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5. Analysis of the effect of tide parameterization on the accuracy of 
gravity field models 
 

                            “Whether or not you can observe depends on the theory which you use. It is the theory which 
decides what can be observed” Albert Einstein. 

 

5.1. Introduction 
Gravity field models derived from SLR tracking data are utilized in various fields of research. 

For instance, they can be used to study the structure of the Earth, for computation of the geoid, 

reference systems, satellite orbits etc. The quality of the computed satellite orbits depends on the 

preferred gravity field model and its inherent accuracies. On the other hand, the accuracy of 

gravity field models is dependent on proper modelling of parameters that describe the disturbing 

forces acting on a satellite as it orbits the Earth. Factors such as availability, type and quality of 

data also play a significant role.  

The main objective of this chapter is to investigate the contributions of Earth and pole 

tides on the O-C residuals across selected gravity field models by use of different configurations 

in the SDAS package. Contributions from the Earth and pole tides on the spherical harmonic 

coefficients (and also on O-C residuals) are computed using models incorporated into IERS 

2010 conventions reported in Petit and Luzum (2010). In the SDAS package the Earth tide 

model is in the form of three selectable compatible models, these are selectable from the menu 

as IERS1, IERS2 and IERS3. In SDAS IERS1 corrects Earth tidal effects to degree 2 spherical 

harmonic coefficients, IERS2 is an extension of IERS1 with further corrections to the third and 

fourth spherical harmonic coefficients and IERS3 is a complete model which incorporates 

IERS1, IERS2 and frequency independent components of solid Earth tides.  

In this study four SLR parameterization schemes were considered (i.e., the analysis 

options were configured as IERS1 off, IERS2 off, IERS3 off and pole tides off). The O-C 

results based on the four different tide parameterization schemes are first characterized by 

determining the inherent statistical structure. Here a direct comparison of the computed mean 

SD of the O-C residuals across the different models is used to determine an appropriate model 

that best describes the O-C data structure. In the second analysis a t-test statistical method was 

used (Student’s t-test as applied in the Statistica statistical analysis package (Motulsky, 2003)) 

to assess the robustness of the mean SD of the O-C across different tide parameterization tests 
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based on the selected gravity field models. Overall, the results presented in this chapter have 

significant implications with regard to the interpretation of the O-C orbit errors computed from 

different gravity field models using each of the four tide parameterization test models.  

 

5.2. Background 
The gravitational attraction of the celestial bodies (e.g., Moon and Sun) exerts a direct force on 

Earth orbiting satellites. These forces also act on the rotating Earth thereby inducing 

deformations of the solid Earth. Such deformations tend to produce time variations in surface 

deflections and gravity with amplitudes up to 50 cm and 200 Galµ  respectively (Metivier and 

Conrad, 2008). The motion of the Earth (i.e. in orbit around the Sun and spinning around its 

instantaneous axis of rotation) and the coupled solar and lunar forces of attraction give rise to 

tidal deformations. Tidal deformations occur in the solid Earth, the ocean and in the atmosphere. 

Time varying deformations within the Earth system are consequences of solid Earth tides. On 

the other hand, pole tides are due to changes in the direction of the Earth’s spin axis relative to a 

certain reference point in the Earth (McCarthy and Petit, 2003, Petit and Luzum 2010).  

Generally, Earth and pole tides manifest as time-varying components of the gravity field. 

As a consequence, the Earth’s gravitational field exhibits periodic variations which tend to 

affect the motion of satellites. Time variations in the global gravity field are often extracted 

from geodetic satellite data. They are commonly used to study a variety of geodynamic and 

atmospheric processes. In most geodetic applications, both the solid Earth and pole tides ought 

to be properly modelled so that their influence can be accounted for in geodetic observables. At 

present, the solid Earth tide components embedded in spherical harmonic coefficients 

(geopotential models) are accounted for by using classical models which have been incorporated 

into various IERS conventions and technical notes, the latest being IERS2010 reported by Petit 

and Luzum (2010).  
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5.2.1.  Solid Earth tides 

5.2.1.1.  Effects of solid Earth tides on station coordinates 

In SLR analysis the effects of Earth tide deformation are often noticed in the estimated time-

varying component of station coordinates (here the greatest influence is in the vertical 

component of the station coordinates) see for example Figure 16.  

�
Figure 16. Position displacement of Yarragadee SLR tracking station due to Earth tides 
(Combrinck and Suberlak, 2007). 
 

The effects of tidal deformations on the station coordinates due to Earth tides are often derived 

from Equation (71) as reported in Petit and Luzum (2010), 
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 (71) 

where jGM  and GM ⊕  are the gravitational parameters for the Moon/Sun and the Earth 

respectively. Similarly, j jR ,R
�

 and r ,r
�

 are the unit vectors from the geocentre to the Moon or 

Sun and to the station respectively, together with the magnitudes of the vectors. In addition, 2h  

and 2l  are the nominal second degree Love and Shida numbers respectively. 

Tidal deformations are thought to manifest in the station height component since in most 

geodetic applications nearly all of the parameters in Equation (71) become time-independent at 

longer time-scales. As a result the time-dependent station height variation due to Earth tide 

deformations is accounted for by use of Equation (72) (Petit and Luzum, 2010), 
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 (72) 

In Equation (72) - 
1 1K K 2h h hδ =  (the estimated value is -0.0887), 

1KH  is the amplitude of the 1K  

term in the harmonic expansion of the tide generating potential and its value is 0.36878 m, φ  

and λ  are the geocentric latitude and east longitude of the station and 
1Kθ  is the 1K  tide 

argument and is given by gθ π+ . Equation (72) can be written in a simplified way as, 

 ( )0.0253sin cos .STA ghδ φ φ θ λ= − +  (73) 

Here the effect is a maximum at 45φ = � where the amplitude is 0.013 m. 

 

5.2.1.2.  Effects of solid Earth tides on geopotential coefficients 

The effects of solid Earth tides in the free space potential are often modelled as temporal 

variations in the standard geopotential coefficients nmC  and nmS .  Such contributions are often 

expressed in terms of Love number independence on tidal frequency (this includes long period 

terms) and station latitude. The effects of ellipticity and rotation of the Earth due to latitudinal 

dependence and the Coriolis force give rise to tidal deformations. As reported in Wahr (1981), 

tidal deformation effects require the use of three k - parameters (these are the Love and Shida 

numbers), nmk  and ( )
nmk ±  (with the exception of 2n = ) to characterize the changes produced in 

the free space potential by tides of spherical harmonic of degree and order ( )nm . In the case 

where mantle anelasticity is taken into account, anelasticity may introduce small imaginary parts 

to the nmk  and ( )
nmk ±   terms that reflect a phase lag in the deformation response of the Earth to the 

tidal forces. In addition, anelasticity may also affect the Earth’s deformational response to 

effects arising from direct action of the tide generating potential (e.g. ocean tides and wobbles of 

the mantle and the core regions).  

The tidal contributions due to Earth tides are accounted for by a two-step formulation 

reported in Wahr (1981) and Petit and Luzum (2010). In the first step, frequency independent 

nominal Love numbers are used to evaluate the ( ,nm  for 2n =  and 3n =  for all m ) part of the 

tidal potential coefficients and compute the corresponding changes nmC∆  and nmS∆  (these are 
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temporal corrections to geopotential coefficients nmC  and nmS ) in the time domain using the 

lunar and solar ephemeris. The induced contributions (i.e. nmC∆  and nmS∆ ) due to the nm  part 

of the tidal generating potential in the normalized geopotential coefficients having the same 

( )nm  in the time domain are expressed in terms of the nmk  Love number using Equation (74) as 

reported in Petit and Luzum (2010),  
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Here nmk  is the nominal Love number for degree n  and order ,m  eR  is the equatorial radius of 

the Earth, GM ⊕  and jGM  are gravitational parameters for the Earth and the Moon ( )2j =  or 

Sun ( )3j =  respectively, jr  is the distance from geocentre to Moon or Sun and jφ and jλ  are 

the body-fixed geocentric latitude of the Moon or Sun and east longitude (from Greenwich) of 

the Sun or the Moon respectively. The contribution to the geopotential coefficients in the degree 

4, 4mC  and nmS  due to degree 4 tides are also computed in a similar method in terms of ( )
2mk +  as 

given in Equation (75), 
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The parameter values utilized in the computation of step 1 are given in Table 16. The nominal 

value for 0m =  needs to be selected as a real since the contribution to 20C  from the imaginary 

part of ( )0
20 .k  

 

Table 16. Nominal values of solid Earth tide external potential Love numbers. 

Elastic Earth 
n  m  nmk  ( )

nmk +  e nmR k  
2 0 0.29525 -0.00087 0.30190 
2 1 0.29470 -0.00079 0.29830 
2 2 0.29801 0.00057 0.30102 
3 0 0.093   
3 1 0.093   
3 2 0.093   
3 3 0.094   
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The second step corrects arguments of a harmonic expansion of the tide generating potential for 

which the error due to the Love number 2k  of step 1 is above a certain cut-off value. In this step 

the frequency dependent values considered are obtained from Mathews et al.  (1995) and 

corrections to nmC∆  and nmS∆  values are from step 1. These corrections are the sum of 

contributions from a number of tidal constituents belonging to the respective bands. The 

contribution to 20C∆  from the long period tidal constituents of various frequencies, f  is given 

by Equation (76) as reported in Petit and Luzum (2010), 

 ( ) ( ) ( )0 0 0(2,0) (2,0)
cos sin .i f R I

e f f f f f f f ff f
R A k H e A H k A H kθδ δ θ δ θ� �= −� �� �  (76) 

Furthermore, the contributions to ( )21 21C i S∆ − ∆  due to the diurnal tidal constituents and to 

( )22 22C i S∆ − ∆  from the semidiurnal band are given by,  

 ( ) ( )2 2
(2, )
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where  

 
( ) ( ) ( ) ( )

8 1
0

8 1

1 2

1
4.4228 10  m ,

4

1
1 3.1274 10  m ,        0 ,

8

,         1.

e

m
m

m

e

A
R

A m
R

i

π

π

η η

− −

− −

= = ×

−
= = − × ≠

= − =

 (78) 

Here fkδ  gives the difference between fk  defined as 0
2mk  at frequency f  and the nominal 

value 2 ,mk  in the sense 2f mk k−  plus a contribution from ocean loading; R
fkδ  is the real part of 

;fkδ  I
fkδ  is the imaginary part of ;fkδ  fH  is the amplitude of the term at frequency f  from 

the harmonic expansion of the tide generating potential defined according to the convention of 

Cartwright and Taylor (1971). In Equation (76), 

( ) ( )6 5

1 1
,  or     .f i i f g g j ji j

n n m NF m N Fθ β β θ θ π θ π
= =

= = = + − = + −� �
� � ��

 

In addition, β
�

 is the six-vector of Doodson’s fundamental arguments ,iβ ( ), , , , ', ,ss h p N pτ  n
�

 

is the six-vector of multipliers in  of the fundamental arguments, F
�

 is the five-vector of 
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fundamental arguments jF  (the Delaunay variables , ', , ,l l F D Ω ) of nutation theory, N
�

 is the 

five-vector of multipliers jN  of the Delaunay variables for the nutation of frequency 

/gf d dtθ− +  and gθ  is the Greenwich Mean Sidereal Time. 

