
Chapter 5

Improving Image Quality

5.1 Introduction

The first step in any analysis of data involves some mechanism of assessing
the quality of the data. Any discrepancies or irregularities may result in
poor results from the analysis. Image analysis is no different and is simply
a special case of data analysis. A low resolution, noisy or blurry image, for
example, may result in insignificant, inconclusive or false results from many
image techniques such as feature detection, object detection, edge detection
and segmentation to name a few. It is thus essential to have the best version
of an image available before further analysis is done on it.

In this chapter we look in Section 5.2 at sharpening an image and the effect
this has on the resulting DPT of the image. This entails an improvement in
the crispness of edges in an image. The edges in an image discriminate its
content and should be as clear as possible therefore. We also look at measur-
ing the quality of the approximation of an image via the DPT in Section 5.3.
This work was published in [6]. We then investigate the ability of the LULU
operators to remove added noise from differently shaped statistical distribu-
tions in one dimension as well as two dimensions. The one-dimensional noise
removal investigation work was published in [56].
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5.2 Sharpening

Sharpening an image entails improving the crispness and clarity of the detail
in an image, without, importantly, adding any new detail. This is achieved
by enhancing or deblurring the edges. Ironically, sharpening involves first
blurring the image via some mechanism, then comparing each pixel with its
blurred counterpart. If the pixel luminosity is higher then then its luminosity
is lowered accordingly and if it is lower, raised accordingly, resulting in an
increase in contrast between pixels and thus a sharpening of the image.

In [204] a morphological approach to sharpening is presented. We shall use
this method in this section. The sharpening operator is define as follows,

Definition 39 The image sharpening operator class [204] is

ϵρ(f)(x) =


F⊕
ρ (x) if F⊕

ρ (x)− f(x) < f(x)− F⊖
ρ (x)

F⊖
ρ (x) if F⊕

ρ (x)− f(x) > f(x)− F⊖
ρ (x)

f(x) otherwise

where F⊕
ρ is a grey-scale dilation of f and F⊖

ρ a grey-scale erosion of f by
a scalable structuring function gρ (element cρ) where ρ is the size of the
structuring function (element).

A scalable structuring function (element) can be obtained from a structuring
function g (element c) by umbral scaling, namely, gρ(x) = ρg

(
x/ρ
)
(cρ(x) =

ρc
(
x/ρ
)
).

We shall look at the effect of sharpening on the DPT of an image f when
using a quadratic structuring function gρ(x) = −1/(2ρ)xTx. We used ρ = 2
in the investigation below. Figures 5.1 and 5.2 show some sample images
with their corresponding sharpened counterpart as well as the differences
between the two. As can be seen from the last column in the two figures
the differences are subtle but mainly occur at edges, except for the images
with noise or obvious detail. For example, in Image 8 in Figure 5.2 the far
right column of bricks has more detail than the other columns and this detail
can be seen more clearly in the sharpened image. Tables 4.1 - 4.3 provide
quantitative data on the number of pulses in the DPT for the original and
sharpened images. In the tables, column p is the proportion of pulses at scale
n in the original image, psharp is the proportion of pulses at scale n in the
sharpened image, c is the number of pulses at scale n in the original image,
and csharp is the number of pulses at scale n in the sharpened image.
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Notice that the images which include obvious background patterns, namely
Images 4, 6, 7 and 9, are those that benefit from the sharpening in that
they have a reduced number of total pulses. The sharpening ‘cleans’ up the
patterns in these images and results in fewer pulses associated with the detail
of the image. In addition, sharpening results in a significant reduction in the
number of pulses of size 1 and 2 in all cases (except Image 7, but this is only
a slight increase and only for size 1). This is an important result since pulses
of size 1 and 2 make up between 30 and 50 percent of the total number of
pulses and thus allows a mechanism for easier implementation of the DPT
algorithmically.
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(1) 336× 381

