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Abstract 
One of the applications of the Satellite Laser Ranging (SLR) technique is the derivation of 

gravity field models; these models have various geophysical and geodynamical applications. 

Gravity field modelling has reached a new era where the latest satellite missions (CHAMP, 

GRACE and GOCE) are thought to provide significant improvement of global gravity field 

information in terms of quality and spatial resolution. In particular, the recent satellite missions 

carry on-board Global Navigation Satellite System (GNSS) receivers, accelerometers, K/Ka-

band microwave system (e.g. in GRACE) and gradiometers (e.g. in GOCE) allowing 

measurements of gravity field with unprecedented accuracy in contrast to the unsteady and 

fragmented orbit tracking by unevenly distributed SLR ground stations.  

Numerous gravity field models have been derived based on the newly available data sets 

by various research groups globally. Due to the availability of high quality SLR and satellite 

data, some of the older gravity field models are being updated as new models with higher degree 

and order are developed. Notwithstanding the significant progress in gravity field modelling, 

research focusing on assessing the accuracy and precision of the existing gravity field models 

has largely remained insufficient. The difference between the observed and computed satellite 

orbit (which is often expressed as the O-C range residuals) is used as a parameter for Precise 

Orbit Determination (POD) of satellites. Furthermore, O-C range residuals computed during 

SLR analysis are used as proxy parameters for evaluating the accuracy of gravity field models.   
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The work presented in this thesis firstly reviewed and evaluated the accuracy of gravity field 

models released between 1990 and 2008. The accuracy of the gravity field models was 

examined by analysing the O-C residuals computed from LAGEOS 1 and 2 data analysis based 

on a set of twelve gravity field models.  The results demonstrated that in general, there has been 

an improvement in the accuracy of gravity field models released between 1990 and 2008 by a 

factor of 2 based on improvements in the O-C residuals. Additionally, the influence of SLR tide 

parameterization (the IERS 2010 solid Earth and pole tide models) on the O-C residuals across 

five gravity field models has been assessed and results illustrate that the solid Earth and pole 

tides parameterization influence on the O-C residuals is dependent on the type of gravity field 

model. In order to ascertain the significance of mean differences in the Standard Deviations 

(SD) of O-C residuals based on the tide parameterization options, the student’s t-test was used. 

Results suggest that in general the O-C residuals derived from SLR LAGEOS 1 data have 

insignificant mean SD differences across the tide parameterizations. On the other hand analysis 

of SLR observations of LAGEOS 2 resulted in statistically significant mean SD differences in 

the O-C based on EIGEN-CG03C, EGM2008 and AIUB-GRACE01S gravity field models. The 

2J  coefficient forms part of the SLR Data Analysis Software (SDAS) package output products 

and was investigated in this thesis due to its role in understanding mass-redistribution within the 

Earth system (i.e. the equatorial bulge due to centrifugal force and rotation). In particular, the 

2J  coefficient computed from SLR analysis of LAGEOS 1 and 2 data sets and based on the four 

selected gravity field models were compared with a priori 2J  coefficients from the four models 

and those published in the literature. The results indicated that the 2J  coefficients computed 

from the SDAS package were in agreement with the published coefficients. For geophysical 

applications, the relationship between the 2J  parameter and LOD and AAM was investigated by 

use of data adaptive analysis methodology (the empirical mode decomposition). The results 

demonstrated that some degree of synchronization exists between the signal components of 2J  

and LOD and 2J  and AAM. �

 

Keywords: Satellite Laser Ranging tracking, Earth’s gravitational field, gravity field models, 

orbit sensitivity analysis, orbit parameter estimation, 2J  spherical harmonic coefficient. 
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1. Introduction 

1.1.  Background 
The gravity field of Earth is a conservative field of force which is constantly changing. In 

essence, the gravitational potential at an external point is the sum of the gravitational potential, 

the potential of centrifugal forces and a varying component resulting from tidal effects from the 

Moon and Sun as well as from the motion of the Earth’s poles.  The strength and direction of the 

gravity field exhibits spatial-temporal variations. For example, due to the rotation of Earth, the 

Earth’s gravity field at the poles is not the same as the gravity at the equator. Density, mass re-

distribution and dynamics of the Earth’s surface are often inferred from the gravity field and its 

spatial-temporal variability (Chen et al., 2005a). The gravity field of Earth plays a significant 

role in various fields of research such as geophysics, oceanography, hydrology, glaciology, 

geodesy and solid Earth science. In particular, the gravity field of Earth may be applied in 

geodynamics for example to observe time varying physical processes such as the post glacial 

uplift or sea level changes (Rummel et al., 2002). In geodesy, the gravity field of Earth may be 

used for precise satellite orbit determination (Rummel et al., 2002; Svehla and Rothacher, 

2004). 

The gravity field of Earth is often measured by use of geodetic satellite data collected 

from Satellite Laser Ranging (SLR) observations. These orbiting satellites are affected by both 

gravitational and non-gravitational accelerations (e.g. atmospheric drag, radiation pressure, etc.). 

During analysis of SLR observations, spatial-temporal variability and dynamics of the gravity 

field of Earth are inferred from analysing satellite orbit perturbations induced by the gravity 

field. A number of gravity field models (expressed as a set of coefficients consisting of a series 

expansion of spherical harmonics) have been derived since the mid 1960s by use of SLR 

tracking data and sometimes combined with terrestrial and altimeter data (e.g., Schwintzer et al., 

1991, Lemoine et al., 1998, Foerste et al., 2006 and others). Accuracy of these models in terms 

of precise orbit determination (POD) depends on data availability, quality, type and 

geographical coverage. 

The inherent biases in most of the existing gravity field models have not been 

extensively studied. These biases could be as a result of utilizing data from satellite missions 

that were not designed for gravity measurements. This is particularly true in cases where the 

 
 
 



2 
 

orbital parameters of the satellite in question are not suited for accurate gravity field recovery. In 

addition, SLR measurements often used for gravity field computation (i.e., time of flight 

measurements) are weather dependent. In most areas, approximately 50% of the time weather 

conditions such as cloud cover and rain do not allow for laser ranging. Furthermore, terrestrial 

gravity data and satellite altimeter data may also bias some of the gravity field models (e.g., the 

combined and tailored category of the gravity field models) since the geometry of the 

observations is not uniform (the data are not globally distributed). Difficulties in modelling the 

non-gravitational forces of most of the geodetic satellites (in particular the low Earth orbits) also 

limit the plausibility of achieving significant improvement in gravitational field modelling.  

Nowadays the use of the on-board GPS/gradiometer receiver from the latest satellite 

missions (CHAMP, GRACE and GOCE) allows POD with unprecedented accuracy and almost 

complete spatial and temporal coverage. The data collected from these missions have resulted in 

the determination of a variety of new global gravity field models (e.g., EIGEN1, AIUB-

CHAMP01S, EIGEN-CG04S, AIUB-GRACE01S, EIGEN-5C and many others) as well as 

updating the old gravity field models (e.g., EGM96 to EGM2008 and EIGEN-CG01C to 

EIGEN-CG03C, EIGEN-1S to EIGEN-6S, GGM02C to GGM03C, AIUB-GRACE01S to 

AIUB-GRACE013S). Today there are more than 100 global geopotential models (GGMs) 

derived by different research groups around the world. The ongoing development of 

geopotential models could be attributed to the availability of new data sets (with high quality 

and quick turn-around time) particularly from the recent advanced satellite missions as well as 

the SLR tracking data of multiple satellites.  

Furthermore, development and improvement in gravity field modelling is anticipated as 

quantitative data become available in the future due to improvement of SLR technology. In 

particular, the employment of longer data spans from CHAMP, GRACE and GOCE with 

advanced processing software algorithms and empirical models are expected to increase the 

resolution and further improve the accuracy in gravity field models. Furthermore, the existence 

of numerous satellite missions not necessarily dedicated to gravity field research (e.g., COSMIC 

and SWARM missions) but equipped with space-borne GPS receivers are expected to contribute 

to the development of more accurate gravity field models (Prange et al., 2008). These 

expectations however require that the accuracy and precision of existing gravity field models be 

assessed and validated. The research reported in this thesis focuses on investigating the accuracy 
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of different gravity field models using a new SLR analysis software package developed at 

Hartebeesthoek Radio Astronomy Observatory (HartRAO); it was named SLR Data Analysis 

Software (SDAS) by Combrinck (2010). The SDAS package was developed based on a 

modified spacecraft dynamics library provided by Montenbruck and Gill (2001). Some of its 

technical details are reported in Combrinck and Suberlyak, (2007).  The software was designed 

by Combrinck (coding started in August 2004) and has been significantly updated and modified 

by him since the initial application report of 2007, and has been specifically modified to allow 

testing of different gravitational models. 

 

1.2.  Significance of the research 
The International Laser Ranging Service (ILRS) has continued to make SLR observation data 

sets available to the scientific community (about four decades of data) since its formation in 

1998. This service coordinates its operations, data dissemination and analysis through working 

groups, data and analysis centres. Unfortunately, none of the SLR analysis, lunar and associate 

analysis centres are in Africa. This research effort is a demonstration of preparedness towards 

the development of the first SLR analysis centre on the African continent. To analyse SLR data 

particularly for POD and geodetic parameter estimation only a few known software packages 

such as NASA/GSFC GEODYN II (Pavlis et al., 1999; Pavlis et al., 2006), NASA/GSFC 

SOLVE software, SATellite ANalysis (SATAN) software (Sinclair and Appleby, 1986), GFZ 

analysis software package EPOSOC and the University of Texas Orbit Processor (UTOPIA) are 

currently widely used by the analysis centres. However, the SDAS package (which is 

continuously updated and improved) will have to be augmented with several algorithms before it 

can be used to participate as an ILRS analysis centre, in order to produce standard analysis 

centre products, such as Earth Orientation Parameters (EOPs). These upgrades are in progress 

and new features are regularly added. 

 A number of gravity field models have been developed based on a combination of SLR, 

terrestrial and satellite altimeter data since the mid 1960s.  The progressive development of 

gravity field modelling is often characterized by an improvement in spatial and temporal 

resolution and by the increased degree and order (of the spherical harmonics) of a geopotential 

field. Some of the new gravity field model developments (i.e. those models derived from 

CHAMP and GRACE satellite data) are followed by a validation phase that is often limited 

 
 
 



4 
 

spatially. Despite the continuous gravity field model development, research on the over-all 

accuracy of these models has not been reported. The present research contributes towards 

investigating the accuracy of some of the selected gravity field models and model categories 

(e.g. satellite-only, combined and tailored gravity field models). In general, the scientific 

contribution of the research reported in this thesis is particularly relevant to the SLR community, 

space geodesy and in general to Earth system science. 

 

1.3.  Aim and objectives 
The overall aim of the present research is to study the accuracy of various gravity field models 

based on the SLR analysis software developed at HartRAO. In particular the LAser 

GEOdynamics Satellite (LAGEOS) 1 and 2 SLR data sets were considered in calculating the 

SLR range residuals i.e. the Observed-Computed (O-C) residuals. The specific objectives of this 

project were to: 

• Analyse the historical development of gravity field models 

• Calculate the range residuals using the SLR analysis software developed at HartRAO 

based on different geopotential models 

• Investigate the accuracy of selected gravity field models using LAGEOS 1 and 2 data 

• Investigate the contributions of Earth and pole tides on the O-C range residuals across 

selected gravity field models by use of different tide parameterization in the SDAS 

package. 

• Compare the SDAS estimated 2J  with those published in the literature as well as 

investigating possible association of the 2J  coefficient with other geophysical 

parameters such as atmospheric and ocean angular momentum and the length of day. 

 

1.4.  Outline of the thesis 
This thesis consists of seven chapters. In Chapter 2 an overview of space geodetic techniques is 

provided focussing on the SLR observational technique and its scientific applications.  The data 

and methods used (analysis strategy) for data processing are described in Chapter 3. Chapter 4 

contains the results of studies on the general improvement in gravity field modelling. In 

addition, results on the accuracy of gravity field models based on POD are presented. A 
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sensitivity analysis study is presented in Chapter 5. In Chapter 6 the 2J  coefficient estimated by 

the SDAS package from EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S gravity field 

models is compared with the a priori 2J  for the four models. Furthermore, a linkage between 2J  

and geophysical parameters, the length-of-day and atmospheric angular momentum was 

assessed. Lastly, Chapter 7 summarizes the research carried out, highlights research findings and 

provides recommendations for further research. 
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2.   Space geodetic techniques and their data applications 
 

          To know the history of science is to recognize the mortality of any claim to universal truth, Evelyn Fox 
Keller, 1995. 

 
2.1.  Introduction 
The launch of artificial satellites as early as 1957 has presented an unprecedented prospect of  

using the long period of available satellite data to study the size, shape and rotation of Earth as 

well as the variations in the Earth’s gravity field. This is known as the three pillars of geodesy1 

(geokinematics, rotation and gravity field) in modern geodesy. In particular, the use of satellites 

for geodetic applications led to the development of satellite geodesy2. Satellite geodesy 

observations are achieved through space based techniques, particularly SLR and satellite 

positioning (e.g., Global Navigation Satellite Systems (GNSS)). The SLR technique measures 

the travel time (converted to range and corrected for a number of range delay parameters) of a 

transmitted laser pulse from the ground tracking station to the orbiting satellite in space and 

back to the ground station with an accuracy of approximately a centimetre. Applications of SLR 

measurements include the determination of the Earth’s gravity field, monitoring of motion of the 

tracking station network with respect to the geocentre as well as calibration of geodetic 

microwave techniques (e.g. calibration of satellite orbits where the satellites are equipped with 

radar altimeters). On the other hand satellite based positioning and navigation systems, in 

particular the Global Positioning System (GPS), have opened unlimited possibilities for its use 

e.g. in geodetic control surveying and navigations (Seeber, 2003). For example, GPS data have 

been used for precise land navigation and have contributed to the establishment of precise 

geodetic control and the determination of GPS elevations above sea level.   

Very Long Baseline Interferometry (VLBI), a technique which was developed in the late 

1960’s, has been broadly used in various fields of geodynamics such as global plate tectonic 

measurements and studies of variations in the Earth’s rotation (Ryan et al., 1993; Eubanks et al., 

1993). This technique has also resulted in the establishment and maintenance of an accurate and 

�������������������������������������������������������������
1 Geodesy can be defined as the science that determines the size and shape of the earth, the precise positions and 
elevations of points, and lengths and directions of lines on the Earth’s surface, and the variations of terrestrial 
gravity (definition adopted from the International Association of Geodesy (IAG)).�
2 Satellite geodesy is a branch of geodesy which is concerned with satellite orbits, motion, perturbations and 
satellite based positioning (Seeber, 2003). 
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stable inertial (celestial) reference system which replaced the fundamental star catalogues. Here, 

a catalogue of Quasars (stable and distant radio sources) is used for defining the International 

Celestial Reference Frame (ICRF). The three techniques (SLR, GNSS and VLBI) together with 

Doppler Orbitography and Radio positioning by Satellites (DORIS) and even the Lunar Laser 

Ranging (LLR) technique, are the precise geodetic measurement methods and are often referred 

to as space geodetic methods or techniques (Koyama et al., 1998). Space geodetic techniques 

are the fundamental tools for modern geodesy whose scope encompasses the provision of 

services to both society and the scientific community. Since these techniques have different 

characteristics in many aspects, it is preferred to collocate them (locate them on the same site) in 

order to compare the different and independently obtained results with each other thus 

improving their individual reliability. In this chapter the key space geodetic milestones are 

described and then a brief discussion of the principle and the main observables of the three 

space geodetic techniques (i.e., SLR, VLBI and GNSS) follow. A detailed focus is given to the 

SLR technique since it is used in this study. Here the discussion includes the properties of SLR, 

modelling factors that affect the accuracy of SLR measurements and some applications. 

 

2.2. Milestones in space geodesy 
Going back in history, geodesy together with its counterparts e.g. surveying, positioning and 

navigation merely meant measuring of angles as shown in Figure 1. To achieve such 

measurements the scale was roughly introduced by known distances between two sides of 

interest. Measurements using cross-staffs were often used to perform relative, local and absolute 

positioning (Beutler, 2004). A cross-staff is a mechanical device used to measure the angle 

between two objects (e.g., stars), see for example Figure 2. Historically the cross-staff was used 

in navigation to help sailors orient themselves, astronomers to study the sky, and by surveyors 

interested in taking accurate measurements. The cross-staff consists of a long pole with a series 

of markings and a sliding bar mounted at a perpendicular angle called a transom. To use a cross-

staff, the navigator would position the end of the pole on the cheek just below the eye, and pick 

two objects to sight to, such as the horizon and the Sun. The navigator would then slide the 

transom along the cross-staff until one end lines up with one object and the opposite end lines 

up with the other object. Once the transom is in position, the marking covered by the transom 
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indicates the angle between the two objects, which can be used to calculate latitude and to 

collect other information.  

 

�
Figure 1. Historical technique of geodesy, surveying, positioning and navigation. 
Source: http://www.reformation.org. 

 

�
Figure 2. Cross-staff. Source: http://www.granger.com.  
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The geographical latitude of a site could be established by determining the elevation of the Sun 

or the polar star Polaris3 and then looking up the latitude from a pre-calculated table. On the 

other hand, the longitude was determined by calculating the time difference between the 

unknown site and Greenwich ( 0�  longitude). The time difference parameter was normally 

derived either by observing the Sun and measuring the local solar time or by observing certain 

stars and measuring their sidereal time. Problems related to the realisation of Greenwich time at 

the unknown observing time were solved by measuring lunar angular distances, lunar distances 

and angles between bright stars and the Moon. Increased accuracy in lunar orbit prediction 

allowed angular distances between the Moon and stars to be precisely predicted and tabulated in 

astronomical and nautical almanacs as a function of Greenwich local time (Beutler, 2004).    

The development of new instruments such as marine chronometers (these are highly 

accurate clocks kept aboard ships and used to determine longitude through celestial navigation) 

resulted in dramatic improvement in navigation accuracy (Beutler, 2004). For instance, the 

cross-staff method was quickly replaced by more sophisticated optical devices which included 

telescopes. This innovative development allowed the determination of more accurate star 

fundamental catalogues and improvement in predicting motion of planets. Disciplines of 

fundamental astronomy emerged from the interaction between positioning, navigation, geodesy 

and surveying. Under such disciplines the terrestrial reference system was realized based on the 

geographical coordinates of a network of astronomical observatories with an accuracy of about 

100 m (Beutler 2004). On the other hand the celestial reference frame was realized by using the 

derived-fundamental catalogues of stars. The transformation between the terrestrial reference 

and celestial reference frames enabled the monitoring of Earth rotation in inertial space and on 

the Earth’s surface. Such monitoring revealed that the motion of the Earth’s rotation exhibited 

short periodic variations. For example the Length-Of-Day (LOD) was noticed to slowly increase 

by about 2 ms per century. In addition, discoveries of the Earth’s rotation axis moving on the 

Earth’s surface (these are polar motion effects) were also reported in the literature.  Historically, 

surveying and navigational equipment were too inaccurate to measure observables such as 

changes in LOD or polar motion, but as equipment and techniques improved, it was quickly 

�������������������������������������������������������������
3 Polaris is a bright star situated close to the North Celestial Pole (http://solar.physics.montana.edu).  This type of 
star never rises or sets as the night progresses, but instead seems to be glued to the sky and is always in the North. 
So if one is lost in the Northern Hemisphere, one can always figure out direction by finding Polaris. 
�
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determined that the dynamics of the rotation of the Earth was not simply a case of undisturbed 

slow and predictable rotation.  

The determination of the Earth’s gravitational field also plays an essential role in 

geodesy and surveying. In the pre-space geodesy era, the gravity field of Earth was determined 

solely by in situ measurements on or near the surface of the Earth. Terrestrial instruments, which 

included gravimeters4 and zenith cameras, were developed for gravity field measurements. 

These instruments however were suited for modelling the local as well as regional properties of 

the Earth’s gravitational field. The desire to model the global properties of the gravity field of 

the Earth resulted in the development of satellite gravity missions. The use of artificial satellite 

missions led to the development of satellite geodesy (Kaula, 1966). Today there are four 

primary techniques, namely SLR, VLBI, GNSS and DORIS that are used in space geodetic 

observations for the purpose of studying the size, figure and deformation of the Earth and 

determination of its gravity field and the field’s spatial and temporal variations. Apart from 

scientific interest, contributions from space geodetic techniques may also be applied in most 

societal areas ranging from disaster prevention and mitigation, to the provision of resources such 

as energy, water and food and also gaining an understanding of climate change. 

 

2.3. Modern space geodetic techniques 
Space geodetic techniques which include SLR, GNSS and VLBI and DORIS are fundamental 

tools of geodesy. Principles and properties of GNSS, VLBI and SLR methods are briefly 

reviewed in the following sections. For more information on DORIS the reader is referred to the 

following published literatures, Gambis (2004), Willis et al. (2006) and Coulot et al. (2007).   

 

  2.3.1.  GNSS observable 
Global Navigation Satellite System is a term used to describe a group of satellite based 

navigation systems that allow for the determination of positions anywhere on Earth. Currently 

the most commonly used GNSS consist of three main satellite technologies: the American 

controlled GPS, the Russian controlled Global Orbiting Navigation Satellite System 

(GLONASS) and the European GALILEO system. Each of these satellite systems consists 

�������������������������������������������������������������
4 A gravimeter is a specialized type of accelerometer designed for measuring the local gravitational field of the 
Earth (Zolfaghari and Gharebaghi, A., 2008). 
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mainly of three segments: (a) space segment, (b) control segment and (c) user segment 

(Aerospace Corporation, 2003). The GPS is the most utilized system for positioning, navigation 

and timing purposes and GPS satellites act as reference points from which receivers on the 

ground determine their positions. The navigation principle is based on the measurement of 

pseudo ranges between the user and at least three satellites. Ground stations precisely monitor 

the orbit of every satellite by measuring the travel time of the signals transmitted from the 

satellite distances between receiver and satellites. Resulting measurements include position, 

direction and speed.  

In GNSS observations, measurements are often carried out using pseudo-range (or code 

range) and carrier phase. The primary observable is the phase measurement, which has 

applications in high precision positioning. Code or pseudo-range measurements are derived 

from the time difference between signal reception at receiver r  and signal transmission at 

satellite, s . The time of signal transmission is equal to the time of reception less the signal 

travel time. Generally, the basic code observation equation is reported in Verhagen (2005) and is 

given by Equation (1) 

 , , ,( ) ( ) ( ) ( ),s s s s
r j r r j r jP t c t t t t e tτ� �= − − +� �  (1) 

where ,
s
r jP  is the code observation at receiver r  from satellite s  on frequency [ ]j m , t  is the 

time observation in GPS time [ ],s c  is the speed of light in vacuum [ ]/ ,m s  rt  is the reception 

time at receiver [ ],r s st  is transmission time from satellite [ ],s s τ  is the signal travel time  

and e  the code measurement error. Since the receiver clock time and satellite clock time are not 

exactly equal to GPS time, the respective clock errors rdt  and sdt  ought to be accounted for as 

described in Equation (2) 

  (2) 

 

 

Substituting this Equation (1) yields 

 , , ,( ) [ ( ) ( )] ( ).s s s s s
r j r j r r r jP t c c dt t dt t e tτ τ= + − − +  (3) 

Correcting ,τ s
r j  for instrumental delays at the satellite and the receiver as well as for 

atmospheric effects and multipath effects yield 
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where δτ  is the signal travel time from satellite antenna to receiver antenna [ ]s , rd  is the 

instrumental code delay in receiver [ ],s  sd  the instrumental code delay in satellite [ ],s ρ  the 

geometric distance between satellite and receiver [ ],m  [ ]da  the atmospheric code error and dm  

is the code multipath error [ ]m . With these corrections, the generalized code observation 

equation (see Verhagen, 2005) becomes�

 , , ,

, , ,

( ) ( , ) ( ) ( )
[ ( ) ( ) ( ) ( ] ( ).

s s s s s
r j r r r j r j

s s s s s
r r r j j r r j

P t t t da t dm t
c dt t dt t d t d t e t

ρ τ
τ τ

= − + + +
− − + + − +

 (5) 

Phase observation is a very precise but ambiguous measure of the geometric distance between a 

satellite and the receiver. Phase measurement equals the difference between the phase of the 

receiver-generated carrier signal at reception time, and the phase of the carrier signal generated 

in the satellite transmission time. The basic carrier phase observation equation is given by 

Equation (6) 

 , , , , ,( ) ( ) ( ) ( ).s s s s s
r j r j r j r r j r jt t t N tϕ ϕ ϕ τ ε= − − + +  (6) 

Here ϕ  is the carrier phase observation [cycles], N  is an integer carrier phase ambiguity and ε  

is the phase measurement error. The phases on the right hand site simplify as expressed in 

Equation (7)�

 
, , 0 , 0

, , 0 , , 0)

( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ( )) ( .

r j j r r j j r r j

s s s s s s s s
j j r j j r j r j

t f t t t f t dt t t

t f t t t f t dt t t

ϕ ϕ ϕ

ϕ τ ϕ τ τ τ

= + = + +

= − + = − + − +
 (7) 

Here, f  is the nominal carrier frequency 1 ,s−� �� �  0( )ϕr t  is the initial phase in the receiver at 

zero time [cycles] and 0( )ϕ s t  is the initial phase in the satellite at zero time [cycles]. Inserting 

these expressions the carrier phase observation equation becomes 

 , , , 0 , 0 , ,( ) ( ) ( ( ) ( ) ( ).s s s s s s s
r j j r j r r r j j r j r jt f dt t dt t t t N tϕ τ τ ϕ ϕ ε� � � �= + − − + − + +� � � �  (8) 

Multiplying this equation with the nominal wavelength of the carrier signal 
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         with   = ,j j j j
j

c
f

φ λ ϕ λ=  (9) 

yields the carrier phase observation equation in meters as  

 
, , , ,

, 0 , 0 , ,

( ) ( , ) ( ) ( ) ( ) ( ) (

( ) ( ) ( ).

s s s s s s s s
r j r r r j r r r j j r

s s s
r j j j r j r j

t t t a t c dt t dt t t t

t t N t

φ ρ τ δ τ δ δ τ

φ φ λ ε

� �= − + + − − + + −� �

� �+ + + +� �

 (10) 

 

2.3.2.  The VLBI observable 
Very Long Baseline Interferometry (VLBI) as a technique measures the delay in the arrival 

times of radio signals produced by a distant source being monitored simultaneously at two 

terrestrial antennas; see for example schematic representation in Figure 3. The time difference 

between the arrivals of the signal at each radio telescope is derived by correlation (at the 

correlator). These time delays and/or its derivative are used to calculate precisely the distance 

and direction of the baselines between the telescopes. Extragalactic objects that generate radio 

signals are often considered as point sources due to their great distance. In practice, for the 

purpose of geodetic VLBI, these sources (quasars) are carefully selected to ensure that they 

exhibit low proper motion and minimal source structure, so as to appear fixed and point-like. 

When this happens the time dependence of the time delay is generated via the Earth’s motion, 

although it is dependent on the source location and the baseline vector between the two 

antennas. 

 In VLBI measurements the main observed quantities include the geometric delay, phase 

delay, group delay, the delay rate, and correlated amplitude. The geometric delay is directly 

related to the fringe phase as a function of frequency. It is as a result of the combination of the 

geometry of baseline and the direction to the radio source. Mathematically this delay observable 

can be described as in Tanir et al. (2006) and is expressed in Equation (11) 

 
1

,g B k
c

τ = − ⋅
��

 (11) 

where c  is the speed of light, B
�

 is the baseline vector between two stations and k
�

 is the unit 

vector towards the observed source. The baseline vector B
�

 can be transformed between the 

terrestrial geocentric system and celestial geocentric system. Such a transformation may be 

formulated as in Tanir et al. (2006) and is described as per Equation (12) 
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 ( ) ( ).c TB t PNUXYB t=
� �

 (12) 

In Equation (12) ( )cB t
�

 is the baseline vector in the celestial system and TB
�

 is the baseline 

vector in the terrestrial system. In addition, ( ), , , ,P N U X Y  represents a transformation term 

with respect to the Earth orientation parameters, e.g. precession and nutation model, a priori 

information for Earth rotation ( )1UT  and polar motion ( ),p px y . The baseline vector in the 

terrestrial reference frame takes into account corrections for: solid Earth tides, plate tectonics, 

ocean tide loading, atmospheric loading, hydrological loading, ionospheric correction, 

tropospheric correction and clock correction. Taking into consideration these corrections for 

geometric delay and transformation between the celestial and terrestrial system the geometric 

delay equation may be rewritten as 

 . . . ....T
obs c tides p tect o load h load ion trop clock

B
YXUNPk

c
τ τ τ τ τ τ τ τ= − + + + + + + +

�
�

. (13) 

 Here, τobs  is the observed geometrical delay, TB  corresponds to the baseline vector in the 

terrestrial system and ck  is the source vector in the celestial system. 