 

5.2.2.  Pole tides 

The pole tides cause spatial variations in the gravitational potential due to Earth rotation. These 

tides are caused by changes in the direction of the Earth’s spin axis relative to a point fixed in 

the Earth. The spin produces a centrifugal force, which depends on the angular distance between 

the spin axis and a reference point. As the spin axis moves, this distance and the centrifugal 

force changes. The pole tide deformation effects on the station coordinates (up to ~cm) arises 

from the first order perturbation associated with the centrifugal potential caused by the Earth’s 

rotation. Rotational deformations due to polar motion can be modelled by assuming that the 

perturbation in the centrifugal potential is related to the Earth’s rotation. Thus considering 

( ), ,x y z  as the terrestrial system of reference, a first order perturbation of the centrifugal 

potential ( )V∆  can be expressed in Equation (79), as reported in Petit and Luzum (2010), 

 ( )2221
. ,

2
V r r� �= − Ω − Ω

� 
� �

� ��
 (79) 

where ( )( )1 2 3ˆ ˆ ˆ1 ,m x m y m zΩ = Ω + + +
�

 Ω  is the mean angular velocity of rotation of the Earth, 

1m  and 2m  are small dimensionless parameters describing the time dependent offset of the 

instantaneous rotation pole from the mean, 3m  is the fractional variation in the rotational rate, r  

is the geocentric distance to the station. Neglecting the 3m  term, due to its small influence, the 

first order perturbation in the potential  can be written in terms of  and  as in 

Equation (80) (Petit and Luzum, 2010),  

 ( ) ( )
2 2

1 2, , sin 2 cos sin .
2
r

V r m mθ λ θ λ λ� �Ω∆ = − +� �
	 


 (80) 

The tidal Love numbers and V∆  can be used to compute the radial ( rS , positive upwards) and 

horizontal displacements  and S Sθ λ  (positive southwards and eastwards respectively) due to 

V∆ as given in Equation (81),  

( )V∆ 1m 2m
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 2 2
2
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,     ,     .

sinr

l lV
S h S V S V

g g gθ θ λ λθ
∆= = ∂ ∆ = ∂ ∆  (81) 

The coordinates (in the ITRF) of the position of the Earth’s mean rotation pole due to secular 

variations are given in terms of the polar motion variables ( ),p px y  and are obtained by running 

averages px  and py− , thus 

 ( )1 2,            .p p p pm x x m y y= − = − −  (82) 

In order to achieve the most accurate results for the polar motion variables estimates of the mean 

pole are commonly utilised. Now-a-days the conventional mean pole of the IERS conventions 

(2003) is replaced with the IERS conventional mean pole incorporated in the IERS conventions 

(2010). The latest version of the IERS conventional mean pole is composed of a cubic model 

validated over the period from 1976.0 to 2010.0 and a linear model for extrapolation after 

2010.0. Generally, the IERS (2010) mean pole model can be described as per Equation (83)  

 ( ) ( ) ( ) ( )
3 3

0 0
0 0

                   y ,
i ii i

p p p p
i i

x t t t x t t t y
= =

= − × = − ×� �  (83) 

where 0t  is 2000 and the coefficients of i
px  and i

py  are given in Table 17. 

 

Table 17. Coefficients of the IERS (2010) mean pole model. 

Degree i  

Until 2010.0 After 2010.0 
/ mas yri i

px −  / mas yri i
py −  / mas yri i

px −  / mas yri i
py −  

0 55.974 346.346 23.513 358.891 
1 1.8243 1.7896 7.6141 -0.6287 
2 0.18413 -0.10729 0.0 0.0 
3 0.007024 -0.000908 0.0 0.0 

 

The radial and horizontal displacements ,  and ,rS S Sθ λ  can be computed by use of Love 

number values appropriate to the frequency of the pole tides ( )0.6027,  0.0836h l= =  and 
66.378 10  mr a= = ×  as follows: 
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 (84) 

 
 
 



87 
 

with 1m  and 2m  given in arcseconds.  The effects of polar motion in the Cartesian coordinate 

systems as reported in IERS2010 conventions (Petit and Luzum, 2010) are represented in 

Equation (85), 

 [ ] [ ], , , , ,
T TT

rdX dY dZ R S S Sθ λ=  (85) 

where  
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In order to show the effects of pole tides to the accuracy of gravity field models Equation (80) 

can be expressed as Equation (87) 

 ( ) ( )
2 2

1 2, , sin 2 .
2

i
e

r
V r R m im e λθ λ θΩ

� �∆ = − −� �  (87) 

The deformation caused by the pole tide produces time-dependent perturbations in the external 

potential given by Equation (88) 

 ( )
2 2

2 1 2sin 2 .
2

i
e

r
V R k m im e λθΩ

� �∆ = − −� �  (88) 

These perturbations are related to changes in the geopotential coefficients 21C  and 21 ,S  which 

describe the position of the Earth’s figure axis. Using the value 0.3077 0.0036i+  for the Love 

number 2k  the time-dependent perturbations in the  and  geopotential coefficients can be 

estimated as follows 
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9
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−

−

∆ = − × −

∆ = − × −
 (89) 

where  and  given in arcseconds. 

 

5.3. Parameterization 
The latest SDAS version (Combrinck personal communication, July 2012) utilises IERS2010 

conventions to correct for Earth and pole tide effects. In the software the Earth tide model is 

divided into three compatible and selectable models namely, IERS1, IERS2 and IERS3 (these 

are described in Table 18). The objective of the work presented in this chapter is to perform 

orbital tests with particular emphasis on evaluating the influence of using IERS1, IERS2 and 

21C 21S

1m 2m
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IERS3 compatible Earth tide models (affecting the static GGM spherical harmonic coefficients) 

and pole tide model (IERS2010 standard) in the determination of satellite orbits by analysing 

LAGEOS data using different gravity field models. The IERS1 model in SDAS is considered 

the least complex Earth tide model and corrects degree 2 spherical harmonics of a given 

geopotential model. On the other hand, IERS2 in the analysis software is an extension of IERS1 

with additional corrections to third and fourth degree spherical harmonics. Lastly, a complete 

model of Earth tides, the IERS3 is considered as the most complex model since it includes both 

IERS1 and IERS2 plus it takes into account the frequency independent components of the solid 

Earth tides. A summary of these compatible models and their respective corrections to spherical 

harmonic coefficients is given in Table 18.  

 

Table 18. Summary of the compatible models derived from IERS2010 with their respective 
corrections to spherical harmonic coefficients of a geopotential model. 

Compatible models from IERS2010 Corrections to a typical geopotential model 
IERS1 

20 21 22 21 22, , , ,C C C S S  
IERS2 IERS1 + 30 31 32 33 31 32 33, , , , , ,C C C C S S S  + 40 41 42 41 42, , , ,C C C S S   
IERS3 IERS1 + IERS2 + frequency independent components 

Pole tides 
21 21,C S  

 

The methodology followed can be formulated as follows: suppose that a GGM is represented by

( ),y xη=  where x  represents a vector of input empirical models to be varied and y  is the 

expected output; for the purpose of this study y  is considered as the O-C residuals. Let η  be a 

GGM such that the way the model responds to changes in each of the three elected empirical 

models is not transparent. The purpose of selecting different empirical model combinations 

during the analysis of SLR data is to investigate how changes in the geopotential coefficients 

(GGM dependent) in the context of O-C residuals, ,y  are related to or affected by Earth (as 

modelled by IERS1, IERS2 and IERS3) and pole tides (modelled using IERS2010 standard)  

contributions.  

Table 19 summarises the criteria used to test the effects of the IERS1, IERS2, IERS3 and 

pole tides on the O-C residuals across five different gravity field models when determining 

LAGEOS orbits as analysed with SDAS. In particular, the “on/disabled” configuration tests 

were conducted for each considered model by disabling one of the compatible models while the 
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other two are enabled during processing. Basically four tests were conducted for each selected 

gravity field model based on LAGEOS 1 and 2 data. In the first test the IERS1 Earth tide model 

and pole tides (IERS2010 standard) were activated while disabling IERS2 and IERS3 in the 

software. The second test involved the activation of IERS2 and pole tides while IERS3 was 

disabled in the software to investigate their combined effects on the derived O-C residuals 

across the selected models. In third test the IERS3 and pole tides were implemented and lastly, 

in the fourth test the IERS3 was activated and pole tides were disabled during LAGEOS 1 and 2 

data processing.  

 

Table 19. Orbital parameter tests strategy used. Parameters were tested at 0.8� rejection. 

Orbital tests Parameter configuration 
Test 1 IERS1 and pole tides ‘on’ IERS2 and IERS3 ‘disabled’ 
Test 2 IERS2 and pole tides ‘on’  IERS3 ‘disabled’ 
Test 3 IERS3 and pole tides ‘on’ IERS1 and IERS2 ‘enabled’ 
Test 4 IERS3 ‘on’ Pole tides ‘disabled’ 

 

5.4. Models Evaluated 
In this study five gravity field models were used in SDAS analysis of LAGEOS 1 and 2 SLR 

data. These models are the GRIM5C1, EIGEN-CG30C, AIUB-CHAMP01S, EGM2008 and 

AIUB-GRACE01S and they were evaluated using LAGEOS 1 and 2 data sets spanning January 

to June 2009. Specific characteristics and references of the selected models are summarized in 

Table 20. The ILRS tracking stations selected for data processing are the so-called EOP SLR 

stations. These stations are believed to be providing high quality SLR data for the computation 

of EOPs. The EOP selected stations include Yarragadee, McDonald, Zimmerwald, Wettzell, 

Monument Peak, Hartebeesthoek, Herstmonceux, Greenbelt, Riyadh, Graz, Mount-Stromlo, 

Beijing and Arequipa.  