(2) 300× 451

(3) 256× 256

(4) 225× 300

Figure 5.1: First column: original images, middle column: sharpened images,
last column: difference between original and sharpened images
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(5) 261× 453

(6) 512× 512

(7) 256× 256

(8) 256× 256

(9) 256× 256

Figure 5.2: First column: original images, middle column: sharpened images,
last column: difference between original and sharpened images
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Table 5.1: Quantitative Data for the Original and Sharp DPTs of the images
in Figures 5.1 and 5.2

Image 1

n p psharp c csharp
1 0.4477916 0.3741685 18685 22443
2 0.1668224 0.1258732 6961 7550
3 0.0817217 0.0934796 3410 5607
4 0.0533947 0.0675714 2228 4053
5 0.0343902 0.0434804 1435 2608
6 0.026266 0.0327937 1096 1967
7 0.019316 0.0244577 806 1467
8 0.0146907 0.0185059 613 1110
9 0.011767 0.0153715 491 922
10 0.0093944 0.0130041 392 780

Totals 0.8655547 0.8087061 36117 48507

Image 2

n p psharp c csharp
1 0.270031 0.2537643 8786 11831
2 0.1523804 0.0733345 4958 3419
3 0.0856871 0.0642615 2788 2996
4 0.0582107 0.0607439 1894 2832
5 0.039094 0.0423191 1272 1973
6 0.0311953 0.0320879 1015 1496
7 0.0252635 0.0277337 822 1293
8 0.0212681 0.0244091 692 1138
9 0.0171497 0.0185535 558 865
10 0.0151827 0.0167946 494 783

Totals 0.7154624 0.614002 23279 28626

Image 3

n p psharp c csharp
1 0.4355907 0.3753071 14601 15278
2 0.1485084 0.1084308 4978 4414
3 0.0833831 0.0887786 2795 3614
4 0.0530131 0.0637467 1777 2595
5 0.0347255 0.0441437 1164 1797
6 0.0273568 0.0335806 917 1367
7 0.0219869 0.0259408 737 1056
8 0.0170644 0.021298 572 867
9 0.01429 0.0160902 479 655
10 0.012679 0.0140267 425 571

Totals 0.8485979 0.7913432 28445 32214
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Table 5.2: Quantitative Data for the Original and Sharp DPTs of the images
in Figures 5.1 and 5.2

Image 4

n p psharp c csharp
1 0.3826489 0.3569501 16540 14550
2 0.1410295 0.0981061 6096 3999
3 0.0792597 0.0874098 3426 3563
4 0.0548294 0.0661155 2370 2695
5 0.0389589 0.0446494 1684 1820
6 0.0296819 0.0330455 1283 1347
7 0.0226258 0.0255385 978 1041
8 0.0197571 0.0231098 854 942
9 0.015616 0.0185222 675 755
10 0.0130249 0.0152102 563 620

Totals 0.797432 0.7686571 34469 31332

Image 5

n p psharp c csharp
1 0.2952464 0.2591808 13801 13953
2 0.1611116 0.0793164 7531 4270
3 0.0957128 0.0885669 4474 4768
4 0.0664898 0.081434 3108 4384
5 0.048648 0.0545742 2274 2938
6 0.0366036 0.0459738 1711 2475
7 0.0287096 0.0353488 1342 1903
8 0.0240459 0.0303334 1124 1633
9 0.0193608 0.024185 905 1302
10 0.0167722 0.0208043 784 1120

Totals 0.7927007 0.7197177 37054 38746

Image 6

n p psharp c csharp
1 0.4199563 0.3677711 49150 56077
2 0.1394186 0.1012867 16317 15444
3 0.076925 0.0811199 9003 12369
4 0.0500103 0.0607235 5853 9259
5 0.0361171 0.0420061 4227 6405
6 0.0272395 0.0309291 3188 4716
7 0.0209765 0.0247249 2455 3770
8 0.0175929 0.0198389 2059 3025
9 0.0143802 0.016422 1683 2504
10 0.0120988 0.0135823 1416 2071