 The phase delay is given by the ratio of the observed fringe phase and the reference 

angular frequency,  

 .
2

T n
φ

φτ
πν ν

= +  (14) 

where n  is an unknown integer. The group delay is the derivative of the fringe phase with 

respect to angular frequency and is described by Equation (15) 
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The phase delay rate is defined as time rate of change of the phase delay and is given by 

Equation (16) 
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The correlated or visibility amplitude of the radio source signal is given by Equation (17) 
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Here, Sc is the correlated amplitude and St is the total amplitude or total flux. 

 

 
Figure 3. Schematic representation of VLBI concept. 

 

2.3.3.  SLR observable 
Satellite Laser Ranging (SLR) is a technique that measures the two-way travel time of a short 

laser pulse which is reflected by an orbiting satellite. This method of measurement is applied to 

orbiting satellites equipped with special mirrors known as retro-reflectors (which are made from 

glass prisms). A schematic diagram illustrating the operation of a typical SLR system is 

presented in Figure 4. In a typical SLR system, a transmitting telescope emits short laser pulses 

with energy between 10 and 100 mJ at a pulse repetition frequency ranging between 5 and 20 

Hz.  Some modern systems have lower power levels and higher firing rates up to 2 kHz. The 

emitted laser pulse has a typical duration of two hundred or less picoseconds, most often 

specified by the Full Width Half Maximum (FWHM) of the pulse.  
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Figure 4.  Schematic representation of a typical SLR system (adopted from Degnan, 1985). 

 

Laser pulses propagate through the atmosphere to the orbiting satellite. Pulses which illuminate 

any of the retro-reflectors are reflected back through the atmosphere to the ground station were 

they are collected via the receiving telescope. The receiving telescope collects and focuses the 

reflected pulse energy onto a transmission photocathode (radiation sensor located inside a 

vacuum envelope of a photomultiplier) device of a photomultiplier (or a Single-Photon 

Avalanche Diode (SPAD)). A photomultiplier is a versatile and sensitive detector of radiant 

energy in the ultraviolet, visible, and near infrared regions of the electromagnetic spectrum. 

When photons enter the glass vacuum tube, they impinge on the photocathode. The 

electron yield of this effect depends on the material of the cathode and is quantified as the ratio 

of emitted electrons to the number of incident photons. This is called the quantum efficiency, ε , 

and for SLR systems the efficiency is typically on the order of 10-15 percent (Degnan, 1985), a 

recently developed PMT with GaAsP photocathode and gating option (Hamamatsu R5916U-64) 

has a quantum efficiency of ~ 40% .  Photoelectrons are emitted and directed by an appropriate 

electric field to an adjacent electrode or dynode within the envelope. As a result of the 

acceleration between the dynodes, the number of emitted electrons multiplies from step to step 

(this is similar to a cascading process). A number of secondary electrons are emitted at the 

dynode for each impinging primary photoelectron. These secondary electrons in turn are 

directed to a second dynode and so on until a final gain of perhaps 106 is achieved. The electrons 
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from the last dynode are collected by an anode which provides the signal current that is read out. 

This signal current which represents the round-trip Time-Of-Flight (TOF) of the pulse is stored 

by the system computer along with other information such as station positions and its velocities. 

A basic equation representing an approximate TOF is given by Equation (18) 

 ,
2

c t
d

×=  (18) 

where c  is the speed of light and t  is the TOF. The speed of light is the signal propagation 

speed and a factor of two is included to reduce the round trip distance to the one way range. In 

order to obtain the best possible range precision5 from the ground station to the satellite 

numerous corrections corresponding to internal delays in the transmission and detection systems 

are to be taken into account. Considering such parameter corrections Equation (18) can be 

expanded into Equation (19) 

 0

1
.

2 s b rd c t d d d d η= ∆ + ∆ + ∆ + ∆ + ∆ +  (19) 

In Equation (19), t∆  is the measured TOF and is mostly affected by uncertainties in the signal 

identification. The preferred resolution for the measured TOF is often a few picoseconds. In 

addition, the measured TOF needs to be tied to universal time (because of the satellite’s motion 

relative to the Earth). The 0d∆  term corresponds to the eccentric correction on the ground, 

which is the intersection of the vertical axis and horizontal axis and is used as a reference point 

in the laser system. Similarly, sd∆  corresponds to the eccentric correction at the satellite and 

gives a geometrical relationship between the centre of each corner cube and the centre of mass 

(COM) of the satellite. The ILRS has COM corrections for different satellites and different laser 

frequencies (e.g. 1.01 m for AJISAI (Sasaki and Hashimoto, 1987) and 0.251 m for LAGEOS 2 

(Minott et al., 1993)). The bd∆  term in Equation (19) corresponds to the signal delay in the 

ground system. The geometric reference point and the electrical reference point is often not 

exactly at the same physical point; this correctional parameter is often determined through 

calibration with older systems that were calibrated with respect to a defined terrestrial target. 

The electrical delay and optical delay must be measured and constantly checked afterwards, to 

ensure that system dependent changes do not adversely affect measurement accuracies. 

�������������������������������������������������������������
5 Range precision refers to the degree of agreement of repeated measurements of the same property expressed 
quantitatively as the standard deviation computed from the results of a series of measurements. 
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Furthermore, rd∆  is the refraction correction as a result of atmospheric conditions which affect 

the propagation velocity of laser pulses. Laser pulses experience a delay in the lower part of the 

atmosphere, which makes measurements of these parameters along the total path difficult. 

Therefore atmospheric models are used that incorporate variables such as SLR site pressure and 

temperature and are supported by measured data at the laser site. Lastly, η  are random 

systematic and observation errors related to un-modelled residual effects.  

 

��������������	
���
�����
	�� ����	������

The first SLR experiment campaign began in the 1960s with the development of the first (Ruby 

based) SLR station tracking satellites such Beacon Explorer-B (BE-B) (Osorio, 1992). Since 

then numerous satellite missions have been launched for different applications such as geodetic, 

Earth sensing and radio navigation and a global network of SLR stations has been established, 

replacing the old Baker-Nunn optical camera (Combrinck, 2010). A historical overview of such 

missions is summarised in Table 1.�

 

Table 1. Timeline of artificial satellites which were tracked by global SLR stations. 

Name Launch date Height (km) Mission application 
Starlette 1975 960 Gravity, tides, orbit determination 
Lageos 1 1976 5900 Earth rotation, gravity, orbit, crustal deformation 
Ajisai 1986 1500 Crustal deformation, gravity, orbit determination 
Etalon 1/2 1989 19100 Crustal determination, Earth rotation 
ERS-1 1991 780 Altimetry, orbit determination 
Lageos 2 1992 5900 Crustal deformation, gravity, orbit determination 
Stella 1993 810 Gravity, tides, orbit determination 
ERS-2 1995 785 Altimetry, orbit determination 
GFO-1 1998 800 Oceanography 
CHAMP 2000 454 Gravity field, orbit determination 
GRACE 2002 485 Gravity field, orbit determination 
Larets 2003 691 Orbit determination 
GOCE 2009 295 Gravity field, geoid 

 

3.3.3.2.  Global network of SLR stations 

The current global network of SLR stations involved in artificial satellite tracking consists of 

over 40 stations and their global distribution is depicted in Figure 5. Most of the SLR tracking 

stations are located in the Northern Hemisphere leaving the Southern Hemisphere with weak 
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coverage. In Africa there are two stations, Helwan in Egypt and MOBLAS-6 (see Figure 6) 

located at HartRAO in South Africa. The space geodetic fundamental station HartRAO is 

involved with the International Laser Ranging Service (ILRS) activities as well as the other 

services of the International Association of Geodesy (IAG). This SLR tracking station is 

relatively isolated in Africa and more active than Helwan, hence plays a very important role as 

far as data coverage is concerned.  

 

�

Figure 5. ILRS tracking network. Source: http://www.nasa.gov.  
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�
Figure 6. MOBLAS-6 at HartRAO. Source: http://www.hartrao.ac.za.  

 

2.4. Modelling strategies in SLR 
 

2.4.1.  Forces acting on an orbiting satellite 

2.4.1.1. Two-body problem 

The two-body problem addresses the relative dynamics of two point masses attracted to each 

other by gravity. Its concept in SLR is primarily equivalent to modelling the forces of the 

motion between two gravitating masses, M  and m  (e.g., satellites around the Earth).  In 

particular, the two-Body problem is founded on the assumptions that:   

• the motion of the spacecraft is governed by attraction to a single central body,  

• the central body and satellite are both homogeneous spheres or points of equivalent mass 

and  

• only gravitational forces act on the bodies.  
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From Newton’s law of gravitation, the force F  on mass m  orbiting about a spherically 

symmetrical body of mass M  at distance r  from the centre of mass  is defined by Equation (20) 

as reported in Seeber (2003), 

 
2 .

GMm
F

r
= −  (20) 

Here G is the gravitational constant.�

Under the basic assumptions of the two-body problem the corresponding vector 

acceleration following Newton’s second law of motion is given by Equation (21), 

 
( )

3 ,
G M m

r r
r

+
= − �

��  (21) 

where the vector from the centre of mass of the central body to the satellite is given by ,r
�

M  is 

the mass of the central body and m  is the mass of the satellite. In addition, assuming that M  is 

the main attracting mass and the mass of the satellite, m  is extremely small such that compared 

to the central body M  (e.g., m M≤ ) the acceleration vector may be written as in Equation (22), 

 
3 .

GM
r r

r
= − �

��  (22) 

Equation (22) can be solved through an analytical integration method to yield the position and 

velocity of mass m  at future epochs. This is possible only if the initial conditions of position 

and velocity are known. In a case where perturbing forces act on an orbiting satellite then the 

satellite will experience additional accelerations due to the perturbing forces. In such case, the 

equation of motion may be written as in Equation (23), 

 
3 ,s

GM
r r k

r
= − +�

�
��  (23) 

where r
�  is the position vector of the centre of mass of the satellite and sk  is a perturbing vector 

(which is in general the summation of all the perturbing forces acting on an orbiting satellite) 

and can be expressed as in Equation (24) 

 s g ng empk a a a= + + . (24) 

Here ga is the sum of the gravitational forces acting on the satellite, nga  is the sum of the non-

gravitational forces acting on the surface of the satellite and empa  represent the unmodelled 

forces which act on the satellite due to either a functionally incorrect or incomplete description 
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of the various forces acting on the satellite (Seeber, 2003). The gravitational forces, ga  acting 

on an orbiting satellite consist of a series of perturbations that are often expressed by Equation 

(25),  

 ,g geo set ot rd smp rela P P P P P P= + + + + +  (25) 

where geoP  is the geo-potential force due to the gravitational attraction of the Earth, setP  and otP

define perturbations due to solid Earth tides and ocean tides respectively, rdP  is due to rotational 

deformation of the Earth,  smpP  are perturbations due to the Sun, Moon and planets and relP  

describes perturbations due to general relativity (Seeber, 2003). The non-gravitational forces 

acting on an orbiting satellite are given by Equation (26) as 

 .ng drag solar earth thermala P P P P= + + +  (26) 

 Here dragP  is the atmospheric drag acting on a satellite, solarP  is due to solar radiation pressure, 

earthP  describes perturbation due to Earth radiation pressure (related to the albedo of Earth, 

typically 10% of the acceleration due to direct solar radiation pressure), thermalP  is the 

perturbation due to thermal radiation imbalance resulting from non-uniform temperature 

distribution on different satellite surfaces.  

 

2.4.1.2. Gravitational field of the Earth 

The Earth’s gravity field is one of the most dominant forces that causes perturbations on an 

orbiting satellite. This force is often described in terms of spherical harmonic functions (Rapp, 

1998). Harmonic functions may be defined as functions that satisfy Laplace’s equation of the 

form given by Equation (27), 

 2 0.U∇ =  (27) 

In Equation (27), U  represents a model of the Earth’s gravity potential energy and 2∇  is the 

Laplace operator expressed as in Equation (28), 

 
2 2 2

2
2 2 2 .

x y z
∂ ∂ ∂∇ = + +
∂ ∂ ∂

 (28) 
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Expressing the Laplace’s equation in terms of spherical polar coordinates (where 

sin cos ,x r θ ϕ=  sin siny r θ ϕ=  and cosz r θ=  with [ ]0, ,r ∈ ∞  [ ]0,θ π∈  and [ ]0,2ϕ π∈  ) 

yields Equation (29) (Heiskanen & Moritz, 1967), 

 
2

2 2
2 2 2 2 2

1 1 1
sin 0.

sin sin
U U U

U r
r rr r r

θ
θ θθ θ λ

∂ ∂ ∂ ∂ ∂� � � �∇ = + + =� � � �∂ ∂ ∂ ∂ ∂	 
 	 

 (29) 

Here r  is the Earth’s geocentric radius, θ  is the geocentric co-latitude and λ  is the geocentric 

longitude. Equation (29) can be solved to obtain the gravity potential of the Earth in terms of 

spherical harmonics. For further details on how the gravity potential is derived from Equation 

(29), see Tapley et al. (2004a). In particular, the gravity potential can be expressed in the form 

described by Equation (30), 

 [ ]
max

2 0

( , , ) (sin ) cos sin .
lN l

nm nm nm
n m

GM GM a
U r P C m S m

r r r
ϕ λ ϕ λ λ

= =

� �= + +� �
	 


��  (30) 

Here, U  is the gravity potential, GM  is the Earth’s gravity constant, (r, ,�)ϕ  represent the 

magnitude of the radius vector, the latitude and the longitude respectively, ,n m  are the degree 

and order of spherical harmonics, nmP  are the Legendre functions and { },nm nmC S  are the 

spherical harmonic (Stokes’) coefficients (Tapley et al., 2004a). The associated Legendre 

function for a given order m  and degree n  is defined by Equation (31),  

 ( ) /22 ( )
1 ,

m
m n

nm m

d P x
P x

dx
= −  (31) 

where Pn(x) is the Legendre function which is expressed as a function of the independent 

variable x as depicted in Equation (32), 

 ( )21
( ) 1 .

2 !

n
n

x n n

d
P x x

n dx
= −  (32) 

In most cases the spherical harmonic coefficients,  are preferably given in normalized 

form, in which the order of magnitude remains approximately constant.  This is due to the fact 

that these coefficients decrease numerically with large orders of magnitude with increase of 

degree and order of spherical harmonics. Computationally, these large differences could lead to 

round-off errors, although with modern computers and compilers, it is less a problem currently 

than say thirty years ago. In the SDAS software, any format is read (normalized or 

unnormalized) and converted to an internal (unnormalized) format for numerical processing.  

{ },nm nmC S
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The standard normalization factor is defined as in Equation (33) see Montenbruck and Gill 

(2001),  

 
( ) ( )( )

( )
0! 2 1 2

,
!

m
nm nm

n m n
C C

n m

δ− + −
=

+
 (33) 

and  

 
( ) ( ) ( )

( )
0! 2 1 2

,
!

m
nm nm

n m n
S S

n m

δ− + −
=

+
 (34) 

where nmC  and nmS  are the standard coefficients used in Equation (30), nmC  and nmS  are the 

normalized coefficients and 0mδ  is the Kronecker delta between 0 and m . For normalization 

purpose Equation (32) can multiplied by, 

 
( )

( ) ( )
( )

2 1 ,                      if m=0 or

!
2 2 1 ,      if m 1.

!
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n m

+

−
+ ≥
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 (35) 

   Assuming that, 

 ( ) ( )
( ) .

m
m n

n m

d P x
P x

dx
=  (36) 

In terms of the fully normalized coefficients, Equation (30) can be rewritten as in Equation (37),  

 
max

2 0

( , , ) (sin ) cos sin .
lN l

nm nm nm
n m

GM GM a
U r P C m S m

r r r
ϕ λ ϕ λ λ

= =

� �
� �= + +� � � �

	 

��  (37) 

where, r  is the geocentric radius of the computation point, { },nm nmC S  are fully normalised 

spherical harmonic coefficients of degree n  and order ,m  ( )cosnmP θ  are fully normalized 

associated Legendre functions of degree n  and order m . The spherical harmonics, { },nm nmC S  

may be classified as zonal (here, 0m =  and the zeros of  depict that the sphere is 

divided into latitudinal zones), sectorial (here m n= ) and tesseral (in this case m n≠ ). A typical 

example of zonal spherical harmonic functions is the 2J  coefficient which is equivalent to, 

0 0 .n n nJ J C= − = −  The 2J  (oblateness) coefficient is the main contributor of mass distribution 

near the Earth’s polar axis causing the shape of Earth’s rotation to deviate from a perfect sphere 

{ },nm nmC S
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(Montenbruck and Gill, 2001). Figure 7 illustrates some examples of spherical harmonic 

functions. A typical geopotential model is often described by these spherical harmonic 

coefficients.  

 
Figure 7. Examples of spherical harmonic functions of degree n and order m. (a) zonal (b) 
tesseral (c) sectoral (Laxon, 2003). 
 

2.4.1.3. Third body effects  

Satellites undergo acceleration originating from gravitational forces from the Sun, Moon and 

planets. These third body effects can dominate atmospheric drag effects in the case of high 

altitude satellites when the atmospheric drag effect begins to diminish. Generally, the effects 

from the three body perturbing forces are commonly described as per Equation (38) as reported 

in Tapley et al. (2004a), 

 
3 3

1

.
=

� �∆
= −� �

� �∆	 

�

� �
pn

j j
smp j

j j j

r
P GM

r
 (38) 

Here it is assumed that the gravity fields of the celestial bodies are perfect spheres. In Equation 

(38) j  represents a specific body, jGM  denotes the gravitational parameter of each ,j  the 

position of the body j  relative to the satellite is given by ,j∆
�

 and jr
�

 is the position vector of 

the body j  relative to Earth.  

 

 2.4.1.4. Solid Earth tides 

The solid Earth tides often manifest as an indirect effect from the attraction of Moon and Sun. 

They cause a deformation of the Earth’s figure and therefore of the Earth’s gravity field, which 

can be expressed as a deviation of the harmonic coefficients. The deviations of the Earth’s 

 
 
 



26 
 

harmonic coefficients of the second and third order of spherical harmonics due to solid tides can 

be expressed by Equation (39) (McCarthy and Petit, 2003),  

 ( ) ( )
1

3

0
2

sin   with 0 .
2 1

j

n

imjnm e
nm nm nm j n

j E j

GMk R
C i S P e S

n GM r
λ

+

−

=

� �
∆ − ∆ = Φ =� �� �+ 	 


�  (39) 

Here nmk  is the nominal degree Love number for degree n  and order ,m  eR  is the equatorial 

radius of the Earth, EGM  is the gravitational parameter for the Earth, jGM  represents the 

gravitational parameters for the Moon ( )2j =   and Sun ( )3 ,j =  jr  corresponds to the distance 

from geocentre to Moon or Sun, jΦ  is the body fixed geocentric latitude of Moon or Sun, jλ  

corresponds to the Earth fixed east longitude (from Greenwich) of Moon or Sun and lastly, nmP  

is the normalized associated Legendre function. The force acting on a satellite due to solid Earth 

tides is described by Equation (40), 
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3 15cos 6cos .
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In Equation (40),  r
�

 is the radius vector of satellite (sat), Sun (S) and Moon (M), θ  is the angle 

between radius vectors satr
�

 and , ,S Mr
�

 Ea  is the equatorial radius of Earth, GM  is the 

gravitational constant of the Sun and Moon. 

 

2.4.1.5. Ocean Tides 

The deformation of the Earth’s gravity field caused by ocean loading tides can also be 

manifested in the deviations of the harmonic coefficients. A full description of equations 

describing the ocean tides model can be found in McCarthy and Petit (2003) and Petit and 

Luzum (2010). The equation describing ocean loading has been reported in McCarthy and Petit 

(2003) and Petit and Luzum (2010) and is given in Equation (41), 

 ( )
( )

_
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s n m

C i S F C S e θ±± ±
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where,  
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 (42) 
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Here g is mean equatorial gravity, '
nk  is the load deformation coefficients, ,snmC  snmS  are ocean 

tide coefficients for the tide constituent ,s and θ  is the argument of tide constituent s . 

 

2.4.1.6. Pole tides 

The pole tides given by Equation (43) are generated by the centrifugal effect of polar motion  
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 (43) 

where ( )1, 2 m m  are wobble variables. The deformation which constitutes the pole tide produces 

a perturbation given by, 

 ( )
2 2

i
e 2 1 2

r
sin 2 R k m im e ,

2
λΩ θ � �− −� �  (44) 

in the external potential. For the purpose of satellite orbit determination this perturbation is 

related to changes in the geopotential coefficients 21C  and 21S .  

 

2.4.1.7. Relativistic effects 

The relativistic correction to the acceleration of an orbiting satellite is commonly accounted as 

per Equation (45) recommended by the IERS 2003, published by McCarthy and Petit (2003) and 

Petit and Luzum (2010),    
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 (45) 

In Equation (45) the correction includes: 

• first term, the non-linear Schwarzschild field of the Earth ( )9 -210 m s ,−≈  

• second term, Lense-Thirring precession (frame dragging) ( )11 -210 m s ,−≈  

• third term, de Sitter (geodetic) precession ( )11 -210 m s .−≈  
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The approximate magnitude of acceleration presented here refers to LAGEOS as calculated by 

the SDAS package. In addition, c  in Equation (45) is the speed of light, ,  β γ  are the 

Parameterized Post Newtonian (PPN) parameters (these are parameters used to describe the 

classical tests of general relativity; in general relativity the two parameters are given by 

( ) ( ), 1,1β γ = ), r
�

 is the position of the satellite relative to the Earth, R
�

 is the position of the 

Earth relative to the Sun, J
�

 is the Earth’s angular momentum per unit mass, GM ⊕  is the 

gravitational coefficient of Earth and sGM  the gravitational coefficient of the Sun. Although the 

effects of these parameters are very small for the purpose of POD they need to taken into 

account as there are some long-term periodic and secular effects in the orbit (Huang and Liu 

1992).  

 

2.4.1.8. Solar radiation pressure 

Solar radiation pressure describes an exchange of momentum between photons absorbed and 

reflected by the surfaces of an orbiting satellite (Ziebart, 2001). This conveyed force causes 

acceleration which is dependent on the solar flux, the satellite’s mass m  and cross-section A . 

According to Montenbruck and Gill (2001), the solar radiation pressure contributions to the total 

perturbative acceleration is described as per Equation (46), 

 2
3 .e

solar e R
e

rA
P P C AU

m r
ν= −

�

 (46) 

where eP  is the radiation flux from the Sun, er
�

 is the geocentric position of the Sun, RC  is the 

reflection coefficient ( )1.13RC =  and ν  is the eclipse factor and it determines the amount of 

solar radiation acting on the satellite as it passes through umbra and penumbra regions. The 

conditions for the eclipse factor functions are 0ν =  if the satellite is in the shadow region 

(umbra phase), 1ν =  if the satellite is in full sunlight and 0 1ν< <  if the satellite is in partial 

shadow (penumbra phase).  
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2.4.1.9. Atmospheric drag 

Satellites orbiting the Earth at low Earth altitude are also affected by drag force (the component 

of the resultant dynamic fluid force that acts in opposition to the relative motion of the object 

with respect to the fluid) (Montenbruck and Gill, 2001). Although the air density is extremely 

low at altitudes higher than 1000 km, the high velocity of a satellite often leads to significant 

(de-)acceleration. The acceleration due to air drag can be obtained by Equation (47) according to 

Montenbruck and Gill (2001), 

 21
.

2drag D r v

A
P C v e

m
ρ= − �

 (47) 

Here, DC  is a dimensionless quantity describing the satellite’s interaction with the atmosphere 

(also referred to as the satellite’s drag coefficient);  m  is the total mass of the satellite; 

/v r re v v=� �
 is a unit vector describing the direction of the acceleration due to drag and is anti-

parallel to the satellite velocity vector; rv  is the magnitude of the satellite’s velocity relative to 

the atmosphere; A  is the projected area in the direction of the velocity vector relative to the 

atmosphere and lastly, ρ  the atmosphere’s mass density.  

 

2.4.2.  Tropospheric delay modelling 
SLR observations are highly affected by the residual errors arising from inaccurate modelling 

the effect of delay of the signal propagation through the neutral atmosphere (i.e., the troposphere 

and stratosphere). Early atmospheric correction models used during SLR analysis include one 

developed by Marini and Murray (1973). Later, the shortcomings of Marini and Murray’s 

atmospheric model (e.g., inaccurate mapping function component of the model) were pointed 

out by Mendes et al. (2002). Today, mapping functions derived by Mendes et al. (2002) are 

widely used in combination with any zenith delay (ZD) model to predict atmospheric delay in 

the line-of-sight direction.  

In general, the atmospheric delay contribution is described by McCarthy and Petit (2003) 

and is expressed here by Equation (48), 
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Splitting the ZD into hydrostatic ( )z
hd  and non-hydrostatic ( )z

nhd  components, Equation (48) 

can be rewritten as described by Equation (49), 

 6 610 10 .
a a

s s

r r
z z z
atm h nh h nh

r r

d d d N dz N dz− −= + = +� �  (49) 

In Equation (49), ( ) 61 10= − ×N n  is the total group refractivity of moist air, n  is the total 

refractivity index of moist air, hN and nhN  are the hydrostatic and non-hydrostatic components 

of the refractivity, sr  is the geocentric radius of the laser station, ar  is the geocentric radius of 

the top of neutral atmosphere, and z
atmd  and dz  have length units.  

 According to Mendes and Pavlis (2004) the hydrostatic ZD can be expressed as in 

Equation (50),  
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=  (50) 

where z
hd  is the zenith hydrostatic delay in meters, and sP  is the surface barometric pressure in 

hPa. The function ( ),φsf H  in Equation (50) can be expressed as in Equation (51).  

 ( ), 1 0.00266cos 2 0.00000028 .sf H Hφ φ= − −  (51) 

Here φ  is the geodetic latitude of the station and H  is the geodetic height of the station in 

meters. The dispersion equation for the hydrostatic component is described by Equation (52) 
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In Equation (52), -2
0 238.0185 �m=k , -2

2 57.362 �m=k , * -2
1 19990.975 �mk = , and 

* -2
3k 579.55174 �m= , σ  is the wave number, with 1σ λ −= , where λ  is the wavelength in µm , 

( )
2

61 0.534 10 450−= + × −CO cC x , where cx  is the carbon dioxide ( )2CO  content in parts-per-

million (ppm). The expression for non-hydrostatic ZD expressed as in Equation (53), 
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where z
nhd  is the zenith non-hydrostatic delay in meters, and se  is the surface water vapour 

pressure in nPa. The dispersion expression for the non-hydrostatic component is given by 

Equation (54),  

 ( )2 4
0 1 2 3( ) 0.003101 3 5 7 6 ,nhf w w w wλ σ σ σ= + + +  (54) 

where 0 295.235,w = 2
1 2.6422 ,w m= µ  4

2 0.032380 ,w m= − µ  and 6
3 0.004028 .w m= µ  Marini 

and Murray (1973) have demonstrated that if the atmosphere is assumed to be azimuthally 

symmetric then the mapping functions for the atmospheric delay are asymptotic in ( )sin ε  near 

zenith and inverse in ( )sin ε  near the horizontal. The azimuthally symmetric mapping function 

and the hydrostatic gradient can be calculated from the geopotential heights. In the case where 

the wet mapping function is not in hydrostatic equilibrium, the vertical distribution of 

refractivity due to water vapour is utilized. Here the adopted parameters need to reflect both the 

vertical distribution as well as the changing geometry with height above the surface due to the 

curvature of the Earth. The adopted parameter for both the hydrostatic and wet mapping 

functions is a single input along with the site geographic location. The mapping function of a 

truncated continued fraction in ( )1 / sin ε  can be described as per Equation (55) as reported in 

McCarthy and Petit (2003),  
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In Equation (55), ( )εm  is the mapping function, ε  is the vacuum elevation of the incoming ray 

and ,  and a b c  are the coefficients of the mapping function which depend on integrals 

refractivity through the atmosphere. 
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2.5. Applications of SLR measurements 

2.5.1.  International Terrestrial Reference Frame (ITRF) 

The SLR observations, in particular from LAGEOS 1 and 2 have played a significant role in 

providing data that have been used for the establishment of the ITRF6 (McCarthy and Petit, 

2003). The ITRFs are realized through computing global Cartesian coordinates and geophysical 

parameters such as station coordinates (positions and linear velocities) and Earth Orientation 

parameters (EOP) (McCarthy and Petit, 2003 and Petit and Luzum, 2010). These coordinates 

form a single solution which is sent to the International Earth Rotation and Reference System 

(IERS) where it is used to determine a unique solution of the ITRF. Single solutions from other 

space geodetic techniques such as GPS, VLBI and DORIS may be combined with the solution 

from SLR observations to form a four-in-one solution which can then be used to determine, 

maintain and improve the ITRF precisely. In addition, the four-in-one solution provides a unique 

solution for the measurements of the EOP which are used to describe the irregularities of the 

Earth rotation with respect to a non-rotating reference frame as well as for satellite positioning 

(Gambis, 2004).  