 

Table 20. Geopotential models evaluated. 

Model Year Degree/order Data Reference 
GRIM5C1 1999 120 S, G, A Gruber et al. (2000) 
EIGEN-CG03C 2005 360 S(CHAMP,GRACE),G,A Foerste et al. (2005) 
AIUB-CHAMP01S 2007 90 S(CHAMP) Prange et al. (2007) 
EGM2008 2008 2190 S(GRACE),G,A Pavlis et al. (2008) 
AIUB-GRACE01S 2008 120 S(GRACE) Jaeggi et al. (2008) 
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The SLR data in this study were processed using constants and reference frames listed in Table 

21.  

 

 Table 21. Constants and reference frames utilised during LAGEOS 1 and 2 data processing.  

Reference frame epoch SLRF2005 
Inertial reference frame J2000 
Pole-tide correction (station position) IERS2010 
Correction for general relativistic effects IERS2010 
Earth–tide correction (station position) Petrov 2005 
Ocean loading correction (station position) Agnew/Scherneck 
Atmospheric loading Disabled 
Earth orientation a-priori Earth orientation parameters and 

UTC-UT1 values as per IERS extrapolated 
to observation epoch 

O-C outlier rejection Selectable: set to 0.8 sigma 

Average pole IERS2010 
 

5.5. Statistical analysis of O-C residuals 
Table 22 and  Table 23 present the results for the statistical orbital fits of LAGEOS 1 and 2 

based on IERS1, IERS2, IERS3 and pole tide tests using the GRIM5C1, EIGEN-CG03C, 

AIUB-CHAMP01S, EGM2008 and AIUB-GRACE01S gravity field models. The listed 

statistical results considered in the tables are the mean SD of the O-C residuals for each orbital 

test. These SD values are used as a measure of orbit quality as well as gravity model accuracy. 

There are small differences in the calculated average SDs across the five elected gravity field 

models. This suggests that the choice of parameterizations has a particular influence on satellite 

orbit determination as well as gravity field model accuracy. The results presented in Table 22 

and Table 23 indicate that from the SLR analysis utilizing the selected gravity field models, the 

average SDs of the O-C residuals are  about 2 cm and 1 cm for LAGEOS 1 and 2 respectively. 

 

The following five GGM model comparisons utilised LAGEOS 1 data. 

  

GRIM5C1:  

In Table 22 the GRIM5C1 gravity field model gives a slightly improved solution when the Earth 

tides are modelled using the complex Earth tide model, IERS3, with the pole tides disabled 
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during data processing followed by a combined implementation of the IERS3 model and pole 

tides. A combination of the IERS2 model and pole tides decreases the quality of the GRIM5C1 

gravity field model. The poorest O-C SD solution is obtained when the least complex Earth tide 

model IERS1 and pole tides are jointly implemented in the software. This indicates that the 

accuracy of the final solution when using the GRIM5C1 model and LAGEOS 1 data can be 

achieved through inclusion of spherical harmonic components due to Earth tides (added) to 

those of the GRIM5C1 model. The pole tides seem to contribute less towards the precision of 

the final solution of GRIM5C1. 

 

EIGEN-CG03C:  

The combined gravity field model, EIGEN-CG03C gives the best solution for the combined 

selection of IERS3 and pole tides followed by a combination of IERS2 and pole tides. The O-C 

SD solution worsens when IERS3 is activated and pole tides disabled in SDAS. Its worst 

solution is when IERS1 and pole tides are jointly selected during data processing. Based on this 

result the Earth and pole tides equally contribute towards the quality of the EIGEN-CG03C 

gravity field model. Hence it is necessary to include both the spherical harmonic coefficient 

components due to the Earth and pole tides when using EIGEN-CG03C and LAGEOS 1 data. 

  

AIUB-CHAMP01S:  

The CHAMP satellite-only model, AIUB-CHAMP01S results in a better solution when IERS3 

and pole tides are jointly active in the software followed by when the IERS3 model is active and 

pole tides disabled. The solution worsens when IERS2 and pole tides are jointly selected and the 

poorest solution is obtained when the least complex Earth tide model, IERS1 and pole tides are 

jointly selected. In conjunction with the EIGEN-CG03C gravity field, the usage of AIUB-

CHAMP01S with LAGEOS 1 data requires the inclusion of both the spherical harmonic 

coefficient components due to Earth and pole tides.  

 

EGM2008: 

For the EGM2008 gravity field model the best solution is obtained when IERS2 and pole tides 

are active, followed by the combination of IERS3 and pole tides.  The average SD of the O-C 

residuals reduces when the IERS1 model and pole tides are active during data processing. Its 
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poorest solution is obtained when the IERS3 model is active and the pole tides disabled in 

SDAS. The results indicate that both the spherical harmonic coefficient components due to 

Earth and pole tides play a significant (interacting) role in the final solution of the EGM2008 

gravity field model when LAGEOS 1 data is utilised.  

 

AIUB-GRACE01S: 

Lastly using LAGEOS 1, the GRACE satellite-only model AIUB-GRACE01S, exhibits the best 

solution when the IERS3 model is activated and pole tides are disabled in the software followed 

by a combined implementation of IERS3 and pole tides. The O-C SD solution worsens when 

IERS2 and pole tides are implemented during data processing. The worst solution is obtained 

when the least complex Earth tide model, IERS1 and pole tides are implemented in SDAS. This 

suggests that optimal use of the quality of AIUB-GRACE01S occurs when using LAGEOS 1 

data through a proper and a complete modelling of contributions from Earth tides only. The 

differences between IERS1, IERS2 and IERS3 O-C values are statistical only, as the differences 

are non-significant (at the level of fractions of mm).   

 

Table 22. Results of the mean SD of the O-C extracted from LAGEOS 1 data. 

Model 

Mean SD [cm]  
when  IERS1 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS2 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS3 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when IERS3 is ‘on’ 
& pole tides are 
disabled 

GRIM5C1 2.184 2.151 2.131 2.129 
EIGEN-
CG03C 2.308 2.266 2.246 2.279 

AIUB-
CHAMP01S 2.187 2.135 2.116 2.126 

EGM2008 2.202 2.160 2.169 2.165 
AIUB-
GRACE01S 2.174 2.145 2.141 2.133 

 

Figure 17 depicts SD values averaged across the selected (five) gravity field models for 

individual tide parameterization test. As depicted in Figure 17 the IERS1 and pole tides test 

exhibits the highest mean SD solution while the mean SD of the O-C improves for the three 

remaining parameterization tests with only parts-per millimetre differences. In particular, the 

IERS3 and pole tide parameterization test have the lowest solution. This is expected since most 
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of the gravity field models yield a best mean SD solution when IERS3 and pole tides are 

activated during the LAGEOS 1 data processing.   

 

 
Figure 17. Averaged SD across the GRIM5C1, EIGEN-CG03C, AIUB-CHAMP01S, EGM2008 
and AIUB-GRACE01S gravity field models based on LAGEOS 1 data. 
 

The following five GGM model comparisons utilised LAGEOS 2 data. 

 

GRIM5C1: 

The GRIM5C1 gravity field model has the lowest O-C SD solution when LAGEOS 2 data are 

processed with IERS3 and pole tides activated followed by active combination of IERS2 and 

pole tides in SDAS. The solution worsens when the IERS3 model is active and the pole tides are 

disabled during data processing. The poorest O-C SD solution is obtained when the least 

complex Earth tide model, IERS1 and pole tides are jointly activated in the software. Similar to 

the results obtained for LAGEOS 1, the optimal use of the quality of GRIM5C1 when using 

LAGEOS 2 occurs when all spherical harmonic functions due to the Earth and pole tides are 

included to those of the gravity field model. The different O-C SD values obtained for LAGEOS 

1 where pole tide was either on or off, combined with IERS3 are statistically insignificant. 

Therefore one would want to utilise IERS3 and pole tides for both LAGEOS 1 and LAGEOS 2 

when using GRIM5C1. 
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EIGEN-CG03C: 

 The combined gravity field model, EIGEN-CG03C exhibits the best O-C SD solution when the 

IERS3 model is active with pole tides disabled followed by the active combination of IERS2 

and pole tides in the software. The solution worsens with the joint combination of IERS1 and 

pole tides and the poorest solution is obtained when IERS3 and pole tides are jointly selected 

during LAGEOS 2 data processing. This result is different from the previous EIGEN-CG03C 

using LAGEOS 1 data. It is apparent that adding the spherical harmonic coefficients to those of 

the GGM due to pole tide in combination with the IERS3 Earth tide coefficients reduces the 

quality of the solution.  

 

AIUB-CHAMP01S:  

The CHAMP satellite-only model has the best solution when IERS3 and pole tides are active in 

SDAS followed by the implementation of IERS3 with pole tides disabled. A combination of 

IERS2 and pole tides reduces the quality of the O-C SD solution. The solution worsens further 

when the least complex Earth tide model, IERS1 and pole tides are jointly combined in the 

software. This is similar result obtained with AIUB-CHAMP01S using LAGEOS 1 data 

implying that there are no satellite dependence effects. Considering the similarities in the results 

from the two satellites it can be concluded that the full spherical harmonic coefficient 

components due to the Earth and pole tides need to be taken into account when using AIUB-

CHAMP01S and LAGEOS 2.   

