Figure 6.2: Product unit network architecture

Note that quadratic functions of the form ax2 + c can be represented by a network

with only one input unit and one hidden unit, thus a 1-1-1 product unit network can

be used, compared to a summation unit network requiring at least 2 hidden units [41].

This is an indication of the increased information storage capacity of the product unit

neural network [33].

Unfortunately, the usual optimisation algorithms like gradient descent cannot train

the product unit networks with the same efficacy that they exhibit on summation unit

networks, due to the more turbulent error surface created by the product term in (6.4).

Global-like optimisation algorithms like the Particle Swarm Optimiser, the Leapfrog

algorithm and Genetic Algorithms are better suited to the task of training PUNNs [41,

64].

Product unit networks also have smoother network mappings when the weights are

smaller. This is because an input attribute xi is raised to the power wji, so that a larger

weight value increases the sensitivity of the network to that specific attribute.

6.2 Methodology

This section briefly outlines the methods used to conduct the experiments presented in

this chapter.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 204

6.2.1 Measurement of Progress

For classification problems, four distinct measures were recorded during each experiment.

These measures were:

εT : The training set classification error, computed as the number of misclassified patterns

in the training set, divided by the total number of patterns in the training set,

expressed as a percentage.

εG: The test set classification error (also called the generalisation error), computed as

the number of misclassified patterns in the test set, divided by the total number of

patterns in the test set, expressed as a percentage. Note that none of the patterns

in the test set were accessible to the training algorithms during the training process.

MSET : The training set mean squared error.

MSEG: The test set mean squared error, also called the generalisation mean squared

error.

Only the last two measures can be computed for function approximation problems, since

there are no output classes in a function approximation problem.

In Section 6.1 a brief discussion of overfitting was presented. Techniques like early

stopping , regularisation and architecture selection can be used to help alleviate overfit-

ting, but these techniques were developed using gradient-based training algorithms —

other algorithms may require modifications to these techniques.

Lawrence and Giles have shown that the degree of overfitting is dependent on the type

of algorithm that was used to train the network [76]. They used a function approximation

problem to illustrate that the Conjugate Gradient (CG) algorithm was much more prone

to overfitting, even when using smaller networks with only a few hidden units. The

training sets they used in their experiments were generated using a sinusoidal function,

perturbed with some additional noise. The underlying function was simple enough so

that 4 hidden units were sufficient to learn it. They found that the GD algorithm could

successfully learn the function when using only 4 hidden units, and that the generalisation

ability of the trained network was very good. Increasing the number of hidden units to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 205

100 did not seriously affect the generalisation ability of the network trained using the

GD algorithm.

In contrast, they found that the Conjugate Gradient (CG) algorithm would over-

fit the network significantly, especially when a large number of hidden units was used.

This implies that different training algorithms do not respond similarly to changes in

the network architecture, implying that the optimal architecture for a given problem is

dependent on the training algorithm. This observation further suggests that some mech-

anism must be implemented to prevent overfitting in addition to selecting the optimal

architecture to obtain an algorithm that offers good generalisation performance on a

large number of problems.

Since a study of overfitting falls outside the scope of this thesis, the experiments

conducted in this chapter did not make use of any of these techniques, i.e. no attempt

was made to prevent overfitting of the data, other than selecting a simple network archi-

tecture. A study of mechanisms that can be used to prevent overfitting when training a

network using the PSO algorithm is left as a topic for future research.

To compensate for the lack of a mechanism to prevent overfitting, only the training

errors are analysed in the results presented in this chapter. The corresponding gener-

alisation error is provided along with each training error to give a rough indication of

whether overfitting occurred. Using only the training errors to compare the performance

may not make much sense in a real-world application, but it is the only fair method

of comparing the algorithms in the absence of a mechanism that prevents overfitting.

Therefore, instead of viewing the results below as an indication of the suitability of using

PSO-based algorithms to train Neural Networks, the training process can be seen as just

another function minimisation problem, where the training error is interpreted as the

fitness of a potential solution.

How should one interpret the training error results? What does it mean if algorithm

A produced a lower training error than algorithm B when both algorithms were allowed

to run for the same duration of time? Two things can be inferred from this observation:

1. Algorithm A will require less time (or processing power) than algorithm B if the

algorithms were to be stopped once a fixed training error value is reached;

2. Algorithm A will be able to train networks that are too complex for algorithm B

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 206

to train successfully in the same duration of time.

Even though the optimal number of hidden units for each problem may depend on the

training algorithm, the Optimal Brain Damage (OBD) algorithm was used to determine

a suitable number of hidden units for the summation unit networks used in this chapter.

It was assumed that the same number of hidden units could be used in the product

unit networks, since they have a learning capacity comparable to that of summation

units. Determining the optimal number of hidden units for a product unit network for

each problem studied below falls outside the scope of this thesis, since only the training

errors are compared. A method for determining the optimal number of hidden units for

a product unit network, using a standard PSO, is currently under development [64].

6.2.2 Normality Assumption

Many statistical tests, including the calculation of the mean of a set of observations,

assume that the data2 has a normal distribution. The normality of the results obtained

in the experiments was tested, using the Shapiro-Wilk test [112], at a significance level

of 0.01, so that a set of results with a p-value of less than 0.01 is flagged as having a non-

normal distribution. For each experiment the algorithms with non-normally distributed

results were identified.

Regardless of the fact that statistics like the mean of a set of results are possibly

inaccurate when the data has a non-normal distribution, these values are still reported.

These statistics should be regarded with care, though.

The εT and εG values are discrete values in the range [0, 100], since they are computed

as the fraction of misclassified patterns using

εT = 100× #misclassified training patterns

#training patterns

As a result, the resolution of the values of εT and εG is limited by the number of train-

ing and test patterns, respectively. This implies that if a set of results all have the

same discrete value (e.g. all εT values are zero), then the data will have a non-normal

2The word data will be treated as a singular mass noun, similarly to information. According to [103],

this practice is acceptable in modern English.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 207

distribution. Clearly the mean is a valid statistic in this case, since the values are all

equal.

Computing the mean of a discrete variable is a questionable practice. If it is assumed

that the values εT and εG are actually continuous variables, it is possible to compute

their mean, although this value may not be realisable in the experiment itself. If the size

of the training set approaches infinity, then the classification errors will become better

approximations of continuous values, so that the mean may become a realisable value.

Therefore, even though the data sets used in the experiments have a finite number of

instances, the mean is still computed as an estimator of the true population mean value.

All one-sided t-tests are performed on a 5% confidence level. If two values µ1 and µ2

are compared, where µ1 < µ2, then the hypotheses are as follows:

H0: µ1 < µ2

H1: µ1 ≥ µ2

If the p-value of the t-test is then greater than 0.05, the null hypothesis is rejected,

implying that values µ1 and µ2 do not differ significantly. The word “significantly” is

used below to refer to this property in the strict sense.

6.2.3 Parameter Selection and Test Procedure

The behaviour of the CPSO-SK algorithm varies with different K values, so each network

configuration was trained with a few sample values for K. Previous experience with the

algorithm has shown that there exists certain critical values for K which are of interest

[138]. The simulations were performed with a bias towards K values in the ranges that

were deemed interesting. Once a specific K value has been identified as producing the

best results on a particular problem, the assumption was made that this value will result

in the same behaviour when used in the CPSO-HK algorithm.

In all the classification and function approximation problems studied in this chapter

the data sets were partitioned into training sets and test sets. If a data set consisted

of p patterns, then the training set was constructed to contain 2p/3 patterns, with the

remaining 1p/3 patterns assigned to the test set. Before each simulation elements from

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 208

the test and training sets were randomly exchanged, so that no two training runs in the

same experiment used exactly the same training and test sets. The same random seed

and pseudo-random number generation algorithm was used for each training algorithm,

so that all training algorithms used the exact same collection of training and test sets.

Since there was no deterministic relationship between any two test sets (in the same

experiment) generated this way, this method does not introduce any systematic bias

that may affect the results.

Each training algorithm was used to train the network on 50 different training sets

generated using the approach described in the previous paragraph. The results reported

below are the mean values computed over all 50 runs.

The various algorithms used in the experiments below were:

GD: A Gradient Descent training algorithm, described in Appendix E.

SCG: A Scaled Conjugate Gradient Descent algorithm, described in Appendix E.

GA: A real-valued Genetic Algorithm, with a mutation rate of 0.95 and a crossover rate

of 0.01, and a population size of 100. A Two-parent arithmetic crossover opera-

tor was used. Mutation was implemented using a uniform real-valued mutation

operator with an interval width of 2. A Fitness-proportionate selection operator

was implemented. These values were found experimentally to produce acceptable

results.

CCGA: A CCGA-1 Genetic Algorithm (due to Potter [106, 105]) implementation, with

each weight in the network assigned to its own subpopulation. This algorithm used

the same parameter settings as those used in the standard GA.

GCPSO: A standard GCPSO algorithm (see Section 3.2), with an inertia weight w =

0.72 and acceleration coefficients c1 = c2 = 1.49. A swarm size of 10 particles was

selected. These values have been found to produce acceptable results [138].

MPSO: A multi-start MPSO algorithm, as described in Section 3.4. The maximum

swarm radius stopping criterion, re-starting the swarm when rnorm < 10−3, was

used. This setting was found to result in acceptable sensitivity for this convergence

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 209

detection mechanism. The other PSO parameters were the same as those used in

the GCPSO.

CPSO-SK : A CPSO-SK algorithm, as described in Section 4.2. The same parameter

settings as those of the GCPSO were used, except that a linearly decreasing in-

ertia weight was used instead of a fixed inertia weight. Previous experience has

shown that this algorithm benefits from the increased diversity offered by a linearly

decreasing inertia weight [138].

CPSO-HK : A CPSO-HK algorithm, as described in Section 4.3. This algorithm used

the same parameter settings as the CPSO-SK algorithm.

The running times for all the algorithms were calibrated so that they all used the

same amount of processor time as the GCPSO needed to train for 4 × 104 forward

propagations through the network. The GD and SCG algorithms were both highly

efficient implementations, as detailed in Appendix E. The overheads of the GA, CCGA

and various PSO-based algorithms were comparable, so that they all performed 4× 104

forward propagations in approximately the same duration of time.

The Iris, Breast Cancer, Wine, Diabetes and Hepatitis classification problems used

below can all be found in the UCI machine learning repository [12]. Specifically, the

Breast Cancer problem used the Wisconsin Breast Cancer data, and the Diabetes prob-

lem made use of the Pima-Indian diabetes data.

6.3 Network Training Results

This section presents results obtained by training both summation and product unit

networks using the various algorithms described in Section 6.2.3.

6.3.1 Iris

The Iris classification problem is the simplest classification problem studied in this chap-

ter. The data set comprises 150 patterns with 4 attributes and 3 output classes. The

optimal number hidden units, as determined by the OBD algorithm, results in a 4-4-3

architecture.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 210

Algorithm εT εG

CPSO-S2 0.71 ± 0.28 5.10 ± 0.93

CPSO-S6 0.69 ± 0.24 5.30 ± 0.87

CPSO-S7 0.62 ± 0.24 5.80 ± 0.91

CPSO-S8 0.82 ± 0.28 5.87 ± 0.91

Table 6.1: Classification error for a summation unit network, applied to the Iris problem,

obtained with the CPSO-SK algorithm using different values for K.

Algorithm εT εG

GD 1.16 ± 0.32 5.10 ± 1.15

SCG 1.56 ± 0.34 4.80 ± 0.90

CCGA 21.53 ± 1.41 28.07 ± 1.75

GA 25.22 ± 1.78 30.17 ± 1.85

GCPSO 1.62 ± 0.38 5.63 ± 1.01

MPSO 1.47 ± 0.38 5.03 ± 0.81

CPSO-S7 0.62 ± 0.24 5.80 ± 0.91

CPSO-H7 1.73 ± 0.64 6.63 ± 1.51

Table 6.2: Comparing different training algorithms on the Iris classification problem

using a summation unit network.

Summation Unit Network

All algorithms, except the GA and CCGA, produced a non-normal distribution of train-

ing and generalisation errors. Because the Iris problem has such a small network archi-

tecture, most of the algorithms succeeded in training the network almost to perfection.

Most training algorithms were thus able to train the network until only 0, 1, or 2 training

patterns were misclassified. The discrete nature of these values is thus responsible for

the observed non-normal distributions.

The summation unit network had a total of 5×4+(4+1)×3 = 35 weights. Table 6.1

shows that the best-performing split factor for the Iris problem was K = 7. The results

in Table 6.2 were obtained using various training algorithms. Note that the GA and

CCGA algorithms are lagging behind the others by a significant distance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 211

Algorithm εT εG

CPSO-S2 21.67 ± 6.97 29.70 ± 7.13

CPSO-S5 19.98 ± 5.99 31.17 ± 6.12

CPSO-S6 14.16 ± 2.66 25.50 ± 3.33

CPSO-S7 21.04 ± 7.00 29.90 ± 7.05

Table 6.3: Classification error for a product unit network, applied to the Iris problem,

obtained with the CPSO-SK algorithm using different values for K.

The t-test confirms that the training performance of both the SCG and GCPSO

algorithms was significantly worse than that of the GD algorithm. Further, the CPSO-

S7 algorithm was significantly better than the GD algorithm. In contrast, the MPSO and

GD algorithms had similar performance up to a 10% confidence level, implying that the

transition from GCPSO to MPSO made the MPSO competitive with the GD algorithm

on this particular problem.

Overall, the CPSO-S7 algorithm was the best performer as far as training performance

was concerned.

Product Unit Network

All algorithms produced non-normal εT distributions when using the product unit net-

work architecture, for the same reasons as the summation unit network: all training runs

for a specific algorithm resulted in a discrete εT value drawn from a very small set.

The product unit network had a total of 4× 4 + (4 + 1)× 3 = 31 weights. Note that

this may not have been the optimal architecture. Table 6.3 shows that the optimal split

factor for the product unit network is smaller than that of the summation unit network,

since the optimal value is now K = 6.

Table 6.4 shows that none of the algorithms produced satisfactory results on the

product unit network. This implies that the network architecture was not optimal; the

network would probably perform better if a different number of hidden units was used.

Even though the network architecture was sub-optimal, many interesting observations

can be made based on the results in Table 6.4. Clearly the gradient-based algorithms

perform significantly worse than any of the other algorithms. A detailed discussion of this

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 212

Algorithm εT εG

GD 90.44 ± 3.02 91.33 ± 3.01

SCG 90.93 ± 2.84 91.33 ± 2.63

CCGA 25.89 ± 4.07 32.10 ± 3.82

GA 37.29 ± 3.62 42.93 ± 3.78

GCPSO 17.16 ± 3.64 28.27 ± 4.51

MPSO 17.40 ± 3.39 28.23 ± 4.05

CPSO-S6 14.16 ± 2.66 25.50 ± 3.33

CPSO-H6 31.84 ± 6.75 40.17 ± 6.35

Table 6.4: Comparing different training algorithms on the Iris classification problem

using a product unit network.

phenomenon is presented in Section 6.4; further comments will be deferred until then.