Generally, the EOP are formed by five components: the X and Y polar motion with 

respect to the crust, Universal Time (UT1), a nutation correction in ecliptic longitude ( )ϕd , and 

a nutation correction in obliquity ( )εd . Today, the two nutation corrections can be precisely 

modelled to an accuracy of about 3 cm for about a one year period (Oliveau and Freedman, 

1997). The UT1 parameter may be defined as a measure of the angular rotation of the Earth 

about its spin axis and is usually specified with respect to a reference time defined by atomic 

clocks (e.g., UT1–UTC) (Freedman et al., 1994). This parameter together with X and Y polar 

motion are known to exhibit rapid variations and are also unpredictable in time. The random 

variations are due to the interaction of the atmosphere and the crust (Freedman et al. 1994) 

while the UT1 often varies more rapidly than polar motion. 

The difference between the astronomically determined duration of the day and 86 400s of 

International Atomic Time (TAI) is known as the Length-Of_Day (LOD) and is often derived 

�������������������������������������������������������������
6 The ITRF is a set of physical points with precisely determined coordinates in a specific coordinate system 
attached to the International Terrestrial Reference System (ITRS) (McCarthy and Petit, 2003). 
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from the UT1 series as a temporal rate of change of the difference (UT1-TAI). The excess LOD, 

denoted by A  is related to the UT1 rate of change given by Equation (56),  

 0 ,
du

A A
dt

= −  (56) 

where A  is the excess LOD and 0A  is the nominal LOD (86 400 seconds). When modelling the 

stochastic behaviour of UT1 and LOD the effects of physical processes (e.g., solid Earth and 

ocean tides) which influence the rotation rate ought to be taken into account. Such effects can be 

removed from the two EOP components by applying corrections obtained from conventional 

tidal models (Yoder et al., 1981). The Earth orientation changes often represented by polar 

motion, X, Y, the equatorial components in a geographical reference frame, and variations in the 

LOD (see Figure 8 for variations in LOD and excitations in X and Y polar motion) are often 

explained by studying variations of atmospheric and/or oceanic angular momentum. Such 

variations are caused by the exchange of angular momentum between the solid Earth and its 

geophysical fluid envelope. Eubanks et al. (1993) found that variations in the Earth’s rate of 

rotation which corresponds to changes in LOD amount to a few parts in 108. Studies by Ponsar 

et al. (2003) suggested that the variations in LOD are caused by interaction between the Earth’s 

core and mantle. Similar studies by Gross et al. (2003) related the LOD variations with tidal 

variations exhibiting periods between 12 hours and 18.6 years. Such variations were believed to 

be due to the deformation of solid Earth and changes in the strength and direction of the 

atmospheric winds.    
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�
Figure 8. Time series (in Modified Julian Date (MJD)) of Earth rotation extracted from SLR 
data. (a) LOD variations, (b) X and Y polar motion excitation, data obtained from 
http://www.iers.org/IERS archive. 
 

2.5.2.  Gravity field 
Satellite Laser Ranging tracking data have been used to determine the Earth’s gravity field both 

at global and regional scales. Since the orbital motion of artificial satellites is influenced by 

gravitational forces, precise satellite tracking measurements provide orbit solutions which can 

be inverted to derive the gravity field. For instance, the long wavelength gravity information can 

be derived through SLR range measurements by high altitude satellites such as LAGEOS. 

(a) 
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However, gravity field determination to higher degree of coefficients using SLR experiences 

certain drawbacks due to unsteady and fragmentary orbit tracking by ground stations. The recent 

satellite missions, e.g. CHAMP, GRACE and GOCE are designed to overcome the existing SLR 

disadvantages. Nowadays the gravity field determination is achieved based on three techniques 

in the context of CHAMP, GRACE and GOCE satellite missions (Tapley et al. 2004b). These 

techniques include a continued GNSS tracking using on-board GPS receivers and 

accelerometers for measuring non-gravitational forces such as atmospheric drag and solar 

radiation pressure. The GRACE satellite is additionally equipped with a K-band microwave 

system (known as K-band range-rate technique), which measures their separation range-rate 

with significant accuracy (Tapley et al. 2007). This technique is believed to be the most 

important in terms of gravity field determination for the on-board GRACE mission. Satellite 

gradiometry equipped on the GOCE mission is the most recent technique used for gravity field 

determination and non-gravitational accelerations acting on the satellite (Pail et al. 2011). The 

on-board GOCE gradiometer determines the position and velocity of the satellite and is used for 

estimation of the long wavelength signal of the gravity field. Low-altitude satellites, however, 

are subjected to non-gravitational forces, particularly from the atmosphere, and these can affect 

the gravity inversions at all wavelengths.  

 According to Newton’s law, changes in the gravity field are a manifestation of mass 

redistribution in the Earth system. Any movement of masses in, on or above the Earth will 

therefore introduce variations in the gravity field of the Earth (Dickey et al., 2002; Cox et al., 

2003). Temporal variations of Earth’s gravity field may range between 10 and 100 ppm 

(variation from the mean) and often occur on a variety of time scales (ranging from hours to 

thousands of years) (Tapley et al., 2004b). Such variations are caused by a variety of 

phenomena that redistribute mass, including tides raised by the Sun and Moon, and post-glacial 

rebound. Surface mass change in the atmosphere, oceans, hydrosphere and cryosphere are 

dominated by seasonal and inter-annual variations while processes such as isostatic glacial 

recovery and sea-level change give rise to long-term secular or quasi-secular signatures.  

Several studies have investigated the long term and the seasonal variations of the Earth’s 

gravity field using data collected from different satellite missions. In particular, the lower order 

harmonic component of the gravity field with 2n =  and 0m =  (hereafter 2J ) which 

characterizes the oblateness of the Earth has attracted a lot of interest from the scientific 
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community. Early studies of 2J  by for example Yoder et al. (1983) showed a secular decrease 

in  that was consistent with a steady migration of mass from low latitudes towards high 

latitudes resulting in a linearly decreasing trend. Such a trend was thought to be related to post-

glacial rebound (PGR), the Earth’s ongoing response to the removal of the ice loads at the end 

of the last ice age. Long term studies by Cox and Chao (2002) however discovered that 2J  

started to increase around 1997, but later exhibited a negative trend (from 2002) as illustrated in 

Figure 9. This trend is believed to have inverted again with 2J  once more decreasing. Several 

mechanisms have been suggested to be the causes for this sudden change of the 2J  coefficient. 

For example, Dickey et al. (2002) attributed this change to the surge in sub-polar glacial melting 

and to mass shifts in the Southern, Pacific, and Indian oceans. In addition to the increasing trend 

of the 2J  coefficient, Nerem et al. (2000) found that the 2J  coefficient might be exhibiting 

seasonal variability due to a combination of atmospheric pressure variations and variations in 

the distribution of water in the oceans and on land. Furthermore, Dickey et al. (2002) detected 

inter-annual variability in 2J  which they attributed to climatically driven oscillations in the 

ocean, storage of water, snow, and ice on land and partly as a result of the effects of anelasticity 

on the 18.6-year solid Earth tide as suggested by Benjamin, et al. (2006).  

 

2J
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Figure 9. The variability of 2J  coefficient as derived from SLR and DORIS data spanning the 
period from 1976 to 2006 (Cox and Chao, 2002). 
 

2.5.3.  Determination of the geoid 
Data from SLR observations have been used for computation of spherical harmonic models. 

These models can be used to derive the geoid (this is the equipotential surface of the Earth’s 

gravity field that corresponds closely with Mean Sea Level (MSL) in the open oceans, ignoring 

oceanographic effects) as well as the geoidal height (the separation between the geoid and the 

ellipsoid) (Eckman, 1998). The geoidal height is often computed from a set of normalized 

spherical coefficients using Equation (57), 

 { } ( )
max

nN n
*

GM nm nm nm
n 2 m 0

GM a
N C cos m S sin m P cos .

r r= =

� �= λ + λ θ� �γ 	 

� �  (57) 

 Here maxn  is the maximum degree at which the coefficients are known, *
nmC  are the nmC  less 

the zonal coefficients of the normal potential of the selected reference ellipsoid, γ  is the normal 

gravity on the surface of the reference ellipsoid and the rest of the parameters are as given in 

Equation (37). Determination of the geoid has been one of the main research areas in Geodesy 

for decades. To this end, geoid heights at any points on the Earth’s surface can be determined 

with accuracy ranging from 30 cm to a few meters (Rapp, 1998). A number of researchers have 
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addressed the precise determination of geoid height on a local and regional scale for 

oceanographic and geophysical applications. At a local scale, the geoid can be determined by a 

combination of GPS derived heights and levelled heights, through gravimetric and geometric 

approaches. From the GPS derived heights and levelled heights at some points, the geoid heights 

at these points can be calculated. At a local scale the geoid height measurements are often 

converted to gravity anomalies or deflections of the vertical (e.g., geoid slope).  Several global 

geoid height and gravity anomaly models have been developed from tracking and modelling the 

orbits of numerous artificial satellites (Dawod, 2008; Featherstone and Olliver, 2001; Kiamehr 

and Sjoeberg, 2005).  

Global gravity change has also attracted particular attention in the scientific community 

as it is often related to global sea-level changes. The sources of global sea-level rise often 

involve the redistribution of mass from the continents to the ocean. The usage of gravity field 

measurements allows for discrimination between several sources through the continuous 

monitoring of geoid changes on both global and regional scales as well as on basin scales. 

Gravity field solutions can be used to numerically estimate components such as thermal 

expansion (eustatic) and fresh water influx which influence global sea level changes (Cazenave 

and Nerem, 2004; Jevrejeva et al., 2006). Measurements of temporal gravity variations can be 

also used to determine water storage change in the hydrological system. In particular, since the 

launch of the GRACE mission in 2002, numerical articles assessing the potential of GRACE 

recovering hydrological signals have been published. For example, Andersen and Hinderer 

(2005a) have investigated the potential of inferring inter-annual gravity field changes caused by 

continental water storage change, as determined from GRACE observations between 2002 and 

2003. Contributions from continental water storage change were compared to the output from 

global hydrological models. Andersen et al. (2005b) and Neumeyer et al. (2006) correlated large 

scale hydrological events with the estimated change in the gravity field for certain areas of the 

world to an accuracy of 0.4 �Gal,  corresponding to 9 mm of water. On a regional scale, 

Winsemius et al. (2006) compared hydrological model outputs for the Zambezi river basin with 

estimates derived from GRACE. Monthly storage depths produced by the hydrological model 

displayed larger amplitudes and were partly out of phase compared to the estimates based on 

GRACE data. 
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2.5.4.  Precise satellite orbit determination 

Precise satellite orbit determination is one of the most essential applications of SLR 

observations. It involves the estimation of position and velocity of an orbiting satellite at a 

specific time epoch (Yunck, 1997). Satellite orbit determination is used for geo-location of the 

satellite sensors and to measure the gravity field and its variations in time. There are currently 

three ways in which satellite orbit can be calculated, namely: dynamic, kinematic and reduced-

dynamic.  

 

2.5.4.1.  Dynamic orbit determination 

The dynamic orbit determination (Yunck, 1997) utilizes a set of tracking observations and 

mathematical models that describe the forces acting on an orbiting satellite. Here the force and 

satellite models are used to compute a model of satellite acceleration over a given time. The 

acceleration model describes the satellite’s instantaneous acceleration as a function of time, 

position, and velocity. In the dynamic method a nominal trajectory (satellite position as a 

function of time) is generated by analytically or numerically integrating the acceleration model. 

The orbit solution is compared with the one predicted by the observations. Selected parameters 

of the force models acting on the satellite may be adjusted along with an initial satellite position 

and velocity in the batch least-squares estimation7 technique in order to minimize the difference 

between the actual observations and the predicted ranges (O-C residuals). Accuracy of the 

dynamic orbit determination approach is highly dependent on the satellite force models. Thus 

the accuracy of orbit determination may be reduced if the satellite forces are mis-modelled. 

Figure 10 illustrates a schematic representation of the dynamic orbit determination technique. 

 

�������������������������������������������������������������
7 Least squares estimation is a mathematical algorithm that uses definitive deterministic force 
models to minimize the RMS of measured O-C residuals. It consist of a sequence of linear LS 
corrections. A weighting factor is applied to each residual, and it is the square of the weighted 
residuals, which is minimized. 
�

 
 
 



Figure 10. The orbit estimation problem
 

 The basic equation describing the motion of an orbiting satellite is given by Equation 

 

where r
�
��  is the acceleration vector of the satellite, 

satellite and sk  represents the sum of all the perturbing accelerations acting on the satellite, 

where 

 s E s m e o D SP Ak r r r r r r r r= + + + + + + +�� �� �� �� �� �� �� ��

In Equation (59), Er��  is the perturbing forces due to the non

mass distribution within the Earth

and the Moon respectively, er��  and 

and ocean tides respectively, Dr��  

solar radiation pressure respectively. A solution to Equation 

analytical or numerical integration. However, for the purpose of precise orbit determination a 

numerical integration method is mostly preferred. Here, initial cond

velocity vector, ( ),r r
�
� ) at a time t0 

40 

. The orbit estimation problem (adopted from Yunck, 1997
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Double integration of Equation (58) using initial values of the orbit results yields a solution of 

the predicted orbit trajectory depicted in Equation (61), 

 ( ) ( ) 0 0r t r t dt r t r= + +��
� �
�� � . (61) 

The accuracy of the predicted orbit often depends on the epoch state ( 0 0,r r
�
� ) and the acceleration 

model ( )r t
�
��  together with its physical parameters (Yunck, 1997). This can be achieved by using 

the least-squares method. Suppose that Z represents a vector of tracking data ( ),... T
nZ Z  made 

over an interval time (often known as the tracking arc). The task is to correct the initial values 

such that the nominal orbit given by Equation (61) shows a best fit to the pre-processed tracking 

data (e.g. the actual observations given by iZ ) with respect to the theoretical observations, iZ  

derived from the solution trajectory. In other words, the aim is to obtain a trajectory ( )r t  that 

minimizes a cost function expressed as in Equation (62), 

 ( )( )2

1

.
n

i i
i

J Z Z r t
=

= − � �� ��  (62) 

Theoretical observations iZ  can be obtained through linearization of Equation (62). This allows 

the differences 1 i iZ Z Zδ = −  to be formed. The differences in residuals are the observations to 

be used in a linear adjustment of the nominal trajectory. Let Zδ  represent the observable vector 

then the observation equation can be written as in Equation (63), 

 Z Ax nδ = +� . (63) 

In Equation (63),  x
�

 is the vector of parameters to be estimated which include the six orbital 

elements ( ), , , , ,a e i EωΩ  as well as adjustments to various dynamic and geometric model 

parameters, n  is the random errors of the observable vector and A  is a matrix of partial 

derivatives of the observations with respect to the elements of x
�

. Equation  (63) is also known 

as the regression equation and its solution at the estimated epoch can be obtained by an iterative 

procedure. For further details on the regression equation, refer to Yunck (1997). 
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2.5.4.2.  Kinematic orbit determination 

The kinematic orbit determination is purely a geometric technique that depends only on GNSS 

(e.g. GPS) measurements and cannot be used by SLR.  It does not take into account dynamic 

properties (e.g., gravity field, air drag, etc) of an orbiting satellite. Here the errors emanating 

from the satellite force models do not affect the accuracy of the kinematic orbit determination. 

Thus the accuracy is dependent on the availability and accuracy of GNSS data. In kinematic 

orbit determination the GNSS data are used to estimate the differences of the geometric 

coordinates, ,   and dx dy dz between the instantaneous a priori and the actual coordinates of the 

satellite (Colombo and Luthcke, 2004). The process is achieved by forming observation 

equations linearized about the a priori positions of the satellite. These equations are then solved 

to establish ,   and dx dy dz through a least-squares adjustment fit to the data and finally using the 

results to correct for the a priori positions. The kinematic orbit determination is mostly used 

during satellite manoeuvres when it is difficult to precisely describe the satellite dynamic forces 

using mathematical models (Colombo and Luthcke, 2004). 

 

2.5.4.3.  Reduced-dynamic orbit determination 

In dynamic and kinematic methods the accuracy of a solution may be reduced due to 

mismodelling errors and GNSS measurement noise respectively. The reduced-dynamic 

technique (Yunck et al., 1994) may be defined as a method that exhibits half dynamic and half 

kinematic components and down-weights the errors caused by each method. In reduced-

dynamic orbit determination the kinematic components of the dynamic force models are 

introduced in the form of the process noise model containing two parameters, the correlation 

time constant T  which defines the correlation in the dynamic model error over one update 

interval and the dynamic model steady state variance V . The weighting of the kinematic and 

dynamic data is performed via the Kalman filter process noise at each step. When T  is set to 

zero, and V  is made large, the orbit determination method becomes kinematic, because 

deterministic components are not considered in the Kalman filter, and if T  is large and V  is 

zero the orbit determination method becomes dynamic, since the stochastic components are not 

estimated. Thus the reduced-dynamic orbit determination method is achieved by adjusting T  

and V  to balance dynamic, geometric and measurement errors.  
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2.6. Global geopotential models 
A number of spherical harmonic models have been developed over the years by different 

analysis centres. The development of such models could be attributed to the availability of 

terrestrial data as well as to the SLR tracking data of multiple satellites. Global Gravity field 

Models can be classified into three groups, namely, satellite-only, combined and tailored gravity 

field models (Amos and Featherstone, 2003). In the following a description of the various 

classes of geopotential gravity field models is provided.  

 

2.6.1.  Satellite-only GGMs 
The satellite-only GGMs are primarily derived from the analysis of the orbits of tracked 

artificial Earth satellites.  Numerous factors have been attributed to the degradation of the 

accuracy of the satellite-only models. These include: 

a) Power-decay of the gravitational field with altitude, 

b) The lack of continuous tracking data from the existing stations, 

c) Precession of the Earth-based range measurements to the satellites (as a result of 

atmospheric refraction), 

d)  Difficulties in modelling non-gravitational and third body perturbations and, 

e) Incomplete sampling of the global gravity field due to the limited number of satellite 

orbital inclinations available. 

Due to these limitations gravity field models with high degree coefficients are often 

contaminated by noise.  

 

2.6.2.  Combined GGMs 

The satellite-only models are often combined with terrestrial gravity data, and marine gravity 

anomalies computed by using satellite radar altimeter and airborne gravity data to yield high-

degree (typically 360) combined GGMs. The combined GGMs are subject to the same 

deficiencies as in satellite-only GGMs. In addition, the combined gravity models are limited in 

precision due to the poor spatial coverage and the quality of the additional data used as well as 

other errors emanating from terrestrial gravity anomalies (Heck, 1990). A typical example is the 

long-wavelength errors in terrestrial gravity anomalies caused by distortions in and offsets 

among different vertical geodetic datums reported in e.g., Heck (1990).  
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2.6.3.  Tailored GGMs 
In tailored gravity field models the spherical harmonic coefficients of the satellite-only models 

or the combined models are often adjusted and extended to higher degrees by using higher 

resolution gravity data that may have not necessarily been used previously (Wenzel 1998). This 

is normally achieved using integral formulas to derive corrections to the existing geopotential 

coefficients, as opposed to the combination at the normal equation level that is used to construct 

combined GGMs. Tailored GGMs are only applied over the area in which the tailoring was 

applied, because spurious effects can occur in areas where no data are available (Kearsley and 

Forsberg, 1990). 

 

2.6.4.  Some remarks on the classification of gravity field models 
A number of GGMs have been derived by different groups around the world. These models 

include the Ohio State University (OSU) series, GeoForschungs Zentrum (GFZ) Potsdam series, 

Goddard Earth Models (GEM) series, Joint Gravity Models (JGM) series, Texas Earth Gravity 

(TEG) models, GRIM (GRGS and German Geodetic Research Institute Munich) models and 

European Improved Gravity model of the Earth by New techniques (EIGEN) models. All the 

published models have been made available to the scientific community and are freely available 

to the public for example at the International Centre for Global Earth Models on 

http://icgem.gfz-potsdam.de/ICGEM. A review of gravity field models derived between 1970 

and 1997 can be found in Rapp (1998). Here only developments undergone in the gravity field 

modelling for the last two decades (e.g., 1990 – 2010) are discussed. Characteristics of these 

models are summarized in Table 2. 
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Table 2. Summary of some of the GGMs released between 1990 and 2008. Data: S=satellite 
tracking data, G = gravity data, A = altimetry data. Geophysical applications of these models 
include gravity field, satellite orbit determination, station coordinates, reduction of altimeter 
data, Earth rotation and computation of geoid undulations. 

Model Year Deg. Data Reference 
GRIM4C1 1990 50 S, G, A Schwintzer et al. (1991) 
OSU91A 1991 360 GEMT2, G, A Rapp et al. (1991) 
JGM3 1994 70 S, G, A Tapley et al. (1996) 
GRIM4-S4 1995 70 S Schwintzer et al. (1997) 
GRIM4-C4 1995 72 S, G, A Schwintzer et al. (1997) 
GFZ96 1996 359 PGM055, G, A Gruber et al. (1997) 
EGM96 1996 360 EGM96S, G, A Lemoine et al. (1998) 
GRIM5C1 1999 120 S, G, A Gruber et al. (2000) 
EIGEN-1 2002 119 S (CHAMP) Reigber et al. (2002) 
EIGEN-2 2003 140 S (CHAMP) Reigber et al. (2003) 
GGM02S 2004 160 S (GRACE) Tapley et al. (2005) 
GGM02C 2004 200 S (GRACE), G, A Tapley et al. (2005) 
EIGEN-GL04S1 2006 150 S (GRACE, LAGEOS) Foerste et al. (2006) 
EIGEN-GL04C 2006 360 S (CHAMP, GRACE), G, A Foerste et al. (2006) 
EIGEN-5S 2008 150 S (GRACE, LAGEOS) Foerste et al. (2008) 
EIGEN-5C 2008 360 S (CHAMP, GRACE), G, A Foerste et al. (2008) 
EGM2008 2008 2190 S (GRACE), G, A Pavlis et al. (2008) 

 

The first considered model is a combined gravity field model, GRIM4C1 reported by 

Schwintzer et al. (1991). This model was computed as a joint collaboration between DGFI and 

GRGS. The GRIM4C1 model was derived up to degree and order 50 in terms of spherical 

harmonics. It incorporated GRIM4S1 satellite-solution, mean gravity anomalies and Seasat 

altimeter derived mean geoid undulations. The OSU91A geopotential model was reported by 

Rapp et al. (1991). This model was an upgraded version of OSU89a and OUS89b. It was 

computed complete to degree and order 360 in terms of spherical harmonics in a blended form. 

In the computation of the OSU91A, coefficients to degree 50 were based on a combined 

solution from GEM-T2 model, surface gravity data and GEOSAT altimeter data. The remaining 

coefficients (51-360) were derived from a combined solution computed from terrestrial data, 

altimeter derived anomalies and the topographic anomalies.   

The Joint Gravity Model 3 (JGM3) model released in 1994 was reported by Tapley et al. 

(1996). This model was developed by NASA/GSFC and the University of Texas at Austin as 

part of the Topex Poseidon (T/P) project. This combined model was derived by adding the 
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geopotential coefficients from the pre-launch model, JGM1 and their associated error covariance 

with GPS, SLR, DORIS tracking of T/P, laser ranging tracking of LAGEOS 2 and Stella and 

DORIS tracking of SPOT 2. The model was derived complete to degree and order 70. The 

GRIM4-S4 and GRIM4-C4 reported by Schwintzer et al. (1997) were developed as a joint 

collaboration between GFZ Potsdam and GRGS Toulouse/Grasse for requirements of geodetic 

and altimeter satellite missions. The GRIM4-S4 model was derived solely from satellite tracking 

data complete to degree and order 70. On the other hand, the GRIM4-C4 model was derived 

based on a least squares adjustment involving a combined solution from the GRIM4-S4 model 

and surface gravity data from gravimetric and altimeter measurements. This model was 

computed complete to degree and order 72, corresponding to a spatial resolution of 555 km at 

the surface of the Earth (Schwintzer et al., 1997). The GRIM4-S4 and GRIM4-C4 models were 

thought to be efficient for satellite orbit computations especially with orbit altitudes exceeding 

about 800 km (Schwintzer et al., 1997). The GFZ96 geopotential model, which was an upgrade 

of the GFZ93 and GFZ95 models, was reported to provide high resolution of GFZ derived 

models (Gruber et al., 1997). This combined model was computed from the then improved 

terrestrial data derived from a 3-year ERS-1 mean sea surface and PMG055 solution. The 

solution was also combined with altimeter derived gravity anomalies and normal equations and 

potential coefficients of the GRIM4-S4 model as the a priori model. The GFZ96 model was 

derived to degree and order 359.   

Lemoine et al. (1998) described the combined spherical harmonic model, EGM96, 

which is complete to degree and order 360 and corresponds to a global resolution of about 55 

km. The EGM96 model was developed based on a joint collaboration between NASA Goddard 

Space Flight Centre (GSFC), the National Imagery and Mapping Agency (NIMA) and the Ohio 

State University (OSU). This is a blend model were three computational procedures were used. 

The spherical harmonic coefficients from 2-70 were derived based on a least squares adjustment 

involving satellite tracking data, terrestrial data and altimeter data of the ocean surface from the 

T/P, ERS-1, and GEOSAT missions and fill-in gravity anomalies in areas lacking data (Amos 

and Featherstone, 2003). From degree 71-359 the coefficients were computed from a combined 

solution based on normal equations derived from the satellite tracking data which were used as a 

priori values. The remaining coefficients at degree 360 were taken from a quadrature combined 

solution derived from the a priori satellite model and ERS-1/GEOSAT altimeter-derived 
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anomalies. The EGM96 geopotential model was believed to provide a more accurate reference 

surface for the topography as well as improve orbit determination for low orbiting satellites 

(Lemoine et al., 1998). The GRIM5C1 gravity field model reported by Gruber et al. (2000) was 

derived in a German-French joint collaboration between GFZ Potsdam and GRGS Toulouse. 

The model was computed up to degree and order 120. It incorporated terrestrial and airborne 

mean gravity anomalies, altimetric gravity anomalies from NIMA and mean gravity anomalies 

derived from the GRIM5S1 model. 

Most of the geopotential models released from 2000 onwards are derived solely from 

CHAMP, GRACE and GOCE missions plus other satellites, terrestrial and altimeter data. 