 

EGM2008: 

The EGM2008 gravity field model exhibits the lowest O-C SD solution when IERS3 and pole 

tides are selected, followed by the active combination of IERS2 and pole tides during LAGEOS 

2 data analysis. Activation of the complex Earth tide model, IERS3 with the pole tides disabled 

worsens the O-C SD solution. The poorest solution is obtained when the IERS1 model and pole 

tides are jointly selected in the software. Considering the results obtained with LAGEOS 1 data, 

this indicates the necessity of including the full spherical harmonic coefficient components due 

to pole tides when using EGM2008 and LAGEOS 1 and 2 data. In both cases (LAGEOS 1 and 

LAGEOS 2) results are improved when including pole tides. 
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AIUB-GRACE01S: 

The GRACE satellite-only model, AIUB-GRACE01S gives the best solution when 

contributions from the Earth tides are modelled with IERS 3 while the pole tides are disabled, 

followed by the active combination of IERS2 and pole tides in the software. A joint 

implementation of the complex Earth tide mode with pole tides reduces the O-C SD solution. 

The solution worsens further with active combination of the least complex Earth tide model, 

IERS1 and pole tides. Considering the quality of AIUB-GRACE01S it is necessary to include 

spherical harmonic coefficient components due Earth tides when using LAGEOS 2 data. It is 

also apparent that the inclusion of spherical harmonic coefficient components due pole tides 

tends to reduce the quality of the AIUB-GRACE01S gravity field model although this is at such 

a low level to be statistically insignificant.  

 

Table 23. Results of the mean SD extracted from LAGEOS 2 data for different tide 
parameterization options. 

Model 

Mean SD [cm] 
when  IERS1 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS2 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when  IERS3 
and pole tides 
are ‘on’ 

Mean SD [cm] 
when IERS3 is 
‘on’ and pole 
tides are disabled 

GRIM5C1 1.490 1.467 1.463 1.486 
EIGEN-CG03C 1.711 1.634 1.828 1.633 
AIUB-
CHAMP01S 1.515 1.500 1.490 1.498 

EGM2008 1.524 1.497 1.483 1.510 
AIUB-
GRACE01S 1.527 1.481 1.495 1.469 

 

The trend of the averaged SD of the O-C residuals for the four parameterization tests across all 

the considered gravity field models based on LAGEOS 2 data is illustrated in Figure 18. Highest 

averaged mean SD solutions are obtained for IERS1 and pole tides, and IERS3 and pole tides 

parameterization tests. The results obtained for the IERS3 and pole tides test contradicts those 

obtained when LAGEOS 1 SLR data is utilized (here IERS3 and pole tides gave the best mean 

SD solution). This difference arises from the large mean SD of the O-C residuals obtained when 

using the EIGEN-CG03C gravity field model while processing SLR LAGEOS 2 data. Generally 

the IERS3 and pole tides parameterization with the EIGEN-CG03C gravity field model based on 

the analysis of LAGEOS 2 SLR data yields O-C residuals which are almost twice as large as 
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compared with those obtained from the other parameterization test for the similar model and 

data. This uniqueness could be attributed to systematic errors in the adjustment procedure during 

data processing. It is apparent that the pole tides have a significant influence on the final O-C 

residual, considering the IERS3 Earth tide model and the EIGEN-CG03C gravity field model. If 

the average O-C value of the EIGEN-CG03C model is excluded, the plot in Figure 18 would be 

similar to that of Figure 17, with the least detailed model exhibiting the largest O-C values and 

the most detailed model (IERS3 plus pole tide) providing the best solutions as depicted in 

Figure 19. This example indicates that some GGM models may produce unexpected results. 

 

 
Figure 18. Averaged SD across GRIM5C1, EIGEN-CG03C, AIUB-CHAMP01S, EGM2008 
and AIUB-GRACE01S gravity field models based on LAGEOS 2 data. 

 

 
 Figure 19. Averaged SD across GGMs with EIGEN-CG03C model excluded. 
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5.6. Statistical significance of the variations in the standard deviation of O-

C residuals between models 
The mean SD of the O-C residuals presented in Table 22 and Table 23 as derived from 

LAGEOS 1 and 2 data using GRIM5C1, EIGEN-CG03C, AIUB-CHAMP01S, EGM2008 and 

AIUB-GRACE01S gravity field models exhibit subtle differences across the different tide 

parameterization.  This makes it difficult to ascertain whether the difference in the mean SD 

values has any statistical significance for the different gravity field models. In this section a t-

test was performed to assess whether the mean SD differences between the tide parameterization 

options are statistically different from each other. In particular the mean SD of two groups of 

tide parameterization tests is compared to investigate whether the means are statistically 

significant.  

The t-test (Welch’s t-test) used in the present study was computed as a ratio of the 

difference between the two averages and the measure of O-C residual variances corresponding 

to the different parameterization options. If the parameter options are  and i j  then the student’s 

t-test can be calculated as per Equation  

 / 22
,       i j

ij ji

ji

i j

X X
t i j

SS
N N

−
= ∀ ≠

−

 (90) 

where  iX and jX  are the means of the  and i j  O-C residuals, 2
iS  and 2

jS  are the pooled O-C 

residual variances, iN  and jN  are the data sizes for test i  and test j  and /ij jit  is the test statistic 

evaluated as a Student t  quantile with 2i jN N+ −  degrees of freedom. In this study a risk or 

significant level given by 0.05α =  is used to test for significance between two considered 

groups. For example if a typical t-test gives a p-value less than or equal to 0.05 ( )0.05p ≤  then 

the mean SD difference between the two is deemed statistically significant else it is statistically 

insignificant. The results for the t-tests performed using the O-C residuals derived from the four 

tide parameterization tests using the GRIM5C1 gravity field model during the analysis of SLR 

data derived from LAGEOS 1 observations are summarised in Table 24 (differences are in 

metres). Here the variables considered correspond to the orbital tests summarised in Table 19, 

that is, Var 1: IERS1 and pole tides; Var 2: IERS2 and pole tides; Var 3: IERS3 and pole tides 
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and Var 4 corresponds to the IERS3 test with the pole tides disabled. In Table 24 the t-test 

computed between Var 1 and Var 2,  Var 1 and Var 3, Var 1 and Var 4, Var 3 and Var 4 have p-

values that are greater than the 0.05 (or 5%) significance level implying that the differences in 

the mean SD (listed in column 2) are not statistically significant. In contrast the computed t-

values for Var 2 versus Var 3 and Var 2 versus Var 4 correspond to p-values which are less than 

0.05 implying that the difference in the mean SD between the considered group tests for 

GRIM5C1 are statistically significant.  

 

Table 24. The t-test results for GRIM5C1 based on LAGEOS 1 data. 
Variable Diff (mean SD) Diff. (SD) t-value p-value 

Var 1 vs. Var 2 0.000330 0.005756 0.75404 0.451857 
Var 1 vs. Var 3 0.000537 0.005795 1.21940 0.224362 
Var 1 vs. Var 4 0.000550 0.005774 1.25360 0.211690 
Var 2 vs. Var 3 0.000207 0.001279 2.13114 0.034498 
Var 2 vs. Var 4 0.000220 0.001466 1.97644 0.049704 
Var 3 vs. Var 4 0.000013 0.001652 0.10385 0.917410 

 

Table 25 (difference values are in metres) summarises the t-test results for EIGEN-CG03C using 

LAGEOS 1 data. Considering the p-values calculated in each of the tests it is apparent that the 

mean SD differences between the considered group tests are statistically insignificant. The 

negative t-test value implies that the first mean was smaller than the second mean for the 

considered groups. Similar results are obtained for the three remaining gravity field models 

(AIUB-CHAMP01S, EGM2008 and AIUB-GRACE01S) though the p-values are relatively low, 

see Table 26, Table 27 and Table 28. 

 

Table 25. The t-test results for EIGEN-CG03C based on LAGEOS 1 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000421 0.010541 0.51030 0.610537 
Var 1 vs. Var 3 0.000617 0.010592 0.74423 0.457818 
Var 1 vs. Var 4 0.000294 0.010954 0.34250 0.732420 
Var 2 vs. Var 3 0.000196 0.002346 1.06703 0.287547 
Var 2 vs. Var 4 -0.000127 0.002695 -0.60382 0.546807 
Var 3 vs. Var 4 -0.000324 0.002621 -1.57596 0.116985 
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Table 26. The t-test results for AIUB-CHAMP01S based on LAGEOS 1 data. 
Variable Diff (mean SD) Diff. (SD) t-value p-value 

Var 1 vs. Var 2 0.000514 0.005443 1.24209 0.215896 
Var 1 vs. Var 3 0.000705 0.005664 1.63682 0.103497 
Var 1 vs. Var 4 0.000611 0.005695 1.41097 0.160061 
Var 2 vs. Var 3 0.000191 0.001520 1.65192 0.100375 
Var 2 vs. Var 4 0.000097 0.001472 0.86594 0.387728 
Var 3 vs. Var 4 -0.000094 0.001930 -0.64046 0.522728 

 

Table 27. The t-test results for EGM2008 based on LAGEOS 1 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000420 0.006054 0.911976 0.363058 
Var 1 vs. Var 3 0.000322 0.006073 0.697232 0.486599 
Var 1 vs. Var 4 0.000368 0.006332 0.763458 0.446236 
Var 2 vs. Var 3 -0.000098 0.001810 -0.710726 0.478217 
Var 2 vs. Var 4 -0.000052 0.001433 -0.479173 0.632424 
Var 3 vs. Var 4 0.000046 0.001909 0.314152 0.753786 

 

Table 28. The t-test results for AIUB-GRACE01S based on LAGEOS 1. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000289 0.002903 1.30929 0.192183 
Var 1 vs. Var 3 0.000326 0.002355 1.81808 0.070791 
Var 1 vs. Var 4 0.000409 0.003055 1.75956 0.080260 
Var 2 vs. Var 3 0.000036 0.002757 0.17405 0.862027 
Var 2 vs. Var 4 0.000120 0.001508 1.04348 0.298192 
Var 3 vs. Var 4 0.000083 0.002864 0.38196 0.702960 

 

The t-test results for the GRIM5C1 gravity field model using LAGEOS 2 data are given in 

Table 29. The computed t-values for all the six pairs give p-values are greater than the 0.05 risk 

level. It is therefore concluded that the computed mean SD differences between these six group 

tests are not statistically significant. 