The PSO-based algorithms were clearly more efficacious than the rest, with the exception

of the CPSO-HK algorithm. Note that the MPSO algorithm produced effectively the

same result as the GCPSO algorithm; the t-test indicates that their results are similar

with a p-value of 0.46. Comparing the CPSO-S6 algorithm to the GCPSO yields a p-

value of 0.09, meaning that the CPSO-S6 algorithm does not perform significantly better

than the GCPSO at a confidence level of 5%.

Based on the results of Table 6.4, the CPSO-SK algorithm was the best performer

on the Iris classification problem using a product unit network, although it was not

significantly better than the next best algorithm, the GCPSO.

6.3.2 Breast Cancer

The breast cancer classification problem comprises 600 patterns with 9 attributes and

one output class. The optimal number of hidden units for the summation unit network,

as determined by the OBD algorithm, results in a 9-8-1 architecture.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 213

Algorithm εT εG

CPSO-S2 1.50 ± 0.17 4.75 ± 0.43

CPSO-S5 1.26 ± 0.17 5.01 ± 0.58

CPSO-S6 1.12 ± 0.11 4.93 ± 0.45

CPSO-S9 1.18 ± 0.14 4.84 ± 0.33

CPSO-S14 1.04 ± 0.13 5.17 ± 0.46

CPSO-S15 1.12 ± 0.15 4.85 ± 0.41

CPSO-S16 1.17 ± 0.13 4.69 ± 0.46

Table 6.5: Classification error for a summation unit network, applied to the Breast cancer

problem, obtained with the CPSO-SK algorithm using different values for K.

Algorithm εT εG

GD 2.29 ± 0.20 4.05 ± 0.35

SCG 2.78 ± 0.19 3.73 ± 0.33

CCGA 4.30 ± 0.18 4.64 ± 0.36

GA 4.18 ± 0.19 4.52 ± 0.37

GCPSO 2.08 ± 0.20 4.12 ± 0.37

MPSO 1.95 ± 0.18 4.09 ± 0.38

CPSO-S14 1.04 ± 0.13 5.17 ± 0.46

CPSO-H14 2.09 ± 0.17 4.06 ± 0.34

Table 6.6: Comparing different training algorithms on the Breast cancer classification

problem using a summation unit network.

Summation Unit Network

All the algorithms, with the exception of the CPSO-S6 algorithm, produced normally

distributed εT values at a significance level of 1%. This enhances the credibility of

statistics like the mean and t-test values computed on this set of results.

The summation unit network had a total of 10× 8 + (8 + 1) = 89 weights. Table 6.5

shows that the optimal split factor for this problem isK = 14. Note that the performance

of most of the CPSO-SK algorithms are similar; in particular, note that the performance

of the CPSO-S9 and CPSO-S14 algorithms did not differ significantly.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 214

Algorithm εT εG

CPSO-S2 4.25 ± 0.47 11.17 ± 0.88

CPSO-S5 3.96 ± 0.35 12.07 ± 0.88

CPSO-S6 5.59 ± 1.87 12.87 ± 1.93

CPSO-S9 8.38 ± 3.61 15.64 ± 3.12

CPSO-S14 8.64 ± 2.85 16.56 ± 2.40

CPSO-S15 12.81 ± 5.76 20.39 ± 5.13

CPSO-S16 11.74 ± 4.40 19.45 ± 4.18

Table 6.7: Classification error for a product unit network, applied to the Breast cancer

problem, obtained with the CPSO-SK algorithm using different values for K.

Table 6.6 presents a comparison between the algorithms under consideration applied

to the task of training a summation unit network to solve the Breast cancer classifica-

tion problem. The PSO-based algorithms were able to reduce the training error to a

value below that of any value achieved by the other algorithms. Compared to its poor

performance on the Iris problem, the GA-based algorithm results are now much closer

to those of the other algorithms, although it still differed from its closest competitor at

a 5% confidence level.

The GD, GCPSO and MPSO algorithms all performed similarly on a 5% signifi-

cance level, with the CPSO-S14 algorithm performing significantly better than any of

these three. This also makes the CPSO-S14 algorithm the overall best performer on the

summation unit Breast cancer problem.

Product Unit Network

Most algorithms, with the exception of CCGA, GA, CPSO-S2 and CPSO-S5, produced

non-normal εT distributions on this problem.

Table 6.7 shows that the an acceptable split factor for the CPSO-SK algorithm is

K = 5. This problem used a network with 9× 8 + 9 = 81 weights in total.

Table 6.8 compares the performance of the different algorithms on the task of training

a product unit network to solve the Breast cancer classification problem. Based on the

outcome of a t-test, the MPSO algorithm did not perform significantly better than the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 215

Algorithm εT εG

GD 61.85 ± 9.07 63.48 ± 8.85

SCG 47.99 ± 9.47 49.37 ± 9.01

CCGA 5.00 ± 0.47 8.56 ± 0.73

GA 5.04 ± 0.38 7.76 ± 0.62

GCPSO 4.72 ± 0.59 10.87 ± 0.84

MPSO 4.22 ± 0.53 11.07 ± 0.90

CPSO-S5 3.96 ± 0.35 12.07 ± 0.88

CPSO-H5 13.55 ± 5.14 18.23 ± 5.08

Table 6.8: Comparing different training algorithms on the Breast cancer classification

problem using a product unit network.

GCPSO algorithm. The CCGA performed similarly to the GCPSO algorithm at a 5%

confidence level, but it performed significantly worse than the MPSO algorithm. The

CPSO-S5 algorithm performed significantly better than the GCPSO algorithm, but not

statistically significantly better than the MPSO algorithm. This implies that the MPSO

and CPSO-S5 algorithms were tied for the first place on this problem.

6.3.3 Wine

The Wine classification problem contains 178 patterns with 13 input attributes and 3

output classes. The OBD algorithm found that the optimal number of hidden units for

a summation unit network is 5, so that a 13-5-3 network architecture was employed.

Summation Unit Network

Only the CCGA, GA, SCG, GD and CPSO-S 16 algorithms had normal εT distributions

at a 1% significance level. The Wine problem had a total of 14 × 5 + (5 + 1) × 3 = 88

network weights. Table 6.9 shows that the CPSO-S16 algorithm had the most acceptable

performance amongst the different CPSO-SK algorithms.

Table 6.10 shows that the gradient and PSO algorithms all performed similarly, with

only the GA-based algorithms lagging behind. The t-test confirms that none of the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 216

Algorithm εT εG

CPSO-S2 0.12 ± 0.11 7.70 ± 1.52

CPSO-S3 0.05 ± 0.06 7.97 ± 1.40

CPSO-S4 0.08 ± 0.07 8.40 ± 1.06

CPSO-S5 0.05 ± 0.08 8.43 ± 1.26

CPSO-S6 0.02 ± 0.03 7.43 ± 1.01

CPSO-S7 0.02 ± 0.03 7.53 ± 1.15

CPSO-S8 0.05 ± 0.06 7.77 ± 1.06

CPSO-S9 0.03 ± 0.05 7.90 ± 1.33

CPSO-S16 0.00 ± 0.00 6.63 ± 0.96

CPSO-S17 0.02 ± 0.03 6.80 ± 1.10

Table 6.9: Classification error for a summation unit network, applied to the Wine prob-

lem, obtained with the CPSO-SK algorithm using different values for K.

Algorithm εT εG

GD 0.00 ± 0.00 4.77 ± 0.71

SCG 0.00 ± 0.00 5.03 ± 0.73

CCGA 14.63 ± 1.71 23.73 ± 2.31

GA 35.98 ± 2.99 44.00 ± 3.29

GCPSO 0.17 ± 0.31 5.30 ± 0.96

MPSO 0.07 ± 0.07 5.80 ± 0.83

CPSO-S16 0.00 ± 0.00 6.63 ± 0.96

CPSO-H16 0.05 ± 0.08 6.53 ± 1.02

Table 6.10: Comparing different training algorithms on the Wine classification problem

using a summation unit network.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 217

Algorithm εT εG

CPSO-S2 62.85 ± 3.61 90.07 ± 2.59

CPSO-S3 67.08 ± 2.08 93.17 ± 1.55

CPSO-S4 61.73 ± 2.89 90.23 ± 2.00

CPSO-S5 66.00 ± 2.54 93.30 ± 1.66

CPSO-S6 64.58 ± 2.81 92.27 ± 2.02

CPSO-S7 64.12 ± 2.90 92.60 ± 1.50

CPSO-S8 66.03 ± 2.74 92.50 ± 1.96

CPSO-S9 66.03 ± 2.24 93.60 ± 1.23

CPSO-S16 67.14 ± 2.67 93.27 ± 1.67

CPSO-S21 69.90 ± 3.90 93.90 ± 1.83

Table 6.11: Classification error for a product unit network, applied to the Wine problem,

obtained with the CPSO-SK algorithm using different values for K.

algorithms performed significantly better than any other, except for the CCGA and GA

algorithms that clearly performed significantly worse.

It appears that this problem was a relatively simple classification problem, based on

the observation that most algorithms were able to reduce the training classification error

to near zero, while the generalisation error remained acceptable (≈ 6%).

Product Unit Network

The following algorithms did not have normally distributed εT values: GA, GD, SCG,

CPSO-S2, CPSO-S3, CPSO-S5 CPSO-S6, CPSO-S8, and CPSO-S9.

The product unit network had 13× 5 + (5 + 1)× 3 = 83 weights in total. Table 6.11

indicates that an acceptable split factor for the CPSO-SK algorithm is K = 4.

Table 6.12 compares the performance of the algorithms under consideration tasked

with training a product unit network to solve the Wine classification problem. It is

interesting to note that both the GA-based algorithms had better performance than the

other algorithms on this task. Amongst the PSO-based algorithms, note that the MPSO

and the GCPSO had similar performance at a 5% confidence level. The t-test confirms

that the CPSO-S4 algorithm performed significantly better than the MPSO or GCPSO

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 218

Algorithm εT εG

GD 96.53 ± 1.24 97.57 ± 0.92

SCG 90.12 ± 7.68 89.80 ± 7.71

CCGA 35.64 ± 3.51 53.80 ± 3.91

GA 43.88 ± 3.62 57.83 ± 4.00

GCPSO 70.10 ± 3.98 90.97 ± 2.16

MPSO 70.69 ± 4.02 91.67 ± 1.74

CPSO-S4 61.73 ± 2.89 90.23 ± 2.00

CPSO-H4 81.86 ± 2.17 94.60 ± 1.02

Table 6.12: Comparing different training algorithms on the Wine classification problem

using a product unit network.

algorithms, in contrast with the CPSO-H4 that performed significantly worse.

The product unit network performed significantly worse than the summation unit

network on this relatively simple classification task. This may be because the optimal

architecture for a product unit network trained to solve this problem may differ signifi-

cantly from the optimal architecture for the summation unit network.

6.3.4 Diabetes

The Diabetes classification problem comprises 700 patterns, each consisting of 8 at-

tributes, with two output classes. The OBD algorithm determined that the optimal

number of hidden units for a summation network was 16, so that a 8-16-1 network

architecture was used.

Summation Unit Network

All algorithms had normally distributed εT values for this problem. Based on the results

presented in Table 6.13, it appears that the most acceptable split factor for the CPSO-SK

algorithm was K = 16. This network had a total of 9× 16 + (16 + 1) = 161 weights.

Table 6.14 presents a comparison of the performance of the algorithms under con-

sideration, applied to the task of training a summation unit network to solve the Dia-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 219

Algorithm εT εG

CPSO-S2 21.15 ± 0.53 28.69 ± 0.83

CPSO-S14 15.94 ± 0.46 30.99 ± 0.84

CPSO-S15 16.36 ± 0.55 30.39 ± 0.71

CPSO-S16 15.69 ± 0.55 30.65 ± 0.78

CPSO-S31 16.27 ± 0.46 29.87 ± 0.87

CPSO-S32 16.25 ± 0.49 31.11 ± 0.87

CPSO-S33 16.11 ± 0.49 30.66 ± 0.87

Table 6.13: Classification error for a summation unit network, applied to the Diabetes

problem, obtained with the CPSO-SK algorithm using different values for K.

Algorithm εT εG

GD 23.56 ± 0.44 27.68 ± 0.69

SCG 25.73 ± 0.44 27.56 ± 0.72

CCGA 28.49 ± 0.43 30.03 ± 0.73

GA 28.70 ± 0.50 29.88 ± 0.79

GCPSO 22.60 ± 0.58 28.06 ± 0.70

MPSO 21.86 ± 0.49 28.71 ± 0.67

CPSO-S16 15.69 ± 0.55 30.65 ± 0.78

CPSO-H16 22.58 ± 0.57 27.78 ± 0.76

Table 6.14: Comparing different training algorithms on the Diabetes classification prob-

lem using a summation unit network.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 220

Algorithm εT εG

CPSO-S2 25.34 ± 1.03 35.56 ± 0.99

CPSO-S31 46.24 ± 7.32 54.77 ± 5.95

CPSO-S32 41.02 ± 5.20 50.68 ± 3.94

CPSO-S33 39.48 ± 6.18 49.05 ± 5.05

CPSO-S14 26.58 ± 2.95 38.94 ± 2.38

CPSO-S15 29.33 ± 4.21 40.68 ± 3.35

CPSO-S16 26.89 ± 3.24 39.02 ± 2.46

Table 6.15: Classification error for a product unit network, applied to the Diabetes

problem, obtained with the CPSO-SK algorithm using different values for K.

betes classification problem. A t-test confirms that the GCPSO, MPSO, CPSO-S16 and

CPSO-H16 algorithms all performed significantly better than the GD algorithm. In turn,

the MPSO and CPSO-S16 algorithms performed significantly better than the GCPSO

algorithm, with the CPSO-S16 algorithm having been the best overall performer.

Product Unit Network

All of the algorithms, except for the MPSO and CPSO-S2 algorithms, had non-normally

distributed εT values. Table 6.15 indicates that the most acceptable split factor for the

CPSO-SK algorithm was K = 2. Note, however, that K = 14 was also a good choice.

Note that this network had a total of 8× 16 + (16 + 1) = 145 weights.

The results of using the different algorithms to train a product unit network to solve

the Diabetes classification problem are presented in Table 6.16. A t-test indicates that

the performance of the GA and CCGA algorithms did not differ significantly, however,

they both performed significantly worse than the GCPSO algorithm. The GCPSO,

MPSO and CPSO-S2 algorithms all performed similarly, taking the lead over all the

other algorithms.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 221

Algorithm εT εG

GD 52.93 ± 7.76 58.33 ± 6.72

SCG 53.15 ± 7.21 59.16 ± 6.28

CCGA 31.52 ± 1.57 35.99 ± 1.61

GA 30.72 ± 1.36 34.24 ± 1.34

GCPSO 26.18 ± 1.27 35.04 ± 1.05

MPSO 25.32 ± 0.98 34.72 ± 0.99

CPSO-S2 25.34 ± 1.03 35.56 ± 0.99

CPSO-H2 32.36 ± 1.62 37.98 ± 1.41

Table 6.16: Comparing different training algorithms on the Diabetes classification prob-

lem using a product unit network.