Geopotential models generated from the inclusion of the three satellite missions data are 

believed to be more accurate when compared with the prior models (e.g., they allow, with an 

unprecedented accuracy and resolution, the recovery of the mean sea surface topography from 

the difference between an altimetry-based mean sea surface height model and the gravity 

model’s derived geoid) (Dobslaw et al. 2004). The first CHAMP geopotential model, EIGEN-1 

reported by Reigber et al. (2002) was derived in a German-French joint collaboration complete 

to degree and order 119. This model was derived by use of GPS tracking and three months on-

board accelerometer data from CHAMP. The EIGEN-1 geopotential model was reported to 

resolve the geoid and gravity with an accuracy of about 20 cm and 1 mGal respectively at a half-

wavelength resolution of 550 km (Reigber et al., 2002). The EIGEN-2 model reported by 

Reigber et al. (2003) was also derived in a collaboration between Germany and France. This 

satellite-only model was derived complete to degree and order 140. The model incorporated 

gravity orbit perturbations, exploiting GPS CHAMP satellite-to-satellite tracking and six months 

on-board accelerometer data. The accuracy in terms of geoid and gravity for the EIGEN-2 

model was reported to be about 10 cm and 0.5 mGal respectively.  

 Similar to the CHAMP mission, the GRACE mission data set has enabled a 

homogeneous determination of the geopotential gravity field modelling. The first is the satellite-

only model, GGM01S reported by Tapley et al. (2004b). The model derived to complete degree 

and order 120 incorporated GRACE tracking data spanning April to November 2002 adding to a 

total of 111 selected days and using least squares adjustment. The authors reported an error 

estimate accuracy of about 2 cm over the land and ocean regions.  An improved geopotential 

model to GGM01 called GGM02 was released in 2005. This model exists both in the GRACE 
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based satellite-only, GGM02S and the combined model, GGM02C (Tapley et al. 2005). The 

combined geopotential model incorporated the GRACE-only model GGM02S with EGM96 plus 

14 months of GRACE data spanning April 2002 to December 2003. It was computed to 

maximum degree and order of 200 in terms of spherical harmonics. Improvements by a factor of 

two were reported with error estimates of less than 1 cm geoid height to spherical harmonic at 

degree 70. 

  The satellite-only model, EIGEN-GL04S1 described by Foerste et al. (2006) has a 

maximum degree and order of 150. It incorporated GRACE-only (EIGEN-GRACE04S) and 

GRACE/LAGEOS (EIGEN-GL04S) solutions. EIGEN-GL04S1 was later combined with 

surface gravity data from altimetry over the oceans and gravimetry over the continents to derive 

a high resolution gravity model EIGEN-GL04C released in 2006 (Foerste et al., 2006). This 

combined gravity field model is an outcome of the joint gravity field processing between GRGS 

Toulouse and GFZ Potsdam. The satellite-part of EIGEN-GL04C is based on GRACE and 

LAGEOS data and the maximum degree and order of this model is 360 in terms of spherical 

harmonics. The EIGEN-5C model reported by Foerste et al. (2008) was also a joint 

collaboration between GFZ Potsdam and GRGS Toulouse. It is an upgrade of EIGEN-GL04C 

and has a maximum degree and order of 360. The model is again a combination of GRACE and 

LAGEOS tracking data combined with addition of gravimetry and altimeter surface data. 

Combination of the satellite and surface data have been done by combining normal equations 

obtained from observation equations for the spherical harmonic coefficients. The National 

Geospatial-Intelligence Agency (NGA) released the first ever global model capable of resolving 

the Earth’s gravity field beyond spherical harmonic degree 2000, a model called EGM2008. A 

description of this model can be found in Pavlis et al. (2008). The EGM2008 gravity field model 

has a maximum degree and order of 2159. It incorporates improved gravity anomaly data, 

altimetry-derived gravity anomalies and GRACE based satellite solutions. It allows proper 

computation of quasigeoid heights, gravity anomalies and vertical deflections and has a spatial 

resolution of ~5 arc minutes or ~9 km in the latitudinal direction (Pavlis et al., 2008). 

 

2.7. Concluding remarks 
The continuous design and deployment of satellite missions dedicated to gravity field 

measurements and the availability of high-precision data have led to the availability of gravity 
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information with unprecedented spatial-temporal resolution and accuracy. In particular, the 

advent of satellite data has made it possible to determine the gravity field of the Earth via 

modelling. To this end, these data sets are the basis for robust gravity field modelling with more 

than 100 gravity field models released in the scientific community since the early 1960s. 

Different gravity field models could be characterized by various degrees of spatial-temporal 

resolution. Despite the many scientific milestones in gravity field modelling, a study evaluating 

many of the developed gravity field models in the context of POD by use of SLR data have 

remained inconclusive. In particular, there has not been new SLR analysis software with the 

capability of POD with sensitivity analysis of gravity field model options. The research work 

reported in this thesis demonstrates the capability of the SDAS package to investigate the 

contribution of the different gravity field models applied in POD. 
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3. Data and analysis 
 

In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to 
the facility of obtaining data.  James Maxwell 

 

3.1. Introduction 
This chapter contains a description of the data sources and management involved in SLR data 

collection (used in this research study). Firstly, the global network of SLR tracking stations is 

discussed mainly to highlight some of the factors affecting the accuracy of SLR data. The data 

collected from these tracking stations is discussed focusing on the main steps in data 

management (i.e. formation of SLR normal points) required to ensure that the collected data is 

adequate and in good format. In this chapter I also describe the general methods used throughout 

this project. For the sake of conciseness the analysis methods are described here and not 

repeated in each presented chapter. However, other chapters may contain methods that are 

chapter specific.  Furthermore, the chapter explains some aspects (e.g., parameterizations) of the 

software used to analyse the SLR data.  

 

3.2. Data  
As already explained in Chapter 2, the main observable in SLR is the distance or range (round-

trip, station to satellite and back). Together with this TOF, are other auxiliary (derived 

parameters) such as the correction information due to atmospheric effects, which are to be 

applied to the data. Raw SLR data are formatted at the remote station before transmission to 

operational data centres where the data are translated into the appropriate format. There are 

about six ILRS accredited analysis centres. Included are the NERC Space Geodesy Facility 

(NSGF), Joint Centre for Earth System Technology/Goddard Space Flight Centre 

(JCET/GSFC), Greenbelt, Maryland, USA, GeoForschungs Zentrum (GFZ) German Research 

Centre for Geosciences, Germany, Centro de Geodasia Spaziale (CGS), Italy, etc. Currently, 

SLR data are available in two forms: original observations (full-rate data) and compressed range 

observations generated from the original observations (these are called the normal points) (Noll, 

2010).  
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Full-rate data sets include all the valid satellite returns and are often larger in volume. These 

data are not routinely provided by all stations in the laser tracking network. The data are useful 

for both engineering evaluation and scientific applications (e.g., studying the performance of 

retro-reflectors, discerning satellite signatures, understanding the statistical nature of satellite 

returns, calibration of satellite targets, validating system quality of laser station co-locations, 

etc.) (Noll, 2010). Full-rate data which range in size from 10 to 100 kbytes are transmitted to the 

Crustal Dynamics Data Information System (CDDIS) in files containing all data from a specific 

tracking station and satellite on a particular day. The CDDIS then combines the transmitted 

daily files from all tracking stations into a monthly satellite specific file. These files are then 

made freely available in the ILRS full-rate format in subdirectories by satellite and year. 

Satellite Laser Ranging normal points constitute the primary ILRS data product (these 

products are archived at e.g., http://ilrs.gsfc.nasa.gov). The normal points are compressed data, 

i.e. the compression involves sampling over time based on certain minimum number of data 

points within the sampling interval. The length of this normal point interval is primarily 

dependent upon the satellite altitude; lower orbiting satellites have a shorter normal point 

interval than high orbit satellites. Normal points are computed via two steps. Firstly, the 

observed range with the computed reference ranges and thereafter a series of predicted residuals 

is generated. Suppose that 0d  represents the observed ranges and pd  are the computed reference 

ranges, the generated observation residuals can be described by Equation (64)  

 0 .r pd d d= −  (64) 

Previous studies have predicted that when the relative data density drops to a very low rate, it is 

plausible that the “time-isolated” measurements are highly dominated by noise or outliers 

(Seago, 1998).  These outliers are often removed by using a suitable range or isolation window. 

To restrain the formation of time-isolated outliers into bad single-point normal points, ILRS 

analysis data centres often implement algorithms also known as a leverage point pre-filter that 

initially flags heavily leveraged points as noise (Seago, 1998).  A datum is considered leveraged 

if it is the only observation within a specified time period (isolation window). The isolation 

window is arbitrarily chosen to be equal to either the recommended integration step size for a 

specific dynamic model integrator, or twice the normal point bin size. These values are passed 

 
 
 



52 
 

via a satellite data file containing other satellite specific parameters. The isolation windows for 

various satellites as estimated by Seago (1998) are presented in Table 3.  

 

Table 3. Isolation intervals for leverage filtering 

Satellite Normal point bin (sec) Isolation window (sec) 
GFZ-1 5 60 
ERS 1/2 15 60 
Starlette 30 90 
Ajisai 30 90 
Stella 30 90 
LAGEOS 1/2 120 240 
Etalon 1/2 300 600 
GLONASS 300 600 

 

In order to remove systematic trends in the observation residuals, orbital parameters are often 

solved by fitting a trend function, ( ) ,rf d  to the residuals .rd  The fit residuals which analyses 

any remaining outliers can be iteratively computed as given in Equation (65), 

 ( )r r rf d f d= − . (65) 

 In the second step of formation of normal points the resulting observed trajectory is segmented 

into fixed intervals or bins starting from 0h UTC. The proposed interval sizes for various 

satellites are listed in Table 4.  

 

Table 4. Examples of bin sizes for specific satellites 

Satellite Bin size (seconds) 
GPS, GLONASS 300 

LAGEOS 1/2 120 
Starlette, Stella 30 

ERS 1/2 15 
GRACE 5 

 

In each bin i , the mean value 
ir

f  of all deviations is computed and added to the trend function at 

the centre of the interval. The normal points representing all single observations of a given 

interval may be computed according to Equation (66), 

 
i ii i r rNP O f f= − + , (66) 
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where iO  is an observation located in bin i  and 
ir

f  represents fit residuals in the same bin. The 

ILRS normal point file format exists as uncompressed ASCII files containing a header record 

followed by a data record. A header record contains satellite and station designators, general 

station configuration information and normal point calculation parameters. The data record 

contains laser fire times in units of 0.1 µs, system delay in picoseconds, bin RMS, 

meteorological data (e.g., pressure, temperature and relative humidity) and number of ranges 

used in the normal point formation. Normal points may be computed either at the on-side 

tracking stations or at ILRS data analysis centres. The ILRS operational data centres forward 

normal point data to the CDDIS in hourly and daily files by satellite with a typical delay of less 

than one day following the observations. The CDDIS updates the received files containing all 

normal point data on a daily basis. Daily files contain all normal point data for each satellite 

received at the ILRS operational data centres in the previous 24 hour period. Thus, these daily 

files often contain data spanning several operating days. The monthly files contain all normal 

point data for each satellite during the month. Daily and monthly normal point data are available 

from the CDDIS in subdirectories by satellite and year and can be freely accessed at 

http://cddis.nasa.gov/.  

The normal point data analyzed in this study were selected from ILRS tracking stations 

(Pearlman et al. 2002). Tracking stations were selected in order to ensure good global 

distribution. As mentioned earlier, global distribution of SLR stations is dense in US, Europe, 

and Australia. The Southern Hemisphere suffers from a lack of SLR tracking stations. This is 

one major disadvantage of SLR compared to other geodetic techniques such as VLBI, GPS and 

DORIS. In Africa there is only one active SLR tracking station situated in South Africa at 

HartRAO, joining other geodetic instruments (e.g., VLBI, GPS, and DORIS). The selection of 

the SLR stations is based on the number of daily normal points contributed by each station. Note 

that the daily normal points are not generally contributed by all the selected SLR stations rather 

the actual normal points per day are contributed by fewer stations. Stations with the highest 

number of points were selected.  
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3.3. Satellites 
The data analysed was collected from LAGEOS 1 and 2 satellite missions. LAGEOS 1 was 

launched in 1976 by the American Space Agency, NASA in a near circular orbit. This satellite 

was later joined by a sister satellite, LAGEOS 2, launched during 1992 in a joint collaboration 

between United States and Italy. Both satellites have a high mass-to-area ratio of 1450 kg/m and 

orbit the Earth at an altitude of about 6000 km above Earth’s surface. LAGEOS satellites carry a 

total of 426 corner cube reflectors inset in the outer aluminium shell surrounding a solid 

cylindrical brass core. These retro-reflectors are used to reflect laser beams which are reflected 

back to the ground stations. Each reflector is mounted with its front face perpendicular to the 

radius vector at the mounting point (Otsubo et al., 2004).  

LAGEOS retro-reflectors are distributed in rings and equally spaced along lines of 

latitude (Fitzmaurice, 1977). The reflectors are arranged on the surface of the sphere in rows that 

form small circles parallel to the satellite’s “equator” (circle perpendicular to the axis of rotation 

of the satellite) (Otsubo et al. 2004). These reflectors are symmetrically arranged in rows, each 

hemisphere (designated “N” and “S” hemispheres) having about 10 rows. The rows contain 

different numbers of reflectors, according to their “latitude” namely 32, 32, 31, 31, 27, 23, 18, 

12, 6, 1, giving a total of 213 in each hemisphere (Otsubo et al., 2004.). A total of 422 of the 

LAGEOS reflectors are made of fused silica glass. The remaining four are made of germanium 

and they are used to obtain measurements in the infrared region of the spectrum. More 

properties of the two satellites are summarized in Table 5.  

 

Table 5. Mission parameters of LAGEOS 1 and 2 satellites. 

Properties LAGEOS 1 LAGEOS 2 
COSPAR ID 7603901 9207002 
Launch date May 4 1976 October 22 1992 
Reflectors 426 corner cubes 426 corner cubes 
Orbit Circular Circular 
Orbit inclination 109.84 0 52.64 0 
Eccentricity 0.0045 0.0135 
Perigee height 5860 km 5620 km 
Period 225 minutes 223 minutes 
Weight 406.965 kg 405.38 kg 
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Figure 11 portrays the retro-reflectors of LAGEOS satellites. The LAGEOS series were 

designed to provide an orbiting benchmark for geodynamical studies of the Earth 

(http://ilrs.gsfc.nasa.gov). These include studies of Earth’s gravity field, determination of EOPs 

and investigation of various geophysical phenomena such as tectonic plates, polar motion and 

tides (Smith et al. 1990; Sengoku, 1998; Bouille et al., 2000). Due to their high mass-to-area 

ratio and attitude the LAGEOS orbits are less sensitive to Earth’s gravity field and to non-

gravitational forces. Thus they provide precise measurements of the satellite’s position with 

respect to Earth. In addition the high altitude of the two satellites causes them to be sensitive up 

to degree 20 of the underlying gravity field model.  

 

�

Figure 11. Retro-reflectors on LAGEOS satellite. http://ilrs.gsfc.nasa.gov.  
 

Figure 12 illustrates the distribution of the normal point data analysed in one of the studies 

presented in this thesis. This time series comprises three years of SLR data, i.e. spanning 

December 2005 to December 2008. Figure 12 serves to illustrate a general distribution of 

normal points. The correct specifications on the data used are mentioned in relevant chapters.  

Typically there are between 200 and 400 normal points per day (for a total of ~15 stations) over 

a 24 hour satellite arc. Sometimes there are less, especially over international holiday periods 

(e.g. Christmas) and statistically there are less data available over weekend periods. This is due 
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to the fact that not all SLR stations operate in full 24x7 mode. A percentage (typically 10%-

20%) of data can be filtered out statistically as outliers, depending on analysis strategy. 

 

�

Figure 12. Distribution of normal points analysed. 
 

3.4. SLR analysis software 
The SLR data throughout this project was analysed using the SDAS package developed at 

HartRAO (Combrinck and Suberlak, 2007) mainly for POD and estimation of geodetic 

parameters. This software comprises the following main elements: 

• Generation of initial setup files for the computation of  SLR stations positions and their 

velocity solutions, 

• Satellite orbit and parameter adjustment module for orbit improvement, 

• Parameter estimation module which introduces constraints in the form of adjusting the 

outlier rejection term with a predefined weight. 

The output solution includes the following: 

• O-C RMS residuals, the mean and the standard deviation (SD) of the O-C residuals, 

• Components of the stations’ positions and their velocities, 

• Empirical coefficients for atmospheric drag, solar radiation pressure, Earth’s elasticity, 

Earth’s albedo, once-per-cycle per revolution empirical parameters (9 coefficients) and 

coefficients of un-modelled components, 

 
 
 



57 
 

• Time and range bias values, 

• Gravitational spherical harmonic coefficients (solve-for parameters) such as 2 5 to ,J J  

21 21 and CS . 

 

3.4.1. Software parameterization 

The SDAS package utilises the station and satellite coordinates provided by the IERS and ILRS 

in the ITRF. These satellites coordinate a-priori values can be selected from a menu to be at a 

specific epoch, such as ITRF2000 and SLRF2005. The satellite coordinates incorporated in 

ITRF2000 were integrated by using primary core stations observed by VLBI, LLR, SLR, GPS 

and DORIS and were also densified by regional GPS networks in Alaska, Antarctica, Asia, 

Europe, North and South America and the Pacific. On the other hand, coordinates in ITRF2005 

were constructed by using long-term input data in the form of time series of station positions, 

velocities and EOPs. These input solutions are provided as a weekly sampling by the IAG 

International Services of satellite techniques: the International GNSS Service (IGS) (Dow et al., 

2005), the ILRS (Pearlman et al., 2002) and the International DORIS Service (IDS), (Tavernier 

et al. 2006), and in a daily basis by the International VLBI Service (IVS) (Schlueter et al., 

2002).  

The SLRF2005 reference frame is a dedicated reference frame derived from a combination 

of ITRF2000, rescaled ITRF2005 and a global SLR solution based on data spanning 1993 to 

2007 with new SLR stations included (for further details on combination strategy used to derive 

SLRF2005, see for example,  http://ilrs.gsfc.nasa.gov/working_groups/awg/SLRF2005.html and 

Luceri and Bianco, 2008). The satellite a-priori coordinates are provided by the ILRS in the 

consolidated prediction format (CPF). During data processing, both satellite and SLR station 

position vectors are transformed to a non-rotating (inertial) frame, the International Celestial 

Reference Frame (ICRF). The ICRF is a geocentric inertial coordinate system, defined by the 

precise J2000.0 equatorial coordinates of extragalactic radio sources determined from VLBI 

measurements (Johnston and de Vegt, 1999). The J2000 standard reference epoch is given by 

01-Jan-2000 12:00:00 ephemeris time. This is the beginning of the Julian year 2000, and 

corresponds to a Julian date of 2451545.0. The fundamental inertial frame definition uses the 

Earth as the reference body, its mean equator as the reference plane, the vernal equinox of its 
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mean orbit as the reference direction, and J2000 as the reference epoch. Hence, this frame is 

called the Earth Mean Equator and Equinox of Epoch J2000 (also known as EME2000) (Lyons 

and Vaughn, 1999). 

The Jet Propulsion Laboratory (JPL) DE-405 planetary ephemeris (Standish, 1998), which is 

based on the ICRF inertial coordinate system has been utilised to determine exact vectors and 

distances to solar system objects and to account for the gravitational perturbations on the 

satellite orbit by the Sun, Moon and planets. These coordinates have been converted from 

barycentric inertial to geocentric inertial. In ICRF inertial coordinate system algorithms are 

designed to maintain three directions of orthogonal axes:  

• The Z axis ( )2000JZ  is the unit normal to the Earth’s mean equator of epoch J2000 

• The X axis ( )2000JX  is chosen to be the vernal equinox, the node with the Earth’s mean 

orbit plane where the orbit ascends through the equator plane for the J2000. 

• The Y axis ( )2000JY  is chosen to complete the right-handed orthogonal coordinate system 

The vector axes are shown in Figure 13 and are used as the basis for expressing the positions 

and velocities of satellites in space. 

The SLR tracking station coordinates which are normally expressed in the Earth-fixed, 

geocentric, rotating systems are transformed to the ICRF reference frame by taking into account 

precession and nutation of the Earth, its polar motion and the UT1 transformation. The relation 

between the ICRF and the ITRF may be described by Equation (67), 

 . .ICRF ITRFX PNTXY X=
� �

 (67) 

In this equation P  is the precession matrix, N  is the nutation matrix, T  is a matrix expressing 

the rotation by true sidereal time S  and XY are the transformation matrixes from the terrestrial 

frame to the frame connected to the instantaneous ephemeris pole, ICRFX
�

 and  ITRFX
�

 are the 

vectors relating to ICRF and ITRF axes respectively. The data obtained from the IERS and 

Bulletin B (actually file eopc04_62.now, consistent with ITRF2005) were utilised, with all 

values interpolated via polynomial fits to the epoch of SLR measurement. Bulletin B of the 

IERS provides current values of the EOPs in the IERS Reference System. While Bulletin A 

gives an advanced solution of EOPs as well as predictions updated on a weekly basis, the 

standard solution is given on weekly basis in Bulletin B. Details of file eopc04_62.now can be 
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obtained at http://hpiers.obspm.fr/iers/eop/eopc04_05/ in the document C04_05.guide. The EOP 

values provide an exact link between the ICRF and the ITRF. 

 

 
Figure 13. The J2000 inertial reference frame. 

 

During data processing the software conforms to the IERS96 conventions as far as precession 

and nutation of the Earth’s polar motion is concerned. For example, the model of the Earth’s 

precession and nutation specifies the 1976 International Astronomical Union (IAU) precession 

(Lieske et al., 1977; Lieske, 1979) and the 1980 IAU nutation formula (Seidelmann, 1982). The 

software utilises the UT1-UTC values as provided by IERS Bulletin B database 

(http://hpiers.obspm.fr/eoppc/bul/bulb_new) or eopc04_62.now.  

 The SLR tracking stations’ positions are affected by fluctuations in the position of the 

axis of the Earth’s crust.  Such fluctuations are due to horizontal and vertical displacements 

resulting from the solid Earth tidal perturbations as well as from large scale motions of Earth’s 

lithosphere (tectonic plate velocity). Displacements of the tectonic plate motions can be 

accounted for by calculating the plate velocity using ITRF station velocities and adjusting the 

stations’ positions in the ITRF to the epoch of the SLR measurements (see for example 

Combrinck and Suberlak, 2007). Tidal forces (solid and ocean) arise from changes to the Earth’s 

geo-potential induced by variations in the mass distribution of Earth. Contributions to the solid 

Earth tide force arise from the gravitational effects of the Sun and Moon, which deform the 
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shape of the Earth. Other effects result from ocean loading on the crust and wobbles of the 

mantle and core region. Station displacements due to solid Earth tides were accounted for 

according to the model reported in Petrov (2005). Ocean loading is modelled by the ocean tides, 

whence our analysis utilised a model derived by Scherneck (1991). Atmospheric and pole tides 

were accounted for in accordance with IERS conventions 2003 (McCarthy and Petit, 2003). In 

the SLR analysis reported in this thesis, the transformation of the COM corrections of satellites 

was not considered although it is a selectable option in the software. In general a total of 48 

parameters were adjusted during SLR data processing. The main standard parameters are the 

position and velocity of the satellite, solar pressure coefficient (set at 1.13), satellite drag 

coefficient (set at 4.9) and Earth albedo coefficient (set at 0.34).  All the implemented models 

were aimed at achieving optimal solutions thereby minimising the O-C residuals (this is the 

main parameter in POD). In summary, the parameters considered during data processing are 

listed in Table 6. 

 

Table 6. Constants, reference frames and empirical models used in the SLR data processing. 

maxN  20 20×  
Inertial reference frame J2000 
Pole-tide correction (station position) IERS 2003 
Relativity (space-time curvature) IERS 2003 
Earth–tide correction (station position) Petrov 2005 
Earth-tide acceleration of satellite (Rizos and Stolz, 1985) 
Ocean loading correction (station position) Scherneck, 1991 
Atmospheric loading Special Buro for Loading, IERS 
Tectonic plate model ITRF2000 velocity field 
Earth orientation a-priori Earth orientation parameters and 

UTC-UT1 values as per IERS extrapolated 
to observation epoch 

O-C outlier rejection Selectable 
Satellite centre-of-mass offset (LAGEOS) 251 mm, ILRS standard value (Otsubo and 

Appleby, 2003) 
 

3.5. Data analysis 
A schematic representation of data analysis followed throughout this project is given in Figure 

14. The SDAS package utilises a dynamical data analysis procedure (this is the dynamic orbit 

determination discussed in Chapter 2) where the satellite’s equations of motion i.e. gravitational 
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and non-gravitational forces are taken into account. Using this method is advantageous since it 

does not only determine the satellite orbits, but also improves or estimates the force models such 

as the Earth’s gravity field model. Also given that the force model can accurately describe the 

movement of an orbiting satellite, the least-squares solution method can be used to reduce the 

orbit error caused by measurement noise or errors. However, in this case the orbit accuracy is 

highly dependent on force models used for dynamic orbit determination. The analysis procedure 

involves numerical integration of the LAGEOS equations of motion from nominal initial 

conditions within a given force field and reference frames as listed in Table 6. A linear system 

of normal equations is set up and its solution is computed. The software computes derivatives of 

the observations with respect to the “solve-for parameters” of interest by integrating the 

equation of motion and solving for the unknown parameters using a least-squares adjustment. 

The procedure is iterated (e.g. 20 times) until convergence is reached, presumably on the last 

selected iteration number. During the data processing, the orbital arc integration length8 was 

fixed at 24 hours. Although short arcs are mostly affected by various discontinuities, in this 

study it was chosen considering the density of the analysed data as well as the possibility of 

reducing some of the discontinuities through smoothing procedures. In addition, a short arc 

length was selected in order to prevent the increase of residual errors in non-gravitational 

accelerations. 

�������������������������������������������������������������
8 An orbital arc integration length may be defined as the interval of time from the initial point to some chosen final 
point of specific repeated period of satellite tracked data. 
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Figure 14. Schematic representation of data processing 

�

3.6. Concluding remarks  
SLR tracking data particularly from LAGEOS satellites have over the years allowed precise 

determination of satellite orbits as well as the investigation of orbital perturbations and their 

possible origins. About 30 SLR tracking stations coordinated by the ILRS are mostly distributed 

in European, Australian and Asian countries, this concentration of stations in the Northern 

Hemisphere has an impact on results as the network geometry is weakened and often data are 

not captured if one or more of the few Southern Hemisphere stations are not operational. 

Currently the accuracy of SLR data range between 1 cm and 3 cm for good tracking stations. 

However the accuracy decreases to 5 cm or more in some cases.  In this study LAGEOS 1 and 2 

data collected from selected tracking stations were analysed using the SDAS package developed 

at HartRAO. The analysis of SLR data requires adequate modelling of the orbit via an orbit 

integrator that includes modelling of gravitational and non-gravitational forces perturbing the 

orbit of the satellite. In order to adjust the range as determined by the SLR system, corrections 

due to physical effects such as those caused by the solid Earth tide and tidal deformations on the 
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static gravity field need to be made. The SDAS package at HartRAO takes into account all the 

mathematical models in order to achieve a suitable solution. In the following chapters results 

obtained from LAGEOS 1 and 2 data analyses are discussed.  
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4. Investigating the accuracy of gravity field models using satellite 
laser ranging data 
 

“...the various models are not as good as they are said to be. If they were, the differences between them should not 

be as great as they are...” 

 Lambeck and Coleman (1983). 

 

The following chapter is based on a paper by Botai and Combrinck (2011). 

 

4.1. Introduction 
In this chapter, improvements in gravity field modelling over a period of 18 years are studied 

based on SLR data analysis using the SDAS package. In particular, this analysis is concerned 

with investigating the accuracy of GGMs focusing on spherical harmonic coefficients up to 

degree and order 20. In addition, since SDAS is still under development the present analysis is 

also to investigate whether SDAS output (e.g., O-C residuals and 2J ) compares with outputs 

from other existing SLR analysis software packages such as GEODYN. The O-C residuals 

computed during SLR data analysis utilizing various gravity field models are used as a proxy for 

the accuracy of the satellite orbits and thus a measure of improvement in gravity field 

modelling. In this study three different analyses were conducted: 

a) Seven months of SLR data collected from LAGEOS 1 and 2 were analysed by 

considering 12 gravity field models. Here, the main goal was to review the general 

improvement in gravity field modelling. 

b) Three years of LAGEOS 1 and 2 data were analysed in order to investigate the trend 

in the improvement in the range bias associated with gravity field models derived 

from 1996 to 2008.  

c) Lastly, the analysis of SLR tracking data sets for LAGEOS 1 and 2 (here 26 months 

of data) also focused on investigating improvements in the SDAS package based on 

two recent gravity field models. 