 

Table 29. The t-test results for GRIM5C1 based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000230 0.008858 0.32710 0.744027 
Var 1 vs. Var 3 0.000269 0.009625 0.35287 0.724659 
Var 1 vs. Var 4 0.000039 0.009065 0.05406 0.956954 
Var 2 vs. Var 3 0.000040 0.002298 0.21727 0.828282 
Var 2 vs. Var 4 -0.000191 0.001383 -1.74026 0.083761 
Var 3 vs. Var 4 -0.000230 0.002202 -1.32019 0.188680 
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Table 30 summarises the t-test results for the EIGEN-CG03C model based on LAGEOS 2 data. 

Based on the results presented in Table 30 there are no statistically significant differences in the 

mean SD between Var 1 versus Var 2, Var 1 versus Var 3, Var 1 versus Var 4 and Var 2 versus 

Var 4 tests (since 0.05p ≥ ). In contrast the computed t-values between Var 2 versus Var 3 and 

Var 3 versus Var 4 correspond to p-values less than the risk level, 0.05 implying that the mean 

SD differences between the two groups are statistically significant for the EIGEN-CG03C 

model. 

 

Table 30. The t-test results for EIGEN-CG03C based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000762 0.012549 0.76336 0.446393 
Var 1 vs. Var 3 -0.001170 0.013784 -1.06735 0.287453 
Var 1 vs. Var 4 0.000778 0.012646 0.77322 0.440555 
Var 2 vs. Var 3 -0.001933 0.008310 -2.92330 0.003976 
Var 2 vs. Var 4 0.000016 0.001819 0.10920 0.913180 
Var 3 vs. Var 4 0.001948 0.008341 2.93607 0.003824 

 

The results for the t-test as derived from the four orbital tests using AIUG-CHAMP01S and 

LAGEOS 2 are presented in Table 31. These results however, indicate that the differences in the 

mean SD for each condition are not statistically significant (since 0.05p ≥ ). 

 

Table 31. The t-test results for AIUB-CHAMP01S based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000143 0.009214 0.195760 0.845049 
Var 1 vs. Var 3 0.000243 0.009204 0.333253 0.739385 
Var 1 vs. Var 4 0.000169 0.009250 0.230246 0.818199 
Var 2 vs. Var 3 0.000100 0.001663 0.759639 0.448603 
Var 2 vs. Var 4 0.000026 0.001485 0.219537 0.826515 
Var 3 vs. Var 4 -0.000074 0.001488 -0.630220 0.529461 

 

Table 32 summarises the t-test results for the EGM2008 gravity field model based on LAGEOS 

2 data. The results indicate that the differences in the mean SD between the first five groups are 

not statistically significant (i.e. 0.05p ≥ ). Similar results are obtained for the AIUB-GRACE01 

gravity field model using LAGEOS 2 data, see Table 33. In both cases the difference in the 

mean SD between Var 3 versus Var 4 groups are statistically significant since 0.05p ≤ . 
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Table 32. The t-test results for EGM2008 based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000278 0.009269 0.37783 0.706065 
Var 1 vs. Var 3 0.000411 0.009389 0.55250 0.581384 
Var 1 vs. Var 4 0.000141 0.009568 0.18556 0.853026 
Var 2 vs. Var 3 0.000134 0.001317 1.27969 0.202532 
Var 2 vs. Var 4 -0.000137 0.001615 -1.06938 0.286529 
Var 3 vs. Var 4 -0.000271 0.001463 -2.33254 0.020934 

 

Table 33. The t-test results for AIUB-GRACE01S based on LAGEOS 2 data. 

Variable Diff (mean SD) Diff. (SD) t-value p-value 
Var 1 vs. Var 2 0.000460 0.009136 0.63494 0.526388 
Var 1 vs. Var 3 0.000326 0.009217 0.44596 0.656240 
Var 1 vs. Var 4 0.000579 0.009249 0.78940 0.431059 
Var 2 vs. Var 3 -0.000134 0.001715 -0.98588 0.325697 
Var 2 vs. Var 4 0.000119 0.001650 0.90935 0.364550 
Var 3 vs. Var 4 0.000253 0.001298 2.45936 0.014997 

 

Figure 20 compares the gravity field models found to exhibit O-C mean SD differences that are 

statistically significant. In particular, for LAGEOS 1 data only the combined gravity field model 

GRIM5C1 has t-values corresponding to p-values less than the 0.05 risk level. The p-value for 

Var 2 versus Var 4 is however too close to the significant level hence the difference in the mean 

SD of the O-C is likely to have arisen by chance. In this case it becomes difficult to firmly 

conclude anything about the statistical significance of the mean difference (additional data 

processing is needed to ascertain the findings). The small p-values obtained for EIGEN-CG03C 

when analysing LAGEOS 2 data imply that the findings are unlikely to have arisen by chance. 

In fact the difference in the mean SD of the O-C between Var 2 versus Var 3 and Var 2 versus 

Var 4 tide parameterization tests are highly statistically significant since 0.01p ≤ . Similarly, 

the p-values computed from the t-test using the O-C residuals derived from LAGEOS 2 data 

based on the EGM2008 and AIUB-GRACE01S models indicate that there are almost true 

differences in the mean SD between Var 3 versus Var 4 tide parameterization tests. 
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Figure 20. Comparisons of gravity field models showing mean statistical significant differences 
between Earth tide and pole tide models. 
 

5.7. Concluding remarks 
In this chapter the influence of tide parameterization on the accuracy of five gravity field modes 

is analysed. In particular, the tide parameterization effects on the accuracy of gravity field 

models in SLR data analysis is determined by studying the influence of solid Earth tides 

(modelled by IERS1, IERS2, IERS3 and IERS2010 pole tide standard model) on O-C residuals 

(with applications in POD) based on the selected gravity field models. In the SLR data analysis 

using the SDAS package the IERS1, IERS2, IERS3 and pole tide models have been used 

alternately (parameterized) in order to investigate how the O-C residuals are affected by the 

choice of the tide model set and across different gravity field models. The results indicate that 

the accuracy of the final orbital solution when using EIGEN-CG03C, AIUB-CHAP01S and 

EGM2008 and LAGEOS 1 data require the inclusion of spherical harmonic components due to 

Earth and pole tides to those of the gravity field models. Similar conclusions can be made for 

the GRIM5C1, AIUB-CHAMP01S and EGM2008 models when using LAGEOS 2 data. Since 

the computed mean SD across the four parameterizations based on the five gravity field models 

was statistically close a t-test was performed to assess whether the differences in the mean SD of 

the O-C were significantly different. The t-tests between most of the considered 

parameterization options are found to have p-values which were greater than the significant 
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level 0.05 (or 5%). Based on these results it can be concluded that the differences in the mean 

SD between the considered parameterization options for the selected gravity field models are not 

statistically significant. In particular, the differences in the mean SD of the O-C based on 

EIGEN-CG03C, EGM2008 and AIUB-GRACE01S and LAGEOS 2 data are unlikely to have 

arisen by chance as they exhibit statistically significant mean SD differences. In particular the 

small p-values obtained for EIGEN-CG03C imply that the differences in the mean SD are 

highly statistically significant.  The deviation of EIGEN-CG03C from the expected is difficult to 

explain. This model produces expected results for IERS1, IERS2 and IERS3 (pole tide 

disabled), but produces an anomaly when processing for LAGEOS2 with IERS3 enabled and 

pole tide disabled. This distorts the graph of average values as contained in Figure 18. These 

distortions are possibly due to outliers in the O-C time series as presented in appendix A5, 

Figure 24 to Figure 33. 
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6. Geophysical applications of Earth’s oblateness parameter J2 

 
Physics is mathematical not because we know so much about the physical world, but because we know so little; it is 

only its mathematical properties that we can discover, Bertrand Russell, 2009. 
 

6.1. Introduction 

The Earth’s oblateness ( )2J  is an important geophysical parameter derived from SLR data 

analysis.  In the present chapter, 2J  computed by SDAS has been validated and found to be in 

close agreement with the 2J  value published in the literature. Additionally, the geophysical 

linkage of 2J  with the LOD and Atmospheric Angular Momentum (AAM) has been studied and 

confirmed by use of a data adaptive analysis methodology called the Empirical Mode 

Decomposition (EMD) reported by Wang et al., (2010). In particular, the oscillatory 

components known as the Intrinsic Mode Functions (IMFs) of 2 ,J  LOD and AAM were derived 

and phase synchronization used to infer the geophysical linkage between 2 ,J  LOD and AAM. 

The phase synchronization results demonstrate that there is some degree of synchronization 

between the signal components of 2J  and LOD and 2J  and AAM.  A higher degree of phase 

synchronization is particularly observed for high frequency IMFs of 2J , LOD and AAM. 

Additionally, IMFs components that depict a weak or nil phase synchronization are believed to 

be mostly due to inherent noise components. 

 

6.2. Background 
The Earth is a complex dynamic system driven by various geophysical processes as reported by 

for example Dickey et al. (2002). These processes act to redistribute the mass of Earth and as a 

result influence the basic movement of the solid Earth relative to the geocentre, as well as 

causing spatial and time-dependent variations of the gravitational field of the Earth. An 

important spherical harmonic coefficient of the gravity field is the zonal harmonic of degree 2 

and order 0, i.e. 20−C  which is equivalent to 2J . This coefficient is known to be related to the 

flattening of the Earth as well as to the angular spin velocity Ω  (this is connected to the 

equatorial and polar moments of inertia given by ( )A  and ( )C  respectively) (Chao, 2006). 
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Considering the equatorial and polar moments of inertia, the 2J  coefficient can be expressed as 

in Equation (91) as reported in Chao (2006),  

 
( )

2 2 .
C A

J
Ma

−
=  (91) 

Equation (91) contains the difference of the polar greatest moment of inertia C  and the 

equatorial minimum moment of inertia A  normalized by 2Ma , where M and a  are the Earth’s 

mass and mean equatorial axis respectively. A further expression of 2J  relating to dynamic 

oblateness may be written as in Equation (92), 

 ( )2
2 / / ,J C Ma C A C Hη� �= − ≡� �� �� �  (92) 

In Equation (92), 2/C Maη ≡  is a fundamental function of the Earth’s internal structure and 

( ) /H C A C≡ −  is the dynamic oblateness (the dynamic oblateness can be determined from the 

observation of the astronomical precession of the Earth). Knowing the estimated values of 2J  

one can use the following relation to calculate the normalized values of 20C  as shown in 