Totals 0.8147151 0.7584045 95351 115640
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Table 5.3: Quantitative Data for the Original and Sharp DPTs of the images
in Figures 5.1 and 5.2

Image 7

n p psharp c csharp
1 0.2615815 0.2744027 14393 12909
2 0.1005761 0.0455744 5534 2144
3 0.0713702 0.0592424 3927 2787
4 0.0549225 0.0638551 3022 3004
5 0.0439816 0.0474875 2420 2234
6 0.0350581 0.0381558 1929 1795
7 0.0301692 0.0338832 1660 1594
8 0.0265525 0.0292067 1461 1374
9 0.0226996 0.0252955 1249 1190
10 0.0202097 0.02368 1112 1114

Totals 0.667121 0.6407831 36707 30145

Image 8

n p psharp c csharp
1 0.4463266 0.4074106 20157 18879
2 0.1488198 0.1070157 6721 4959
3 0.0842301 0.0851551 3804 3946
4 0.0529649 0.061827 2392 2865
5 0.0371551 0.0405058 1678 1877
6 0.0266817 0.030169 1205 1398
7 0.0201718 0.0236949 911 1098
8 0.0159869 0.0189689 722 879
9 0.0136841 0.0145881 618 676
10 0.0104513 0.0123654 472 573

Totals 0.8564723 0.8017005 38680 37150

Image 9

n p psharp c csharp
1 0.3020252 0.2851626 15107 12775
2 0.1208541 0.0600013 6045 2688
3 0.0775705 0.0692873 3880 3104
4 0.0548592 0.0655595 2744 2937
5 0.0419241 0.0453805 2097 2033
6 0.0340271 0.0359606 1702 1611
7 0.0284692 0.0308043 1424 1380
8 0.0246306 0.0257149 1232 1152
9 0.0208321 0.022188 1042 994
10 0.0180132 0.0190852 901 855

Totals 0.7232052 0.6591442 36174 29529
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5.3 Best Approximation

Often filters are defined by requiring proximity in some sense to the original
input, e.g. see [223]. In comparison, the LULU operators and, in fact, mor-
phological filters in general, are focused on shape and do not use distance
and proximity in their definition. Nevertheless, it turns out that the LULU
operators provide in some sense ‘near best’ approximations by functions of
certain kind of local monotonicity. This result which is also the main contri-
bution of this section extends an earlier result in [181] for LULU operators
on sequences. The work developed in this section was published in [6].

In the next section we define the LULU operators in the setting of A(G), for
a graph G, and consider their structure preserving properties. The theorems
in that section combine results from [183] and [8] and are given here without
proofs.

5.3.1 The LULU Operators on a Graph

Let us denote by Cn(v) the set of connected subgraphs containing the vertex
v and n other vertices, that is

Cn(v) = {C ∈ G : v ∈ C, card(C) = n+ 1}.

Then for any n ∈ N the operators Ln, Un : A(G) → A(G) are defined as

Ln(f)(v) = max
C∈Cn(v)

min
w∈C

f(w), Un(f)(v) = min
C∈Cn(v)

max
w∈C

f(w).

The smoothing effect of the LULU operators can be described as removing
‘peaks’ and ‘pits’ of sufficiently small support. This is made precise through
the definitions below.

Definition 40 Let C ∈ G. A vertex v /∈ C is called adjacent to C if
C ∪{v} ∈ G. The set of all vertices adjacent to C is denoted by adj(C), that
is,

adj(C) = {v /∈ C : C ∪ {v} ∈ G}.

Definition 41 A set C ∈ G is called a local maximum set of f ∈ A(G)
if

sup
w∈adj(C)

f(w) < inf
v∈C

f(v).
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Similarly C is a local minimum set if

inf
w∈adj(C)

f(w) > sup
v∈C

f(v).