Based on our analysis, there has been a factor of ~2 improvement in the SLR range bias 

computed from LAGEOS 1 and 2 SLR data analysis based on gravity field models developed 

from 1990 to 2008. However from the analysis of the O-C range residuals, the majority of the 

gravity field models released from 1999 exhibit negligible improvement. Models developed 
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between 1999 and 2008 depict subtle differences of O-C residuals across the analysed models 

suggesting stability in the accuracy of gravity field modelling according to the SDAS package. 

Furthermore, using the most recent version of SDAS, gravity field models have shown 

significant improvements (the current value of O-C residuals is ~1.5 cm to 2.0 cm) compared to 

earlier versions of the analysis software. 

 

4.2. Background 
Continuous tracking of geodetic satellite orbits using the SLR data have provided an 

unprecedented opportunity in the history of gravity field modelling. The GGMs derived from 

such observations allow researchers to probe the long- to medium-wavelength components 

(half-wavelengths longer than 200 km, or spherical harmonic degrees 2 to 100) of the Earth’s 

gravitational field. Numerous gravity field models have been derived from the mid-1960s. 

Furthermore, gravity field modelling is still in progress with new models being derived and old 

models being modified continuously. The accuracy of most of the latest models in terms of 

precise orbit determination is currently at cm level.  

Improvements in gravity field modelling in terms of accuracy and spatial resolution is 

necessary in order to understand the physics of the interior of the Earth, the dynamics of the 

ocean and the interaction of continents, ice and ocean in sea-level studies, as well as for a better 

determination of satellite orbits and height systems in science and engineering (Rummel et al., 

2002). Such improvements are warranted owing to the availability of SLR tracking data, 

especially from the low Earth orbiting satellites. Satellite missions such as CHAMP, GRACE 

and GOCE launched in 2000, 2002 and 2009 respectively are believed to have improved the 

spatial resolution, sensitivity and accuracy of the newly developed GGMs. These satellites are 

designed to resolve the long-wavelength part of the gravity field and hence provide 

unprecedented accuracy (Featherstone, 2003). In contrast to the sporadic tracking by the SLR 

station network of the ILRS, the three satellite missions (CHAMP, GRACE and GOCE) carry 

GPS receivers on board that allow continuous orbit tracking. Furthermore, these satellites are 

equipped with accelerometers which provide direct measurements of the non-conservative 

forces (e.g. air-drag). In the case of GOCE, six accelerometers are installed in a gradiometer 

arrangement which additionally allows for direct measurement of the Earth’s gravity gradients 

which gives an improvement in the medium wavelength part of the gravity. The three satellite 
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missions also provide a homogeneous and near complete global coverage of gravity field 

information. 

Research focusing on gravity field modelling has led to the unprecedented improvement 

in the resolution of various gravity field models i.e., to higher degree and order spherical 

harmonics. Such improvements can be measured by studying the inherent characteristics (e.g., 

the statistics) of the GGMs based on several factors. For example, the behaviour of GGMs can 

be analyzed by performing orbit adjustment tests on artificial satellites, GPS/leveling tests, 

comparing spectral behaviour of the models or ocean geoid (Foerste et al., 2008). While earlier 

geopotential models derived up to degree and order 70 could resolve spatial features (geoid 

computation) at a half-wavelength of about 290 km, models (particularly the most recent) 

computed up to degree and order 360 can resolve spatial features down to 55 km (Moore et al. 

2006). Now-a-days gravity field modelling has reached a new era where new gravity field 

models are being derived reaching even higher degree/order (1000 or more) providing even 

further unprecedented accuracies, see for example Pavlis et al. (2008).   

Early evaluations of gravity field models by Zhang and Featherstone (1995) reported that 

the OSU91A geopotential model provided the best fit to the gravity field over the Australian 

region compared to prior released models. In contributions by Pearse and KearsIey (1996) and 

Kirby et al. (1998) the accuracy of the OSU91A gravity model was inferior to the EGM96 

gravity model where the latter was reported to give better solutions for the computation of geoid 

heights. Evaluations of GGMs released between 1996 and 2002 by Amos and Featherstone 

(2003) based on comparisons of gravity anomalies, free-air gravity anomalies, geoid heights and 

GPS/levelling tests found that EIGEN-1S was the best satellite-only GGM when applied in the 

Australian and New Zealand region while the best combined GGM over the same region was 

reported to be PGM2000A (Pavlis et al., 2000). The quality of the GGM01 model was assessed 

by Ellmann (2004) based on a comparison with the combined gravity field model EGM96. It 

was reported that the GGM01 model gives better solutions of gravity anomalies and geoidal 

heights over Fennoscandia (e.g., Finland, Germany, Norway, and Sweden) and the Baltic Sea 

region.  

As reported in Foerste et al. (2009), a comparison study of ten geopotential models 

(EGM96, GGM02C, GGM03S, ITG-GRACE03, JEM01-RL03B, EIGEN-GL04C, EIGEN-

5C/5S and EGM2008) using geoid heights and GPS/leveling data points revealed that the 
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EGM2008 model provided the best solution compared with the other models at degree 360. A 

much improved solution was also reported for EGM2008 when its coefficients were increased to 

degree 2190. A similar study by Yilmaz et al. (2010) evaluating GGMs EGM96, EIGEN-5C 

and EGM2008 based on the comparison of geoid heights with the GPS/levelling over 

Afyonkarahisar in Western Turkey also confirmed the improvements of EGM2008 model in the 

computation of geoid heights.  

Improvement in the Earth gravity field modelling is anticipated as new and qualitative 

SLR tracking data and new algorithms of processing the data become available in the future. 

This expectation therefore motivates for assessment and validation of the accuracy and precision 

of existing gravity field models. Orbit tests are considered as tools for testing the long 

wavelength components of the gravity field model. In particular, the quality of orbits (and 

indirectly the quality of gravity field models) can be obtained by computing orbits to a variety of 

low and high artificial satellites with different orbit parameters. This can be done via a dynamic 

approach as well as by analysing the statistics of the satellites orbital residuals (also known as 

the difference between the observed orbital elements and the computed ones, e.g., O-C range 

residuals) for available tracking data to such satellites. In this study, we evaluate the accuracy of 

gravity field models in terms of POD by analyzing different data sets from LAGEOS 1 and 2 

SLR data. In addition, improvements in the SDAS package are also investigated by analyzing 26 

months of LAGEOS 1 and 2 SLR data considering two recent satellite-only and combined 

gravity field models.  

 

4.2. Analysis of gravity field models 

4.2.1.  Improvements in gravity field modelling 
In this section of the study, seven months of SLR data collected from LAGEOS 1 and 2 and 

spanning December 2005 to June 2006 were analysed for the purpose of assessing general 

improvements in gravity field modelling. In particular, twelve (12) gravity field models 

comprising of satellite-only and the combined (satellite and terrestrial data) categories which 

were developed and released to the geodetic community between 1990 and 2008 were 

considered during the SLR tracking data analysis.  A brief description of each of these models is 

presented in Chapter 2 and a summary is also given in Table 7. 
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Table 7. GGMs evaluated in this study. Data: S = Satellite tracking data, G = Terrestrial gravity 
data, A = Altimetry data. 

Model Year Degree/orderData Reference 
AIUB-GRACE01S2008 120 S Jaeggi et al. (2008) 
EIGEN-5C 2008 360 S,G,A Foerste et al. (2008) 
EIGEN-5S 2008 150 S Foerste et al. (2008) 
GGM03C 2007 360 S,G,A Tapley et al. (2007) 
EIGEN-GL04S1 2006 150 S Foerste et al. (2006) 
EIGEN-CG03C 2005 360 S,G,A Foerste et al. (2005) 
EIGEN1 2002 119 S Reigber et al. (2003) 
GRIM5C1 1999 120 S,G,A Gruber et al. (2000) 
EGM96 1996 360 EGM96S,G,ALemoine et al. (1998) 
JGM3 1994 70 S,G,A Tapley et al. (1996) 
OSU91A 1991 360 GEMT2,A,G Rapp et al. (1991) 
GRIM4C1 1990 50 S,G,A Schwintzer et al. (1991) 

 

The data processing technique is discussed in Chapter 3. The stations selected for data analysis 

and their global performance during the period between 2006 and 2008 are listed Table 8. As 

featured in Table 8, ILRS tracking stations (column 1) have different total passes per year (i.e., 

different data volumes which is generally determined by ILRS scheduling program) and the 

annual averaged data quality (which is influenced by the local atmospheric conditions at the 

SLR site). Stations which were not able to provide any data or provided insufficient data were 

not evaluated.  

In general, Table 8 illustrates that there has been an improvement in SLR tracking data 

over the years. It is important however to note that the individual station data are distributed 

heterogeneously with respect to the length of the time span and to the available number of 

normal points. For example while the best tracking stations observed about 2000 passes for 

LAGEOS (e.g., at Yarragadee) more than half of the 19 SLR stations selected delivered less 

than 15% of that data amount (e.g., Katzively and Lviv tracking stations). Nowadays the 

accuracy of data collected from ILRS tracking stations ranges from the 1 cm-level (for stations 

which perfom well) up to 3 cm-level for those stations that generally underperform. It is 

however important to also underline that the local atmospheric conditions such as the fraction of 

cloud cover, as well as turbulence degrade the quality of the data recorded at the SLR sites. 
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Table 8.  Performance parameters of global SLR tracking stations recovered from the ILRS 
website i.e., http://ilrs.gsfc.nasa.gov/stations/site_info/. The stations are listed based on data 
volume contributed from 2006 to 2008, a map showing the distribution of these stations is given 
in Figure 5. 

Station Name Station No. 
LAGEOS data volume LAGEOS data quality [mm] 
2006 2007 2008 2006 2007 2008 

Yarragadee 7090 2038 1799 2078 9.1 9.5 9.6 
Zimmerwald 7810 1147 1192 74 12.2 17.6 11.0 
Graz 7839 858 825 653 7.7 8.0 5.2 
Wettzell 8834 978 1041 1011 15.6 18.5 18.5 
Monument Peak 7110 894 484 363 14.5 15.9 16.0 
Herstmonceux 7840 929 932 426 16.3 12.9 13.5 
Changchun 7237 423 772 605 14.3 17.5 12.4 
Matera_MLRO 7941 872 753 799 6.5 5.9 4.9 
Hartebeesthoek 7501 720 304 254 8.9 10.4 10.5 
Potsdam_3 7841 307 304 313 20.1 19.2 17.4 
Greenbelt 7105 269 321 511 9.1 9.5 9.9 
San_Fernando 7824 260 523 440 14.7 15.1 14.1 
Concepcion_847 7405 590 1078 816 14.5 12.0 19.2 
McDonald 7080 369 412 335 11.8 12.5 12.5 
Beijing 7249 178 339 311 19.4 16.6 16.3 
Riga 1884 98 111 57 13.0 12.0 12.4 
Katzively 1893 80 287 310 8.3 40.2 42.5 
Tokyo-(CRL) 7308 63 248 472 17.4 15.5 15.0 
Arequipa 7403 37 218 130 7.0 6.9 5.6 

 

In this study we have computed orbit residuals for LAGEOS 1 and 2 using the SDAS package 

and considering the 12 selected gravity field models (see Table 8). The orbit residuals are 

derived from the SLR data analysis which utilizes dynamical modelling (e.g., gravity fields) 

during precise orbit determination (Yunck, 1997; Lemoine et al., 1998). In particular, orbit 

residuals (which also represent the differences between the satellite position as calculated from 

SLR observations and the satellite position (orbit) computed from dynamical models) are 

commonly referred to as the O-C range residuals which are dependent on the type of gravity 

field model under consideration (different gravity field models are associated with different O-C 

range residuals). The computed O-C residuals are used in this study as a measure of accuracy in 

the gravity field modelling.  

 Table 9 contains the mean SD values of the O-C residuals based on the 12 considered 

gravity field models. The results presented in Table 9 indicate that the oldest gravity field 
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models, GRIM4C1 and OSU91A (released in 1990 and 1991 respectively) are linked to a mean 

residual (~10 cm and ~8 cm for LAGEOS 1 and 2 respectively) that is approximately twice the 

O-C range residuals computed from SLR analysis using some of the more recent models. Higher 

SD values associated with gravity field models (GRIM4C1 and OSU91A) may be due to the 

systematic errors or range bias in the ephemeris and/or as a result of inappropriate calibration of 

the models (Milani et al., 1995). The gravity field models released from 1999 onwards seem to 

remain at approximately the same level, although there are many specific differences (e.g. type 

of data used, degree and order of coefficients) amongst these later models.  

 

Table 9. Statistical comparative accuracies of the evaluated gravity field model in terms of O-C 
residuals. 

Model Year Mean SD [cm] LAGEOS 1Mean SD [cm] LAGEOS 2
AIUB-GRACE01S 2008 3.79 3.63 
EIGEN-5C 2008 3.89 3.73 
EIGEN-5S 2008 3.85 3.32 
GGM03C 2007 3.88 4.86 
EIGEN-GL04S1 2006 3.89 3.72 
EIGEN-CG03C 2005 3.81 3.69 
EIGEN1 2002 6.09 7.52 
GRIM5C1 1999 3.82 3.70 
EGM96 1996 4.14 4.41 
JGM3 1994 4.49 5.57 
OSU91A 1991 10.17 8.10 
GRIM4C1 1990 10.36 9.94 
 

The average difference among the gravity field models released between 1999 and 2008 is at 

mm level with maximum difference being less than 2%. This may imply that gravity field 

models released from 1999 to 2008 have less or no influence on the current cm accuracy level of 

the precise orbit determination. However, since the addition of CHAMP and GRACE data, an 

improvement in gravity field modelling is expected, though systematic errors might be dominant 

in the analysis set up. In the case where modelling errors dominate, the inaccuracies caused by 

the modelling of other perturbing forces are greater than the contribution from gravity field 

models and thus obscure the improvement in the gravity modelling. Nevertheless, with the 

inclusion of long term series of data there still could be room for further improvements in the 

models.  
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Figure 15 depicts the mean SD values of the O-C residuals computed from LAGEOS 1 and 2 

SLR tracking data based on varying the 12 selected gravity field models. In general, gravity 

field modelling progressively improved between 1990 and 2008. Noticeable improvements 

occurred with the development of gravity field models that were released between 1990 and 

1996. For example, while the GRIM4C1 and OSU91A models exhibit SD mean values of ≥8 

cm the most recent models show an SD of ~3 cm. Based on the SLR analysis of LAGEOS 1 and 

2 SLR data, the mean SD values corresponding to the 12 gravity field models indicate that 

gravity field modelling significantly improved over the 18 years period.  

Large mean SD values of O-C range residuals observed in earlier GRACE gravity field 

models, EIGEN1, may be explained by inherent systematic errors in the SLR observations, 

uncertainties in the conceptual gravity field model, model error, as well as outliers related to 

weak station geometry and lack of data on some days. Overall, an improvement by a factor of 2 

in the O-C range residuals based on the analysis of the LAGEOS 1 and 2 data sets considering 

the various gravity field models is observed since 1990.  In particular, the satellite-only gravity 

field models, AIUB-GRACE01S and EIGEN-5S, yield the lowest O-C results therefore they 

seem to be the most accurate in terms of our evaluation.  

 

 
Figure 15. Time series of the mean SD values for the 12 evaluated GGMs. 
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Handling outliers in the O-C residuals based on selected gravity field models 

In this part of work, the inherent outliers in the O-C residuals across the 12 selected gravity 

models have been assessed and corrected based on the 3�-rule. This rule uses the fact that 

99.73% of all values of a normally distributed parameter fall within three standard deviations of 

the average value. Suppose that we have a sample of O-C residuals given by

{ }1 2 3, , ,..., nX x x x x= , outliers in the data can be identified by iteratively applying the outlier 

tests given by Equation (68),  

 i
i

x x
t

s

−
= . (68) 

Here x  is the mean, s is the standard deviation for the entire data set, ix  is the suspected single 

outlier, i.e., the value furthest away from the mean. Normally, a 3�-rule considers any 

observations with 3it >  as possible outliers and discards such observations or adjusts them to 

one of the values 3x s± , whichever is nearer.  Another way of detecting outliers in the data is by 

fitting a linear regression on the data. Suppose the relationship between two variables x and y: 

( ),i ix y , with i = 1, …, n is given by a straight line regression model, 

 ,              1,...,i i iy x u i nα β= + + = . (69) 

Here ix  and iy  are the predictor and response variable values respectively, and iu  are random 

errors. Possible outliers can be detected by estimating the parameters α  and β  with the least-

squares estimates given by Equation (70), 
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The 3�-rule given by Equation (68) was used to investigate possible outliers in the O-C 

residuals computed from LAGEOS 1 and 2 SLR data based on the 12 gravity field models listed 

in Table 7.   
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Table 10 lists the new mean SD values of the O-C residuals computed by using LAGEOS 1 data 

after applying the 3�-rule. A significant improvement in the mean SD of O-C residuals is 

noticed in all 12 gravity field models. In particular, the positive influence of the gravity field 

models on the O-C range residuals is more noticeable in all the models in the LAGEOS 1 data 

analysis. For example, the mean SD values computed from LAGEOS 1 based on GRIM4C1 and 

OSU91A ranges between ~6 cm and ~8 cm respectively. Application of the 3�-rule on the O-C 

residuals derived from LAGEOS 1 indicates that ~6% and ~5% of the residuals were rejected as 

outliers. The combined gravity field model, EIGEN1 exhibits a high mean SD with data 

rejection of only 2% as compared to the other more recent models (models derived from 

CHAMP and GRACE data).  

The mean SD values for the rest of the models lie at ~3 cm with range residual rejection 

ranging from 8% for JGM3 to ~27% for EIGEN-5S, EIGEN-5C and AIUB-GRACE01S. The 

AIUB-GRACE01S, EIGEN-5C, EIGEN-5S, EIGEN-CG03C and GRIM5C1 seem to be the best 

considering their reduced SD values, though they also reject a high quantity of data. In 

particular, the GRACE satellite-only model, AIUB-GRACE01S, is found to be the best with the 

least mean SD of 3.07 cm.  It is however important to point out that, the percentage of data 

rejection is a function of the number of data points, as opposed to the variance of the O-C range 

residuals (here, older gravity field models have less data points compared with the most recent 

gravity field models). 

 

Table 10. Mean SD values of the O-C residuals computed from LAGEOS 1 based on the 12 
gravity field models after the application of the 3�-rule. 

Model Mean SD [cm] LAGEOS 1Residuals rejection %
AIUB-GRACE01S 3.07 26.8 
EIGEN-5C 3.15 26.7 
EIGEN-5S 3.18 27.4 
GGM03C 3.29 15.4 
EIGEN-GL04S1 3.25 20.7 
EIGEN-CG03C 3.12 25.3 
EIGEN1 5.16 2.1 
GRIM5C1 3.13 25.1 
EGM96 3.86 1.0 
JGM3 3.81 8.3 
OSU91A 8.38 4.9 
GRIM4C1 6.87 5.9 
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Table 11 presents results for the 3�-rule applied on O-C residuals computed from LAGEOS 2 

based on the 12 selected gravity field models. In Table 11 the GRIM4C, OSU91A and EIGEN1 

contain the highest mean SD values of ~8 cm and ~6cm with ~3%, ~4% and ~5% residual 

rejection. In particular, the EIGEN1 model exhibits a higher mean SD than any other recent 

models computed from CHAMP and GRACE data. The combined models, JGM3 and GGM03C 

are very close with a mean SD of ~4.7 cm and ~4.2 cm and residual rejection of ~3% and ~2% 

respectively. The rest of the gravity field models show an average SD of ~3 cm with residual 

rejection ranging from ~0.5% to ~1%. In particular, the EIGEN-5S, EIGEN-5C, EIGEN-

GL04S1 and EIGEN-CG03C models exhibit equal average SD values of 3.30 cm with residual 

rejection of 0.48%. Since EIGEN-5S solution was incorporated in the computation of EIGEN-

5C it may imply that the EIGEN-5C model and perhaps EIGEN-CG03C are dominated by the 

satellite-only information up to a certain degree/order. Based on this study the best model for 

computing LAGEOS 2 orbits is found to be AIUB-GRACE01S (similar to LAGEOS 1) 

considering the improvements in O-C residuals. 

 

Table 11. Mean SD values of the O-C residuals computed from LAGEOS 2 based on the 12 
gravity field models after the application of the 3�-rule. 

Model Mean SD [cm] LAGEOS 2Residuals rejection %
AIUB-GRACE01S 3.23 0.49 
EIGEN-5C 3.30 0.49 
EIGEN-5S 3.30 0.48 
GGM03C 4.16 2.00 
EIGEN-GL04S1 3.30 0.48 
EIGEN-CG03C 3.30 0.48 
EIGEN1 6.21 5.10 
GRIM5C1 3.29 0.49 
EGM96 3.74 1.50 
JGM3 4.74 3.00 
OSU91A 6.46 4.70 
GRIM4C1 8.12 3.20 

 

4.2.2.  Trends in O-C residuals based on developments in gravity field modelling 
In this study three (3) years of LAGEOS 1 and 2 tracking data spanning December 2005 to 

December 2008 were used to investigate the trend in the improvement of O-C residuals based on 
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a set of four gravity field models (i.e., EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S) 

released between 1996 and 2008. The motivation for considering the selected models arises 

from the stable pattern (there was no noticeable improvement) in the O-C range residuals 

observed (see Figure 15) during the analysis of SLR data while using the models. In Table 12 

the average SD values were calculated from the original O-C residuals (before filtering the 

outliers) of LAGEOS 1 and 2 considering the four gravity field models while, Table 13 presents 

slightly improved mean SD values of the O-C residuals after applying the 3�-rule. Direct 

comparison of the average SD values computed from the four different models depicts that the 

GRIM5C1 and AIUB-GRACE01S have comparable accuracy (e.g., 3.35 and 3.36 based on 

LAGEOS 1 SLR and 3.35 and 3.34 cm based on LAGEOS 2 SLR data).  

 

Table 12. Mean SD values calculated from the O-C residuals based on LAGEOS 1 and 2 data 
using EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S models. 

Model Year Mean SD [cm] LAGEOS 1 Mean SD [cm] LAGEOS 2 
EGM96 1998 4.32 4.22 
GRIM5C1 1999 3.94 3.84 
GGM03C 2006 4.18 4.32 
AIUB-GRACE01S 2008 3.92 3.82 
 

Table 13. Mean SD values of the four models after 3�-rule filtration. 

LAGEOS 1 
Model Mean SD [cm]  Residuals rejection % 
EGM96 3.66 12.0 
GRIM5C1 3.35 16.2 
GGM03C 3.52 12.6 
AIUB-GRACE01S 3.36 15.9 

LAGEOS 2 
EGM96 3.60 10.0 
GRIM5C1 3.35 9.5 
GGM03C 3.84 11.4 
AIUB-GRACE01S 3.34 9.3 

 

As tabulated in Table 13 the O-C range residuals derived from LAGEOS 1 SLR data exhibit 

high residual rejection (~14% overall) during filtering, compared with ~10% rejected from O-C 

range residuals derived from the analysis of LAGEOS 2 SLR data sets. The EGM96 and 

GGM03C exhibits slightly higher O-C range residuals (3.7cm and 3.8cm respectively) based on 
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the analysis of LAGEOS 1 and 2 SLR data respectively. The high average SD based on the SLR 

analysis while considering the EGM96 and GGM03C gravity field models could be attributed to 

possible inherent biases in the O-C range residuals due to weak station geometry, systematic 

errors, poor tracking on certain days, especially during raining seasons and poor distribution of 

tracking data (due to network asymmetries). 

 

4.3. Investigating possible improvements in the SDAS package 
The SDAS package is still under development hence the estimates of O-C range residuals are 

expected to be optimized as more features are introduced into the software. The SDAS package 

has undergone considerable upgrades since the SLR data processing started back in 2008. This 

includes implementation of different IERS models to correct for the effects of tidal deformations 

due to solid Earth and pole tides. Hence the main focus in this section is to investigate the 

possible improvements in the estimation of O-C range residuals as realized by the general 

upgrade of SDAS. For this purpose we have analysed twenty-six months of LAGEOS 1 and 2 

data spanning May 2008 to April 2010 while considering two recent gravity field models, 

EGM2008 (partly because this model has the highest degree/order 2159, though SDAS is only 

configured to process up to degree/order 20) and AIUB-GRACE01S (partly because this gravity 

field model exhibited the lowest O-C range residuals in the previous SLR data analysis).  

The results for this analysis are presented in Table 14 (from the original O-C residuals) 

and Table 15 (after 3�-rule filtration). The mean SD obtained in this study using a new version 

of the SDAS package shows an improvement by more than a half compared with the older 

version of the software.  This suggests that the added features in the software have increased its 

capability to compute satellite orbits with unprecedented accuracy. In addition, the results 

reported in this study are comparable to those published in the literature. Generally, the SD 

values of other LAGEOS orbit computations, based on the most recent gravity field models, are 

found to be ≤1.5 cm, see for example Cheng et al. (2009).  In this study we find the mean SD 

values for EGM2008 and AIUB-GRACE01S to be 1.8 cm based on LAGEOS 1 and 1.6 cm 

based on LAGEOS 2 data. This gives a difference of about 3 mm and 2 mm between our results 

and those reported by Cheng et al. (2009).   
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Table 14. Mean SD values calculated from the O-C residuals based on LAGEOS 1 and 2 data 
using EGM2008 and AIUB-GRACE01S models. 

Model Mean SD [cm] LAGEOS 1 Mean SD [cm] LAGEOS 2 
EGM2008 2.01 1.77 
AIUB-GRACE01S 2.00 1.80 

 

Table 15. Mean SD values of the O-C residuals for LAGEOS 1 and 2 data based on EGM2008 
and AIUB-GRACE01S models after 3�-rule filtration. 

LAGEOS 1 
Model Mean SD [cm] Residuals rejection % 
EGM2008 1.81 3.90 
AIUB-GRACE01S 1.84 3.10 

LAGEOS 2 
EGM2008 1.64 3.30 
AIUB-GRACE01S 1.62 3.20 

 

4.4. Concluding remarks 
Analysis of the accuracy of satellite orbits calculated from SLR measurements partly entails 

assessment of the influence of various gravity field models on the O-C range residuals. As a 

result, a more accurate gravity field model would manifest in the form of an improvement of the 

O-C range residuals calculated from the analysis of SLR data while considering the gravity 

model in question. In this study, the accuracy of twelve gravity field models released between 

1990 and 2008 were analysed in terms of precise orbit determination by comparing their O-C 

range residuals. The results from a seven month data period indicated that there has been an 

improvement in the development of gravity field models over the period of evaluation. The 

evaluated models show an improvement by a factor of at least 2 since 1990 in terms of O-C 

range residuals. Furthermore, our analysis indicated that gravity field models released from 

1999 onward are likely to be accurate at approximately the same level, at least to the sensitivity 

of our O-C tests, although there are many specific differences amongst these later models. A 

further analysis (for a period of three years) of a set of four gravity field models released 

between 1999 and 2008 demonstrates subtle differences in their O-C range residuals which 

could be associated with data quality. Overall, in the SLR data analysis (this includes the seven 

months and ~3 years of LAGEOS 1 and 2 SLR data) undertaken in this study, it was found that 

the satellite-only derived gravity field model AIUB-GRACE01S could be the most accurate due 
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to the low average SD of the corresponding O-C range residuals. The SDAS package has 

undergone numerous upgrades with promising results; current level of accuracy of the O-C 

range residuals is comparable to those published in the literature.   
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5. Analysis of the effect of tide parameterization on the accuracy of 
gravity field models 
 

                            “Whether or not you can observe depends on the theory which you use. It is the theory which 
decides what can be observed” Albert Einstein. 

 

5.1. Introduction 
Gravity field models derived from SLR tracking data are utilized in various fields of research. 

For instance, they can be used to study the structure of the Earth, for computation of the geoid, 

reference systems, satellite orbits etc. The quality of the computed satellite orbits depends on the 

preferred gravity field model and its inherent accuracies. On the other hand, the accuracy of 

gravity field models is dependent on proper modelling of parameters that describe the disturbing 

forces acting on a satellite as it orbits the Earth. Factors such as availability, type and quality of 

data also play a significant role.  