Equation (93), 

 2 20 20 5 .= − = −J C C  (93) 

The estimated 2J  coefficient as determined from geodetic measurements may be given by 

Equation (94) (Cheng et al., 1997)), 
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 (94) 

The Earth oblateness parameter 2J  has attracted a lot of interest from the scientific community 

since the detection of its temporal variations over two decades ago. In particular, some studies 

have reported on significant temporal variability exhibited by this coefficient. For example, 

Yoder et al. (1983) reported a secular decrease of the trend in 2J  which was suspected to be 

associated with PGR effects. An increasing trend in 2J  which later reversed to its normal 

decreasing trend in the beginning of 1998 was reported by Cox and Chao (2002). The authors 

estimated the decrease in 2J  between 1979 and 2002 to be approximately -2.8 × 10-11 yr-1.  
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The variability of 2J  has also been linked to variations observed in other geophysical 

parameters. One such parameter is the LOD which characterizes the variability of the Earth’s 

rotation rate. Variations in LOD are due to contributions from surface mass loading changes as 

well as changes of the horizontal surface stress (torques). Surface mass loading variations are 

due to changes in atmospheric surface pressure, continental water storage (including snow and 

ice on land), and ocean bottom pressure (Chen et al., 2000). In contrast, the horizontal surface 

stress variations reflect the exchange of angular momentum between the solid Earth and the 

surrounding geophysical fluids e.g., wind and ocean current variations (Chen et al., 2000). The 

changes due to the combined atmospheric wind and surface pressure effects (i.e., the AAM) 

which arise from the mass re-distribution and the movement within the Earth system is known 

to be the dominant contributor (~90%) to the observed LOD variability (Chen 2005b).  

Variations in the LOD are often modelled by two terms i.e., the mass and motion 

components as reported in Bourda (2008). The physical manifestation of the mass term (this is 

due to dynamic processes within the Earth) is modelled by the gravitational effects associated 

with the Earth’s mass re-distribution. Most of the dynamic Earth processes that are associated 

with the temporal variations of the Earth’s gravitational field are also linked to the variability of 

the Earth’s rotation, through the temporal changes in LOD (Gross, 2003). Theoretically, the 

LOD variations are thought to be slightly proportional to changes in degree-2 spherical 

harmonic coefficients of the gravity field (Eubanks, 1993; Gross et al. 2004). The response to 

the LOD variability can approximately be given by Equation (95) as reported in Chen (2005b), 

 ( )3 3 ,
mean

LOD
m t

LOD
χ∆− = =  (95) 

where LOD∆  are the changes in the LOD with respect to the mean LOD, meanLOD is given by 

86400 seconds, and 3χ  is the LOD excitation which includes the surface mass load change term 

( )3
massχ  and the atmospheric winds or currents term ( )3 .motionχ  

In a case where a gridpoint (i.e., latitude ϕ , longitude λ  and time t ) is given the LOD 

excitations due to surface mass load fluctuations 3
massχ  and winds or currents motion 3

motionχ  can 

be computed by using Equations, (96) and (97), all reported in Chen (2005b) 
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3

2
3

0.998
cos ,motion

m

R
U dpd d

C g
χ ϕ λ ϕ=

Ω ���  (97) 

where 66.371 10  mR = ×  and 5 17.292115 10  rad-s− −Ω = ×  are the mean radius and mean 

angular velocity of the Earth, respectively. Furthermore 29.81 msg −≈  is the mean gravitational 

acceleration, 37 27.1236 10  kg mmC ≈ ×  is the third principal moment of inertia of the Earth’s 

mantle, and P  and U  are the atmospheric surface pressure (mass term) and the zonal velocity 

(e.g., wind or ocean currents) respectively (Chen, 2005b). The surface mass change is often 

represented by the spherical harmonic coefficient of a geopotential depicted in Equation (98). 

 { } ( ) ( ) ( )
2 cos

, sin cos .
2 1 sin

enm
nm

nm

R mC P d dS n M m
λσ θ λ θ θ θ λ
λ

� �∆ = ∆ ⋅� �∆ + � �
��  (98) 

In Equation (98), nmC  and nmS  are the degree n  and order m  normalized harmonic coefficients 

of mass decomposition, ( ),σ θ λ∆  is the surface mass load with /P gσ∆ = ∆ and M  is the mass 

of Earth and nmP  is the 4π   normalized associated Legendre function given by Equation (99), 
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The associated Legendre function of degree 2 and order 0 can be expressed as in Equation (100) 

 
( )2

2,0

3sin 1
.

2
P

θ −
=  (100) 

Applying the normalization factor given by Equation (99) to Equation (100) the normalized 

associated Legendre function of degree 2 and order 0 can be written as 

 
( )2

2,0

3sin 1
5 .

2
P

θ −
= ⋅  (101) 

Based on Equation (95), the relationship between the LOD excitation with respect to the surface 

mass term 3
massχ  and the zonal harmonic spherical harmonics, 20−C  can be obtained by 

combining Equations (96)  and (101) (Chen, 2005b and Bourda, 2008), 

 ( ) ( )
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Here M is the mass of the Earth, '
2 0.301k = −  is the degree-2 load Love number and 00C  

represents the total mass change of a given component normalized by mass of the Earth, i.e., 

00 / .C M M= ∆  

The motion part of the AAM component can be related to changes in LOD by Equation 

(103) (Bourda, 2008) 

 
( ) ( )3winds ,winds

mean m

LOD t h t

LOD C

∆
=

Ω
 (103) 

where 3h  is the axial relative angular momentum of the Earth corresponding to the winds or 

motion term. The linkage between 2J  and LOD is an important scientific investigation because 

of the geophysical applications in areas such as hydrology, atmosphere and ocean coupling. One 

way to establish the association between 2J  and LOD is to investigate the possible coherence of 

various modes of oscillation in the 2J  coefficient with those estimated from LOD fluctuations. 

Additionally, since the variations in LOD are also closely linked to those in the AAM it then 

follows that some modes of oscillation of 2J  could be synchronized with those of the AAM as 

reported in Sole et al. (2007). In the present analysis of phase synchronization, we investigate 

the linkage between 2J  and LOD as well as 2J  and AAM, based on the independent oscillatory 

components obtained from each of these geophysical parameters.  

 

6.3. Inter-comparisons between SDAS estimated J2 and a priori J2 of 

EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S models. 
In the present study, the robustness of the analysis of SLR data by use of the SDAS package 

parameterization has been tested generally by comparing the values of unnormalised a-priori 

and estimated 2J  values based on the EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S 

gravity field models. The purpose of the analysis was to validate 2J  computed from SLR data 

analysis using SDAS against the published values from the five selected gravity field models. 

Here the published 2J  values for each gravity field model and results obtained by using SDAS 

are summarized in Table 34 and Table 35. During processing the a-priori 2J  values are set as 

starting points in the estimation, and the formal errors of the GGM being used is set as the 
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estimation parameter constraint. The least-squares solution of 2J  is therefore constrained fairly 

tightly.  Figure 21 depicts a comparison between a-priori 2J  values and those derived from 

SDAS data analysis based on the EGM96, GRIM5C1, GGM03C AND AIUB-GRACE01S 

gravity field models. In particular the plotted values are the differences between the normalized 

a-priori 2J  values and the SDAS derived 2J  based on LAGEOS 1 and 2 across the considered 

gravity field models. The results presented in Figure 21 indicate that the a-priori 2J  and the 

SDAS derived 2J  exhibits similar patterns and are in good agreement for all the GGMs as 

processed using LAGEOS 1 and 2 data.  

 

 
Figure 21. Comparison between a-priori 2J values and those derived from SDAS data analysis. 

The plotted values are the differences between a priori 2J values and SDAS derived in the 
normalized form. 
 

As illustrated in Table 34 and Table 35, based on LAGEOS 1 and 2 data sets, the percentage 

differences (absolute) between the a-priori and SDAS estimated 2J  are in the order of 810−  for 

all the considered GGMs. These results therefore suggest that the 2J  derived from SDAS could 

be used to compute normalized 2J  values that would be very similar to the published ones.   No 

attempts were made to adjust a-priori values for 2
�J  as the uncertainties in 2

�J  are at the formal 

error level for the particular models used. Therefore one must consider that the epoch of the 

GGMs are not neccessarily those of the mid-epoch period of the processed SLR data (December 
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2005 to December 2008).  Nevertheless, the SDAS package provides reasonable estimates with 

the 2J  a-priori values differing at the 1010− to 1110−  level.  

 

Table 34. Comparisons of a- priori 2J  from the five GGMs and 2J  derived from SDAS based 
on LAGEOS 1 data. 

Model 
A priori 

3
2 10J −×  

Formal 
error 1110−×  

SDAS 
3

2 10J −×  
SDAS formal 
error 1110−×  

10
2 10J −∆ ×  

(Model -SDAS) 
EGM96 -1.0826267 3.561063 -1.0826268 7.8449 1.19859 
GRIM5C1 -1.0826261 0.409800 -1.0826262 0.9162 1.69544 
GGM03C -1.0826355 4.684600 -1.0826368 0.1024 0.12672 
AIUB-
GRACE01S -1.0826267 0.504104 -1.0826270 1.1270 2.66310 

 

Table 35. Comparisons of a-priori 2J  from the five GGMs and 2J  derived from SDAS based 
on LAGEOS 2 data. 