6.3.5 Hepatitis

The Hepatitis classification problem consists of 154 patterns, each made up of 19 at-

tributes, with 2 output classes. The optimal number of hidden units, as determined by

the OBD algorithm, was 9. A network with a 19-9-1 architecture was therefore used.

Summation Unit Network

All algorithms, with the exception of the GA and CCGA algorithms, had non-normal εT

distributions. The results in Table 6.17 indicate that many of the CPSO-SK algorithms

were able to train the network until the classification error on the training set, εT , was

zero. The results of the CPSO-S13 algorithm were selected arbitrarily to represent the

family of CPSO-SK algorithms in the comparisons below.

Table 6.20 presents a comparison between the different algorithms. The performance

of the GA and CCGA algorithms clearly lagged behind the other algorithms by a sig-

nificant distance. The t-test results indicate that the GCPSO and MPSO algorithms

performed significantly worse than the GD and CPSO-S13 algorithms. The GCPSO

also performed significantly worse than the SCG algorithm, but a t-test shows that the

performance of the MPSO and SCG algorithms were similar.

Even though this problem had a total of 20 × 9 + (9 + 1) = 190 weights, it was

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 222

Algorithm εT εG

CPSO-S2 0.42 ± 0.22 27.00 ± 1.96

CPSO-S12 0.00 ± 0.00 28.64 ± 1.46

CPSO-S13 0.00 ± 0.00 27.00 ± 1.96

CPSO-S14 0.00 ± 0.00 28.04 ± 1.73

CPSO-S37 0.02 ± 0.04 25.84 ± 1.69

CPSO-S38 0.00 ± 0.00 26.20 ± 1.64

CPSO-S39 0.00 ± 0.00 27.96 ± 1.34

Table 6.17: Classification error for a product unit network, applied to the Hepatitis

problem, obtained with the CPSO-SK algorithm using different values for K.

Algorithm εT εG

GD 0.00 ± 0.00 30.08 ± 1.82

SCG 0.13 ± 0.10 28.84 ± 1.66

CCGA 12.50 ± 0.64 20.24 ± 1.58

GA 18.35 ± 0.95 22.92 ± 1.48

GCPSO 0.46 ± 0.34 28.12 ± 1.56

MPSO 0.21 ± 0.14 29.64 ± 1.95

CPSO-S13 0.00 ± 0.00 27.00 ± 1.96

CPSO-H13 0.56 ± 0.18 24.72 ± 1.80

Table 6.18: Comparing different training algorithms on the Hepatitis classification prob-

lem using a summation unit network.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 223

Algorithm εT εG

CPSO-S2 6.38 ± 0.84 37.56 ± 2.64

CPSO-S12 2.38 ± 0.70 43.80 ± 2.20

CPSO-S13 1.50 ± 0.74 46.00 ± 2.18

CPSO-S14 2.15 ± 1.01 48.36 ± 2.30

CPSO-S37 5.19 ± 3.38 57.28 ± 3.86

CPSO-S38 4.29 ± 3.26 54.84 ± 3.95

CPSO-S39 5.52 ± 2.92 57.76 ± 4.52

Table 6.19: Classification error for a product unit network, applied to the Hepatitis

problem, obtained with the CPSO-SK algorithm using different values for K.

relatively easy for all the algorithms to find values for the weights that resulted in zero

training errors. All these algorithms had significantly larger generalisation errors, a sure

indication that the trained networks were overfitted.

Product Unit Network

A normality test indicates that only the GA, GCPSO and CPSO-S2 algorithms had

normally distributed training errors. The results in Table 6.19 suggest a split factor of

K = 13 for the CPSO-SK algorithm. The network had a total of 19× 9 + (9 + 1) = 181

weights.

Table 6.20 compares the different algorithms on the task of training a product unit

network to solve the Hepatitis classification problem. The CCGA algorithm performed

very well on this test, significantly better than even the MPSO algorithm. The GA, on

the other hand, performed significantly worse than the GCPSO algorithm, even though

it still had acceptable performance. The results of the GCPSO and MPSO algorithms

were comparable. The best algorithm in terms of training performance was the CPSO-

S13 algorithm, with a t-test score indicating that it performed significantly better than

the CCGA algorithm.

The most interesting feature of the results in Table 6.20 is that both the GA-based

algorithms had significantly smaller generalisation errors than any of the other algo-

rithms, even though these two algorithms had training errors comparable to the rest.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 224

Algorithm εT εG

GD 48.69 ± 9.71 66.32 ± 6.00

SCG 40.13 ± 10.21 65.80 ± 6.01

CCGA 2.40 ± 0.41 24.68 ± 1.38

GA 7.73 ± 0.84 22.84 ± 1.58

GCPSO 5.37 ± 1.05 35.96 ± 2.15

MPSO 4.88 ± 1.39 35.72 ± 2.56

CPSO-S13 1.50 ± 0.74 46.00 ± 2.18

CPSO-H13 10.33 ± 2.16 41.12 ± 3.34

Table 6.20: Comparing different training algorithms on the Hepatitis classification prob-

lem using a product unit network.

One possible explanation for this behaviour is that the GA was more prone to keep the

weights near the values to which they were initialised. Since the initialisation range for

the GAs was [−1, 1] for each weight, the tendency to stay in this range resulted in the

GA producing smoother network mappings. The PSO-based algorithms used a more ag-

gressive strategy, so that they were more likely to stray further from their initial weights.

This implies that they were more likely to overfit the training set, a phenomenon that

can clearly be seen in the results of the CPSO-S13 algorithm.

6.3.6 Henon Map

The Henon map is a curve generated by equation (6.5). Figure 6.3 illustrates this curve

in three dimensions.

zt = 1 + 0.3zt−2 − 1.4z2
t−1 (6.5)

with z1, z2 ∼ U(−1, 1).

For this problem, the neural networks were given a noise-free data set of 100 points

generated with equation (6.5). Because the data set is a noise-free description of the func-

tion that generated them, the network cannot overfit the data points, assuming there’s

enough of them to describe the function accurately. A 2-5-1 network architecture was

selected arbitrarily. Further, since there’s no concept of a classification error associated

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 225

-1.5
-1

-0.5
0

0.5
1

1.5 -1.5
-1

-0.5
0

0.5
1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.3: The Henon map

Algorithm MSET MSEG

CPSO-S2 3.02e-06 ± 7.00e-07 1.77e-05 ± 6.96e-06

CPSO-S4 4.90e-06 ± 1.57e-06 4.24e-05 ± 3.65e-05

CPSO-S8 7.48e-06 ± 2.47e-06 5.02e-05 ± 3.37e-05

Table 6.21: Mean Squared Error values for a summation unit network, applied to the

Henon map problem, obtained with the CPSO-SK algorithm using different values for

K.

with this problem, only the MSET and MSEG values will be considered.

Summation Unit Network

All the algorithms, except the CCGA, had non-normally distributed MSET values. The

summation unit network had 3× 5 + (5 + 1) = 21 weights in total, far fewer than any of

the classification problems. Table 6.21 indicates that a split factor of K = 2 produced

acceptable results for the CPSO-SK algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 226

Algorithm MSET MSEG

GD 6.29e-07 ± 5.29e-08 1.83e-06 ± 3.51e-07

SCG 1.08e-06 ± 8.17e-08 3.11e-06 ± 4.74e-07

CCGA 6.12e-04 ± 9.52e-05 1.49e-03 ± 2.84e-04

GA 1.13e-04 ± 3.33e-05 2.56e-05 ± 8.34e-05

GCPSO 3.37e-06 ± 1.17e-06 1.03e-05 ± 3.85e-06

MPSO 3.10e-06 ± 7.36e-07 1.17e-05 ± 5.57e-06

CPSO-S2 3.02e-06 ± 7.00e-07 1.77e-05 ± 6.96e-06

CPSO-H2 7.93e-05 ± 3.58e-05 2.44e-04 ± 1.08e-04

Table 6.22: Comparing different training algorithms on the Henon function approxima-

tion problem using a summation unit network.

Algorithm MSET MSEG

CPSO-S2 4.16e-05 ± 3.11e-05 1.51e-03 ± 2.77e-03

CPSO-S4 1.54e-04 ± 5.77e-05 3.64e-02 ± 7.14e-02

CPSO-S8 1.57e-04 ± 6.02e-05 8.24e-04 ± 4.91e-04

Table 6.23: Mean Squared Error values for a product unit network, applied to the Henon

map problem, obtained with the CPSO-SK algorithm using different values for K.

The results in Table 6.22 show how well each algorithm was able to train the summa-

tion unit network to approximate the Henon map. The CCGA, GA, GCPSO, MPSO,

CPSO-S2 and CPSO-H2 algorithms all performed significantly worse than the GD and

SCG algorithms. Both the GA-based algorithms performed significantly worse than the

PSO-based algorithms.

Product Unit Network

All of the algorithms produced MSET values that had a non-normal distribution. Ta-

ble 6.23 shows that the an acceptable value for K is 2, in other words, the weight vector

was split into only two parts. The network contained a total of 2× 5 + 6 = 16 weights.

The results in Table 6.24 compares how well each algorithm was able to train the

product unit to learn the Henon map. The two gradient-based algorithms performed

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 227

Algorithm MSET MSEG

GD 2.41e-03 ± 9.26e-04 5.11e-02 ± 6.51e-02

SCG 1.01e-02 ± 9.86e-03 7.40e-03 ± 3.46e-03

CCGA 1.12e-03 ± 4.74e-04 2.66e-03 ± 1.06e-03

GA 1.00e-03 ± 2.77e-04 7.38e-02 ± 1.42e-01

GCPSO 7.19e-05 ± 4.07e-05 3.38e-04 ± 2.17e-04

MPSO 3.38e-05 ± 2.63e-05 7.06e-04 ± 1.16e-03

CPSO-S2 4.16e-05 ± 3.11e-05 1.51e-03 ± 2.77e-03

CPSO-H2 1.37e-04 ± 9.93e-05 8.42e-04 ± 7.77e-04

Table 6.24: Comparing different training algorithms on the Henon function approxima-

tion problem using a product unit network.

significantly worse than any other algorithm; the two GA-based algorithms performed

equally well. With a p-value of 0.059, the MPSO did not perform significantly better than

the GCPSO, at the usual 5% confidence level. Similarly, the performance of the CPSO-

S2 algorithm was not significantly different from the MPSO and GCPSO algorithms.

Lastly, the CPSO-H2 did not perform significantly worse than the GCPSO, but it did

perform more poorly than the MPSO. Overall, the PSO-based algorithms produced the

best results on this test problem, beating both the GA-based algorithms.

6.3.7 Cubic Function

The Cubic function is a very simple function, originally used by Engelbrecht and Ismail

to test the abilities of a product unit network [41]. This function is defined as

f(z) = z3 − 0.04z (6.6)

where z ∈ [−1, 1]. A data set of 100 points was constructed, again without adding any

noise. The optimal network architecture for a product unit network is 1-2-1, so the

summation unit network was also tested in this configuration.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 228

Algorithm MSET MSEG

CPSO-S2 9.45e-06 ± 7.56e-06 2.39e-05 ± 2.06e-05

CPSO-S3 3.04e-05 ± 1.36e-05 5.90e-05 ± 2.66e-05

CPSO-S5 1.60e-05 ± 9.77e-06 3.25e-05 ± 1.88e-05

Table 6.25: Mean Squared Error values for a summation unit network, applied to the

Cubic function approximation problem, obtained with the CPSO-SK algorithm using

different values for K.

Algorithm MSET MSEG

GD 1.00e-04 ± 3.61e-06 2.19e-04 ± 1.82e-05

SCG 1.06e-04 ± 1.57e-06 2.21e-04 ± 1.70e-05

CCGA 1.06e-04 ± 5.70e-06 2.29e-04 ± 2.51e-05

GA 1.17e-05 ± 5.66e-06 2.38e-05 ± 1.16e-05

GCPSO 6.84e-06 ± 6.56e-06 1.43e-05 ± 1.34e-05

MPSO 5.42e-06 ± 6.14e-06 9.04e-06 ± 9.36e-06

CPSO-S2 9.45e-06 ± 7.56e-06 2.39e-05 ± 2.06e-05

CPSO-H2 7.82e-05 ± 1.09e-05 1.66e-04 ± 2.70e-05

Table 6.26: Comparing different training algorithms on the Cubic function approxima-

tion problem using a summation unit network.

Summation Unit Network

The MSET distribution of all the algorithms, except SCG, were non-normal at a 1%

confidence level. According to the values in Table 6.25, a split factor of K = 2 was

acceptable. The network contained a total of 2× 2 + 3 = 7 weights.

Table 6.26 presents the results of training a summation unit network to approximate

the Cubic function. The GD algorithm performed significantly better than the SCG

algorithm at a 5% confidence level. The CCGA algorithm performed significantly worse

than the GA. There was no statistically significant difference between the GA and the

GCPSO, MPSO and CPSO-S2 algorithms; in contrast, the CPSO-H2 did perform worse

than the GA.

Overall, the MPSO algorithm had the best performance, and although it was not

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 229

Algorithm MSET MSEG

CPSO-S2 3.81e-03 ± 3.01e-03 9.61e-03 ± 7.87e-03

CPSO-S3 3.35e-03 ± 3.04e-03 8.12e-03 ± 7.77e-03

CPSO-S4 1.04e-02 ± 6.07e-03 1.98e-02 ± 1.31e-02

Table 6.27: Mean Squared Error values for a product unit network, applied to the Cubic

function approximation problem, obtained with the CPSO-SK algorithm using different

values for K.

Algorithm MSET MSEG

GD 2.74e-01 ± 4.05e-01 5.38e-01 ± 6.85e-01

SCG 1.69e-01 ± 1.77e-01 1.05e-01 ± 1.14e-01

CCGA 4.29e+140 ± 8.62e+140 1.84e+103 ± 3.71e+103

GA 5.99e-04 ± 2.77e-04 9.84e-04 ± 3.34e-04

GCPSO 1.13e-05 ± 5.16e-06 2.77e-05 ± 1.32e-05

MPSO 1.21e-05 ± 4.57e-06 3.04e-05 ± 1.19e-05

CPSO-S3 3.35e-05 ± 3.04e-05 8.12e-05 ± 7.77e-05

CPSO-H3 5.83e-05 ± 4.76e-05 9.98e-05 ± 8.35e-05

Table 6.28: Comparing different training algorithms on the Cubic function approxima-

tion problem using a product unit network.

significantly better than the GA, it did outperform the gradient-based algorithms.

Product Unit Network

None of the algorithms had normally distributed MSET values. The product unit network

had 1 × 2 + 3 = 5 weights in total. Table 6.27 indicates that the CPSO-S3 algorithm

performed best amongst the different CPSO-SK algorithms, suggesting that K should

be 3.

Table 6.28 presents the results of training a product unit network to approximate

the Cubic function. Note that the CCGA algorithm failed to train the network — one

possible explanation for this phenomenon is that the CCGA algorithm could not learn

the one weight value that was equal to 3.0, which was relatively far from the CCGA’s

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 230

initialisation space of [-1,1]. The gradient-based GD and SCG algorithms, as usual,

performed poorly on the product unit network training task.