The main objective of this chapter is to investigate the contributions of Earth and pole 

tides on the O-C residuals across selected gravity field models by use of different configurations 

in the SDAS package. Contributions from the Earth and pole tides on the spherical harmonic 

coefficients (and also on O-C residuals) are computed using models incorporated into IERS 

2010 conventions reported in Petit and Luzum (2010). In the SDAS package the Earth tide 

model is in the form of three selectable compatible models, these are selectable from the menu 

as IERS1, IERS2 and IERS3. In SDAS IERS1 corrects Earth tidal effects to degree 2 spherical 

harmonic coefficients, IERS2 is an extension of IERS1 with further corrections to the third and 

fourth spherical harmonic coefficients and IERS3 is a complete model which incorporates 

IERS1, IERS2 and frequency independent components of solid Earth tides.  

In this study four SLR parameterization schemes were considered (i.e., the analysis 

options were configured as IERS1 off, IERS2 off, IERS3 off and pole tides off). The O-C 

results based on the four different tide parameterization schemes are first characterized by 

determining the inherent statistical structure. Here a direct comparison of the computed mean 

SD of the O-C residuals across the different models is used to determine an appropriate model 

that best describes the O-C data structure. In the second analysis a t-test statistical method was 

used (Student’s t-test as applied in the Statistica statistical analysis package (Motulsky, 2003)) 

to assess the robustness of the mean SD of the O-C across different tide parameterization tests 
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based on the selected gravity field models. Overall, the results presented in this chapter have 

significant implications with regard to the interpretation of the O-C orbit errors computed from 

different gravity field models using each of the four tide parameterization test models.  

 

5.2. Background 
The gravitational attraction of the celestial bodies (e.g., Moon and Sun) exerts a direct force on 

Earth orbiting satellites. These forces also act on the rotating Earth thereby inducing 

deformations of the solid Earth. Such deformations tend to produce time variations in surface 

deflections and gravity with amplitudes up to 50 cm and 200 Galµ  respectively (Metivier and 

Conrad, 2008). The motion of the Earth (i.e. in orbit around the Sun and spinning around its 

instantaneous axis of rotation) and the coupled solar and lunar forces of attraction give rise to 

tidal deformations. Tidal deformations occur in the solid Earth, the ocean and in the atmosphere. 

Time varying deformations within the Earth system are consequences of solid Earth tides. On 

the other hand, pole tides are due to changes in the direction of the Earth’s spin axis relative to a 

certain reference point in the Earth (McCarthy and Petit, 2003, Petit and Luzum 2010).  

Generally, Earth and pole tides manifest as time-varying components of the gravity field. 

As a consequence, the Earth’s gravitational field exhibits periodic variations which tend to 

affect the motion of satellites. Time variations in the global gravity field are often extracted 

from geodetic satellite data. They are commonly used to study a variety of geodynamic and 

atmospheric processes. In most geodetic applications, both the solid Earth and pole tides ought 

to be properly modelled so that their influence can be accounted for in geodetic observables. At 

present, the solid Earth tide components embedded in spherical harmonic coefficients 

(geopotential models) are accounted for by using classical models which have been incorporated 

into various IERS conventions and technical notes, the latest being IERS2010 reported by Petit 

and Luzum (2010).  
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5.2.1.  Solid Earth tides 

5.2.1.1.  Effects of solid Earth tides on station coordinates 

In SLR analysis the effects of Earth tide deformation are often noticed in the estimated time-

varying component of station coordinates (here the greatest influence is in the vertical 

component of the station coordinates) see for example Figure 16.  

�
Figure 16. Position displacement of Yarragadee SLR tracking station due to Earth tides 
(Combrinck and Suberlak, 2007). 
 

The effects of tidal deformations on the station coordinates due to Earth tides are often derived 

from Equation (71) as reported in Petit and Luzum (2010), 

 ( ) ( )
43 2

2 2
2 23

2

3 3 ,
2 2

j

j j j
j j

GM r h h
r l R r R l R r r

GM R= ⊕

� � � �� �� �� � � �∆ = ⋅ + − ⋅ −� �� 
� �� �� � 	 
� �� �� �
�

� � �� � � �
 (71) 

where jGM  and GM ⊕  are the gravitational parameters for the Moon/Sun and the Earth 

respectively. Similarly, j jR ,R
�

 and r ,r
�

 are the unit vectors from the geocentre to the Moon or 

Sun and to the station respectively, together with the magnitudes of the vectors. In addition, 2h  

and 2l  are the nominal second degree Love and Shida numbers respectively. 

Tidal deformations are thought to manifest in the station height component since in most 

geodetic applications nearly all of the parameters in Equation (71) become time-independent at 

longer time-scales. As a result the time-dependent station height variation due to Earth tide 

deformations is accounted for by use of Equation (72) (Petit and Luzum, 2010), 
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 ( )
1 1 1

5
3sin cos sin .

24STA K K Kh h H
� �

δ = δ − φ φ θ + λ� �� �π	 

 (72) 

In Equation (72) - 
1 1K K 2h h hδ =  (the estimated value is -0.0887), 

1KH  is the amplitude of the 1K  

term in the harmonic expansion of the tide generating potential and its value is 0.36878 m, φ  

and λ  are the geocentric latitude and east longitude of the station and 
1Kθ  is the 1K  tide 

argument and is given by gθ π+ . Equation (72) can be written in a simplified way as, 

 ( )0.0253sin cos .STA ghδ φ φ θ λ= − +  (73) 

Here the effect is a maximum at 45φ = � where the amplitude is 0.013 m. 

 

5.2.1.2.  Effects of solid Earth tides on geopotential coefficients 

The effects of solid Earth tides in the free space potential are often modelled as temporal 

variations in the standard geopotential coefficients nmC  and nmS .  Such contributions are often 

expressed in terms of Love number independence on tidal frequency (this includes long period 

terms) and station latitude. The effects of ellipticity and rotation of the Earth due to latitudinal 

dependence and the Coriolis force give rise to tidal deformations. As reported in Wahr (1981), 

tidal deformation effects require the use of three k - parameters (these are the Love and Shida 

numbers), nmk  and ( )
nmk ±  (with the exception of 2n = ) to characterize the changes produced in 

the free space potential by tides of spherical harmonic of degree and order ( )nm . In the case 

where mantle anelasticity is taken into account, anelasticity may introduce small imaginary parts 

to the nmk  and ( )
nmk ±   terms that reflect a phase lag in the deformation response of the Earth to the 

tidal forces. In addition, anelasticity may also affect the Earth’s deformational response to 

effects arising from direct action of the tide generating potential (e.g. ocean tides and wobbles of 

the mantle and the core regions).  

The tidal contributions due to Earth tides are accounted for by a two-step formulation 

reported in Wahr (1981) and Petit and Luzum (2010). In the first step, frequency independent 

nominal Love numbers are used to evaluate the ( ,nm  for 2n =  and 3n =  for all m ) part of the 

tidal potential coefficients and compute the corresponding changes nmC∆  and nmS∆  (these are 
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temporal corrections to geopotential coefficients nmC  and nmS ) in the time domain using the 

lunar and solar ephemeris. The induced contributions (i.e. nmC∆  and nmS∆ ) due to the nm  part 

of the tidal generating potential in the normalized geopotential coefficients having the same 

( )nm  in the time domain are expressed in terms of the nmk  Love number using Equation (74) as 

reported in Petit and Luzum (2010),  

 ( )
1

3

2

sin .
2 1

j

n

imjnm e
nm nm nm j

j j

GMk R
C i S P e

n GM r
λφ

+

−

= ⊕

� �
∆ − ∆ = � �� �+ 	 


�  (74) 

Here nmk  is the nominal Love number for degree n  and order ,m  eR  is the equatorial radius of 

the Earth, GM ⊕  and jGM  are gravitational parameters for the Earth and the Moon ( )2j =  or 

Sun ( )3j =  respectively, jr  is the distance from geocentre to Moon or Sun and jφ and jλ  are 

the body-fixed geocentric latitude of the Moon or Sun and east longitude (from Greenwich) of 

the Sun or the Moon respectively. The contribution to the geopotential coefficients in the degree 

4, 4mC  and nmS  due to degree 4 tides are also computed in a similar method in terms of ( )
2mk +  as 

given in Equation (75), 

 ( ) ( )
3
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�  (75) 

The parameter values utilized in the computation of step 1 are given in Table 16. The nominal 

value for 0m =  needs to be selected as a real since the contribution to 20C  from the imaginary 

part of ( )0
20 .k  

 

Table 16. Nominal values of solid Earth tide external potential Love numbers. 

Elastic Earth 
n  m  nmk  ( )

nmk +  e nmR k  
2 0 0.29525 -0.00087 0.30190 
2 1 0.29470 -0.00079 0.29830 
2 2 0.29801 0.00057 0.30102 
3 0 0.093   
3 1 0.093   
3 2 0.093   
3 3 0.094   
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The second step corrects arguments of a harmonic expansion of the tide generating potential for 

which the error due to the Love number 2k  of step 1 is above a certain cut-off value. In this step 

the frequency dependent values considered are obtained from Mathews et al.  (1995) and 

corrections to nmC∆  and nmS∆  values are from step 1. These corrections are the sum of 

contributions from a number of tidal constituents belonging to the respective bands. The 

contribution to 20C∆  from the long period tidal constituents of various frequencies, f  is given 

by Equation (76) as reported in Petit and Luzum (2010), 

 ( ) ( ) ( )0 0 0(2,0) (2,0)
cos sin .i f R I

e f f f f f f f ff f
R A k H e A H k A H kθδ δ θ δ θ� �= −� �� �  (76) 

Furthermore, the contributions to ( )21 21C i S∆ − ∆  due to the diurnal tidal constituents and to 

( )22 22C i S∆ − ∆  from the semidiurnal band are given by,  

 ( ) ( )2 2
(2, )

,        1,2 ,fi
m m m f f

f m

C i S m A k H e mθη δ∆ − ∆ = =�  (77) 

where  
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Here fkδ  gives the difference between fk  defined as 0
2mk  at frequency f  and the nominal 

value 2 ,mk  in the sense 2f mk k−  plus a contribution from ocean loading; R
fkδ  is the real part of 

;fkδ  I
fkδ  is the imaginary part of ;fkδ  fH  is the amplitude of the term at frequency f  from 

the harmonic expansion of the tide generating potential defined according to the convention of 

Cartwright and Taylor (1971). In Equation (76), 

( ) ( )6 5

1 1
,  or     .f i i f g g j ji j

n n m NF m N Fθ β β θ θ π θ π
= =

= = = + − = + −� �
� � ��

 

In addition, β
�

 is the six-vector of Doodson’s fundamental arguments ,iβ ( ), , , , ', ,ss h p N pτ  n
�

 

is the six-vector of multipliers in  of the fundamental arguments, F
�

 is the five-vector of 
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fundamental arguments jF  (the Delaunay variables , ', , ,l l F D Ω ) of nutation theory, N
�

 is the 

five-vector of multipliers jN  of the Delaunay variables for the nutation of frequency 

/gf d dtθ− +  and gθ  is the Greenwich Mean Sidereal Time. 

 

5.2.2.  Pole tides 

The pole tides cause spatial variations in the gravitational potential due to Earth rotation. These 

tides are caused by changes in the direction of the Earth’s spin axis relative to a point fixed in 

the Earth. The spin produces a centrifugal force, which depends on the angular distance between 

the spin axis and a reference point. As the spin axis moves, this distance and the centrifugal 

force changes. The pole tide deformation effects on the station coordinates (up to ~cm) arises 

from the first order perturbation associated with the centrifugal potential caused by the Earth’s 

rotation. Rotational deformations due to polar motion can be modelled by assuming that the 

perturbation in the centrifugal potential is related to the Earth’s rotation. Thus considering 

( ), ,x y z  as the terrestrial system of reference, a first order perturbation of the centrifugal 

potential ( )V∆  can be expressed in Equation (79), as reported in Petit and Luzum (2010), 

 ( )2221
. ,

2
V r r� �= − Ω − Ω

� 
� �

� ��
 (79) 

where ( )( )1 2 3ˆ ˆ ˆ1 ,m x m y m zΩ = Ω + + +
�

 Ω  is the mean angular velocity of rotation of the Earth, 

1m  and 2m  are small dimensionless parameters describing the time dependent offset of the 

instantaneous rotation pole from the mean, 3m  is the fractional variation in the rotational rate, r  

is the geocentric distance to the station. Neglecting the 3m  term, due to its small influence, the 

first order perturbation in the potential  can be written in terms of  and  as in 

Equation (80) (Petit and Luzum, 2010),  

 ( ) ( )
2 2

1 2, , sin 2 cos sin .
2
r

V r m mθ λ θ λ λ� �Ω∆ = − +� �
	 


 (80) 

The tidal Love numbers and V∆  can be used to compute the radial ( rS , positive upwards) and 

horizontal displacements  and S Sθ λ  (positive southwards and eastwards respectively) due to 

V∆ as given in Equation (81),  

( )V∆ 1m 2m
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 2 2
2

1
,     ,     .

sinr

l lV
S h S V S V

g g gθ θ λ λθ
∆= = ∂ ∆ = ∂ ∆  (81) 

The coordinates (in the ITRF) of the position of the Earth’s mean rotation pole due to secular 

variations are given in terms of the polar motion variables ( ),p px y  and are obtained by running 

averages px  and py− , thus 

 ( )1 2,            .p p p pm x x m y y= − = − −  (82) 

In order to achieve the most accurate results for the polar motion variables estimates of the mean 

pole are commonly utilised. Now-a-days the conventional mean pole of the IERS conventions 

(2003) is replaced with the IERS conventional mean pole incorporated in the IERS conventions 

(2010). The latest version of the IERS conventional mean pole is composed of a cubic model 

validated over the period from 1976.0 to 2010.0 and a linear model for extrapolation after 

2010.0. Generally, the IERS (2010) mean pole model can be described as per Equation (83)  

 ( ) ( ) ( ) ( )
3 3

0 0
0 0

                   y ,
i ii i

p p p p
i i

x t t t x t t t y
= =

= − × = − ×� �  (83) 

where 0t  is 2000 and the coefficients of i
px  and i

py  are given in Table 17. 

 

Table 17. Coefficients of the IERS (2010) mean pole model. 

Degree i  

Until 2010.0 After 2010.0 
/ mas yri i

px −  / mas yri i
py −  / mas yri i

px −  / mas yri i
py −  

0 55.974 346.346 23.513 358.891 
1 1.8243 1.7896 7.6141 -0.6287 
2 0.18413 -0.10729 0.0 0.0 
3 0.007024 -0.000908 0.0 0.0 

 

The radial and horizontal displacements ,  and ,rS S Sθ λ  can be computed by use of Love 

number values appropriate to the frequency of the pole tides ( )0.6027,  0.0836h l= =  and 
66.378 10  mr a= = ×  as follows: 
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1 2

1 2

1 2
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= − +
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 (84) 
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with 1m  and 2m  given in arcseconds.  The effects of polar motion in the Cartesian coordinate 

systems as reported in IERS2010 conventions (Petit and Luzum, 2010) are represented in 

Equation (85), 

 [ ] [ ], , , , ,
T TT

rdX dY dZ R S S Sθ λ=  (85) 

where  

 
cos cos    cos sin    sin
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sin cos     s in sin       cos
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In order to show the effects of pole tides to the accuracy of gravity field models Equation (80) 

can be expressed as Equation (87) 

 ( ) ( )
2 2

1 2, , sin 2 .
2

i
e

r
V r R m im e λθ λ θΩ

� �∆ = − −� �  (87) 

The deformation caused by the pole tide produces time-dependent perturbations in the external 

potential given by Equation (88) 

 ( )
2 2

2 1 2sin 2 .
2

i
e

r
V R k m im e λθΩ

� �∆ = − −� �  (88) 

These perturbations are related to changes in the geopotential coefficients 21C  and 21 ,S  which 

describe the position of the Earth’s figure axis. Using the value 0.3077 0.0036i+  for the Love 

number 2k  the time-dependent perturbations in the  and  geopotential coefficients can be 

estimated as follows 

 
( )

( )

9
21 1 2

9
21 1 2

1.333 10 0.0115 ,

1.333 10 0.0115 ,

C m m

S m m

−

−

∆ = − × −

∆ = − × −
 (89) 

where  and  given in arcseconds. 

 

5.3. Parameterization 
The latest SDAS version (Combrinck personal communication, July 2012) utilises IERS2010 

conventions to correct for Earth and pole tide effects. In the software the Earth tide model is 

divided into three compatible and selectable models namely, IERS1, IERS2 and IERS3 (these 

are described in Table 18). The objective of the work presented in this chapter is to perform 

orbital tests with particular emphasis on evaluating the influence of using IERS1, IERS2 and 

21C 21S

1m 2m
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IERS3 compatible Earth tide models (affecting the static GGM spherical harmonic coefficients) 

and pole tide model (IERS2010 standard) in the determination of satellite orbits by analysing 

LAGEOS data using different gravity field models. The IERS1 model in SDAS is considered 

the least complex Earth tide model and corrects degree 2 spherical harmonics of a given 

geopotential model. On the other hand, IERS2 in the analysis software is an extension of IERS1 

with additional corrections to third and fourth degree spherical harmonics. Lastly, a complete 

model of Earth tides, the IERS3 is considered as the most complex model since it includes both 

IERS1 and IERS2 plus it takes into account the frequency independent components of the solid 

Earth tides. A summary of these compatible models and their respective corrections to spherical 

harmonic coefficients is given in Table 18.  

 

Table 18. Summary of the compatible models derived from IERS2010 with their respective 
corrections to spherical harmonic coefficients of a geopotential model. 

Compatible models from IERS2010 Corrections to a typical geopotential model 
IERS1 

20 21 22 21 22, , , ,C C C S S  
IERS2 IERS1 + 30 31 32 33 31 32 33, , , , , ,C C C C S S S  + 40 41 42 41 42, , , ,C C C S S   
IERS3 IERS1 + IERS2 + frequency independent components 

Pole tides 
21 21,C S  

 

The methodology followed can be formulated as follows: suppose that a GGM is represented by

( ),y xη=  where x  represents a vector of input empirical models to be varied and y  is the 

expected output; for the purpose of this study y  is considered as the O-C residuals. Let η  be a 

GGM such that the way the model responds to changes in each of the three elected empirical 

models is not transparent. The purpose of selecting different empirical model combinations 

during the analysis of SLR data is to investigate how changes in the geopotential coefficients 

(GGM dependent) in the context of O-C residuals, ,y  are related to or affected by Earth (as 

modelled by IERS1, IERS2 and IERS3) and pole tides (modelled using IERS2010 standard)  

contributions.  

Table 19 summarises the criteria used to test the effects of the IERS1, IERS2, IERS3 and 

pole tides on the O-C residuals across five different gravity field models when determining 

LAGEOS orbits as analysed with SDAS. In particular, the “on/disabled” configuration tests 

were conducted for each considered model by disabling one of the compatible models while the 
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other two are enabled during processing. Basically four tests were conducted for each selected 

gravity field model based on LAGEOS 1 and 2 data. In the first test the IERS1 Earth tide model 

and pole tides (IERS2010 standard) were activated while disabling IERS2 and IERS3 in the 

software. The second test involved the activation of IERS2 and pole tides while IERS3 was 

disabled in the software to investigate their combined effects on the derived O-C residuals 

across the selected models. In third test the IERS3 and pole tides were implemented and lastly, 

in the fourth test the IERS3 was activated and pole tides were disabled during LAGEOS 1 and 2 

data processing.  

 

Table 19. Orbital parameter tests strategy used. Parameters were tested at 0.8� rejection. 

Orbital tests Parameter configuration 
Test 1 IERS1 and pole tides ‘on’ IERS2 and IERS3 ‘disabled’ 
Test 2 IERS2 and pole tides ‘on’  IERS3 ‘disabled’ 
Test 3 IERS3 and pole tides ‘on’ IERS1 and IERS2 ‘enabled’ 
Test 4 IERS3 ‘on’ Pole tides ‘disabled’ 

 

5.4. Models Evaluated 
In this study five gravity field models were used in SDAS analysis of LAGEOS 1 and 2 SLR 

data. These models are the GRIM5C1, EIGEN-CG30C, AIUB-CHAMP01S, EGM2008 and 

AIUB-GRACE01S and they were evaluated using LAGEOS 1 and 2 data sets spanning January 

to June 2009. Specific characteristics and references of the selected models are summarized in 

Table 20. The ILRS tracking stations selected for data processing are the so-called EOP SLR 

stations. These stations are believed to be providing high quality SLR data for the computation 

of EOPs. The EOP selected stations include Yarragadee, McDonald, Zimmerwald, Wettzell, 

Monument Peak, Hartebeesthoek, Herstmonceux, Greenbelt, Riyadh, Graz, Mount-Stromlo, 

Beijing and Arequipa.  

 

Table 20. Geopotential models evaluated. 

Model Year Degree/order Data Reference 
GRIM5C1 1999 120 S, G, A Gruber et al. (2000) 
EIGEN-CG03C 2005 360 S(CHAMP,GRACE),G,A Foerste et al. (2005) 
AIUB-CHAMP01S 2007 90 S(CHAMP) Prange et al. (2007) 
EGM2008 2008 2190 S(GRACE),G,A Pavlis et al. (2008) 
AIUB-GRACE01S 2008 120 S(GRACE) Jaeggi et al. (2008) 
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The SLR data in this study were processed using constants and reference frames listed in Table 

21.  

 

 Table 21. Constants and reference frames utilised during LAGEOS 1 and 2 data processing.  

Reference frame epoch SLRF2005 
Inertial reference frame J2000 
Pole-tide correction (station position) IERS2010 
Correction for general relativistic effects IERS2010 
Earth–tide correction (station position) Petrov 2005 
Ocean loading correction (station position) Agnew/Scherneck 
Atmospheric loading Disabled 
Earth orientation a-priori Earth orientation parameters and 

UTC-UT1 values as per IERS extrapolated 
to observation epoch 

O-C outlier rejection Selectable: set to 0.8 sigma 

Average pole IERS2010 
 

5.5. Statistical analysis of O-C residuals 
Table 22 and  Table 23 present the results for the statistical orbital fits of LAGEOS 1 and 2 

based on IERS1, IERS2, IERS3 and pole tide tests using the GRIM5C1, EIGEN-CG03C, 

AIUB-CHAMP01S, EGM2008 and AIUB-GRACE01S gravity field models. The listed 

statistical results considered in the tables are the mean SD of the O-C residuals for each orbital 

test. These SD values are used as a measure of orbit quality as well as gravity model accuracy. 

There are small differences in the calculated average SDs across the five elected gravity field 

models. This suggests that the choice of parameterizations has a particular influence on satellite 

orbit determination as well as gravity field model accuracy. The results presented in Table 22 

and Table 23 indicate that from the SLR analysis utilizing the selected gravity field models, the 

average SDs of the O-C residuals are  about 2 cm and 1 cm for LAGEOS 1 and 2 respectively. 

 

The following five GGM model comparisons utilised LAGEOS 1 data. 

  

GRIM5C1:  

In Table 22 the GRIM5C1 gravity field model gives a slightly improved solution when the Earth 

tides are modelled using the complex Earth tide model, IERS3, with the pole tides disabled 

 
 
 



91 
 

during data processing followed by a combined implementation of the IERS3 model and pole 

tides. A combination of the IERS2 model and pole tides decreases the quality of the GRIM5C1 

gravity field model. The poorest O-C SD solution is obtained when the least complex Earth tide 

model IERS1 and pole tides are jointly implemented in the software. This indicates that the 

accuracy of the final solution when using the GRIM5C1 model and LAGEOS 1 data can be 

achieved through inclusion of spherical harmonic components due to Earth tides (added) to 

those of the GRIM5C1 model. The pole tides seem to contribute less towards the precision of 

the final solution of GRIM5C1. 

 

EIGEN-CG03C:  

The combined gravity field model, EIGEN-CG03C gives the best solution for the combined 

selection of IERS3 and pole tides followed by a combination of IERS2 and pole tides. The O-C 

SD solution worsens when IERS3 is activated and pole tides disabled in SDAS. Its worst 

solution is when IERS1 and pole tides are jointly selected during data processing. Based on this 

result the Earth and pole tides equally contribute towards the quality of the EIGEN-CG03C 

gravity field model. Hence it is necessary to include both the spherical harmonic coefficient 

components due to the Earth and pole tides when using EIGEN-CG03C and LAGEOS 1 data. 

  

AIUB-CHAMP01S:  

The CHAMP satellite-only model, AIUB-CHAMP01S results in a better solution when IERS3 

and pole tides are jointly active in the software followed by when the IERS3 model is active and 

pole tides disabled. The solution worsens when IERS2 and pole tides are jointly selected and the 

poorest solution is obtained when the least complex Earth tide model, IERS1 and pole tides are 

jointly selected. In conjunction with the EIGEN-CG03C gravity field, the usage of AIUB-

CHAMP01S with LAGEOS 1 data requires the inclusion of both the spherical harmonic 

coefficient components due to Earth and pole tides.  

 

EGM2008: 

For the EGM2008 gravity field model the best solution is obtained when IERS2 and pole tides 

are active, followed by the combination of IERS3 and pole tides.  The average SD of the O-C 

residuals reduces when the IERS1 model and pole tides are active during data processing. Its 
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poorest solution is obtained when the IERS3 model is active and the pole tides disabled in 

SDAS. The results indicate that both the spherical harmonic coefficient components due to 

Earth and pole tides play a significant (interacting) role in the final solution of the EGM2008 

gravity field model when LAGEOS 1 data is utilised.  

 

AIUB-GRACE01S: 

Lastly using LAGEOS 1, the GRACE satellite-only model AIUB-GRACE01S, exhibits the best 

solution when the IERS3 model is activated and pole tides are disabled in the software followed 

by a combined implementation of IERS3 and pole tides. The O-C SD solution worsens when 

IERS2 and pole tides are implemented during data processing. The worst solution is obtained 

when the least complex Earth tide model, IERS1 and pole tides are implemented in SDAS. This 

suggests that optimal use of the quality of AIUB-GRACE01S occurs when using LAGEOS 1 

data through a proper and a complete modelling of contributions from Earth tides only. The 

differences between IERS1, IERS2 and IERS3 O-C values are statistical only, as the differences 

are non-significant (at the level of fractions of mm).   

 

Table 22. Results of the mean SD of the O-C extracted from LAGEOS 1 data. 

Model 

Mean SD [cm]  
when  IERS1 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS2 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS3 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when IERS3 is ‘on’ 
& pole tides are 
disabled 

GRIM5C1 2.184 2.151 2.131 2.129 
EIGEN-
CG03C 2.308 2.266 2.246 2.279 

AIUB-
CHAMP01S 2.187 2.135 2.116 2.126 

EGM2008 2.202 2.160 2.169 2.165 
AIUB-
GRACE01S 2.174 2.145 2.141 2.133 

 

Figure 17 depicts SD values averaged across the selected (five) gravity field models for 

individual tide parameterization test. As depicted in Figure 17 the IERS1 and pole tides test 

exhibits the highest mean SD solution while the mean SD of the O-C improves for the three 

remaining parameterization tests with only parts-per millimetre differences. In particular, the 

IERS3 and pole tide parameterization test have the lowest solution. This is expected since most 
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of the gravity field models yield a best mean SD solution when IERS3 and pole tides are 

activated during the LAGEOS 1 data processing.   

 

 
Figure 17. Averaged SD across the GRIM5C1, EIGEN-CG03C, AIUB-CHAMP01S, EGM2008 
and AIUB-GRACE01S gravity field models based on LAGEOS 1 data. 
 

The following five GGM model comparisons utilised LAGEOS 2 data. 

 

GRIM5C1: 

The GRIM5C1 gravity field model has the lowest O-C SD solution when LAGEOS 2 data are 

processed with IERS3 and pole tides activated followed by active combination of IERS2 and 

pole tides in SDAS. The solution worsens when the IERS3 model is active and the pole tides are 

disabled during data processing. The poorest O-C SD solution is obtained when the least 

complex Earth tide model, IERS1 and pole tides are jointly activated in the software. Similar to 

the results obtained for LAGEOS 1, the optimal use of the quality of GRIM5C1 when using 

LAGEOS 2 occurs when all spherical harmonic functions due to the Earth and pole tides are 

included to those of the gravity field model. The different O-C SD values obtained for LAGEOS 

1 where pole tide was either on or off, combined with IERS3 are statistically insignificant. 