Definition 42 We say that f ∈ A(G) is locally n-monotone if every local
maximum or local minimum set of f is of size n+ 1 or more. The set of all
functions in A(G) which are n-monotone is denoted by Mn.

The operator Ln removes local maximum sets (peaks) of size n or less while
Un removes local minimum sets (pits) of size n or less so that we have the
following theorem.

Theorem 43 For any n ∈ N and f ∈ A(G) we have that LnUn(f) ∈ Mn

and UnLn(f) ∈ Mn. Moreover, f ∈ Mn ⇐⇒ (Ln(f) = f, Un(f) = f).

An example of the application of the LULU operators is given in Figure
5.3. The figures on the right are the graphs of the luminosity functions of
the images on the left. A noisy input is given in Figure 5.3(a). It is well
known that impulse noise creates spikes of extreme luminosity with small
support. The operator L30U30 is applied to remove such random noise and the
smoothed image is presented in Figure 5.3(b). The LULU operators can be
also used for extracting features of given size. The keys of the calculator are
extracted in Figure 5.3(c) by using the composition (id−L3368U3368)L624U624.
Notice that these values are obtained for this specific example and as such an
automatic procedure will be developed as future research to determine these
values automatically.

5.3.2 Locally monotone approximations

The rationale for locally monotone approximations is given in [179] for one
dimensional signals, but it also applies to higher dimensions as well as the
general setting of functions on a graph considered here. It can be described
shortly as follows. Suppose it is known that the expected signal has particular
kind of local monotonicity, e.g. it belongs to Mn for some n ∈ N. If the
input f in not in Mn then clearly it is contaminated with noise. Then
we take the best approximation of f in Mn as signal. We should remark
that the concepts of signal and noise are relative. Signal generally refers to
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(a)

(b)

(c)

Figure 5.3: An illustrative example: (a) input; (b) noise removed; (c) features
of interest (keys) extracted
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required information or feature that needs to be separated from the input.
For example, if from the input on Figure 5.3(a) we require the keys of the
calculator as they have been extracted on Figure 5.3, then everything else
is considered noise, e.g. including the labels on the keys which are indeed
removed.

In the stated formulation the problem of signal extraction is an approxima-
tion problem. The issue of proximity can be considered in any of the norms
|| · ||p, p ∈ [1,∞]. It is easy to see that Mn is a closed subset of A(G) in
any one of these norms. Therefore, a best approximation exists. Further
analysis of this problem is difficult. On the one hand, uniqueness can not
be guaranteed since Mn is not convex. On the other hand, constructive
algorithms for the best approximation are not currently available, however,
future work aims to resolve this issue. The best approximation takes into
account only proximity and does not necessarily preserve any other essential
and/or useful properties of the input. Our main result given in Theorem 44
shows that while the LULU operators do not necessarily produce the best
approximation, the error of the approximation is bounded by a constant mul-
tiple of the error of the best approximation and in this sense it is near best.
The involved constant naturally depends on n and on the connectivity of the
graph.

We introduce a metric on G in the usual way. Let u, v ∈ G. Since G is
connected there exists a path connecting u and v. The shortest path is the
one with fewest edges. We denote by ρ(u, v) the number of edges in the
shortest path connecting u and v. Then

B(v, n) = {u ∈ G : ρ(u, v) ≤ n}

can be considered as the ball centered at v with radius n. Let Kn =
sup
v∈G

card(B(v, n)). It is easy to see that Kn <∞, e.g. we have Kn ≤ αn.

Theorem 44 Let P be either Ln ◦ Un or Un ◦ Ln. For any f ∈ A(G) and
any h ∈ Mn we have

∥Pf − f∥p ≤
(
1 +

(
Kn

)1/p)∥h− f∥p, p ∈ [1,∞),

∥Pf − f∥∞ ≤ 2∥h− f∥∞.