The GA performed significantly worse than the GCPSO. There was no significant

difference in performance amongst the GCPSO, MPSO and CPSO-S3 algorithms. The

CPSO-H3 did perform significantly worse than any of the other PSO-based algorithms.

6.4 Discussion of Results

Although the tables in the previous section provided some insight into the behaviour of

the different algorithms, more information can be gleaned from a plot of the network’s

MSET and MSEG values over time. For example, if an algorithm has become trapped in

a local minimum, then the MSET curve will become a flat line, clearly showing that the

algorithm failed to make any further improvement.

There are several problems with plotting the MSET and MSEG curves, though. A

single run of the algorithm may not be representative of the average behaviour of the

algorithm, so the information obtained over multiple runs must be considered. The

stochastic algorithms, e.g. the GAs and PSOs, have significantly different behaviour at

a given moment in time over many runs, especially earlier during the training process.

An approximation of the true curve can be obtained by averaging the values of multiple

runs (at the same time step) to produce an “average” curve. These curves may not be

entirely accurate, because they assume that the distribution of the solutions discovered

by the algorithm at time t is normal, which may not be true for every time step. Even

though this method makes strong assumptions regarding the nature of the MSET curve,

the resulting curves are usually accurate enough to see some interesting trends.

Figures 6.4 and 6.5 are plots of the summation unit network MSET values over time

for the Diabetes and Hepatitis problems, respectively. Note how all the algorithms show

rapid improvement during the first few iterations on the Diabetes problem (Figure 6.4).

After this initial stage, the different algorithms exhibit significantly different behaviour.

The GD algorithm had the worst performance of all the algorithms represented in the

figure. The curves for the GCPSO and MPSO algorithms are identical up to around 100

seconds into the simulation run, where the MPSO curve gradually drops away from the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 231

0 50 100 150 200 250 300

25
30

35
40

45

Time(s)

lo
g(

m
se

)

GD
GCPSO
MPSO
CPSO−S16
CPSO−H16

Figure 6.4: The MSET of the Diabetes problem, using a summation unit network, plotted

over time

GCPSO curve. This clearly illustrates that the MPSO algorithm is detecting stagnation

(or slow progress) and re-starting the algorithm, resulting in improved performance. The

curve of the CPSO-S16 algorithm has a significantly better rate of improvement, and does

not appear to slow down as it nears the end of the simulation run. This behaviour is

typical for the CPSO-SK algorithm, and was observed on most of the plots obtained

from the summation unit network experiments.

Figure 6.5 presents a slightly different scenario. In this case, the GD algorithm had

significantly better rate of improvement than the CPSO-S16 algorithm, until near the

end of the simulation run. The first 0.1 seconds of the simulation was not included in

the plot in order to improve the clarity of the diagram — this explains the neat ordering

of the curves at the left edge of the plot. Keep in mind that most algorithms were able to

reduce the training classification error (εT) to near zero on this particular problem. Other

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 232

0 5 10 15 20 25

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Time(s)

lo
g(

m
se

)

GD
GCPSO
MPSO
CPSO−S13
CPSO−H13

Figure 6.5: The MSET of the Hepatitis problem, using a summation unit network, plotted

over time

than the fact that the GD algorithm performed better than the CPSO-S16 algorithm,

the relative ranking and behaviour of the algorithms remain the same as observed in

Figure 6.4.

Similar curves can be plotted for the MSE computed on the test set (i.e. the MSEG

values). Unfortunately, it is not possible to obtain such clean, noise-free curves from the

test set as can be obtained from the training set. All the algorithms tested preserved a

copy of the best solution discovered so far during each training run. This implies that the

MSET curve, associated with the training error, is a monotonically decreasing function

of time. Conversely, the generalisation error is expected to be able to rise over time if

the network is overfitting the data, so that the MSEG curve is not necessarily monotonic.

This makes the MSEG curve very noisy when the MSEG values at each time step are

averaged over a number of simulation runs. In general, the PSO algorithms compute the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 233

0 5 10 15 20 25

4
5

6
7

8

Time(s)

lo
g(

m
se

)

GD
GCPSO
MPSO
CPSO−S13
CPSO−H13

Figure 6.6: The MSEG of the Hepatitis problem, using a summation unit network,

plotted over time

MSEG value for each particle in the swarm, since the fitness evaluation of each particle

corresponds one forward propagation through the network. A diverse swarm will thus

include particles with widely differing MSEG values, making the curve noisy.

Figure 6.6 presents such a curve for a summation unit network applied to the Hepatitis

problem. The GD algorithm produces a smooth curve because it only maintains a

single solution. All the other population-based algorithms have the characteristic noise

described in the previous paragraph. Note how the MPSO algorithm has some large

spikes that occasionally appear. These are caused by the re-starts that the algorithm

uses to prevent stagnation — each re-start increases the diversity of the population,

which implies that some inferior solutions may temporarily appear in the population.

Keep in mind that such an inferior solution will have a large training error as well as

a large generalisation error, which explains why the re-start are marked by increases in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 234

0 5 10 15 20

1
2

3
4

Time(s)

lo
g(

m
se

)

GD
SCG
GCPSO

Figure 6.7: The MSET of the Iris problem, using a product unit network, plotted over

time. This plot clearly shows how poorly the GD and SCG algorithms perform compared

to the PSO-based algorithms.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 235

0 5 10 15 20

1.
0

1.
5

2.
0

2.
5

Time(s)

lo
g(

m
se

)

GA
CCGA
GCPSO
MPSO
CPSO−S6
CPSO−H6

Figure 6.8: The MSET of the Iris problem, using a product unit network, plotted over

time. This plot compares the various GA-based and PSO-based algorithms.

the generalisation error.

Clearly all the algorithms are overfitting the network on the training set, since they

all have MSEG curves that increase during the course of a simulation run. In particular,

the GD algorithm has the largest MSEG values, which corresponds directly to its ability

to rapidly decrease the training error, as observed in Figure 6.5. Since none of the

algorithms had any mechanism to prevent overfitting, it would not be fair to claim

that the CPSO-S13 algorithm had better generalisation performance, even though the

diagram seems to imply this. A further implication of the severe overfitting that all the

training algorithms exhibited is that the number of hidden units recommended by the

OBD algorithm was not optimal.

Similar plots can be obtained for the product unit networks. Figure 6.7 compares

the MSET curves of the GCPSO algorithm with those of the gradient-based algorithms.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 236

Clearly the GD and SCG algorithms fail to make any progress after the first second of the

simulation run has passed. The strong local convergence property of the gradient-based

algorithms causes them to become trapped in local minima shortly after the training

session started. This phenomenon has also been observed by Engelbrecht and Ismail [41].

Because of the large difference in magnitude between the MSET values of the gradient-

based algorithms and those of the other algorithms, the gradient-based algorithms will

be excluded from further plots obtained from product unit networks.

Figure 6.8 is a plot of the MSET curves of the various algorithms (excluding the

gradient-based ones) obtained by training a product unit network to solve the Iris classi-

fication problem. Note that the two GA-based algorithms and the CPSO-H6 algorithm

appear to belong to roughly the same performance category. The other algorithms,

namely GCPSO, MPSO and CPSO-S6, all belonged to another category that performed

significantly better than the first one. In particular, note that the CPSO-S6 algorithm

had the best overall performance on this problem.

It appears that the CPSO-SK algorithm consistently performed better than the

standard GCPSO or even the MPSO, as long as the correct split factor (K values) was

selected.

Table 6.29 is a summary of the number of network weights in each problem, and

the split factor that produced the best results. The SUN column corresponds to the

summation unit networks, and the PUN column to the product unit networks. In both

cases W denotes the number of weights.

Although the number of experiments were far too few to form any reliable rules, it

is interesting to note that the K-values (split factors) satisfied the relation

K = a
√
W

where a was approximately 1.3 for the summation unit networks, and 0.5 for the product

unit networks. This appears to be a useful heuristic for choosing the appropriate split

factor. Figures 6.9 and 6.10 show plots of the least-squares fits for the summation and

product unit networks, respectively.

Note that the constant associated with the product unit networks is smaller than that

of the summation unit networks, implying that the product unit networks favour smaller

K values. This is also apparent from the values presented in Table 6.29. One possible

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 237

SUN PUN

Problem K W K W

Iris 7 35 6 31

Cancer 14 89 5 81

Wine 16 88 4 83

Diabetes 16 161 2 145

Hepatitis 13 190 13 181

Henon 2 21 3 16

Cubic 2 7 3 5

Table 6.29: Summary of the split factors and the number of weights in each problem.

4 6 8 10 12 14

2
4

6
8

10
12

14
16

sqrt(W)

K

Figure 6.9: A plot of K against
√
W , for the summation unit networks

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 238

2 4 6 8 10 12

2
4

6
8

10
12

sqrt(W)

K

Figure 6.10: A plot of K against
√
W , for the product unit networks

explanation for this behaviour is that there’s more interaction between the weights of

a product unit network (compare equation 6.1 with equation 6.4), thus implying that

large split factors will have a detrimental effect on the performance of the CPSO-SK

algorithm.

6.5 Conclusion

This chapter presented results obtained by training various summation and product

unit networks using the different PSO-based algorithms introduced in Chapters 3 and 4.

The same networks were also trained with gradient-based and GA-based algorithms to

provide an indication of how the PSO-based algorithms perform compared to existing

efficient techniques.

Based on these results, it is clear that the GCPSO, MPSO and CPSO-SK algorithms

are competitive in terms of performance with the GD and SCG algorithms on summation

unit networks. With a suitable choice of K, the split factor, the CPSO-SK algorithm

performed significantly better than any of the other PSO-based algorithms.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 6. NEURAL NETWORK TRAINING 239

The GD and SCG algorithms failed to train the product unit networks — this be-

haviour was expected, since other publications reported the same findings. The GA-

based algorithms were able to train the product unit networks, but generally the perfor-

mance of the PSO-based algorithms was superior. Amongst the PSO-based algorithms,

the CPSO-SK algorithm again produced the best results, as long as an appropriate value

for K was selected.

Although it was not able to outperform the CPSO-SK algorithm, the MPSO al-

gorithm consistently performed better than the GCPSO algorithm on both types of

network. Even though this algorithm has some parameters that can be fine-tuned for

best performance, the same setting produced good results in all the experimental set-

tings, making it somewhat easier to use than the CPSO-SK algorithm, which has to be

fine-tuned for optimal performance on each problem.

The CPSO-HK algorithm did not appear to offer any advantage, often performing

worse than even the GCPSO algorithm on both the summation and product unit net-

works.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Chapter 7

Conclusion

This chapter briefly summarises the findings and contributions of this thesis, followed by a

discussion of numerous directions for future research.

7.1 Summary

This thesis investigated the behaviour of various Particle Swarm Optimiser algorithms.

A significant portion of existing PSO-related publications relied almost exclusively on

empirical research to draw conclusions. The theoretical analyses presented in Chapter 3

provides numerous new insights into the underlying mechanics of the PSO algorithm.

Chapter 3 analysed the convergence properties of the trajectory of a single particle.

A set of equations was developed that can be used to determine whether a specific config-

uration of parameters, i.e. the values of the inertia weight and acceleration coefficients,

leads to a convergent particle trajectory. This model correctly predicts the trajectory of

a single particle in the absence of a stochastic component.

When the stochastic component is introduced, the model can no longer predict the

exact trajectory of a particle, but it is still able to classify a parameter configuration as

either divergent or convergent, so that the long term behaviour remains predictable.

The development of a model that could describe the behaviour of a single particle

made it possible to investigate the local convergence properties of the Particle Swarm

Optimiser. The PSO algorithm was viewed as a random search algorithm with self-

240

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 7. CONCLUSION 241

evolving strategy parameters, thus allowing the application of well-known random search

convergence proofs to the PSO. This resulted in an unexpected discovery: The PSO

algorithm is not able to guarantee that it will locate the minimiser of even a unimodal

function. It was shown that many states exist in which the PSO becomes trapped in

a stagnant state from which it is not possible to reach the minimiser of the objective

function.

This discovery led to the development of a new update equation for the global best

particle in the swarm. The new update equation is guaranteed to have a non-degenerate

sampling volume at all times, so that it is no longer possible for the swarm to stagnate.

A new algorithm making use of this improved update equation, called the Guaranteed

Convergence PSO (GCPSO), was introduced, with its corresponding formal proof of

guaranteed local convergence.

Since this algorithm only had guaranteed convergence on local minima, further meth-

ods for extending the GCPSO to become a global optimisation algorithm were inves-

tigated. Two algorithms with guaranteed global convergence were introduced. The

Randomised PSO (RPSO) attempts to continually sample the whole search space by

continually randomising a subset of the particles while the rest rest of the swarm explore

the search space as usual. The second algorithm, called the Multi-start PSO (MPSO),

attempts to detect when the PSO has found a local minimum. Once a local minimum is

found, the algorithm re-starts the algorithm with new randomly chosen initial positions

for the particles. Formal proofs of global convergence were presented for both algorithms.

Chapter 4 presented two types of cooperative PSO algorithm. The CPSO-SK al-

gorithm was based on Potter’s CCGA algorithm [106]. This algorithm partitions the

search space into disjoint subspaces, assigning a swarm to each subspace. The swarms

then cooperate to solve the problem by sharing the best solutions they have discovered

in their respective subspaces. It was shown that this algorithm can become trapped

in so-called pseudo-minima. These pseudo-minima are solutions that are constructed

using local minimisers from the different subspaces, but they are not local minima in

the original search space. It was shown that pseudo-minima can prevent the CPSO-SK

algorithm from reaching the true local minimum. A second algorithm, CPSO-HK, builds

on the CPSO-SK algorithm by adding an additional swarm that attempts to search the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 7. CONCLUSION 242

whole search space (i.e. the union of the disjoint subspaces). This extra swarm also

exchanges information regarding the best solutions discovered so far with the group of

subspace-swarms inherited from the CPSO-SK algorithm. The CPSO-HK algorithm can

not become trapped in pseudo-minima, and was shown to possess guaranteed conver-

gence on local minima using the GCPSO algorithm’s local convergence proof.

Empirical results were presented in Chapter 5 to support the theoretical models

developed in Chapters 3 and 4. It was shown that adjusting the inertia weight and ac-

celeration coefficients of the PSO algorithm leads to a tradeoff between the performance

of the algorithm on unimodal and multi-modal functions. Further results confirmed that

the GCPSO algorithm is able to minimise unimodal functions significantly more effec-

tively than the standard PSO algorithm, but that the performance of the two algorithms

were merely comparable on multi-modal functions.

The MPSO algorithm was shown to have significantly better performance on such

multi-modal functions, compared to the GCPSO or PSO. In contrast, the empirical

results showed that the RPSO does not appear to offer any significant improvement over

the standard GCPSO or PSO algorithms.

The cooperative PSO algorithms make stronger assumptions about the nature of the

objective functions they optimise. The sensitivity of these algorithms to changes affect-

ing those assumptions were investigated, where it was found that the cooperative algo-

rithms were sensitive to the degree of inter-variable correlation. When the variables of

a function were independent, the CPSO-S and CPSO-H algorithms showed a significant

improvement over the standard GCPSO and PSO algorithms on multi-modal functions,

however, when the variables were highly correlated, this advantage disappeared. The

CPSO-SK and CPSO-HK offered more modest improvements over the standard GCPSO

and PSO algorithms on multi-modal functions, but they were not significantly affected

by the presence of inter-variable correlation.