Therefore one would want to utilise IERS3 and pole tides for both LAGEOS 1 and LAGEOS 2 

when using GRIM5C1. 
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EIGEN-CG03C: 

 The combined gravity field model, EIGEN-CG03C exhibits the best O-C SD solution when the 

IERS3 model is active with pole tides disabled followed by the active combination of IERS2 

and pole tides in the software. The solution worsens with the joint combination of IERS1 and 

pole tides and the poorest solution is obtained when IERS3 and pole tides are jointly selected 

during LAGEOS 2 data processing. This result is different from the previous EIGEN-CG03C 

using LAGEOS 1 data. It is apparent that adding the spherical harmonic coefficients to those of 

the GGM due to pole tide in combination with the IERS3 Earth tide coefficients reduces the 

quality of the solution.  

 

AIUB-CHAMP01S:  

The CHAMP satellite-only model has the best solution when IERS3 and pole tides are active in 

SDAS followed by the implementation of IERS3 with pole tides disabled. A combination of 

IERS2 and pole tides reduces the quality of the O-C SD solution. The solution worsens further 

when the least complex Earth tide model, IERS1 and pole tides are jointly combined in the 

software. This is similar result obtained with AIUB-CHAMP01S using LAGEOS 1 data 

implying that there are no satellite dependence effects. Considering the similarities in the results 

from the two satellites it can be concluded that the full spherical harmonic coefficient 

components due to the Earth and pole tides need to be taken into account when using AIUB-

CHAMP01S and LAGEOS 2.   

 

EGM2008: 

The EGM2008 gravity field model exhibits the lowest O-C SD solution when IERS3 and pole 

tides are selected, followed by the active combination of IERS2 and pole tides during LAGEOS 

2 data analysis. Activation of the complex Earth tide model, IERS3 with the pole tides disabled 

worsens the O-C SD solution. The poorest solution is obtained when the IERS1 model and pole 

tides are jointly selected in the software. Considering the results obtained with LAGEOS 1 data, 

this indicates the necessity of including the full spherical harmonic coefficient components due 

to pole tides when using EGM2008 and LAGEOS 1 and 2 data. In both cases (LAGEOS 1 and 

LAGEOS 2) results are improved when including pole tides. 
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AIUB-GRACE01S: 

The GRACE satellite-only model, AIUB-GRACE01S gives the best solution when 

contributions from the Earth tides are modelled with IERS 3 while the pole tides are disabled, 

followed by the active combination of IERS2 and pole tides in the software. A joint 

implementation of the complex Earth tide mode with pole tides reduces the O-C SD solution. 

The solution worsens further with active combination of the least complex Earth tide model, 

IERS1 and pole tides. Considering the quality of AIUB-GRACE01S it is necessary to include 

spherical harmonic coefficient components due Earth tides when using LAGEOS 2 data. It is 

also apparent that the inclusion of spherical harmonic coefficient components due pole tides 

tends to reduce the quality of the AIUB-GRACE01S gravity field model although this is at such 

a low level to be statistically insignificant.  

 

Table 23. Results of the mean SD extracted from LAGEOS 2 data for different tide 
parameterization options. 

Model 

Mean SD [cm] 
when  IERS1 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS2 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS3 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when IERS3 is 
‘on’ and pole 
tides are disabled 

GRIM5C1 1.490 1.467 1.463 1.486 
EIGEN-CG03C 1.711 1.634 1.828 1.633 
AIUB-
CHAMP01S 1.515 1.500 1.490 1.498 

EGM2008 1.524 1.497 1.483 1.510 
AIUB-
GRACE01S 1.527 1.481 1.495 1.469 

 

The trend of the averaged SD of the O-C residuals for the four parameterization tests across all 

the considered gravity field models based on LAGEOS 2 data is illustrated in Figure 18. Highest 

averaged mean SD solutions are obtained for IERS1 and pole tides, and IERS3 and pole tides 

parameterization tests. The results obtained for the IERS3 and pole tides test contradicts those 

obtained when LAGEOS 1 SLR data is utilized (here IERS3 and pole tides gave the best mean 

SD solution). This difference arises from the large mean SD of the O-C residuals obtained when 

using the EIGEN-CG03C gravity field model while processing SLR LAGEOS 2 data. Generally 

the IERS3 and pole tides parameterization with the EIGEN-CG03C gravity field model based on 

the analysis of LAGEOS 2 SLR data yields O-C residuals which are almost twice as large as 
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compared with those obtained from the other parameterization test for the similar model and 

data. This uniqueness could be attributed to systematic errors in the adjustment procedure during 

data processing. It is apparent that the pole tides have a significant influence on the final O-C 

residual, considering the IERS3 Earth tide model and the EIGEN-CG03C gravity field model. If 

the average O-C value of the EIGEN-CG03C model is excluded, the plot in Figure 18 would be 

similar to that of Figure 17, with the least detailed model exhibiting the largest O-C values and 

the most detailed model (IERS3 plus pole tide) providing the best solutions as depicted in 

Figure 19. This example indicates that some GGM models may produce unexpected results. 

 

 
Figure 18. Averaged SD across GRIM5C1, EIGEN-CG03C, AIUB-CHAMP01S, EGM2008 
and AIUB-GRACE01S gravity field models based on LAGEOS 2 data. 

 

 
 Figure 19. Averaged SD across GGMs with EIGEN-CG03C model excluded. 
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5.6. Statistical significance of the variations in the standard deviation of O-

C residuals between models 
The mean SD of the O-C residuals presented in Table 22 and Table 23 as derived from 

LAGEOS 1 and 2 data using GRIM5C1, EIGEN-CG03C, AIUB-CHAMP01S, EGM2008 and 

AIUB-GRACE01S gravity field models exhibit subtle differences across the different tide 

parameterization.  This makes it difficult to ascertain whether the difference in the mean SD 

values has any statistical significance for the different gravity field models. In this section a t-

test was performed to assess whether the mean SD differences between the tide parameterization 

options are statistically different from each other. In particular the mean SD of two groups of 

tide parameterization tests is compared to investigate whether the means are statistically 

significant.  

The t-test (Welch’s t-test) used in the present study was computed as a ratio of the 

difference between the two averages and the measure of O-C residual variances corresponding 

to the different parameterization options. If the parameter options are  and i j  then the student’s 

t-test can be calculated as per Equation  

 / 22
,       i j

ij ji

ji

i j

X X
t i j

SS
N N

−
= ∀ ≠

−

 (90) 

where  iX and jX  are the means of the  and i j  O-C residuals, 2
iS  and 2

jS  are the pooled O-C 

residual variances, iN  and jN  are the data sizes for test i  and test j  and /ij jit  is the test statistic 

evaluated as a Student t  quantile with 2i jN N+ −  degrees of freedom. In this study a risk or 

significant level given by 0.05α =  is used to test for significance between two considered 

groups. For example if a typical t-test gives a p-value less than or equal to 0.05 ( )0.05p ≤  then 

the mean SD difference between the two is deemed statistically significant else it is statistically 

insignificant. The results for the t-tests performed using the O-C residuals derived from the four 

tide parameterization tests using the GRIM5C1 gravity field model during the analysis of SLR 

data derived from LAGEOS 1 observations are summarised in Table 24 (differences are in 

metres). Here the variables considered correspond to the orbital tests summarised in Table 19, 

that is, Var 1: IERS1 and pole tides; Var 2: IERS2 and pole tides; Var 3: IERS3 and pole tides 
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and Var 4 corresponds to the IERS3 test with the pole tides disabled. In Table 24 the t-test 

computed between Var 1 and Var 2,  Var 1 and Var 3, Var 1 and Var 4, Var 3 and Var 4 have p-

values that are greater than the 0.05 (or 5%) significance level implying that the differences in 

the mean SD (listed in column 2) are not statistically significant. In contrast the computed t-

values for Var 2 versus Var 3 and Var 2 versus Var 4 correspond to p-values which are less than 

0.05 implying that the difference in the mean SD between the considered group tests for 

GRIM5C1 are statistically significant.  

 

Table 24. The t-test results for GRIM5C1 based on LAGEOS 1 data. 
Variable Diff (mean SD) Diff. (SD) t-value p-value 

Var 1 vs. Var 2 0.000330 0.005756 0.75404 0.451857 
Var 1 vs. Var 3 0.000537 0.005795 1.21940 0.224362 
Var 1 vs. Var 4 0.000550 0.005774 1.25360 0.211690 
Var 2 vs. Var 3 0.000207 0.001279 2.13114 0.034498 
Var 2 vs. Var 4 0.000220 0.001466 1.97644 0.049704 
Var 3 vs. Var 4 0.000013 0.001652 0.10385 0.917410 

 

Table 25 (difference values are in metres) summarises the t-test results for EIGEN-CG03C using 

LAGEOS 1 data. Considering the p-values calculated in each of the tests it is apparent that the 

mean SD differences between the considered group tests are statistically insignificant. The 

negative t-test value implies that the first mean was smaller than the second mean for the 

considered groups. Similar results are obtained for the three remaining gravity field models 

(AIUB-CHAMP01S, EGM2008 and AIUB-GRACE01S) though the p-values are relatively low, 

see Table 26, Table 27 and Table 28. 

 

Table 25. The t-test results for EIGEN-CG03C based on LAGEOS 1 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000421 0.010541 0.51030 0.610537 
Var 1 vs. Var 3 0.000617 0.010592 0.74423 0.457818 
Var 1 vs. Var 4 0.000294 0.010954 0.34250 0.732420 
Var 2 vs. Var 3 0.000196 0.002346 1.06703 0.287547 
Var 2 vs. Var 4 -0.000127 0.002695 -0.60382 0.546807 
Var 3 vs. Var 4 -0.000324 0.002621 -1.57596 0.116985 
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Table 26. The t-test results for AIUB-CHAMP01S based on LAGEOS 1 data. 
Variable Diff (mean SD) Diff. (SD) t-value p-value 

Var 1 vs. Var 2 0.000514 0.005443 1.24209 0.215896 
Var 1 vs. Var 3 0.000705 0.005664 1.63682 0.103497 
Var 1 vs. Var 4 0.000611 0.005695 1.41097 0.160061 
Var 2 vs. Var 3 0.000191 0.001520 1.65192 0.100375 
Var 2 vs. Var 4 0.000097 0.001472 0.86594 0.387728 
Var 3 vs. Var 4 -0.000094 0.001930 -0.64046 0.522728 

 

Table 27. The t-test results for EGM2008 based on LAGEOS 1 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000420 0.006054 0.911976 0.363058 
Var 1 vs. Var 3 0.000322 0.006073 0.697232 0.486599 
Var 1 vs. Var 4 0.000368 0.006332 0.763458 0.446236 
Var 2 vs. Var 3 -0.000098 0.001810 -0.710726 0.478217 
Var 2 vs. Var 4 -0.000052 0.001433 -0.479173 0.632424 
Var 3 vs. Var 4 0.000046 0.001909 0.314152 0.753786 

 

Table 28. The t-test results for AIUB-GRACE01S based on LAGEOS 1. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000289 0.002903 1.30929 0.192183 
Var 1 vs. Var 3 0.000326 0.002355 1.81808 0.070791 
Var 1 vs. Var 4 0.000409 0.003055 1.75956 0.080260 
Var 2 vs. Var 3 0.000036 0.002757 0.17405 0.862027 
Var 2 vs. Var 4 0.000120 0.001508 1.04348 0.298192 
Var 3 vs. Var 4 0.000083 0.002864 0.38196 0.702960 

 

The t-test results for the GRIM5C1 gravity field model using LAGEOS 2 data are given in 

Table 29. The computed t-values for all the six pairs give p-values are greater than the 0.05 risk 

level. It is therefore concluded that the computed mean SD differences between these six group 

tests are not statistically significant. 

 

Table 29. The t-test results for GRIM5C1 based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000230 0.008858 0.32710 0.744027 
Var 1 vs. Var 3 0.000269 0.009625 0.35287 0.724659 
Var 1 vs. Var 4 0.000039 0.009065 0.05406 0.956954 
Var 2 vs. Var 3 0.000040 0.002298 0.21727 0.828282 
Var 2 vs. Var 4 -0.000191 0.001383 -1.74026 0.083761 
Var 3 vs. Var 4 -0.000230 0.002202 -1.32019 0.188680 
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Table 30 summarises the t-test results for the EIGEN-CG03C model based on LAGEOS 2 data. 

Based on the results presented in Table 30 there are no statistically significant differences in the 

mean SD between Var 1 versus Var 2, Var 1 versus Var 3, Var 1 versus Var 4 and Var 2 versus 

Var 4 tests (since 0.05p ≥ ). In contrast the computed t-values between Var 2 versus Var 3 and 

Var 3 versus Var 4 correspond to p-values less than the risk level, 0.05 implying that the mean 

SD differences between the two groups are statistically significant for the EIGEN-CG03C 

model. 

 

Table 30. The t-test results for EIGEN-CG03C based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000762 0.012549 0.76336 0.446393 
Var 1 vs. Var 3 -0.001170 0.013784 -1.06735 0.287453 
Var 1 vs. Var 4 0.000778 0.012646 0.77322 0.440555 
Var 2 vs. Var 3 -0.001933 0.008310 -2.92330 0.003976 
Var 2 vs. Var 4 0.000016 0.001819 0.10920 0.913180 
Var 3 vs. Var 4 0.001948 0.008341 2.93607 0.003824 

 

The results for the t-test as derived from the four orbital tests using AIUG-CHAMP01S and 

LAGEOS 2 are presented in Table 31. These results however, indicate that the differences in the 

mean SD for each condition are not statistically significant (since 0.05p ≥ ). 

 

Table 31. The t-test results for AIUB-CHAMP01S based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000143 0.009214 0.195760 0.845049 
Var 1 vs. Var 3 0.000243 0.009204 0.333253 0.739385 
Var 1 vs. Var 4 0.000169 0.009250 0.230246 0.818199 
Var 2 vs. Var 3 0.000100 0.001663 0.759639 0.448603 
Var 2 vs. Var 4 0.000026 0.001485 0.219537 0.826515 
Var 3 vs. Var 4 -0.000074 0.001488 -0.630220 0.529461 

 

Table 32 summarises the t-test results for the EGM2008 gravity field model based on LAGEOS 

2 data. The results indicate that the differences in the mean SD between the first five groups are 

not statistically significant (i.e. 0.05p ≥ ). Similar results are obtained for the AIUB-GRACE01 

gravity field model using LAGEOS 2 data, see Table 33. In both cases the difference in the 

mean SD between Var 3 versus Var 4 groups are statistically significant since 0.05p ≤ . 
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Table 32. The t-test results for EGM2008 based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000278 0.009269 0.37783 0.706065 
Var 1 vs. Var 3 0.000411 0.009389 0.55250 0.581384 
Var 1 vs. Var 4 0.000141 0.009568 0.18556 0.853026 
Var 2 vs. Var 3 0.000134 0.001317 1.27969 0.202532 
Var 2 vs. Var 4 -0.000137 0.001615 -1.06938 0.286529 
Var 3 vs. Var 4 -0.000271 0.001463 -2.33254 0.020934 

 

Table 33. The t-test results for AIUB-GRACE01S based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000460 0.009136 0.63494 0.526388 
Var 1 vs. Var 3 0.000326 0.009217 0.44596 0.656240 
Var 1 vs. Var 4 0.000579 0.009249 0.78940 0.431059 
Var 2 vs. Var 3 -0.000134 0.001715 -0.98588 0.325697 
Var 2 vs. Var 4 0.000119 0.001650 0.90935 0.364550 
Var 3 vs. Var 4 0.000253 0.001298 2.45936 0.014997 

 

Figure 20 compares the gravity field models found to exhibit O-C mean SD differences that are 

statistically significant. In particular, for LAGEOS 1 data only the combined gravity field model 

GRIM5C1 has t-values corresponding to p-values less than the 0.05 risk level. The p-value for 

Var 2 versus Var 4 is however too close to the significant level hence the difference in the mean 

SD of the O-C is likely to have arisen by chance. In this case it becomes difficult to firmly 

conclude anything about the statistical significance of the mean difference (additional data 

processing is needed to ascertain the findings). The small p-values obtained for EIGEN-CG03C 

when analysing LAGEOS 2 data imply that the findings are unlikely to have arisen by chance. 

In fact the difference in the mean SD of the O-C between Var 2 versus Var 3 and Var 2 versus 

Var 4 tide parameterization tests are highly statistically significant since 0.01p ≤ . Similarly, 

the p-values computed from the t-test using the O-C residuals derived from LAGEOS 2 data 

based on the EGM2008 and AIUB-GRACE01S models indicate that there are almost true 

differences in the mean SD between Var 3 versus Var 4 tide parameterization tests. 
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Figure 20. Comparisons of gravity field models showing mean statistical significant differences 
between Earth tide and pole tide models. 
 

5.7. Concluding remarks 
In this chapter the influence of tide parameterization on the accuracy of five gravity field modes 

is analysed. In particular, the tide parameterization effects on the accuracy of gravity field 

models in SLR data analysis is determined by studying the influence of solid Earth tides 

(modelled by IERS1, IERS2, IERS3 and IERS2010 pole tide standard model) on O-C residuals 

(with applications in POD) based on the selected gravity field models. In the SLR data analysis 

using the SDAS package the IERS1, IERS2, IERS3 and pole tide models have been used 

alternately (parameterized) in order to investigate how the O-C residuals are affected by the 

choice of the tide model set and across different gravity field models. The results indicate that 

the accuracy of the final orbital solution when using EIGEN-CG03C, AIUB-CHAP01S and 

EGM2008 and LAGEOS 1 data require the inclusion of spherical harmonic components due to 

Earth and pole tides to those of the gravity field models. Similar conclusions can be made for 

the GRIM5C1, AIUB-CHAMP01S and EGM2008 models when using LAGEOS 2 data. Since 

the computed mean SD across the four parameterizations based on the five gravity field models 

was statistically close a t-test was performed to assess whether the differences in the mean SD of 

the O-C were significantly different. The t-tests between most of the considered 

parameterization options are found to have p-values which were greater than the significant 
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level 0.05 (or 5%). Based on these results it can be concluded that the differences in the mean 

SD between the considered parameterization options for the selected gravity field models are not 

statistically significant. In particular, the differences in the mean SD of the O-C based on 

EIGEN-CG03C, EGM2008 and AIUB-GRACE01S and LAGEOS 2 data are unlikely to have 

arisen by chance as they exhibit statistically significant mean SD differences. In particular the 

small p-values obtained for EIGEN-CG03C imply that the differences in the mean SD are 

highly statistically significant.  The deviation of EIGEN-CG03C from the expected is difficult to 

explain. This model produces expected results for IERS1, IERS2 and IERS3 (pole tide 

disabled), but produces an anomaly when processing for LAGEOS2 with IERS3 enabled and 

pole tide disabled. This distorts the graph of average values as contained in Figure 18. These 

distortions are possibly due to outliers in the O-C time series as presented in appendix A5, 

Figure 24 to Figure 33. 
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6. Geophysical applications of Earth’s oblateness parameter J2 

 
Physics is mathematical not because we know so much about the physical world, but because we know so little; it is 

only its mathematical properties that we can discover, Bertrand Russell, 2009. 
 

6.1. Introduction 

The Earth’s oblateness ( )2J  is an important geophysical parameter derived from SLR data 

analysis.  In the present chapter, 2J  computed by SDAS has been validated and found to be in 

close agreement with the 2J  value published in the literature. Additionally, the geophysical 

linkage of 2J  with the LOD and Atmospheric Angular Momentum (AAM) has been studied and 

confirmed by use of a data adaptive analysis methodology called the Empirical Mode 

Decomposition (EMD) reported by Wang et al., (2010). In particular, the oscillatory 

components known as the Intrinsic Mode Functions (IMFs) of 2 ,J  LOD and AAM were derived 

and phase synchronization used to infer the geophysical linkage between 2 ,J  LOD and AAM. 

The phase synchronization results demonstrate that there is some degree of synchronization 

between the signal components of 2J  and LOD and 2J  and AAM.  A higher degree of phase 

synchronization is particularly observed for high frequency IMFs of 2J , LOD and AAM. 

Additionally, IMFs components that depict a weak or nil phase synchronization are believed to 

be mostly due to inherent noise components. 

 

6.2. Background 
The Earth is a complex dynamic system driven by various geophysical processes as reported by 

for example Dickey et al. (2002). These processes act to redistribute the mass of Earth and as a 

result influence the basic movement of the solid Earth relative to the geocentre, as well as 

causing spatial and time-dependent variations of the gravitational field of the Earth. An 

important spherical harmonic coefficient of the gravity field is the zonal harmonic of degree 2 

and order 0, i.e. 20−C  which is equivalent to 2J . This coefficient is known to be related to the 

flattening of the Earth as well as to the angular spin velocity Ω  (this is connected to the 

equatorial and polar moments of inertia given by ( )A  and ( )C  respectively) (Chao, 2006). 
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Considering the equatorial and polar moments of inertia, the 2J  coefficient can be expressed as 

in Equation (91) as reported in Chao (2006),  

 
( )

2 2 .
C A

J
Ma

−
=  (91) 

Equation (91) contains the difference of the polar greatest moment of inertia C  and the 

equatorial minimum moment of inertia A  normalized by 2Ma , where M and a  are the Earth’s 

mass and mean equatorial axis respectively. A further expression of 2J  relating to dynamic 

oblateness may be written as in Equation (92), 

 ( )2
2 / / ,J C Ma C A C Hη� �= − ≡� �� �� �  (92) 

In Equation (92), 2/C Maη ≡  is a fundamental function of the Earth’s internal structure and 

( ) /H C A C≡ −  is the dynamic oblateness (the dynamic oblateness can be determined from the 

observation of the astronomical precession of the Earth). Knowing the estimated values of 2J  

one can use the following relation to calculate the normalized values of 20C  as shown in 

Equation (93), 

 2 20 20 5 .= − = −J C C  (93) 

The estimated 2J  coefficient as determined from geodetic measurements may be given by 

Equation (94) (Cheng et al., 1997)), 

 
( ) ( )0

2 2 2
0

9

1 1
.

2
(1082639.9 0.1) 10

J J C A B
Ma

−

� �� �= − = − + � �� 
� �	 

= ± ×

 (94) 

The Earth oblateness parameter 2J  has attracted a lot of interest from the scientific community 

since the detection of its temporal variations over two decades ago. In particular, some studies 

have reported on significant temporal variability exhibited by this coefficient. For example, 

Yoder et al. (1983) reported a secular decrease of the trend in 2J  which was suspected to be 

associated with PGR effects. An increasing trend in 2J  which later reversed to its normal 

decreasing trend in the beginning of 1998 was reported by Cox and Chao (2002). The authors 

estimated the decrease in 2J  between 1979 and 2002 to be approximately -2.8 × 10-11 yr-1.  
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The variability of 2J  has also been linked to variations observed in other geophysical 

parameters. One such parameter is the LOD which characterizes the variability of the Earth’s 

rotation rate. Variations in LOD are due to contributions from surface mass loading changes as 

well as changes of the horizontal surface stress (torques). Surface mass loading variations are 

due to changes in atmospheric surface pressure, continental water storage (including snow and 

ice on land), and ocean bottom pressure (Chen et al., 2000). In contrast, the horizontal surface 

stress variations reflect the exchange of angular momentum between the solid Earth and the 

surrounding geophysical fluids e.g., wind and ocean current variations (Chen et al., 2000). The 

changes due to the combined atmospheric wind and surface pressure effects (i.e., the AAM) 

which arise from the mass re-distribution and the movement within the Earth system is known 

to be the dominant contributor (~90%) to the observed LOD variability (Chen 2005b).  

Variations in the LOD are often modelled by two terms i.e., the mass and motion 

components as reported in Bourda (2008). The physical manifestation of the mass term (this is 

due to dynamic processes within the Earth) is modelled by the gravitational effects associated 

with the Earth’s mass re-distribution. Most of the dynamic Earth processes that are associated 

with the temporal variations of the Earth’s gravitational field are also linked to the variability of 

the Earth’s rotation, through the temporal changes in LOD (Gross, 2003). Theoretically, the 

LOD variations are thought to be slightly proportional to changes in degree-2 spherical 

harmonic coefficients of the gravity field (Eubanks, 1993; Gross et al. 2004). The response to 

the LOD variability can approximately be given by Equation (95) as reported in Chen (2005b), 

 ( )3 3 ,
mean

LOD
m t

LOD
χ∆− = =  (95) 

where LOD∆  are the changes in the LOD with respect to the mean LOD, meanLOD is given by 

86400 seconds, and 3χ  is the LOD excitation which includes the surface mass load change term 

( )3
massχ  and the atmospheric winds or currents term ( )3 .motionχ  

In a case where a gridpoint (i.e., latitude ϕ , longitude λ  and time t ) is given the LOD 

excitations due to surface mass load fluctuations 3
massχ  and winds or currents motion 3

motionχ  can 

be computed by using Equations, (96) and (97), all reported in Chen (2005b) 

 
4

3
3

0.753
cos ,mass

m

R
P d d

C g
χ ϕ λ ϕ= ��  (96) 
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3

2
3

0.998
cos ,motion

m

R
U dpd d

C g
χ ϕ λ ϕ=

Ω ���  (97) 

where 66.371 10  mR = ×  and 5 17.292115 10  rad-s− −Ω = ×  are the mean radius and mean 

angular velocity of the Earth, respectively. Furthermore 29.81 msg −≈  is the mean gravitational 

acceleration, 37 27.1236 10  kg mmC ≈ ×  is the third principal moment of inertia of the Earth’s 

mantle, and P  and U  are the atmospheric surface pressure (mass term) and the zonal velocity 

(e.g., wind or ocean currents) respectively (Chen, 2005b). The surface mass change is often 

represented by the spherical harmonic coefficient of a geopotential depicted in Equation (98). 

 { } ( ) ( ) ( )
2 cos

, sin cos .
2 1 sin

enm
nm

nm

R mC P d dS n M m
λσ θ λ θ θ θ λ
λ

� �∆ = ∆ ⋅� �∆ + � �
��  (98) 

In Equation (98), nmC  and nmS  are the degree n  and order m  normalized harmonic coefficients 

of mass decomposition, ( ),σ θ λ∆  is the surface mass load with /P gσ∆ = ∆ and M  is the mass 

of Earth and nmP  is the 4π   normalized associated Legendre function given by Equation (99), 

 
( )( )( )

( )

1/2
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.
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 (99) 

The associated Legendre function of degree 2 and order 0 can be expressed as in Equation (100) 

 
( )2

2,0

3sin 1
.

2
P

θ −
=  (100) 

Applying the normalization factor given by Equation (99) to Equation (100) the normalized 

associated Legendre function of degree 2 and order 0 can be written as 

 
( )2

2,0

3sin 1
5 .

2
P

θ −
= ⋅  (101) 

Based on Equation (95), the relationship between the LOD excitation with respect to the surface 

mass term 3
massχ  and the zonal harmonic spherical harmonics, 20−C  can be obtained by 

combining Equations (96)  and (101) (Chen, 2005b and Bourda, 2008), 

 ( ) ( )
2

3 00 20'
2

0.753 2
5 .

31
mass

m

R M
C C

k C
χ = ⋅ ∆ − ∆

+
 (102) 
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Here M is the mass of the Earth, '
2 0.301k = −  is the degree-2 load Love number and 00C  

represents the total mass change of a given component normalized by mass of the Earth, i.e., 

00 / .C M M= ∆  

The motion part of the AAM component can be related to changes in LOD by Equation 

(103) (Bourda, 2008) 

 
( ) ( )3winds ,winds

mean m

LOD t h t

LOD C

∆
=

Ω
 (103) 

where 3h  is the axial relative angular momentum of the Earth corresponding to the winds or 

motion term. The linkage between 2J  and LOD is an important scientific investigation because 

of the geophysical applications in areas such as hydrology, atmosphere and ocean coupling. One 

way to establish the association between 2J  and LOD is to investigate the possible coherence of 

various modes of oscillation in the 2J  coefficient with those estimated from LOD fluctuations. 