The idea of the proof of the inequalities in Theorem 44 comes from the
Lebesgue inequality. For a linear, idempotent and bounded operator P on a
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normed space X for every f ∈ X and h ∈ P (X) we have

∥Pf − f∥ ≤ (1 + ∥P∥)∥f − h∥. (5.1)

The LULU operators are not linear so that the inequality (5.1) is not directly
applicable. We proceed by establishing the Lipschitz property for these op-
erators.

Theorem 45 For any f, g ∈ A(G) we have

∥Lnf − Lng∥p ≤ K1/p
n ∥f − g∥p,

∥Unf − Ung∥p ≤ K1/p
n ∥f − g∥p,

Proof
Let v ∈ G. Without loss of generality we may assume that Lnf(v) ≥ Lng(v).
From the definition of Ln

Lnf(v) = max
C∈Cn(v)

min
w∈C

f(w) = min
w∈Cv

f(w)

for some Cv ∈ Cn(v). We also have

Lng(v) = max
C∈Cn(v)

min
w∈C

g(w) ≥ min
w∈Cv

g(w) = g(uv),

for some uv ∈ Cv. Thus

|Lnf(v)− Lng(v)| = Lnf(v)− Lng(v)

≤ min
w∈Cv

f(w)− g(uv)

≤ f(uv)− g(uv).

Using that uv ∈ Cv ∈ Cn(v) it is easy to see that ρ(v, uv) ≤ n. Therefore

|Lnf(v)− Lng(v)|p ≤ |f(uv)− g(uv)|p ≤
∑

w∈B(v,n)

|f(w)− g(w)|p. (5.2)

Using the inequality (5.2) for every v ∈ G we obtain

∥Lnf − Lng∥pp =
∑
v∈G

|Lnf(v)− Lng(v)|p

≤
∑
v∈G

∑
w∈B(v,n)

|f(w)− g(w)|p

≤ Kn

∑
w∈G

|f(w)− g(w)|p

= Kn||f − g||p,
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which proves the Lipschitz property of Ln. The Lipschitz property of Un is
proved similarly.

It is easy to obtain from Theorem 45 that the compositions LnUn and UnLn

are also Lipschitz with a constant K
2
p for p ∈ [1,∞). However, we actually

need a Lipschitz inequality when one of the functions is in Mn. In this case
the respective constant is smaller as shown in the next theorem.

Theorem 46 For all f ∈ A(G) and g ∈ Mn we have

∥LnUnf−g∥p ≤ K1/p
n ∥f−g∥p , ∥UnLnf−g∥p ≤ K1/p

n ∥f−g∥p .

Proof
Let v ∈ G. If LnUnf(v) < g(v) using that Un ≥ id we obtain

|LnUnf(v)− g(v)| = g(v)−LnUnf(v) ≤ g(v)−Lnf(v) = |Lnf(v)−Lng(v)|.

Then it follows from inequality (5.2) derived in the proof of Theorem 45 that

|LnUnf(v)− g(v)|p ≤ |Lnf(v)− Lng(v)|p ≤
∑

w∈B(v,n)

|f(w)− g(w)|p (5.3)

If LnUnf(v) ≥ g(vi) then similarly using that Ln ≤ id and the inequality for
Un which is analogical to (5.2) we have

|LnUnf(v)− g(v)|p ≤ |Unf(v)− Ung(v)|p ≤
∑

w∈B(v,n)

|f(w)− g(w)|p. (5.4)

The combined application of (5.3) and (5.4) for every v ∈ G yields

∥LnUnf−g∥pp =
∑
v∈G

|LnUnf(v)−g(v)|p ≤
∑
v∈G

∑
w∈B(v,n)

|f(w)− g(w)|p

≤ Kn

∑
w∈G

|f(w)− g(w)|p = Kn∥f − g∥pp

which proves the inequality for LnUn. The inequality for UnLn is proved in
a similar manner.