Model 
A priori 

3
2 10J −×  

Formal 
error 1110−×  

SDAS
3

2 10J −×  
SDAS formal 
error 1110−×  

10
2 10J −∆ ×  

(Model - SDAS) 
EGM96 -1.0826267 3.561063 -1.08262673 7.8902 6.54752 
GRIM5C1 -1.0826261 0.409800 -1.0826263 0.7634 1.19854 
GGM03C -1.0826355 4.684600 -1.0826369 0.1023 0.13675 
AIUB-
GRACE01S -1.0826267 0.504104 -1.0826268 1.1268 1.19356 

 

6.4. Geophysical modes of oscillation inherent in LOD, AAM and J2 

In this section the linkage between 2J  and LOD as well as 2J  and AAM geophysical 

parameters is investigated by use of a recent, widely used data adaptive analysis methodology, 

the EMD described in Huang et al. (1998). The data used to extract oscillation components of 

2J  are the same as that presented in Chapter 4 for the EGM96, GRIM5C1, GGM03C and 

AIUB-GRACE01S models. The LOD data used in this study is the official IERS EOP 08 C04 

product series archived and freely available from ftp://hpiers.obspm.fr/iers/eop. The LOD data 

are computed from VLBI, GPS and SLR space geodetic techniques. Similarly, the AAM data 

used in the present study were the National Centers for Environmental Prediction (NCEP) 

effective atmospheric angular momentum functions calculated from NCEP/NCAR (National 

Center for Atmospheric Research) reanalyses archived on pressure levels. The AAM data are 
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freely available at the geophysical fluid: the Special Bureau for the Atmosphere (SBA), 

ftp://ftp.aer.com/pub/anon_collaborations/sba. For the purpose of this work both the LOD and 

AAM data period were matched with the analysed period of SLR observations. Properties of the 

2J , LOD and AAM were analysed using a modified Ensemble Empirical Mode Decomposition 

(EEMD) method reported in e.g., Botai et al. (2009) and Zhaohua and Huang (2009).  

The EEMD methodology is a data adaptive method of decomposing a series into local 

oscillatory components called the IMFs originally reported in Zhaohua and Huang (2009). 

According to Zhaohua and Huang (2009), an IMF is a mono-component signal that satisfies two 

conditions:  

1. In the whole data set, the number of extrema and the number of zero crossings must 

either equal or differ at most by one;  

2. At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero.  

The EEMD method is a variant of the original EMD developed by Huang et al. (1998). This 

method is used for analysing non-stationary and non-linear signals driven by underlying linear 

and non-linear stochastic processes. In general, the EMD method extracts oscillatory 

components from a given series by an iterative procedure known as the sifting process (SP). 

Here for any given data, a signal is decomposed into a series of IMFs generated at each scale 

starting from smooth to coarse and a residual representing a trend function. According to Huang 

et al. (1998), the EMD algorithm can be summarized as follows: 

1. For a given data denoted by ( ) ,x t  identify all the local extrema. 

2. Interpolate all the maxima and minima with natural cubic splines lines to form the upper 

( )u t  and lower, ( ) ,l t  envelopes.  

3. Compute the mean of the envelopes: ( ) ( ) ( )
.

2

u t l t
m t

+� �� �=  

4. Take the difference between the data and the mean as the proto-IMF: 

( ) ( ) ( ).h t x t m t= −  

5. Check the proto-IMF against the definition of the IMF and the stoppage criterion to 

determine if it is an IMF. 
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6. If the proto- IMF doe not satisfy the IMF definition then repeat steps 1 to 5 on ( )h t  until 

it satisfies the definition. 

7. If the proto- IMF satisfies the definition, assign the proto- IMF as an IMF component, 

( )c t . 

8. Iterate on the residue, ( ) ( ) ( ) ,f t x t c t= −  as on the data. This process will end when the 

residue reaches a non-existence of extrema. 

The flow chart of the sifting process is depicted in Figure 22. 

   

 
Figure 22. The flow chart of the decomposition process of EMD through the sifting procedure 
(adapted from Wang et al., 2010). 
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Mathematically, the sifting process can be described as follows in Equation (104) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1,1 1,1

1,1 1,1 1,2

1, 1 1, 1,

1, 1

;
;

           ...
           ...

.
 

k k k

k

x t m t h t
h t m t h t

h t m t h t
h t c t

−

− =
− =

− =
� =

 (104) 

Here the indices indicate the iteration of the same step. It then follows that  

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1,1 1,1

1,2 1,1 1,2 1,1 1,2

1, 1, 1 1, 1,1 1,2 1,

1 1,1 1,2 1,

;
;

...

...
... ;

   ... .
k k k k

k

x t m t h t
h t h t m t s t m m

h t h t m t x t m m m
c t x t m m m

−

− =
= − = − +

= − = − + + +
� = − + + +

 (105) 

The step presented here serves to extract the first IMF component. Subsequently, one finds that  

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1 2 2

1

;
;

...

...
.r n n

x t c t r t
r t c t r t

r t c t r t−

− =
− =

− =
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Thus for any given data, the signal ( ) ,x t  can be decomposed by the EMD method as 

 ( ) ( ) ( )
1

,
n

j n
j

x t c t r t
=

= +�  (107) 

where jc  represents the thj  IMF and nr  is the residual.  

In the present analysis of the oscillatory mode decomposition of 2J , LOD and AAM the 

following algorithm steps (is illustrated in Figure 23) were followed: 

a) Compute IMFs by use of a noise assisted data analysis method based on Zhaohua and 

Huang (2009). 

b) Determine significant IMFs based on the energy criterion. 

c) Compute the phase difference of the analytic signals of the selected IMFs. 

 

 
 
 



114 
 

 

Figure 23. Synchonization method used in the current study. 
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In this work, only significant IMFs were selected to investigate the association of 2J  oscillatory 

components with those from LOD and AAM. The significant IMFs were selected based on the 

energy criteria: their energy ought to be within the inter-quartile range of the IMF with 

maximum energy from a total of 10 IMFs decomposed adaptively by use of 0.33� noise level 

with 50 ensembles. Intrinsic Mode Functions with small instantaneous amplitudes/energy and 

high frequencies were considered as outliers. 

  

6.4.1.  Analysis of phase synchrony 

In order to quantify the level of synchrony across the recorded IMFs from 2J , LOD, and AAM 

geophysical parameters the Phase Locking Value (PLV) approach reported in Sole at al. (2007) 

was used. In particular, for two signals ( )x t  and ( )y t  of equal time length with instantaneous 

phase ( )x tΦ  and ( )y tΦ  respectively, the PLV bivariate metric is given by Equation (108), 

 ( ) ( ) ( )( )( )
1

1
,x yxy

N i j t j ti t

j

PLV e e
N

Φ ∆ −Φ ∆∆Φ

=
= = �  (108) 

where t∆  is the sampling period and N  is the number of points in the sampling period of each 

signal.  

 The corresponding IMFs extracted from 2J (based on four selected gravity field models), 

LOD and AAM were analyzed to detect the level of interaction between 2J  and LOD as well as 

2J  and AAM mode signals. Here we only consider phase locking as an important factor and 

impose no restrictions on the amplitudes. In general, a phase locking ratio of 1:2 was considered 

appropriate for our analysis. Furthermore, we calculate the variance of the phase shift and 

determine the degree of phase synchronization based on a 0.3 threshold. The usage of this low 

threshold cut-off is to eliminate IMFs that primarily consist of noise. Generally, the frequencies 

xω  and yω  of any two given periodic oscillators are related by x yn mω ω=  where n  and m  are 

integers. If a phase for each oscillator is defined by Equation (109), 

 ( ) ,j jt w tφ =  (109) 

 then the principle of phase synchronization corresponds to a phase locking between two 

oscillators defined by Equation (110), 
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 ( ) ( ), ,n m X Yn t m t Cϕ φ φ= − ≤  (110) 

where Xφ  and Yφ  are the unwrapped phases of the signals of the two oscillators and this is 

equivalent to a constant, C . Equation (110) can now be used to derive the phase 

synchronization index defined in Equation (111) as reported in Hutt et al. (2003) and Allefeld 

and Kurths (2003), 

 ( ) ( )( ) ( )( )
2 2/2 /2

/2 /2

1
cos sin .m m m

i i

t t i T t i T
τ τ

τ τ
γ φ φ

τ =− =−

� � � �
= ∆ + ∆ + ∆ + ∆� � � �

	 
 	 

� �  (111) 

Here τ  denotes the number of time points in the sliding window of width T∆ . The computed 

variance normally varies between 0 and 1, i.e., 0 1.mγ≤ ≤  Assuming that ( )m tφ  represents the 

difference between two phases that change at certain times, then ( )m tγ  can be used to define the 

phase synchronization index. It follows that the maximum value of ( ) 1m tγ =  would indicate a 

perfect synchronization between phases with phase difference .mφ  Similarly, a zero phase 

synchronization between phases with phase difference  would be achieved when ( ) 0.m tγ =   

 The phase synchronization results between signal components extracted from 2J  and 

those extracted from LOD and AAM can be found in Appendix A6, Figure 34 to Figure 49. 

Visual inspection of these figures suggests that there exists some degree of synchronization 

between 2J  signal components and those from LOD and AAM. In particular, ~70% of the 

signal components extracted from 2J  data show a high degree of synchronization with those 

derived from LOD and AAM signals. The higher phase synchronization seems to be located at 

the high frequencies in the case of 2J  and LOD and 2J  and AAM. The presence of 

synchronization between 2J  components and components from LOD and AAM suggests that 

the LOD and AAM signal components are embedded in the data hence confirming that the two 

parameters are related as stated in the literature.  Pairs showing high synchronization between 

2J  from LAGEOS 1 and 2 data and LOD and AAM are summarized in Table 36 and Table 37  

respectively. The calculated phase synchronization index for these pairs ranges between 0.01 

and 0.3 based on phase locking ratio of 1:2. Components showing weak behaviour of 

asynchrony or no synchronization at all between 2J  and LOD and AAM respectively could be a 

mφ
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result of random noise between the signal components of the interacting signals or irregular 

variability in the 2J  signal.  

 

Table 36. Phase synchronization pairs showing a high degree of synchronization between 2J  
and LOD. 

2J  derived from LAGEOS 1 based on model Synchronized pairs between 2J  and LOD 
EGM96 �14, �15, �17, �35 and �47 
GRIM5C �13, �14, �17, �34 and �47 
GGM03C �13, �14, �17, �34 and �47 
AIUB-GRACE01S �14, �15, �17, �35 and �47 

2J  derived from LAGEOS 2 based on model Synchronized pairs between 2J  and LOD 
EGM96 �14, �17, �24 and �67 
GRIM5C �14, �17, �24, �47 and �77 
GGM03C �14, �17, �24, �47 and �77 
AIUB-GRACE01S �14, �17, �24, �27 and �67 

 

Table 37. Phase synchronization pairs showing a high degree of synchronization between 2J  
and AAM. 