Additionally, since the variations in LOD are also closely linked to those in the AAM it then 

follows that some modes of oscillation of 2J  could be synchronized with those of the AAM as 

reported in Sole et al. (2007). In the present analysis of phase synchronization, we investigate 

the linkage between 2J  and LOD as well as 2J  and AAM, based on the independent oscillatory 

components obtained from each of these geophysical parameters.  

 

6.3. Inter-comparisons between SDAS estimated J2 and a priori J2 of 

EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S models. 
In the present study, the robustness of the analysis of SLR data by use of the SDAS package 

parameterization has been tested generally by comparing the values of unnormalised a-priori 

and estimated 2J  values based on the EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S 

gravity field models. The purpose of the analysis was to validate 2J  computed from SLR data 

analysis using SDAS against the published values from the five selected gravity field models. 

Here the published 2J  values for each gravity field model and results obtained by using SDAS 

are summarized in Table 34 and Table 35. During processing the a-priori 2J  values are set as 

starting points in the estimation, and the formal errors of the GGM being used is set as the 
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estimation parameter constraint. The least-squares solution of 2J  is therefore constrained fairly 

tightly.  Figure 21 depicts a comparison between a-priori 2J  values and those derived from 

SDAS data analysis based on the EGM96, GRIM5C1, GGM03C AND AIUB-GRACE01S 

gravity field models. In particular the plotted values are the differences between the normalized 

a-priori 2J  values and the SDAS derived 2J  based on LAGEOS 1 and 2 across the considered 

gravity field models. The results presented in Figure 21 indicate that the a-priori 2J  and the 

SDAS derived 2J  exhibits similar patterns and are in good agreement for all the GGMs as 

processed using LAGEOS 1 and 2 data.  

 

 
Figure 21. Comparison between a-priori 2J values and those derived from SDAS data analysis. 

The plotted values are the differences between a priori 2J values and SDAS derived in the 
normalized form. 
 

As illustrated in Table 34 and Table 35, based on LAGEOS 1 and 2 data sets, the percentage 

differences (absolute) between the a-priori and SDAS estimated 2J  are in the order of 810−  for 

all the considered GGMs. These results therefore suggest that the 2J  derived from SDAS could 

be used to compute normalized 2J  values that would be very similar to the published ones.   No 

attempts were made to adjust a-priori values for 2
�J  as the uncertainties in 2

�J  are at the formal 

error level for the particular models used. Therefore one must consider that the epoch of the 

GGMs are not neccessarily those of the mid-epoch period of the processed SLR data (December 
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2005 to December 2008).  Nevertheless, the SDAS package provides reasonable estimates with 

the 2J  a-priori values differing at the 1010− to 1110−  level.  

 

Table 34. Comparisons of a- priori 2J  from the five GGMs and 2J  derived from SDAS based 
on LAGEOS 1 data. 

Model 
A priori 

3
2 10J −×  

Formal 
error 1110−×  

SDAS 
3

2 10J −×  
SDAS formal 
error 1110−×  

10
2 10J −∆ ×  

(Model -SDAS) 
EGM96 -1.0826267 3.561063 -1.0826268 7.8449 1.19859 
GRIM5C1 -1.0826261 0.409800 -1.0826262 0.9162 1.69544 
GGM03C -1.0826355 4.684600 -1.0826368 0.1024 0.12672 
AIUB-
GRACE01S -1.0826267 0.504104 -1.0826270 1.1270 2.66310 

 

Table 35. Comparisons of a-priori 2J  from the five GGMs and 2J  derived from SDAS based 
on LAGEOS 2 data. 

Model 
A priori 

3
2 10J −×  

Formal 
error 1110−×  

SDAS
3

2 10J −×  
SDAS formal 
error 1110−×  

10
2 10J −∆ ×  

(Model - SDAS) 
EGM96 -1.0826267 3.561063 -1.08262673 7.8902 6.54752 
GRIM5C1 -1.0826261 0.409800 -1.0826263 0.7634 1.19854 
GGM03C -1.0826355 4.684600 -1.0826369 0.1023 0.13675 
AIUB-
GRACE01S -1.0826267 0.504104 -1.0826268 1.1268 1.19356 

 

6.4. Geophysical modes of oscillation inherent in LOD, AAM and J2 

In this section the linkage between 2J  and LOD as well as 2J  and AAM geophysical 

parameters is investigated by use of a recent, widely used data adaptive analysis methodology, 

the EMD described in Huang et al. (1998). The data used to extract oscillation components of 

2J  are the same as that presented in Chapter 4 for the EGM96, GRIM5C1, GGM03C and 

AIUB-GRACE01S models. The LOD data used in this study is the official IERS EOP 08 C04 

product series archived and freely available from ftp://hpiers.obspm.fr/iers/eop. The LOD data 

are computed from VLBI, GPS and SLR space geodetic techniques. Similarly, the AAM data 

used in the present study were the National Centers for Environmental Prediction (NCEP) 

effective atmospheric angular momentum functions calculated from NCEP/NCAR (National 

Center for Atmospheric Research) reanalyses archived on pressure levels. The AAM data are 
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freely available at the geophysical fluid: the Special Bureau for the Atmosphere (SBA), 

ftp://ftp.aer.com/pub/anon_collaborations/sba. For the purpose of this work both the LOD and 

AAM data period were matched with the analysed period of SLR observations. Properties of the 

2J , LOD and AAM were analysed using a modified Ensemble Empirical Mode Decomposition 

(EEMD) method reported in e.g., Botai et al. (2009) and Zhaohua and Huang (2009).  

The EEMD methodology is a data adaptive method of decomposing a series into local 

oscillatory components called the IMFs originally reported in Zhaohua and Huang (2009). 

According to Zhaohua and Huang (2009), an IMF is a mono-component signal that satisfies two 

conditions:  

1. In the whole data set, the number of extrema and the number of zero crossings must 

either equal or differ at most by one;  

2. At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero.  

The EEMD method is a variant of the original EMD developed by Huang et al. (1998). This 

method is used for analysing non-stationary and non-linear signals driven by underlying linear 

and non-linear stochastic processes. In general, the EMD method extracts oscillatory 

components from a given series by an iterative procedure known as the sifting process (SP). 

Here for any given data, a signal is decomposed into a series of IMFs generated at each scale 

starting from smooth to coarse and a residual representing a trend function. According to Huang 

et al. (1998), the EMD algorithm can be summarized as follows: 

1. For a given data denoted by ( ) ,x t  identify all the local extrema. 

2. Interpolate all the maxima and minima with natural cubic splines lines to form the upper 

( )u t  and lower, ( ) ,l t  envelopes.  

3. Compute the mean of the envelopes: ( ) ( ) ( )
.

2

u t l t
m t

+� �� �=  

4. Take the difference between the data and the mean as the proto-IMF: 

( ) ( ) ( ).h t x t m t= −  

5. Check the proto-IMF against the definition of the IMF and the stoppage criterion to 

determine if it is an IMF. 
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6. If the proto- IMF doe not satisfy the IMF definition then repeat steps 1 to 5 on ( )h t  until 

it satisfies the definition. 

7. If the proto- IMF satisfies the definition, assign the proto- IMF as an IMF component, 

( )c t . 

8. Iterate on the residue, ( ) ( ) ( ) ,f t x t c t= −  as on the data. This process will end when the 

residue reaches a non-existence of extrema. 

The flow chart of the sifting process is depicted in Figure 22. 

   

 
Figure 22. The flow chart of the decomposition process of EMD through the sifting procedure 
(adapted from Wang et al., 2010). 
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Mathematically, the sifting process can be described as follows in Equation (104) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1,1 1,1

1,1 1,1 1,2

1, 1 1, 1,

1, 1

;
;

           ...
           ...

.
 

k k k

k

x t m t h t
h t m t h t

h t m t h t
h t c t

−

− =
− =

− =
� =
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Here the indices indicate the iteration of the same step. It then follows that  

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1,1 1,1

1,2 1,1 1,2 1,1 1,2

1, 1, 1 1, 1,1 1,2 1,

1 1,1 1,2 1,

;
;

...

...
... ;

   ... .
k k k k

k

x t m t h t
h t h t m t s t m m

h t h t m t x t m m m
c t x t m m m

−

− =
= − = − +

= − = − + + +
� = − + + +
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The step presented here serves to extract the first IMF component. Subsequently, one finds that  

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1 2 2

1

;
;

...

...
.r n n

x t c t r t
r t c t r t

r t c t r t−

− =
− =

− =

 (106) 

Thus for any given data, the signal ( ) ,x t  can be decomposed by the EMD method as 

 ( ) ( ) ( )
1

,
n

j n
j

x t c t r t
=

= +�  (107) 

where jc  represents the thj  IMF and nr  is the residual.  

In the present analysis of the oscillatory mode decomposition of 2J , LOD and AAM the 

following algorithm steps (is illustrated in Figure 23) were followed: 

a) Compute IMFs by use of a noise assisted data analysis method based on Zhaohua and 

Huang (2009). 

b) Determine significant IMFs based on the energy criterion. 

c) Compute the phase difference of the analytic signals of the selected IMFs. 

 

 
 
 



114 
 

 

Figure 23. Synchonization method used in the current study. 
 

 
 
 



115 
 

In this work, only significant IMFs were selected to investigate the association of 2J  oscillatory 

components with those from LOD and AAM. The significant IMFs were selected based on the 

energy criteria: their energy ought to be within the inter-quartile range of the IMF with 

maximum energy from a total of 10 IMFs decomposed adaptively by use of 0.33� noise level 

with 50 ensembles. Intrinsic Mode Functions with small instantaneous amplitudes/energy and 

high frequencies were considered as outliers. 

  

6.4.1.  Analysis of phase synchrony 

In order to quantify the level of synchrony across the recorded IMFs from 2J , LOD, and AAM 

geophysical parameters the Phase Locking Value (PLV) approach reported in Sole at al. (2007) 

was used. In particular, for two signals ( )x t  and ( )y t  of equal time length with instantaneous 

phase ( )x tΦ  and ( )y tΦ  respectively, the PLV bivariate metric is given by Equation (108), 

 ( ) ( ) ( )( )( )
1

1
,x yxy

N i j t j ti t

j

PLV e e
N

Φ ∆ −Φ ∆∆Φ

=
= = �  (108) 

where t∆  is the sampling period and N  is the number of points in the sampling period of each 

signal.  

 The corresponding IMFs extracted from 2J (based on four selected gravity field models), 

LOD and AAM were analyzed to detect the level of interaction between 2J  and LOD as well as 

2J  and AAM mode signals. Here we only consider phase locking as an important factor and 

impose no restrictions on the amplitudes. In general, a phase locking ratio of 1:2 was considered 

appropriate for our analysis. Furthermore, we calculate the variance of the phase shift and 

determine the degree of phase synchronization based on a 0.3 threshold. The usage of this low 

threshold cut-off is to eliminate IMFs that primarily consist of noise. Generally, the frequencies 

xω  and yω  of any two given periodic oscillators are related by x yn mω ω=  where n  and m  are 

integers. If a phase for each oscillator is defined by Equation (109), 

 ( ) ,j jt w tφ =  (109) 

 then the principle of phase synchronization corresponds to a phase locking between two 

oscillators defined by Equation (110), 
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 ( ) ( ), ,n m X Yn t m t Cϕ φ φ= − ≤  (110) 

where Xφ  and Yφ  are the unwrapped phases of the signals of the two oscillators and this is 

equivalent to a constant, C . Equation (110) can now be used to derive the phase 

synchronization index defined in Equation (111) as reported in Hutt et al. (2003) and Allefeld 

and Kurths (2003), 

 ( ) ( )( ) ( )( )
2 2/2 /2

/2 /2

1
cos sin .m m m

i i

t t i T t i T
τ τ

τ τ
γ φ φ

τ =− =−

� � � �
= ∆ + ∆ + ∆ + ∆� � � �

	 
 	 

� �  (111) 

Here τ  denotes the number of time points in the sliding window of width T∆ . The computed 

variance normally varies between 0 and 1, i.e., 0 1.mγ≤ ≤  Assuming that ( )m tφ  represents the 

difference between two phases that change at certain times, then ( )m tγ  can be used to define the 

phase synchronization index. It follows that the maximum value of ( ) 1m tγ =  would indicate a 

perfect synchronization between phases with phase difference .mφ  Similarly, a zero phase 

synchronization between phases with phase difference  would be achieved when ( ) 0.m tγ =   

 The phase synchronization results between signal components extracted from 2J  and 

those extracted from LOD and AAM can be found in Appendix A6, Figure 34 to Figure 49. 

Visual inspection of these figures suggests that there exists some degree of synchronization 

between 2J  signal components and those from LOD and AAM. In particular, ~70% of the 

signal components extracted from 2J  data show a high degree of synchronization with those 

derived from LOD and AAM signals. The higher phase synchronization seems to be located at 

the high frequencies in the case of 2J  and LOD and 2J  and AAM. The presence of 

synchronization between 2J  components and components from LOD and AAM suggests that 

the LOD and AAM signal components are embedded in the data hence confirming that the two 

parameters are related as stated in the literature.  Pairs showing high synchronization between 

2J  from LAGEOS 1 and 2 data and LOD and AAM are summarized in Table 36 and Table 37  

respectively. The calculated phase synchronization index for these pairs ranges between 0.01 

and 0.3 based on phase locking ratio of 1:2. Components showing weak behaviour of 

asynchrony or no synchronization at all between 2J  and LOD and AAM respectively could be a 

mφ
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result of random noise between the signal components of the interacting signals or irregular 

variability in the 2J  signal.  

 

Table 36. Phase synchronization pairs showing a high degree of synchronization between 2J  
and LOD. 

2J  derived from LAGEOS 1 based on model Synchronized pairs between 2J  and LOD 
EGM96 �14, �15, �17, �35 and �47 
GRIM5C �13, �14, �17, �34 and �47 
GGM03C �13, �14, �17, �34 and �47 
AIUB-GRACE01S �14, �15, �17, �35 and �47 

2J  derived from LAGEOS 2 based on model Synchronized pairs between 2J  and LOD 
EGM96 �14, �17, �24 and �67 
GRIM5C �14, �17, �24, �47 and �77 
GGM03C �14, �17, �24, �47 and �77 
AIUB-GRACE01S �14, �17, �24, �27 and �67 

 

Table 37. Phase synchronization pairs showing a high degree of synchronization between 2J  
and AAM. 

2J  derived from LAGEOS 1 based on model Synchronized pairs between 2J  and AAM 
EGM96 �11, �13, �16 and �26 
GRIM5C �11, �13 and �16 
GGM03C �11, �13, �16 and �26 
AIUB-GRACE01S �11, �13, �16 and �26 

2J  derived from LAGEOS 2 based on model Synchronized pairs between 2J  and AAM 
EGM96 �11, �13, �16 and �26 
GRIM5C �11, �13 and �16 
GGM03C �11, �13 and �16 
AIUB-GRACE01S �11, �13, �16, �26 and �65 

 

6.5. Concluding remarks    

The oscillatory components in the SDAS derived 2J  coefficient based on EGM96, GRIM5C1, 

GGM03C and AIUB-GRACE01S gravity field models were investigated using SLR data from 

LAGEOS 1 and 2 for a period of about 3 years (i.e. December 2005 to December 2008). A data 

adaptive analysis method, EMD was utilized to decompose the 2J , LOD and AAM signals into 

significant IMFs. The phase synchronization between 2J  and LOD and 2J  and AAM signal 

components show that there exists some degree of synchronization between the interacting 
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signals. A higher degree of phase synchronization is observed at high frequencies of 2J , LOD 

and AAM decomposed IMFs. Components showing a weak or nil phase synchronization are 

believed to be primarily contaminated by random noise within the signals. 
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7. Conclusion and recommendations for future research 
 

“Nothing is too wonderful to be true, if it be consistent with the laws of nature” Michael Faraday. 

 

7.1. Summary 
Earth gravity field models (these are empirical models that are used to explain the nature of the 

gravity field of Earth) have significant applications in geodesy, geophysics, oceanography and 

navigation. In particular, precise gravity field models have been used in:  

• The determination of accurate orbits of both low and high orbiting satellites, this is a pre-

requisite for the launch, navigation, prediction and tracking of artificial orbiting 

satellites, 

• Precise estimation of the global unified geoids particularly the oceanic geoids, 

• Understanding geophysical phenomena of the Earth’s interior as well as geodynamic 

processes associated with the lithosphere and mantle composition,  

• Establishment of a global height reference system for datum connection and  

• Understanding mass transportation and different distributions within the Earth system 

through detection and assessment of spatial-temporal variations of the gravitational field 

of the Earth.  

Nowadays several gravity field models derived exclusively from SLR tracking measurements 

or/and from a combination of SLR measurements with surface gravity measurements (e.g. 

terrestrial gravity data and airborne gravity data) and satellite radar altimetry measurements 

have been freely released to the scientific community for research. These models however 

exhibit certain inaccuracies due to various factors ranging from the type of utilized satellite data, 

availability and quality of the data, global coverage, accuracies of force models incorporated in 

the geodetic data analysis, etc. Recent satellite missions such as CHAMP, GRACE and GOCE 

are believed to have the capability to resolve the long- and medium wavelength features of the 

Earth’s gravity by providing new data for precise and high resolution gravity field modelling. 

Since the inception of the three satellite missions a number of gravity field models have been 

derived and some of the old ones have been modified. These progresses in gravity field 

modelling require that the models be constantly assessed and validated. Despite the many 
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scientific milestones in gravity field modelling, studies focusing on evaluating the accuracy of 

the gravity field models in the context of POD using SLR data have remained in-exhaustive. 

The research work reported in this thesis evaluates various gravity field models in terms of the 

O-C range residuals, investigates the influence of SLR analysis parameterization on the 

accuracy of the gravity field models and demonstrates the capability of the SDAS package to 

investigate the different gravity field models for POD. It is of importance to emphasize that the 

results presented in this thesis are related to spherical harmonic coefficients up to degree and 

order 20 as proxies for gravity field models.  

 

7.2. Concluding remarks 
The main aim of this research was to evaluate the accuracy of gravity field models used for POD 

by use of LAGEOS 1 and 2 data collected from ILRS tracking stations. The research began by 

providing an historical overview of gravity field models intended to highlight the development 

of gravity field models and their scientific applications. An investigation in general 

improvement in the gravity field modelling based on the O-C residuals derived from LAGEOS 1 

and 2 data using various selected gravity field models was presented in Chapter 4. In Chapter 5 

of the thesis we performed a sensitivity analysis on the O-C residuals computed from LAGEOS 

1 and 2 tracking data considering 5 gravity field models. The main focus was to investigate the 

effects of different tide parameterizations on the O-C residuals across different gravity field 

models. In Chapter 6, some of the SDAS derived products are validated and analysed for 

geophysical applications. In particular, the 2J  spherical harmonic coefficient derived from the 

SDAS package was compared with the coefficients published in the literature. In addition, 

association of the 2J  coefficient with other geophysical parameters (LOD and AAM) was also 

investigated. Based on the analysis of results presented in this research work the following 

conclusions can be drawn: 

• The development of gravity field modelling over the period of evaluation (15 years) has 

generally improved. In particular, based on the seven months analysis of SLR data, the 

accuracy of the evaluated gravity field models depict an improvement by a factor of at 

least 2 since 1990 in terms of O-C range residuals. The analysis of the O-C residuals 

reveals that the accuracy of gravity field models released from 1999 onward are 
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approximately at the same level of accuracy (within the limits of sensitivy of our tests as 

described in this work), although there are many specific differences amongst most 

recent gravity field models. A further analysis (for a period of three years) of a set of 

four gravity field models released between 1996 and 2008 demonstrate slight differences 

in their O-C range residuals. Overall, in the SLR data analysis (this includes the seven 

months and ~3 years of LAGEOS 1 and 2 SLR data) undertaken in this study, it was 

found that the satellite-only derived gravity field model AIUB-GRACE01S could be the 

most accurate due to the low SD of the corresponding O-C range residuals. 

• The influence of tide parameterization (using IERS1, IERS2, IERS3 and IERS2010 pole 

tide standard model) on the accuracy of five gravity field models was analysed based on 

LAGEOS 1 and 2 data. The results indicate that the accuracy of the final orbital solution 

when using EIGEN-CG03C, AIUB-CHAP01S and EGM2008 and LAGEOS 1 data 

require the inclusion of spherical harmonic components due to Earth and pole tides to 

those of the gravity field models. Similar results were found for the GRIM5C1, AIUB-

CHAMP01S and EGM2008 models when using LAGEOS 2 data. Statistical t-tests were 

performed to assess whether the differences in the mean SD of the O-C are significantly 

different. Most of the considered parameterization options are found to have p-values 

which are greater than the significant level 0.05 (or 5%) implying that the differences in 

the mean SD for the selected gravity field models are not statistically significant. 

Differences in the mean SD of the O-C based on EIGEN-CG03C, EGM2008 and AIUB-

GRACE01S and LAGEOS 2 data are unlikely to have arisen by chance. In particular the 

small p values obtained for EIGEN-CG03C imply that the differences in the mean SD 

are highly statistically significant.  In the case were the p-values are found to be 

relatively low but still greater than 0.05 (e.g. p 0.08=  for AIUB-GRACE01 and 

GRIM5C1 based on LAGEOS 1 and 2 data respectively) more data need to be processed 

to draw firm conclusions.  

• The J2 coefficients derived from the SDAS package are comparable to those published in 

the literature. Furthermore, the presence of a geophysical signal component in the time-

variable 2J  coefficient was assessed by use of the phase synchronization between 2J  

and LOD and 2J  and AAM. Our analysis revealed that there exists some degree of 

 
 
 



122 
 

synchronization between the 2J , LOD and AAM signal components. A higher degree of 

phase synchronization is observed in the high frequency modes of 2J , LOD and AAM 

of the IMFs obtained from the empirical decomposition of considered time series ( 2J , 

LOD and AAM). Components showing a weak or nil phase synchronization are believed 

to be primarily contaminated by random noise within the signals.  

 

7.3. Recommendations  

7.3.1.  Assessment of additional SLR LAGEOS data 
A vast quantity of LAGEOS 1 and 2 tracking data ought to be processed to robustly infer the 

general improvement of gravity field modelling. Gravity field models derived from as early as 

the 1970’s to the most recent (2011/2012) need to be considered in order to track fully the 

progress in gravity field modelling. Additional investigation involving larger SLR data sets can 

be valuable in assessing significant accuracy and resolution of the various considered gravity 

field models. 

 

7.3.2.  Probing the significance of SLR parameterization  
In this thesis the tidal deformation effects due to IERS Earth and pole tides (models) on the O-C 

residuals across 5 different models were investigated. The three models (IERS1, IERS2, IERS3 

and IERS3 with pole tides disabled) considered are used to correct for the effects of Earth and 

pole tides on the spherical harmonice coefficients of the GGMs in question. These effects are 

directly linked to the O-C residuals which represent the orbits of the satellites. However, there 

are many other factors that affect the orbit solution and hence gravity field models. These 

include the atmospheric delay/loading, ocean loading, tropospheric effects, displacements 

caused by solid Earth tides, general relativistic effects, etc. In order to achieve an improved orbit 

solution these parameters/effects require full understanding in terms of their contributions to 

precise satellite orbit determination. It is therefore recommended that sensitivity analysis be 

extended to include these parameters/effects.   
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7.3.3.  Additional satellites  

Nowadays the satellite based global gravity field determination is based on three techniques 

(e.g. continued GNSS tracking, K-band range and range-rate tracking and satellite gradiometry) 

which involve CHAMP, GRACE and GOCE satellite missions. High accuracy gravity field 

determination through these satellite missions is attributed to their orbit attitude, observational 

mode and on-board equipments. The new satellite missions overcome the SLR drawbacks such 

as uneven orbit tracking by ground stations non-uniform SLR observations. Consequently, 

evaluation of global gravity field model accuracies can be expanded by processing long term 

data sets from these satellite missions. Results from these new satellite missions can then be 

compared to those obtained in this thesis using LAGEOS 1 and 2 data.  Other possible satellites 

to be considered may include those at a greater range of altitudes and inclinations, e.g. Stella and 

Starlette.  

 

7.3.4.  Technical issues 
Much needs to be done to improve the quality and distribution of the available data. For 

example, the state of the ILRS network needs to improve. The network requires more sites, a 

better geometry, better tracking capabilities, and enhanced data acquisition capabilities. Thus 

gaps in the Southern Hemisphere and Africa in particular need to be filled with some SLR 

tracking stations for a more complete data set for validation purposes. 
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Appendix A5 
This appendix presents the O-C time series derived from tidal parameterization tests using 

LAGEOS 1 and 2 data and the five considered gravity field models.  

 

 
Figure 24: O-C residuals derived from LAGEOS 1 data based on the GRIM5C1 gravity field 
model. 
 

 
Figure 25: O-C residuals derived from LAGEOS 1 data based on the EIGEN-CG03C gravity 
field model. 
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Figure 26. O-C residuals derived from LAGEOS 1 data based on the AIUB-CHAP01S gravity 
field model. 
 

 
Figure 27. O-C residuals derived from LAGEOS 1 data based on the AIUB-GRACE01S gravity 
field model. 
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Figure 28. O-C residuals derived from LAGEOS 1 data based on the EGM2008 gravity field 
model. 
 

 
Figure 29. O-C residuals derived from LAGEOS 2 data based on the GRIM5C1 gravity field 
model. 
�
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Figure 30. O-C residuals derived from LAGEOS 2 data based on the EIGEN-CG03C gravity 
field model. 
 

 
Figure 31. O-C residuals derived from LAGEOS 2 data based on the AIUB-CHAMP01S gravity 
field model. 
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Figure 32. O-C residuals derived from LAGEOS 2 data based on the AIUB-GRACE01S gravity 
field model. 
 

 
Figure 33. O-C residuals derived from LAGEOS 2 data based on the EGM2008 gravity field 
model. 
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Appendix A6 
This appendix presents phase synchronizations derived between 2J  and LOD and 2J  and AAM 

geophysical parameters as discussed in Chapter 6. 

�
Figure 34. Phase synchronization of 2J  (computed from LAGEOS 1 based on the EGM96 
gravity field model) and LOD signals. 
�
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�
Figure 35. Phase synchronization of 2J  (computed from LAGEOS 1 based on the GRIM5C1 
gravity field model) and LOD signals. 
�
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�
Figure 36. Phase synchronization of 2J  (computed from LAGEOS 1 based on the GGM03C 
gravity field model) and LOD signals. 
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�
Figure 37. Phase synchronization of 2J  (computed from LAGEOS 1 based on the AIUB-
GRACE01S gravity field model) and LOD signals. 
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�
Figure 38. Phase synchronization of 2J  (computed from LAGEOS 2 based on the EGM96 
gravity field model) and LOD signals. 
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�
Figure 39. Phase synchronization of 2J  (computed from LAGEOS 2 based on the GRIM5C1 
gravity field model) and LOD signals. 
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�
Figure 40. Phase synchronization of 2J  (computed from LAGEOS 2 based on the GGM03C 
gravity field model) and LOD signals. 
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�� �
Figure 41. Phase synchronization of 2J  (computed from LAGEOS 2 based on the AIUB-
GRACE01S gravity field model) and LOD signals.  
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�
Figure 42. Phase synchronization of 2J  (computed from LAGEOS 1 based on the EGM96 
gravity field model) and AAM signals. 
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�
Figure 43. Phase synchronization of 2J  (computed from LAGEOS 1 based on the GRIM5C1 
gravity field model) and AAM signals. 
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�
Figure 44. Phase synchronization of 2J   (computed from LAGEOS 1 based on the GGM03C 
gravity field model) and AAM signals. 
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�
Figure 45. Phase synchronization of 2J  (computed from LAGEOS 1 based on the AIUB-
GRACE01S gravity field model) and AAM signals. 
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�
Figure 46. Phase synchronization of 2J  (computed from LAGEOS 2 based on the EGM96 
gravity field model) and AAM signals. 
 

 
 
 



153 
 

�

Figure 47. Phase synchronization of 2J  (computed from LAGEOS 2 based on the GRIM5C1 
gravity field model) and AAM signals. 
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�
Figure 48. Phase synchronization of 2J  (computed from LAGEOS 2 based on the GGM03C 
gravity field model) and AAM signals. 
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�

Figure 49. Phase synchronization of 2J  (computed from LAGEOS 2 based on the AIUB-
GRACE01S gravity field model) and AAM signals. 
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