Chapter 6 applied the various PSO-based algorithms to the task of training both

summation and product unit networks. It was shown that the PSO-based algorithms are

able to reduce the training error of a network as effectively as the GD or SCG algorithms

on summation unit networks, and significantly better when applied to product unit

networks. Amongst the PSO-based algorithms, it was shown that the MPSO and CPSO-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 7. CONCLUSION 243

SK algorithms performed significantly better than the standard GCPSO algorithm.

7.2 Future Research

Throughout this thesis several new directions for future research presented themselves.

These ideas are briefly summarised below.

Adaptive GCPSO parameters

The GCPSO algorithm, introduced in Section 3.2, makes use of several new parameters

to govern the behaviour of the global best particle. The GCPSO algorithm employed in

Chapters 5 and Chapter 6 used parameters that were set to fixed values. These fixed

values were found to produce acceptable performance on a small set of test functions.

These GCPSO parameters have a strong resemblance to the strategy parameters

found in Evolution Strategies algorithms. ES algorithms evolve the appropriate values for

the strategy parameters while they optimise the objective function. A possible direction

for future research is thus to use the same approach to evolve appropriate values for fc

and sc. Alternatively, an entirely different strategy can be used to dynamically evolve a

suitable ρ value. Several algorithms evolving such strategy parameters are suggested by

Bäck in [8] (Chapter 21).

Extending the GCPSO to the lbest model

The GCPSO algorithm described in Section 3.2 assumed that the gbest version of the

PSO was used. The modified update equations for the global best particle can clearly be

applied directly to the neighbourhood best particle in an lbest swarm. Since the global

best particle in the GCPSO algorithm no longer acts like the global best particle in

a standard PSO algorithm, it may not be desirable to let all the neighbourhood best

particles use the modified update equations. For example, a single best particle can be

identified amongst all the neighbourhood bests as a candidate for using the modified

update equations.

The effect of using the modified update equations on the lbest swarm is therefore a

potential topic for future research.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 7. CONCLUSION 244

Improved Global PSO algorithms

The MPSO algorithm introduced in Section 3.4.3 was shown to offer a significant im-

provement in performance over the standard GCPSO algorithm because it was able to

escape from local minima. The major problem with the MPSO is that the algorithm

could repeatedly become trapped in exactly the same minimum, since no attempt is

made to explicitly avoid minima that have been detected previously. Note that the

MPSO does have guaranteed convergence on the global minimiser, but that it could re-

quire an unacceptable duration of time to reach the global minimiser. This implies that

the algorithm should be augmented with additional mechanisms for avoiding previously

visited minima — without affecting the guaranteed global convergence property.

The MPSO algorithm can thus be extended to avoid previously visited minima using

the techniques of Parsopoulos et al. [101, 99], or those of Beasley et al. [10]. Both

these techniques have some undesirable side-effects in the form of false minima that they

introduce as part the process of removing the previously discovered minima. Future

research topics thus includes further investigation of the application of these techniques

to the MPSO, as well as designing methods that do not introduce false minima.

Extending the cooperative PSO algorithms to the lbest model

The cooperative PSO algorithms introduced in Section 4 made use of the gbest PSO

model. Previous research indicates that the lbest PSO may be more robust than the

gbest model on multi-modal functions [37], owing to its slower rate of convergence. This

could be exploited in the cooperative PSO algorithms to increase the diversity of each

of the separate swarms, further increasing the robustness of the CPSO-SK and CPSO-

HK algorithms. The major difficulty with this approach is that the construction of

the context vector currently makes use of the global best particle of each of the separate

swarms. Since there is no global best particle in an lbest PSO by default, some alternative

strategy must be used. One could easily search the lbest swarm to find such a global best

particle, or some probabilistic method can be used to select one of the neighbourhood

best particles.

Future research should therefore attempt to discover an appropriate mechanism for

building a suitable context vector.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 7. CONCLUSION 245

Global cooperative PSO algorithms

The cooperative algorithms implemented in this thesis did not use any of the convergence-

detection mechanisms of the MPSO algorithm, which implies that they were merely local

search algorithms. Future research should investigate the effect of introducing conver-

gence detection mechanisms into the cooperative algorithms. Note that the semantics

of some of the convergence detection mechanisms used in the MPSO may change when

applied to a CPSO algorithm. For example, the maximum swarm radius and cluster

analysis algorithms can be applied amongst the particles of each of the cooperating

swarms, so that each swarm can be re-started individually. In contrast, the objective

function slope technique can be applied to the whole context vector, which implies that

all the swarms must be re-started. It should also be possible to apply the objective

function slope metric to each individual swarm, so that each one can be re-started inde-

pendently. These options should be investigated, since the CPSO algorithms have shown

that they are proficient at minimising multi-modal function.

Parallel implementations of the cooperative PSO algorithms

The CCGA-style decomposition clearly lends itself to parallel implementation. Results

have been published regarding the impact of environmental parameters like network

delay on such cooperative algorithms [131]. These experiments must be repeated using

cooperative PSO algorithms to see whether they are affected differently by network

delays or the frequency of updates to the context vector.

Dynamic CPSO-HK algorithm

The CPSO-HK algorithm introduced in Section 4.3 apportions the available budget of

function evaluations to the Pj swarms and the Q swarm in a fixed manner. This was

achieved by allowing the Pjs one iteration of its outer loop, followed by one iteration of

Q’s outer loop. Assuming that functions with low inter-variable correlation are better

solved by the CPSO-SK part (the Pjs), the Q swarm should receive fewer processor time

by only allowing it one iteration of its outer loop for every l times that the Pj outer

loop is executed, where l ∈ N. By monitoring the relative performance of the Pj swarms

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

CHAPTER 7. CONCLUSION 246

versus the Q swarm, the value of l could be increased or decreased.

Alternatively, two values lp and lq can be maintained so that the Pj swarms execute

their outer loop lp times, followed by lq iterations of the Q swarm’s outer loop. Starting

with initial values of lp = lq = 1, the balance can be adjusted based on the relative per-

formance of the two components P and Q. In theory this algorithm would dynamically

adapt so that the most effective type of swarm for a specific problem is always used.

Investigating the effectiveness of this technique is a possible topic for future research.

Optimal swarm size

The MPSO algorithm has been proven to be able to escape from local minima. This

implies that the algorithm could in theory use a smaller number of particles, since it no

longer needs that many particles to avoid becoming trapped prematurely. This, together

with the stronger local convergence property of the GCPSO, implies that the optimal

swarm size for the MPSO may differ from that of the original PSO.

The cooperative PSOs also have more complex behaviour with regard to swarm sizes.

Although some initial investigations regarding the effects of swarm size have been under-

taken [137], further research could reveal a much-needed theoretical model for choosing

the correct swarm size.

Overfitting neural networks

Chapter 6 investigated the performance of the PSO-based algorithms on the task of

training summation and product unit networks. These experiments were designed not to

incorporate any mechanisms to prevent overfitting, since only the training performance

was of interest. Giles has shown that overfitting behaviour is dependent on the type

of training algorithm that is used [76]. The overfitting behaviour of the different PSO

algorithms should be compared with the overfitting behaviour of other network training

algorithms. If the overfitting behaviour of the PSO-based algorithms differs from that

of the gradient-based algorithms, alternate mechanisms for preventing overfitting must

be designed specifically for the PSO-based methods.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Bibliography

[1] P. J. Angeline. Evolutionary Optimization versus Particle Swarm Optimization:

Philosophy and Performance Differences. In Evolutionary Programming VII, vol-

ume 1447, Lecture notes in Computer Science, pages 601–610. Springer, 1998. 55

[2] P. J. Angeline. Using Selection to Improve Particle Swarm Optimization. In

Proceedings of IJCNN’99, pages 84–89, Washington, USA, July 1999. 26, 36, 37,

38, 58, 143

[3] P. J. Angeline and J. B. Pollack. Competitive Environments Evolve Better Solu-

tions for Complex Tasks. In Proceedings of the 5th International Conference on

Genetic Algorithms, pages 264–270, Urbana-Champaign, IL, USA, 1993. 65

[4] F. Archetti, B. Bertrò, and S. Steffè. A Theoretical Framework for Global Op-

timization via Random Sampling. Technical Report A-25, Cauderni del Diparti-

mento di Ricerca Operative e Scienze Statistiche, Università di Pisa, 1975. 125

[5] R. Axelrod. The Evolution of Cooperation. Basic, New York, 1984. 66

[6] R. Axelrod. Evolution of strategies in the iterated prisoner’s dillema. In L. Davis,

editor, Genetic Algorithms and Simulated Annealing, pages 32–41. Morgan Kauf-

mann, 1987. 66

[7] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University

Press, New York, USA, 1996. 13

247

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 248

[8] T. Bäck, D. B. Fogel, and T. Michalewicz, editors. Advanced Algorithms and

Operators, volume 2 of Evolutionary Computation. Institute of Physics Publishing,

Bristol and Philidelphia, 1999. 11, 243

[9] T. Bäck, D. B. Fogel, and T. Michalewicz, editors. Basic Algorithms and Operators,

volume 1 of Evolutionary Computation. Institute of Physics Publishing, Bristol and

Philidelphia, 1999. 11, 12, 13

[10] D. Beasley, D. R. Bull, and R. R. Martin. A Sequential Niche Technique for

Multimodal Function Optimization. In Evolutionary Computation, volume 2, pages

101–125. MIT press, 1993. 45, 47, 68, 133, 244

[11] C. M. Bishop. Neural Networks for Pattern Recognition, chapter 7, pages 253–294.

Oxford University Press, 1995. 8, 198, 200

[12] C. Blake, E. Keogh, and C.J. Merz. UCI repository of machine learning databases,

1998. University of California, Irvine, Dept. of Information and Computer Sciences,

http://www.ics.uci.edu/∼mlearn/MLRepository.html. 55, 209

[13] E. K. Blum and L. K. Li. Approximation theory and feedforward networks. In

Neural Networks, volume 4, pages 511–515, 1991. 202

[14] R. L. Burden and J. D. Faires. Numerical Analysis, chapter 5.11, pages 314–321.

PWS Publishing Company, Boston, fifth edition, 1993. 89

[15] E. Cantú-Paz. A Summary of Research on Parallel Genetic Algorithms. Illi-

GAL Report No. 95007, Illinois Genetic Algorithms Laboratory (IlliGAL), Urbana-

Champaign, IL, USA, July 1995. 68, 69

[16] A. Carlisle and G. Dozier. Adapting Particle Swarm Optimization to Dynamic

Environments. In Proceedings of the International Conference on Artificial Intel-

ligence, pages 429–434, Las Vegas, NV, USA, 2000. 52

[17] A. Carlisle and G. Dozier. Tracking Changing Extrema with Particle Swarm Op-

timizer. Technical Report CSSE01-08, Auburn University, Alabama, USA, 2001.

53

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 249

[18] S. Christensen and F. Oppacher. What can we learn from No Free Lunch? A First

Attempt to Characterize the Concept of a Searchable Function. In Proceedings

of the Genetic and Evolutionary Computation Conference, pages 1219–1226, San

Franscisco, USA, July 2001. 11

[19] S. H. Clearwater, T. Hogg, and B. A. Huberman. Cooperative Problem Solving.

In Computation: The Micro and Macro View, pages 33–70, Singapore: World

Scientific, 1992. 26, 71, 72, 77, 128, 143

[20] M. Clerc. The Swarm and the Queen: Towards a Deterministic and Adaptive

Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary

Computation, pages 1951–1957, Washington DC, USA, July 1999. IEEE Service

Center, Piscataway, NJ. 35, 36

[21] M. Clerc and J. Kennedy. The Particle Swarm: Explosion, Stability and Conver-

gence in a Multi-Dimensional Complex Space. IEEE Transactions on Evolutionary

Computation, 2001. in press. 60, 61, 77

[22] H. G. Cobb. Is the Genetic Algorithm a Cooperative Learner? In Foundations of

Genetic Algorithms 2, pages 277–296. Morgan Kaufmann Publishers, 1992. 72,

129

[23] D. Corne, M. Dorigo, and F. Glover, editors. New Ideas in Optimizaton, chapter 25,

pages 379–387. McGraw Hill, 1999. 23, 35, 36

[24] D. Corne, M. Dorigo, and F. Glover, editors. New Ideas in Optimizaton, chapter 14,

pages 217–279. McGraw Hill, 1999. 77

[25] G. W. Cottrell. Extracting features from faces using compression networks: Face,

identity, emotion and gender recognition using holons. In D. Touretzky, editor,

Connection Models: Proceedings of the 1990 Summer School. Morgan Kaufmann,

San Mateo, CA, USA, 1990. 198

[26] C. R. Darwin. On the Origin of Species by Means of Natural Selection or the

Preservation of Favoured Races in the Struggle for Life. Murray, London, 1859.

(New York: Modern Library, 1967). 11

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 250

[27] L. Davis. Applying Adaptive Algorithms to Epistatic Domains. In Proceedings of

the International Joint Conference on Artificial Intelligence, pages 162–164, 1985.

17

[28] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.

Ph.D. thesis, University of Michigan, Ann Arbor, MI, 1975. 68

[29] K. Deb and R. Agrawal. Simulated Binary Crossover for Continuous Search Space.

Complex Systems, 9:115–148, 1995. 17

[30] J. E. Dennis, Jr and R. B. Schnabel. Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations, chapter 6, pages 111–152. Prentice-Hall, 1983.

8, 10

[31] L. C. W Dixon and G. P. Szegø, editors. Towards Global Optimization. North-

Holland, Amsterdam, 1975. 10

[32] L. C. W Dixon and G. P. Szegø, editors. Towards Global Optimization. North-

Holland, Amsterdam, 1978. 10

[33] R. Durbin and D. Rumelhart. Product Units: A Computationally Powerful and Bi-

ologically Plausible Extension to Backpropagation Networks. Neural Computation,

1:133–142, 1989. 202, 203

[34] R. C. Eberhart and X. Hu. Human Tremor Analysis Using Particle Swarm Op-

timization. In Proceedings of the Congress on Evolutionary Computation, pages

1927–1930, Washington D.C, USA, July 1999. IEEE Service Center, Piscataway,

NJ. 21, 55

[35] R. C. Eberhart and J. Kennedy. Swarm Intelligence. Morgan Kaufmann, 2001.

26, 31, 32, 56, 57

[36] R. C. Eberhart and Y. Shi. Tracking and Optimizing Dynamic Systems with Par-

ticle Swarms. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 94–100, Seoul, Korea, 2001. 54, 151, 164, 173

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 251

[37] R. C. Eberhart, P. Simpson, and R. Dobbins. Computational Intelligence PC Tools,

chapter 6, pages 212–226. Academic Press Professional, 1996. 22, 27, 29, 30, 34,

244

[38] Russ C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science, pages 39–43, Nagoya, Japan, 1995. IEEE Service Center, Piscataway, NJ.