2J  derived from LAGEOS 1 based on model Synchronized pairs between 2J  and AAM 
EGM96 �11, �13, �16 and �26 
GRIM5C �11, �13 and �16 
GGM03C �11, �13, �16 and �26 
AIUB-GRACE01S �11, �13, �16 and �26 

2J  derived from LAGEOS 2 based on model Synchronized pairs between 2J  and AAM 
EGM96 �11, �13, �16 and �26 
GRIM5C �11, �13 and �16 
GGM03C �11, �13 and �16 
AIUB-GRACE01S �11, �13, �16, �26 and �65 

 

6.5. Concluding remarks    

The oscillatory components in the SDAS derived 2J  coefficient based on EGM96, GRIM5C1, 

GGM03C and AIUB-GRACE01S gravity field models were investigated using SLR data from 

LAGEOS 1 and 2 for a period of about 3 years (i.e. December 2005 to December 2008). A data 

adaptive analysis method, EMD was utilized to decompose the 2J , LOD and AAM signals into 

significant IMFs. The phase synchronization between 2J  and LOD and 2J  and AAM signal 

components show that there exists some degree of synchronization between the interacting 
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signals. A higher degree of phase synchronization is observed at high frequencies of 2J , LOD 

and AAM decomposed IMFs. Components showing a weak or nil phase synchronization are 

believed to be primarily contaminated by random noise within the signals. 
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7. Conclusion and recommendations for future research 
 

“Nothing is too wonderful to be true, if it be consistent with the laws of nature” Michael Faraday. 

 

7.1. Summary 
Earth gravity field models (these are empirical models that are used to explain the nature of the 

gravity field of Earth) have significant applications in geodesy, geophysics, oceanography and 

navigation. In particular, precise gravity field models have been used in:  

• The determination of accurate orbits of both low and high orbiting satellites, this is a pre-

requisite for the launch, navigation, prediction and tracking of artificial orbiting 

satellites, 

• Precise estimation of the global unified geoids particularly the oceanic geoids, 

• Understanding geophysical phenomena of the Earth’s interior as well as geodynamic 

processes associated with the lithosphere and mantle composition,  

• Establishment of a global height reference system for datum connection and  

• Understanding mass transportation and different distributions within the Earth system 

through detection and assessment of spatial-temporal variations of the gravitational field 

of the Earth.  

Nowadays several gravity field models derived exclusively from SLR tracking measurements 

or/and from a combination of SLR measurements with surface gravity measurements (e.g. 

terrestrial gravity data and airborne gravity data) and satellite radar altimetry measurements 

have been freely released to the scientific community for research. These models however 

exhibit certain inaccuracies due to various factors ranging from the type of utilized satellite data, 

availability and quality of the data, global coverage, accuracies of force models incorporated in 

the geodetic data analysis, etc. Recent satellite missions such as CHAMP, GRACE and GOCE 

are believed to have the capability to resolve the long- and medium wavelength features of the 

Earth’s gravity by providing new data for precise and high resolution gravity field modelling. 

Since the inception of the three satellite missions a number of gravity field models have been 

derived and some of the old ones have been modified. These progresses in gravity field 

modelling require that the models be constantly assessed and validated. Despite the many 
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scientific milestones in gravity field modelling, studies focusing on evaluating the accuracy of 

the gravity field models in the context of POD using SLR data have remained in-exhaustive. 

The research work reported in this thesis evaluates various gravity field models in terms of the 

O-C range residuals, investigates the influence of SLR analysis parameterization on the 

accuracy of the gravity field models and demonstrates the capability of the SDAS package to 

investigate the different gravity field models for POD. It is of importance to emphasize that the 

results presented in this thesis are related to spherical harmonic coefficients up to degree and 

order 20 as proxies for gravity field models.  

 

7.2. Concluding remarks 
The main aim of this research was to evaluate the accuracy of gravity field models used for POD 

by use of LAGEOS 1 and 2 data collected from ILRS tracking stations. The research began by 

providing an historical overview of gravity field models intended to highlight the development 

of gravity field models and their scientific applications. An investigation in general 

improvement in the gravity field modelling based on the O-C residuals derived from LAGEOS 1 

and 2 data using various selected gravity field models was presented in Chapter 4. In Chapter 5 

of the thesis we performed a sensitivity analysis on the O-C residuals computed from LAGEOS 

1 and 2 tracking data considering 5 gravity field models. The main focus was to investigate the 

effects of different tide parameterizations on the O-C residuals across different gravity field 

models. In Chapter 6, some of the SDAS derived products are validated and analysed for 

geophysical applications. In particular, the 2J  spherical harmonic coefficient derived from the 

SDAS package was compared with the coefficients published in the literature. In addition, 

association of the 2J  coefficient with other geophysical parameters (LOD and AAM) was also 

investigated. Based on the analysis of results presented in this research work the following 

conclusions can be drawn: 

• The development of gravity field modelling over the period of evaluation (15 years) has 

generally improved. In particular, based on the seven months analysis of SLR data, the 

accuracy of the evaluated gravity field models depict an improvement by a factor of at 

least 2 since 1990 in terms of O-C range residuals. The analysis of the O-C residuals 

reveals that the accuracy of gravity field models released from 1999 onward are 
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approximately at the same level of accuracy (within the limits of sensitivy of our tests as 

described in this work), although there are many specific differences amongst most 

recent gravity field models. A further analysis (for a period of three years) of a set of 

four gravity field models released between 1996 and 2008 demonstrate slight differences 

in their O-C range residuals. Overall, in the SLR data analysis (this includes the seven 

months and ~3 years of LAGEOS 1 and 2 SLR data) undertaken in this study, it was 

found that the satellite-only derived gravity field model AIUB-GRACE01S could be the 

most accurate due to the low SD of the corresponding O-C range residuals. 

• The influence of tide parameterization (using IERS1, IERS2, IERS3 and IERS2010 pole 

tide standard model) on the accuracy of five gravity field models was analysed based on 

LAGEOS 1 and 2 data. The results indicate that the accuracy of the final orbital solution 

when using EIGEN-CG03C, AIUB-CHAP01S and EGM2008 and LAGEOS 1 data 

require the inclusion of spherical harmonic components due to Earth and pole tides to 

those of the gravity field models. Similar results were found for the GRIM5C1, AIUB-

CHAMP01S and EGM2008 models when using LAGEOS 2 data. Statistical t-tests were 

performed to assess whether the differences in the mean SD of the O-C are significantly 

different. Most of the considered parameterization options are found to have p-values 

which are greater than the significant level 0.05 (or 5%) implying that the differences in 

the mean SD for the selected gravity field models are not statistically significant. 

Differences in the mean SD of the O-C based on EIGEN-CG03C, EGM2008 and AIUB-

GRACE01S and LAGEOS 2 data are unlikely to have arisen by chance. In particular the 

small p values obtained for EIGEN-CG03C imply that the differences in the mean SD 

are highly statistically significant.  In the case were the p-values are found to be 

relatively low but still greater than 0.05 (e.g. p 0.08=  for AIUB-GRACE01 and 

GRIM5C1 based on LAGEOS 1 and 2 data respectively) more data need to be processed 

to draw firm conclusions.  

• The J2 coefficients derived from the SDAS package are comparable to those published in 

the literature. Furthermore, the presence of a geophysical signal component in the time-

variable 2J  coefficient was assessed by use of the phase synchronization between 2J  

and LOD and 2J  and AAM. Our analysis revealed that there exists some degree of 
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synchronization between the 2J , LOD and AAM signal components. A higher degree of 

phase synchronization is observed in the high frequency modes of 2J , LOD and AAM 

of the IMFs obtained from the empirical decomposition of considered time series ( 2J , 

LOD and AAM). Components showing a weak or nil phase synchronization are believed 

to be primarily contaminated by random noise within the signals.  

 

7.3. Recommendations  

7.3.1.  Assessment of additional SLR LAGEOS data 
A vast quantity of LAGEOS 1 and 2 tracking data ought to be processed to robustly infer the 

general improvement of gravity field modelling. Gravity field models derived from as early as 

the 1970’s to the most recent (2011/2012) need to be considered in order to track fully the 

progress in gravity field modelling. Additional investigation involving larger SLR data sets can 

be valuable in assessing significant accuracy and resolution of the various considered gravity 

field models. 

 

7.3.2.  Probing the significance of SLR parameterization  
In this thesis the tidal deformation effects due to IERS Earth and pole tides (models) on the O-C 

residuals across 5 different models were investigated. The three models (IERS1, IERS2, IERS3 

and IERS3 with pole tides disabled) considered are used to correct for the effects of Earth and 

pole tides on the spherical harmonice coefficients of the GGMs in question. These effects are 

directly linked to the O-C residuals which represent the orbits of the satellites. However, there 

are many other factors that affect the orbit solution and hence gravity field models. These 

include the atmospheric delay/loading, ocean loading, tropospheric effects, displacements 

caused by solid Earth tides, general relativistic effects, etc. In order to achieve an improved orbit 

solution these parameters/effects require full understanding in terms of their contributions to 

precise satellite orbit determination. It is therefore recommended that sensitivity analysis be 

extended to include these parameters/effects.   
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7.3.3.  Additional satellites  

Nowadays the satellite based global gravity field determination is based on three techniques 

(e.g. continued GNSS tracking, K-band range and range-rate tracking and satellite gradiometry) 

which involve CHAMP, GRACE and GOCE satellite missions. High accuracy gravity field 

determination through these satellite missions is attributed to their orbit attitude, observational 

mode and on-board equipments. The new satellite missions overcome the SLR drawbacks such 

as uneven orbit tracking by ground stations non-uniform SLR observations. Consequently, 

evaluation of global gravity field model accuracies can be expanded by processing long term 

data sets from these satellite missions. Results from these new satellite missions can then be 

compared to those obtained in this thesis using LAGEOS 1 and 2 data.  Other possible satellites 

to be considered may include those at a greater range of altitudes and inclinations, e.g. Stella and 

Starlette.  

 

7.3.4.  Technical issues 
Much needs to be done to improve the quality and distribution of the available data. For 

example, the state of the ILRS network needs to improve. The network requires more sites, a 

better geometry, better tracking capabilities, and enhanced data acquisition capabilities. Thus 

gaps in the Southern Hemisphere and Africa in particular need to be filled with some SLR 

tracking stations for a more complete data set for validation purposes. 
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