Remark 47 Letting p → ∞ we obtain from Theorems 45 and 46 that the
operators Ln, Un and their compositions all satisfy the Lipschitz property with
a constant 1 with respect to the supremum norm.
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Proof of Theorem 44 Let p ∈ [1,∞). Using Theorem 46 we obtain

∥Pf − f∥p ≤ ∥Pf − h∥p + ∥h− f∥p
≤ K1/p

n ∥f − h∥p + ∥h− f∥p
= (1 +K1/p)∥h− f∥p.

For p = ∞ it follows from Remark 47 that

∥Pf − f∥∞ ≤ ∥Pf − h∥∞ + ∥h− f∥∞
= ∥Pf − Ph∥∞ + ∥h− f∥∞
≤ 2∥h− f∥∞,

which completes the proof.

The idea of using monotonicity as a concept of smoothness within approxi-
mation theory originates in the works of Sendov and Popov, e.g. [206]. In
this section we consider the situation when a signal or a feature with smooth-
ness defined in terms of its local monotonicity needs to be extracted from
a given input. We show that the LULU operators typically considered for
their structure preserving properties also provide near best locally monotone
approximations. The general setting of functions defined on a graph includes
as particular cases both sequences as in [183] and multidimensional arrays as
in [8]. We have provided a simple example in Figure 5.3 and future research
will look into the applicable construction of these near best-approximations.

5.4 Noise Removal

In this section we shall look at the ability of the LULU operators to remove
noise, of all types, from a signal. Noise removal and measurement is a widely
researched topic as it is inevitable that noise arises in a signal. Consider for
example Murtagh and Starck [154], who take a multi-scale approach in this
regard, arguing that noise will appear at different scales, and use statistical
significance tests to determine which wavelet coefficients (a non-orthogonal
form) are due to noise. They model the noise as additive Poisson and/or
Gaussian. As an alternative to direct noise removal, Coutinho et al [40]
take advantage of the phase, polarization and coherence properties of light
to improve feature detection and other image analysis techniques.

The process by which a signal is obtained from a physical phenomenon in-
volves firstly the conversion of the phenomenon into an electrical signal via
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a transducer, secondly conditioning of the signal, thirdly conversion of the
signal from analog to digital (ADC) which involves sampling it discretely as
well as quantizing it, and lastly the conversion into a software compatible
form, [117]. Ideally the signal should be accessible on the computer inter-
face as accurately and noiseless as possible, so the measurement hardware
used for the extraction should be effective and appropriate for the system
requirements.

The most common noise discussed in noise models is white noise. White
noise is completely random with an equally distributed frequency distribu-
tion. Different colours of noise are also discussed. For example, red noise
(Brownian noise) has more energy at lower frequencies, purple/violet noise
has more energy at high frequencies, and pink noise, an intermediate between
white and red noise, has a frequency distribution inversely proportional to
the frequency. The various colours of noise represent the various frequency
distribution forms [73]. An interesting relationship between the colours of
noise and music is presented by Bulmer [29].

The rest of this section provides an investigation into the ability of the LULU
smoothers to remove various distributional types of noise in signals and im-
ages.

5.4.1 Noise Removal in One Dimension

The work in this section was published together with a colleague and student
as proceedings of the 2010 South African Statistical Association (SASA)
conference [56].

Recall that the LULU smoothers for signals (sequences) have been developed
over the last three decades by Rohwer and his collaborators, [183]. For a
signal x = (xi)

N
i=−N , the LULU operators Ln and Un act at position i in the

signal and for n = 1, 2, 3... as follows:

(Ln(x))i=max{min{xi−n, ..., xi}, ...,min{xi, ..., xi+n}}, and

(Un(x))i=min{max{xi−n, ..., xi}, ...,max{xi, ..., xi+n}}.