2, 21

[39] Russ C. Eberhart and Y. Shi. Comparing Inertia Weights and Constriction Factors

in Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary

Computing, pages 84–89, San Diego, USA, 2000. IEEE Service Center, Piscataway,

NJ. 36, 54, 87, 151, 164, 173, 190

[40] A. P. Engelbrecht. A New Pruning Heuristic Based on Variance Analysis of Sen-

sitivity Information. IEEE Transactions on Neural Networks, 12(6), November

2001. 200

[41] A. P. Engelbrecht and A. Ismail. Training product unit neural networks. Stability

and Control: Theory and Applications, 2(1–2):59–74, 1999. 21, 56, 203, 227, 236

[42] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval

schemata. In D. Whitley, editor, Foundations of Genetic Algorithms II, pages

187–202. Morgan Kaufmann, San Mateo, CA, USA, 1993. 17

[43] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In

D. S. Touretzky, editor, Advances in Neural Information Processing Systems, vol-

ume 2, pages 524–532. Morgan Kaufmann, San Mateo, CA, USA, 1990. 200

[44] R. A. Fisher. The use of Multiple Measurements in Taxonomic Problems. Annals

of Eugenics, 7:179–188, 1936. 55

[45] L. J. Fogel. Autonomous Automata. Industrial Research, (4):14–19, 1962. 15

[46] L. J. Fogel. On the Organization of Intellect. PhD thesis, University of California

at Los Angeles, 1964. 15

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 252

[47] L. J. Fogel and D. B. Fogel. Artificial Intelligence through Evolutionary Program-

ming. Final Report Contract PO-9-X56-1102C-1, US Army Research Institute,

1986. 15

[48] M. Friedman and L. S. Savage. Planning experiments seeking minima. In C. Eisen-

hart, M. W. Hastay, and W. A. Wallis, editors, Selected Techniques of Statistical

Analysis for Scientific and Industrial Research, and Production and Management

Engineering, pages 363–372. McGraw-Hill, New York, 1947. 72, 134

[49] Y. Fukuyama et al. Practical Distribution State Estimation using Hybrid Parti-

cle Swarm Optimization. In Proceedings of the IEEE Power Engineering Society

Winter Meeting, Columbus, 2001. 58

[50] Y. Fukuyama and H. Yoshida. A Particle Swarm Optimization for Reactive Power

and Voltage Control in Electric Power Systems. In Proceedings of the IEEE

Congress on Evolutionary Computation, pages 87–93, Seoul, Korea, 2001. 32,

57

[51] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Reading, MA, USA, 1989. 16

[52] D. E. Goldberg and R. L. Lingle. Alleles, Loci, and the Traveling Saleman Problem.

In Proceedings of the 1st International Conference on Genetic Algorithms, pages

154–159, 1985. 17

[53] D. E. Goldberg and J. Richardson. Genetic Algorithms with Sharing for Multi-

modal Function Optimization. In Proceedings of the 2nd International Conference

on Genetic Algorithms, pages 41–49, 1987. 67

[54] D.E. Goldberg, K. Deb, and J. Horn. Massive Multimodality, Deception, and

Genetic Algorithms. In Parallel Problem Solving from Nature, volume 2, pages

37–46, Amsterdam, North-Holland, 1992. 132

[55] V. S. Gordon and D. Whitley. Dataflow parallelism in Genetic Algorithms. In

R. Männer and B. Manderick, editors, Parallel Problem Solving from Nature II,

pages 533–542. North-Holland, Amsterdam, 1992. 69

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 253

[56] V. S. Gordon and D. Whitley. Serial and Parallel Genetic Algorithms and Func-

tion Optimizers. In Proceedings of the 5th International Conference on Genetic

Algorithms, pages 177–183, Urbana-Champaign, IL, USA, 1993. 68

[57] J. J. Grefenstette. Deception Considered Harmful. In Foundations of Genetic

Algorithms 2, pages 75–91. Morgan Kaufmann, 1992. 133

[58] D. M. Greig. Optimisation, chapter 3–4. Longman Inc., New York, USA, 1980. 6

[59] P. Grosso. Computer Simulations of Genetic Adaption: Parallel Subcomponent

Interaction in a Multilocus Model. PhD thesis, University of Michigan, 1985. 69,

127

[60] Z. He, C. Wei, L. Yang, X. Gao, S. Yao, R. C. Eberhart, and Y. Shi. Extracting

Rules from Fuzzy Neural Network by Particle Swarm Optimization. In Proceedings

of the IEEE International Conference of Evolutionary Computation, pages 74–77,

Anchorage, Alaska, USA, 1998. 56

[61] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization

procedure. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors,

Artificial Life II, pages 313–324. Addison-Wesley, Redwood City, CA, USA, 1992.

66, 75

[62] J. Holland. Outline for a logical theory of adaptive systems. Journal of the ACM,

3:297–314, 1962. 16

[63] J. Holland. Adaption in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor, MI, 1975. 16, 99

[64] A. Ismail. Training and Optimisation of Product Unit Neural Networks. submit-

ted M.Sc thesis, Department of Computer Science, University of Pretoria, South

Africa, 2001. 203, 206

[65] P. Jinchun, C. Yaobin, and R. Eberhart. Battery pack state of charge estimator

design using computational intelligence approach. In The Fifteenth Annual Battery

Conference on Applications and Advances, pages 173–177, 2000. 56

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 254

[66] L. K. Jones. Constructive approximations for neural networks by sigmoidal func-

tions. Proceedings of the IEEE, 78(10):1586–1589, 1990. 202

[67] J. Kennedy. The particle swarm: Social adaption of knowledge. In Proceedings of

the International Conference on Evolutionary Computation, pages 303–308, Indi-

anapolis, IN, USA, 1997. 25

[68] J. Kennedy. Small Worlds and Mega-Minds: Effects of Neighbourhood Topology

on Particle Swarm Performance. In Proceedings of the Congress on Evolutionary

Computation, pages 1931–1938, Washington DC, USA, July 1999. IEEE Service

Center, Piscataway, NJ. 40

[69] J. Kennedy. Stereotyping: Improving Particle Swarm Performance With Cluster

Analysis. In Proceedings of the Congress on Evolutionary Computing, pages 1507–

1512, San Diego, USA, 2000. IEEE Service Center, Piscataway, NJ. 41

[70] J. Kennedy and R. C. Eberhart. Particle Swarm Optimization. In Proceedings of

IEEE International Conference on Neural Networks, volume IV, pages 1942–1948,

Perth, Australia, 1995. IEEE Service Center, Piscataway, NJ. 2, 21, 27, 55

[71] J. Kennedy and R. C. Eberhart. A Discrete Binary Version of the Particle Swarm

Algorithm. In Proceedings of the Conference on Systems, Man, and Cybernetics,

pages 4104–4109, 1997. 31

[72] J. Kennedy and W. M. Spears. Matching Algorithms to Problems: An Experimen-

tal Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal

Problem Generator. In Proceedings of the International Conference on Evolution-

ary Computation, pages 78–83, Anchorage, Alaska, 1998. 32

[73] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220:671–680, 1983. 33

[74] J. Koza. Genetic Programming: on the Programming of Computers by Means of

Natural Selection and Genetics. MIT Press, Cambridge, MA, USA, 1992. 17

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 255

[75] K. J. Lang, A. H. Waibel, and G. E. Hinton. A time-delay neural network archi-

tecture for isolated word recognition. Neural Networks, (3):33–43, 1990. 198

[76] S. Lawrence and C. L. Giles. Overfitting and Neural Networks: Conjugate Gradient

and Backpropagation. In Proceedings of the IEEE International Joint Conference

on Neural Networks, Como, Itally, July 2000. 204, 246

[77] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1(4), 1989. 198

[78] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In D. Touretzky,

editor, Advances in Neural Information Processing Systems, volume 2, pages 598–

605. Morgan Kaufmann, San Mateo, CA, USA, 1990. 200

[79] M. Løvbjerg, T. K. Rasmussen, and T. Krink. Hybrid Particle Swarm Optimiser

with Breeding and Subpopulations. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO), San Francisco, USA, July 2001. 38, 39, 45,

143

[80] B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In Pro-

ceedings of the 3rd International Conference on Genetic Algorithms, Fairfax, WA,

USA, 1989. 69, 128

[81] M. J. Matarić. Designing and Understanding Adaptive Group Behavior. Adaptive

Behavior, 4:51–80, 1995. 28

[82] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-

tributed uniform pseudorandom number generator. ACM Transactions on Model-

ing and Computer Simulation, 8(1):3–30, 1998. 150

[83] E. Mayr. Animal Species and Evolution. Belknap, Cambridge, MA, 1963. 12

[84] S. Milgram. The small world problem. Psychology Today, 22:61–67, 1967. 40

[85] M. M. Millonas. Swarms, phase transitions, and collective intelligence. In Artificial

Life III, pages 417–445. Addison-Wesley, Reading, MA, 1994. 28

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 256

[86] T. M. Mitchell. Machine Learning. McGraw-Hill, Portland, Oregon, USA, 1997.

198

[87] M. F. Möller. A scaled conjugate gradient algorithm for fast supervised learning.

In Neural Networks, volume 6, pages 525–533, 1993. 8, 279

[88] H. Mülenbein. Parallel Genetic Algorithms, Population Genetics and Combinato-

rial Optimization. In Proceedings of the 3rd International Conference on Genetic

Algorithms, Fairfax, WA, USA, 1989. 69, 128

[89] R. H. J. M. Otten and L. P. P. P. van Ginneken. The Annealing Algorithm. Kluwer,

Boston, USA, 1989. 33

[90] E. Ozcan and C. K. Mohan. Analysis of a Simple Particle Swarm Optimization

System. In Intelligent Engineering Systems Through Artificial Neural Networks,

volume 8, pages 253–258, 1998. 59

[91] E. Ozcan and C. K. Mohan. Particle Swarm Optimization : Surfing the Waves.

In Proceedings of the International Congress on Evolutionary Computation, pages

1939–1944, Washington, USA, 1999. 59, 60, 77, 87

[92] J. Paredis. Coevolutionary constraint satisfaction. In The 3rd Conference on

Parallel Problem Solving from Nature, Jerusalem, Israel, October 1994. 67

[93] J. Paredis. Steps towards co-evolutionary classification neural networks. In

R. Brooks and P. Maes, editors, Artificial Life IV, pages 102–108. MIT Press,

Cambridge, MA, USA, 1994. 66

[94] J. Paredis. The Symbiotic Evolution of Solutions and their Representations. In

Proceedings of the 6th International Conference on Genetic Algorithms, pages 359–

365, Pittsburgh, PA, USA, 1995. 68

[95] J. Paredis. Coevolutionary evolution. Artificial Life Journal, 2:255–375, 1996. 66

[96] J. Paredis. Symbiotic evolution for epistatic functions. In Proceedings of the 12th

European Conference on Artificial Intelligence, pages 228–232, Budapest, Hungary,

August 1996. 68

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 257

[97] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis. Im-

proving Particle Swarm Optimizer. In P. Pardalos, editor, Advances in Convex

Analysis and Global Optimization. Kluwer Academic, 2001. to appear. 47

[98] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis. Objec-

tive function “Stretching” to Alleviate Convergence to Local Minima. Nonlinear

Analysis, Theory and Applications, 2001. in press. 47

[99] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis. Stretch-

ing Technique for Obtaining Global Minimizers Through Particle Swarm Optimiza-

tion. In Proceedings of the Particle Swarm Optimization Workshop, pages 22–29,

Indianapolis, USA, 2001. 47, 244

[100] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimizer in Noisy and

Continuously Changing Environments. In M. H. Hamza, editor, Artificial Intelli-

gence and Soft Computing, pages 289–294. IASTED/ACTA, Anaheim, CA, USA,

2001. 52

[101] K. E. Parsopoulos and M.N. Vrahatis. Modification of the Particle Swarm Opti-

mizer for Locating all the Global Minima. In V. Kurkova, N. C. Steele, R. Neruda,

and M. Karny, editors, Artificial Neural Networks and Genetic Algorithms, pages

324–327. Springer, 2001. 47, 244

[102] B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computing,

6(1):147–160, 1994. 280

[103] J. Pearsall, editor. The Concise Oxford Dictionary, 10th edition. Clays Ltd, Bun-

gay, Suffolk, 1999. 206

[104] E. Polak. Optimization: Algorithms and Consistent Approximations. Springer-

Verlag, New York, USA, 1997. 8

[105] M. A. Potter. The Design and Analysis of a Computational Model of Cooperative

Coevolution. PhD thesis, George Mason University, Fairfax, Virginia, USA, 1997.

69, 71, 72, 128, 142, 171, 174, 208

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 258

[106] Mitchell A. Potter and Kenneth A. de Jong. A Cooperative Coevolutionary Ap-

proach to Function Optimization. In The Third Parallel Problem Solving from

Nature, pages 249–257, Jerusalem, Israel, 1994. Springer-Verlag. 69, 70, 77, 128,

142, 174, 208, 241, 263

[107] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press, second

edition, 1992. 23

[108] I. Rechenberg. Cybernetic Solution Path of an Experimental Problem. Library

translation No 1122, Royal Aircraft Establishment, Farnborough, UK, 1965. 15

[109] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973. 15

[110] W. T. Reeves. Particle Systems — A Technique for Modeling a Class of Fuzzy

Objects. In SIGGRAPH 83, pages 359–376, 1983. 29

[111] C. W. Reynolds. Flocks, Herds and Schools: A Distributed Behavioral Model. In

Computer Graphics (Proceedings of the ACM SIGGRAPH Conference), number

21(4), pages 25–34, Anaheim, CA, USA, July 1987. 27

[112] P. Royston. An Extension of Shapiro and Wilk’s W Test for Normality to Large

Samples. Applied Statistics, (31):115–124, 1982. 206

[113] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, volume 1, pages 318–362. MIT

Press, 1986. 278

[114] J. Salerno. Using the particle swarm optimization technique to train a recurrent

neural model. In Proceedings of the Ninth IEEE International Conference on Tools

with Artificial Intelligence, pages 45–49, 1997. 55

[115] R. Salomon. Reevaluating genetic algorithm performance under coordinate rota-

tion of benchmark functions. BioSystems, (39):263–278, 1996. 171, 182

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 259

[116] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das. A Study of Control

Parameters Affecting Online Performance of Genetic Algorithms. In Proceedings

of the 3rd International Conference on Genetic Algorithms, pages 51–60, Fairfax,

WA, USA, 1989. 18

[117] C. Schumacher, M. D. Vose, and L. D. Whitley. The No Free Lunch and Problem

Description Length. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 565–570, San Franscisco, USA, July 2001. 11

[118] H-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen Forschung

in der Strømungstechnik. Diplomarbeit, Techniche Universität, Berlin, 1965. 15

[119] H-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evo-

lutionsstraregie. In Interdisciplinary Systems Research. Birkhäuser, Basel, 1977.

15

[120] Y. Shi and R. C. Eberhart. Parameter Selection in Particle Swarm Optimization.

In Evolutionary Programming VII: Proceedings of EP 98, pages 591–600, 1998. 33

[121] Y. Shi and R. C. Eberhart. Empirical Study of Particle Swarm Optimization.

In Proceedings of the Congress on Evolutionary Computation, pages 1945–1949,

Washington D.C, USA, July 1999. IEEE Service Center, Piscataway, NJ. 21, 33

[122] Y. Shi and R. C. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. In

Proceedings of the Congress on Evolutionary Computation, Seoul, Korea, 2001. 34

[123] Y. Shi and R. C. Eberhart. Particle Swarm Optimization with Fuzzy Adaptive

Inertia Weight. In Proceedings of the Workshop on Particle Swarm Optimiza-

tion, Indianapolis, IN, USA, 2001. Purdue School of Engineering and Technology,

IUPUI. 34

[124] Y. Shi and Russ C. Eberhart. A Modified Particle Swarm Optimizer. In IEEE

International Conference of Evolutionary Computation, Anchorage, Alaska, May

1998. 21, 32, 33

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 260

[125] A. Slomson. An Introduction to Combinatorics, chapter 6.4. Chappman and Hall

Mathematics, 1991. 79, 269, 270

[126] J. A. Snyman. A New and Dynamic Method for Unconstrained Minimization.

Applied Mathematical Modeling, 6:449–462, 1982. 56

[127] J. A. Snyman. An Improved Version of the Original LeapFrog Dynamic Method for

Unconstrained Minimization: LFOP1(b). Applied Mathematical Modeling, 7:216–

218, June 1983. 56

[128] F. Solis and R. Wets. Minimization by Random Search Techniques. Mathematics

of Operations Research, 6:19–30, 1981. 77, 102, 103, 105, 106, 125

[129] R. V. Southwell. Relaxation Methods in Theoretical Physics. Clarendon Press,

Oxford, UK, 1946. 72, 134

[130] W. M. Spears. Simple Subpopulation Schemes. In Proceedings of the Evolutionary

Programming Conference, pages 296–307, 1994. 44

[131] R Subbu and A. C. Sanderson. Modeling and Convergence Analysis of Distributed

Coevolutionary Algorithms. In Proceedings of the IEEE International Congress on

Evolutionary Computation, San Diego, CA, USA, July 2000. 77, 129, 245

[132] P. N. Suganthan. Particle Swarm Optimizer with Neighbourhood Operator. In Pro-

ceedings of the Congress on Evolutionary Computation, pages 1958–1961, Wash-

ington DC, USA, July 1999. IEEE Service Center, Piscataway, NJ. 39, 40

[133] V. Tandon. Closing the gap between CAD/CAM and optimized CNC end milling.

Master’s thesis, Purdue School of Engineering and Technology, Indianapolis, IN,

USA, 2000. 56

[134] J. C. Taylor. An Introduction to Measure and Probability. Springer-Verlag New

York, Inc., 175 Fith Avenue, New York, NY, 10010, USA, 1997. 103, 104

[135] F. van den Bergh. Particle Swarm Weight Initialization in Multi-layer Perceptron

Artificial Neural Networks. In Development and Practice of Artificial Intelligence

Techniques, pages 41–45, Durban, South Africa, September 1999. 21, 55

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 261

[136] F. van den Bergh and A. P. Engelbrecht. Cooperative Learning in Neural Networks

using Particle Swarm Optimizers. South African Computer Journal, (26):84–90,

November 2000. 21, 134, 143

[137] F. van den Bergh and A. P. Engelbrecht. Effects of Swarm Size on Cooperative

Particle Swarm Optimisers. In Proceedings of the Genetic and Evolutionary Com-

putation Conference, pages 892–899, San Francisco, USA, July 2001. 246

[138] F. van den Bergh and A. P. Engelbrecht. Training Product Unit Networks using

Cooperative Particle Swarm Optimisers. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN), pages 126–132, Washington DC, USA,

July 2001. 173, 207, 208, 209

[139] H. Viktor, A.P. Engelbrecht, and I. Cloete. Incorporating Rule Extraction from

ANNs into a Cooperative Learning Environment. In NEURAP 98: Neural Net-

works & Their Applications, pages 385–391, Marseilles, France, 1998. 57

[140] H. L. Viktor. Learning by Cooperation: An Approach to Rule Induction and Knowl-

edge Fusion. PhD thesis, Department of Computer Science, University of Stellen-

bosch, South Africa, 1999. 127

[141] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon. Accelerating

the convergence of the back-propagation method. Biological Cybernetics, (59):257–

263, 1988. 278

[142] Watts and Strogetz. Collective dynamics of ‘small-world’ networks. Nature,

393:440–442, 1998. 41

[143] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioural Sciences. PhD thesis, Harvard University, Boston, MA, USA, 1974.

278

[144] D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for Search. Technical

Report SFI-TR-95-02-010, Santa Fe Institute, July 1995. 10

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

BIBLIOGRAPHY 262

[145] D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for Optimization.

IEEE Transactions on Evolutionary Computation, (4):67–82, 1997. 10

[146] C. Zhang and H. Shao. An ANN’s Evolved by a New Evolutionary System and Its

Application. In Proceedings of the 39th IEEE Conference on Decision and Control,

volume 4, pages 3562–3563, 2000. 56

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Appendix A

Glossary

This appendix provides brief descriptions of the commonly used terms occurring in this thesis.

CCGA: The Cooperative Coevolutionary Genetic Algorithm, introduced by Potter

[106]. This algorithm partitions the search space into disjoint subspaces, and then

uses a collection of cooperating subpopulations to optimise each of the subspaces.

Convergence, converged: A term used loosely to indicate that an algorithm has

reached the point where it does not appear to make any further progress. In

the more formal sense, a sequence {zk}+∞k=1 is said to converge when the limit

lim
k→+∞

zk

exists. If the limit does not exit, the sequence is said to be divergent. When a

particle’s trajectory is described as convergent, the term is used in the strict sense

as applied to the position of the particle converging onto some limit.

Cooperative/coevolutionary algorithms: Algorithms, usually of the evolutionary

family, that use a collection of interacting populations. The fitness of individuals

in one population depend on the state of the other populations, coercing the popu-

lations to either cooperate or to compete, depending on the type of fitness function

employed.

263

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX A. GLOSSARY 264

CPSO: A Cooperative Particle Swarm Optimiser. This family includes two variations

of the PSO, based loosely on the CCGA cooperation model.

GA: A Genetic Algorithm. A type of Evolutionary Algorithm relying mostly on its re-

combination operator, regarding its mutation operator as a background operator.

This algorithm is also characterised by weak selection pressure, usually imple-

mented using a fitness-proportionate selection operator.

CGPSO: Guaranteed Convergence Particle Swarm Optimiser. This is a version of the

PSO algorithm that is guaranteed to converge on a local minimum of the objective

function, with asymptotic probability one.

Evolutionary algorithms: A family of algorithms that simulate natural evolution,

most often on a computer. This includes population-based algorithms that use

random variation and selection to create new solutions. Instances of this paradigm

includes Evolution Strategies, Evolutionary Programming and Genetic Algorithms.

GD: Gradient Descent algorithm. A technique which finds a local minimum by moving

over the function surface along the direction of steepest descent, as determined by

the gradient of the function at that point.

Global minimiser, global minimum: The global minimum is the function value f(x∗),

where x∗ denotes the global minimiser, defined as

f(x∗) ≤ f(x), ∀x ∈ S

where S denotes the search space.

Global search algorithm: An optimisation algorithm that locates the global mini-

mum (or maximum) of the objective function, in all of the search space.

Local minimiser, local minimum: A local minimiser, x∗B, of the region B, is defined

so that

f(x∗B) ≤ f(x), ∀x ∈ B

where B ⊂ S, and S denotes the search space.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX A. GLOSSARY 265

Local search algorithm: An optimisation algorithm that locates the local minimum

(or maximum) of a region B ⊂ S. The local minimum is not necessarily the

minimum of the search space S; it is merely the minimum of the region B, where

B is typically defined to contain only a single minimum.

MSE: Mean Squared Error. A metric used to compute, amongst other things, the

difference between the output of a Neural Network and the desired output value

specified in the data set. Mathematically, the MSE can be be computed between

two sequences ai and bi using

MSE =
1

2n

n∑
i=1

(ai − bi)2

where n denotes the number of elements in the sequences. Note that the sum is

normalised using a factor of 1/(2n) rather than 1/n, by convention.

MPSO: Multi-start Particle Swarm Optimiser. This is a PSO algorithm with guaran-

teed convergence onto the global minimiser of the objective function, with asymp-

totic probability one. This is achieved by periodically re-initialising the positions

of the particles.

Neural network: A configurable mapping between an input space and an output space.

These networks can represent arbitrary mappings by suitable adjustment of their

weights (configurable parameters). Typical uses include classification problems,

and approximating arbitrary functions when only sampled data points are avail-

able.

No Free Lunch theorem: A theorem that contends that all optimisation algorithms

perform equally well when their performance is amortised over the set of all possible

functions. This implies that all algorithms perform on average as well as a random

search (without replacement), or a straight enumeration of all possible solutions.

Objective function: The function that is optimised during an optimisation process,

to compute either the set of parameters yielding the minimum or the maximum

function value.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX A. GLOSSARY 266

PSO: Particle Swarm Optimiser. A sociologically inspired, stochastic, population-based

optimisation algorithm. The algorithm maintains a population of particles that

interact with each other while exploring the search space.

RPSO: Randomised Particle Swarm Optimiser. Another theoretically global PSO algo-

rithm. This algorithm contains several particles that continually sample the whole

search space, in search of better solutions.

SCG: Scaled Conjugate Gradient descent algorithm. A specialisation of the Gradient

Descent algorithm which constructs better directions of search, and performs line

searches along those directions. This algorithm has a faster rate of convergence

than the basic GD algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Appendix B

Definition of Symbols

This appendix lists the commonly-used symbols found throughout this thesis

The number of the page on which a symbol first appears can be found by consulting the

index under the appropriate entry.

xi: Particle i’s current position. index: position, current;

yi: Particle i’s personal best position. index: position, personal best;

vi: Particle i’s current velocity. index: velocity;

ŷ: The swarm’s global best position. index: position, global best;

ŷi: The best position in the neighbourhood of particle i. index: position, local best;

r1, r2: Uniform pseudo-random numbers. index: random sequences;

s: The swarm size, or number of particles. index: swarm size;

c1, c2: The two acceleration coefficients. index: acceleration coefficients;

f : Denotes the function being minimised. Takes a vector input and returns a scalar

value.

w: The inertia weight, affecting the PSO velocity update equation. index: inertia weight;

τ : The index of the global best particle, used in the GCPSO algorithm. index: GCPSO;

k, t: These variables denote time or time steps;

K: This variable denotes the split factor , used in the CPSO-SK and CPSO-HK algo-

rithms. index: split factor;

267

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Appendix C

Derivation of Explicit PSO

Equations

This appendix provides a derivation of the closed-form PSO equations used in Chapter 3.

Consider the PSO update equations, repeated here for convenience:

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] +

c2r2,j(t)[ŷj(t)− xi,j(t)]
(C.1)

xi(t+ 1) = xi(t) + vi(t+ 1) (C.2)

To simplify the notation the derivation will be performed in one dimension only, using

a single particle. This allows us to drop both the i and j subscripts, further implying

that xt denotes the value of x at time step t, rather than the value x associated with

particle number t. The stochastic component will also be removed temporarily with the

substitutions φ1 = c1r1(t) and φ2 = c2r2(t). Further, the position of the particle will be

considered in discrete time only, resulting in the following equations:

vt+1 = wvt + φ1(yt − xt) + φ2(ŷt − xt) (C.3)

xt+1 = xt + vt+1 (C.4)

Substituting (C.3) into (C.4) results in

xt+1 = xt + wvt + φ1(yt − xt) + φ2(ŷt − xt) (C.5)

268

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX C. DERIVATION OF EXPLICIT PSO EQUATIONS 269

Grouping the related terms yields

xt+1 = (1− φ1 − φ2)xt + φ1yt + φ2ŷt + wvt (C.6)

But, from equation (C.5) it is known that

xt = xt−1 + vt

Thus,

vt = xt − xt−1 (C.7)

Substituting (C.7) into (C.6) and grouping the terms yield

xt+1 = (1 + w − φ1 − φ2)xt − wxt−1 + φ1yt + φ2ŷt (C.8)

which is a non-homogeneous recurrence relation that can be solved using standard tech-

niques [125]. This recurrence relation can be written as a matrix-vector product, so

that 
xt+1

xt

1

 =


1 + w − φ1 − φ2 −w φ1y + φ2ŷ

1 0 0

0 0 1




xt

xt−1

1

 (C.9)

The characteristic polynomial of the matrix in (C.9) is

(1− λ)(w − λ(1 + w − φ1 − φ2) + λ2) (C.10)

which has a trivial root of λ = 1.0, and two other solutions

α =
1 + w − φ1 − φ2 + γ

2
(C.11)

β =
1 + w − φ1 − φ2 − γ

2
(C.12)

where

γ =
√

(1 + w − φ1 − φ2)2 − 4w (C.13)

Note that α and β are both eigenvalues of the matrix in equation (C.9). The explicit

form of the recurrence relation (C.8) is then given by

xt = k1 + k2α
t + k3β

t (C.14)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX C. DERIVATION OF EXPLICIT PSO EQUATIONS 270

where k1, k2 and k3 are constants determined by the initial conditions of the system

[125]. Since there are three unknowns, a system of three equations must be constructed

to find their values. The initial conditions of the PSO provides two such conditions, x0

and x1, corresponding to the position of the particle at time steps 0 and 1. Note that

this is equivalent to specifying the initial position x0 and the initial velocity v0. The

third constraint of the system can be calculated using the recurrence relation to find the

value of x2, thus

x2 = (1 + w − φ1 − φ2)x1 − wx0 + φ1yt + φ2ŷt

From these three initial conditions, the system
x0

x1

x2

 =


1 1 1

1 α β

1 α2 β2



k1

k2

k3

 (C.15)

is derived, which can be solved using Gauss-elimination, yielding

k1 =
αβx0 − x1(α+ β) + x2

(α− 1)(β − 1)

k2 =
β(x0 − x1)− x1 + x2

(α− β)(α− 1)

k3 =
α(x1 − x0) + x1 − x2

(α− β)(β − 1)

Using the property α− β = γ, these equations can be further simplified to yield

k1 =
φ1yt + φ2ŷt

φ1 + φ2

(C.16)

k2 =
β(x0 − x1)− x1 + x2

γ(α− 1)
(C.17)

k3 =
α(x1 − x0) + x1 − x2

γ(β − 1)
(C.18)

Note that both yt and ŷt are dependent on the time step t. These values may change

with every time step, or they may remain constant for long durations, depending on

the objective function and the position of the other particles. Whenever either yt or ŷt

changes the values of k1, k2 and k3 must be recomputed. It is possible to extrapolate the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX C. DERIVATION OF EXPLICIT PSO EQUATIONS 271

trajectory of a particle by holding both y and ŷ constant. This implies that the positions

of the other particles remain fixed, and that the particle does not discover any better

solutions itself.

Although these equations were derived under the assumption of discrete time, no

such restriction is necessary. Equation (C.14) can be expressed in continuous time as

well, resulting in

x(t) = k1 + k2α
t + k3β

t (C.19)

using the same values for k1, k2 and k3 as derived above for the discrete case.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Appendix D

Function Landscapes

This appendix presents three-dimensional plots of the various synthetic benchmark functions

used in Chapter 5.

All the functions are drawn inverted, so that the minimum of the function appears as a

maximum. Owing to the shape of these functions, this representation make visible more

clearly the nature of the function.

All the functions are plotted as they are defined in Section 5.1 (page 148), using the

domains specified in Table 5.1 (page 150). The only exception is Griewank’s function,

which is plotted in the domain [−30, 30]2, since the fine detail is not visible in the plot

when viewed using the full domain of [−600, 600]2.

The unimodal nature of the Spherical, Rosenbrock and Quadric functions is clearly

visible in Figures D.1, D.2 and D.7. The massively multi-modal nature of the Ackley,

Rastrigin, Griewank and Schwefel functions can be observed in Figures D.3, D.4, D.5

and D.6.

Please turn page . . .

272

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX D. FUNCTION LANDSCAPES 273

-100
-50

0
50

100
x1 -100

-50

0

50

100

x2

-22000
-20000
-18000
-16000
-14000
-12000
-10000
-8000
-6000
-4000
-2000

0

f(x)

Figure D.1: The Spherical function

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x1 -2

-1.5
-1

-0.5
0

0.5
1

1.5
2

x2

-4000
-3500
-3000
-2500
-2000
-1500
-1000
-500

0

f(x)

Figure D.2: Rosenbrock’s function

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX D. FUNCTION LANDSCAPES 274

-30
-20

-10
0

10
20

30
x1 -30

-20
-10

0
10

20
30

x2

-24
-22
-20
-18
-16
-14
-12
-10

-8
-6
-4
-2

f(x)

Figure D.3: Ackley’s function

-4
-2

0
2

4x1 -4

-2
0

2

4

x2

-80
-70
-60
-50
-40
-30
-20
-10

0

f(x)

Figure D.4: Rastrigin’s function

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX D. FUNCTION LANDSCAPES 275

-30
-20

-10
0

10
20

30
x1

-30
-20

-10
0

10
20

30

x2

-2.5

-2

-1.5

-1

-0.5

0

f(x)

Figure D.5: Griewank’s function

-400
-200

0
200

400
x1 -400

-200
0

200
400

x2

-1000
-800
-600
-400
-200

0
200
400
600
800

1000

f(x)

Figure D.6: Schwefel’s function

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX D. FUNCTION LANDSCAPES 276

-100
-50

0
50

100
x1

-100

-50

0

50

100

x2

-55000
-50000
-45000
-40000
-35000
-30000
-25000
-20000
-15000
-10000
-5000

0

f(x)

Figure D.7: The Quadric function

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Appendix E

Gradient-based Search Algorithms

This appendix briefly describes two efficient gradient-based optimisation algorithms commonly

used to train summation unit networks.

An important part of gradient-based training algorithms is the choice of initial values

for the weight vector w. Usually, random values from the distribution

wi ∼ U

(
− 1√

fan in
,

1√
fan in

)
are used, where fan in is the in-degree of the unit, i.e. the number of weights entering

the unit.

The next step in the training process is to apply an algorithm that will find a weight

vector w that minimizes the error function E. Since the weight vector changes during

the training process, the vector wt will be used to indicate the value of the vector w at

time step t.

E.1 Gradient Descent Algorithm

One of the simplest summation unit network training algorithms is known as the Gradient

Descent (GD) algorithm, also referred to as the steepest descent algorithm.

The algorithm computes the gradient of the error surface at the current location in

search space, starting with an initial weight vector that is randomly chosen, as described

277

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX E. GRADIENT-BASED SEARCH ALGORITHMS 278

above. The gradient at the current location will be denoted g, so that

g ≡ ∇E(wt) (E.1)

where E(wt) is the error function evaluated as position wt in the weight space. The error

back-propagation technique, originally due to Werbos [143], its use further advocated

by Rumelhart et al. [113], is used to calculate g. This technique only requires O(W)

operations, where W is the number of dimensions in w. This is significantly faster (and

more accurate) than the finite-difference approach, which requires O(W 2) operations.

Geometrically, the vector g points in the direction in which the slope of the error

surface is the steepest, away from the minimum. If an algorithm is to take a sufficiently

small step in the direction of −g, then the error at this new point will be smaller. The

value of the weight vector is thus updated at each iteration using the rule

wt+1 = wt − ηtg (E.2)

where ηt is called the learning rate. It is customary to use a sequence of ηt values

that decreases with increasing t values, since this guarantees that the wt sequence is

convergent. The larger the learning rate, the further the algorithm will move in one step,

with the obvious danger of stepping over a minimum so that the error value actually

increases if ηt is too large.

The GD algorithm used in this thesis implemented a variation known as the bold

driver technique [141]. This technique learns the appropriate learning rate while it is

minimising the error function. Specifically, the implementation used in Chapter 6 used

the following rule:

ηt+1 =

{
1.1ηt if ∆E ≤ 0

0.5ηt if ∆E > 0

where ∆E ≡ E(wt) − E(wt−1) represents the change in the value of the error function

between steps t−1 and t. The algorithm keeps a copy of wt−1, the weight vector at time

t− 1. If ∆E > 0 it restores the old weight vector by setting wt = wt−1, and halves the

learning rate. This ensures that the algorithm never takes an uphill step. It will also

continually increase the learning rate as long as it manages to decrease the error.

Several problems remain with the GD algorithm, including that the direction of

steepest descent, −g, may not be the optimal search direction. This issue is addressed

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX E. GRADIENT-BASED SEARCH ALGORITHMS 279

by a significantly more powerful algorithm known as the Scaled Conjugate Gradient

(SCG) algorithm, presented next.

E.2 Scaled Conjugate Gradient Descent Algorithm

The scaled conjugate gradient algorithm, introduced by Möller [87], does not search

along the direction of steepest descent. Instead, it constructs a conjugate direction, d,

using

dt+1 = −gt+1 + βtdt (E.3)

where βt is computed using the Polak-Ribiere formula

βt =
gT

t+1(gt+1 − gt)

gT
t gt

(E.4)

Once the direction of search has been determined, the algorithm attempts to take a

step along this direction that will minimise the error along this line. In other words, it

minimises the function E(w + αd) by computing the appropriate value for α.

The scaled conjugate training algorithm achieves this by using a local quadratic

approximation of the error surface, which is obtained by performing an n-dimensional

Taylor expansion around the current position in weight space. This approximation, with

explicit reference to the time step t omitted, is as follows:

E(w) ≈ E0 + bTw +
1

2
wTHw

The derivative of the above approximation, with respect to w, can be found by evaluating

g(w) = b + Hw.

Note that g is the first derivative of E with respect to the weight vector w, as defined in

equation (E.1); H is the Hessian matrix — the second order derivative of E with respect

to w, so that H ≡ ∇2E(w).

The error function E is minimized along the direction dt by finding αt using

αt = − dT
t gt

dT
t Hdt + λt||dt||2

(E.5)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX E. GRADIENT-BASED SEARCH ALGORITHMS 280

The minimum of the error function along the direction dt is then

E(w + αtdt) (E.6)

The λ term in equation (E.5) controls the region of trust radius. The region of trust

parameter is adjusted according to how well the local quadratic approximation describes

the error surface. This is measured using the decision variable

∆t =
2E(wt)− E(wt + αtdt)

αtdT
t gt

The value of λt is then adjusted using

λt+1 =


λt/2 if ∆t > 0.75

4λt if ∆t < 0.25

λt otherwise

This process represents a single step of the training algorithm. After the weight vector

w has been updated using

wt+1 = wt + αtdt

the process is repeated by re-evaluating equations (E.3)–(E.6). The algorithm is guar-

anteed to reduce the error at each step.

Note that the above algorithm requires the calculation of the first and second order

derivatives of the error function. If the weight vector has W dimensions, then the finite

difference (perturbation) approach to calculating the derivative will require W 2 forward

propagations through the network. The Hessian will require W 3 steps, which quickly

becomes computationally intractable with larger W values.

The expensive Hessian evaluation is replaced by the fast Hessian-vector product tech-

nique proposed by Pearlmutter [102], which is used to calculate Hdt. Note that the GD

algorithm still takes significantly less time to perform one iteration compared to SCG,

since the SCG algorithm requires one extra forward and backward propagation through

the network to compute the value of Hdt.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Appendix F

Derived Publications

This appendix lists all the papers that have been published, or are currently being reviewed,

that were derived from the work leading to this thesis.

1. F. van den Bergh. Particle Swarm Weight Initialization in Multi-layer Perceptron

Artificial Neural Networks. In Development and Practice of Artificial Intelligence

Techniques, pages 41–45, Durban, South Africa, September 1999.

2. F. van den Bergh and A. P. Engelbrecht. Cooperative Learning in Neural Networks

using Particle Swarm Optimizers. South African Computer Journal, (26):84–90,

November 2000.

3. F. van den Bergh and A. P. Engelbrecht. Effects of Swarm Size on Coopera-

tive Particle Swarm Optimisers. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 892–899, San Francisco, USA, July 2001.

4. F. van den Bergh and A. P. Engelbrecht. Training Product Unit Networks using

Cooperative Particle Swarm Optimisers. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN), pages 126–132, Washington DC, USA,

July 2001.

5. F. van den Bergh and A. P. Engelbrecht. A cooperative approach to particle swarm

optimisation. IEEE Transactions on Evolutionary Computation. Submitted De-

cember 2000.

281

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

APPENDIX F. DERIVED PUBLICATIONS 282

6. F. van den Bergh, A. P. Engelbrecht, and D. G. Kourie. A convergence proof for

the particle swarm optimiser. IEEE Transactions on Evolutionary Computation.

Submitted September 2001.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

Index

acceleration coefficients, 22

architecture selection, 204

cascade-correlation, 200

cognition component, 25

constriction coefficient, 60

context vector, 134

convergence, 78

premature, 110

CPSO-HK , 143

CPSO-SK , 134

credit assignment, 74

crossover

arithmetic, 18

one-point, 18

probability, 21

two-point, 18

uniform, 18

deception, 132

deceptive functions, 132

demes, 69

early stopping, 204

elitist strategy, 20

emergent behaviour, 28

exploitation, 99

exploration, 99

fitness function, 13

fitness-proportionate selection, 20

GCPSO, 100

genotype, 12

global minimiser, see minimiser, global

global minimum, see minimum, global

growing, 200

Hamming

cliff, 18

distance, 17

inertia weight, 32

island model, 69, 127

learning rate, 275

local minimiser, see minimiser, local

local minimum, see minimum, local

minimisation

constrained, 7

unconstrained, 7

minimiser

global, 8

local, 7

minimum

283

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

INDEX 284

global, 8

local, 8

MPSO, 118

mutation rate, 19

neighbourhood model, 69, 128

NFL, see No Free Lunch

No Free Lunch, 10, 132

optimisation

global, 8

linear, 6

non-linear, 6

overfitting, 199, 204, 205

phenotype, 12

pleiotropy, 12

polygeny, 12

position

current, 21

global best, 29

local best, 30

neighbourhood best, 30

personal best, 22

predator-prey, 65

premature convergence, 162

probabilistic selection, see selection, prob-

abilistic

pruning, 200

pseudo-minimiser, 140

random

particles, 118

sequences, 22

regularisation, 204

RPSO, 118

search

global, 102

local, 102

selection

probabilistic, 14

tournament, 13

simulated annealing, 33

social component, 25

split factor, 137

stagnation, 139, 165

stochastic term, 22

strategy parameters, 14

swarm size, 21

symbiosis, 65

tournament selection, see selection, tour-

nament

velocity, 21

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVaann ddeenn BBeerrgghh,, FF ((22000066))

	Front
	Title page
	Abstract
	Opsomming
	Acknowledgements
	Editing proclamation
	Contents
	List of figures
	List of tables

	Introduction
	Motivation
	Objectives
	Methodology
	Contributions
	Thesis Outline

	Background
	Optimisation
	Local Optimisation
	Global Optimisation
	No Free Lunch Theorem

	Evolutionary Computation
	Evolutionary Algorithms
	Evolutionary Programming (EP)
	Evolution Strategies (ES)

	Genetic Algorithms (GAs)
	Particle Swarm Optimisers
	The PSO Algorithm
	Social Behaviour
	Taxonomic Designation
	Origins and Terminology
	Gbest Model
	Lbest Model

	Modifications to the PSO
	The Binary PSO
	Rate of Convergence Improvements
	Increased Diversity Improvements
	Global Methods
	Dynamic Objective Functions

	Applications
	Analysis of PSO Behaviour
	Coevolution, Cooperation and Symbiosis
	Competitive Algorithms
	Symbiotic Algorithms

	Important Issues Arising in Coevolution
	Problem Decomposition
	Interdependencies Between Components
	Credit Assignment
	Population Diversity
	Parallelism

	Related Work

	PSO Convergence
	Analysis of Particle Trajectories
	Convergence Behaviour
	Original PSO Convergence
	Convergent PSO Parameters
	Example Trajectories
	Trajectories under Stochastic Influences
	Convergence and the PSO

	Modified Particle Swarm Optimiser (GCPSO)
	Convergence Proof for the PSO Algorithm
	Convergence Criteria
	Local Convergence Proof for the PSO Algorithm

	Stochastic Global PSOs
	Non-Global PSOs
	Random Particle Approach (RPSO)
	Multi-start Approach (MPSO)
	Rate of Convergence
	Stopping Criteria

	Conclusion

	Models for Cooperative PSOs
	Models for Cooperation
	Cooperative Particle Swarm Optimisers
	Two Steps Forward, One Step Back
	CPSO-SK Algorithm
	Convergence Behaviour of the CPSO-SK Algorithm

	Hybrid Cooperative Particle Swarm Optimisers
	The CPSO-HK Algorithm
	Convergence Proof for the CPSO-HK Algorithm

	Conclusion

	Empirical Analysis of PSO Characteristics
	Methodology
	Convergence Speed versus Optimality
	Convergent Parameters
	Miscellaneous Parameters
	Discussion of Results

	GCPSO Performance
	Global PSO Performance
	Discussion of Results

	Cooperative PSO Performance
	Experimental Design
	Unrotated Functions
	Rotated Functions
	Computational Complexity

	Conclusion

	Neural Network Training
	Multi-layer Feedforward Neural Networks
	Summation-unit Networks
	Product-unit Networks

	Methodology
	Measurement of Progress
	Normality Assumption
	Parameter Selection and Test Procedure

	Network Training Results
	Iris
	Breast Cancer
	Wine
	Diabetes
	Hepatitis
	Henon Map
	Cubic Function

	Discussion of Results
	Conclusion

	Conclusion
	Summary
	Future Research

	Glossary
	Definition of Symbols
	Derivation of Explicit PSO Equations
	Function Landscapes
	Gradient-based Search Algorithms
	Gradient Descent Algorithm
	Scaled Conjugate Gradient Descent Algorithm

	Derived Publications
	Index