We also recall that the LULU operators are nonlinear but have very useful
properties to their name, that is, they are separators, are total variation
preserving and fully trend preserving as defined in [183]. However, since
Ln(x) ≤ x ≤ Un(x) the two operators will produce slightly biased results
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when used individually, namely, Ln smoothes the signal from above and Un

smoothes from below. We thus use the two together as either Ln ◦Un or
Un◦Ln. These compositions are also biased, but to a far lesser degree. The
Discrete Pulse Transform (DPT) of x, DPT (x) = (D1(x), D2(x), ..., DN(x)),
is obtained as the iterative application of Ln◦Un or Un◦Ln for n = 1, 2, ..., N .
The components Di are obtained as follows, D1(x) = (I − P1)(x), Dn(x) =
(I − Pn) ◦ Qn−1(x), n = 2, ..., N, where Pn = Ln◦Un or Pn = Un◦Ln and
Qn = Pn ◦ ...◦P1, n ∈ N. The DPT can be seen as the recursive peeling
off of pieces of information of width n - we first remove isolated information
of width 1, then of width 2, and so on. For some n the remaining signal is
considered sufficiently smoothed (denoised). This optimal n is determined
by tracking the total variation removed at each step. The total variation of

a signal x is defined as, TV (x) =
N∑

i=−N

|xi − xi−1|. Since our LULU operators

are total variation preserving (TV (x) = TV (Px)+TV ((I−P )x) where P is
either Ln◦Un or Un◦Ln), we can easily track how much variation remains in
the smoothed signal, TV (Px), and how much we remove with each iteration
or in total, TV ((I − P )x), since no variation is lost at any step. Once
the optimal n is decided upon, say nopt, the immediate question to ask is
how well has the signal been smoothed or equivalently, how well does that
which we have removed, (I −Pnopt)x, represents the noise present in the
original signal x? It turns out that the DPT is quite effective in removing
impulsive noise. One explanation for this is that linear smoothers aren’t
well suited to removing noise which arises from a long-tailed probability
distribution, [233], which is characteristic when there are outliers present,
nor noise which is signal dependent, [38], whereas the LULU operators are
nonlinear smoothers which is believed to avoid such complications. Here
we investigate the ability of the DPT to remove imposed noise and uncover
the underlying signal effectively. More specifically, by imposing noise chosen
from various distributions, see Table 1, we shall determine if the removed
noise (I−Pnopt)x accurately represents the noise initially imposed.

In order to simulate noise with various distributional shape properties, we
use a parameterization of the Generalized Lambda Distribution (GLD) in-
troduced by [232] and defined through its quantile function (QF) by

Q(p) =

{
α + β

(
(1− δ)

(
pλ−1
λ

)
− δ
(
(1−p)λ−1

λ

))
if λ ̸= 0

α + β
(
(1 + δ) ln p− δ ln (1− p)

)
if λ = 0

where 0 ≤ p ≤ 1 , α is a location parameter, β > 0 is a spread parameter
and 0 ≤ δ ≤ 1 and λ are shape parameters. The GLD can be characterized
through its first four L-moments, that is, the L-location, L1 , the L-scale, L2
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Figure 5.4: Probability Density Functions of the Noise Distributions in Table
5.5

and the L-skewness and L-kurtosis ratios, τ3 = L3/L2 and τ4 = L4/L2. As
shown in Table 5.5 and Figure 5.4, we selected eight distributions from the
GLD with different distributional shapes by choosing appropriate values for
τ3 and τ4 and calculating the corresponding parameter values. All selected
distributions were standardized and/or shifted so that L1 = 0 and L2 = 1.

The fact that we simulate the noise from a family of distributions, the GLD,
with a single functional form as defined through its QF, is important for our
investigation as it enables a strongly justified comparison amongst the noise
types.

For this study the underlying true signal used was (si) = (a cos(wi)+b sin(wi))
where the parameters a and b are chosen in order to obtain a weak, medium
and strong signal respectively with respect to the noise. The period was
chosen as 100 throughout, and the frequency w was then calculated through
the formula 2π/100. The length of the signal was taken to be 100, that
is, 100 data points. For this study we thus for simplicity use the subscripts
1, 2, ..., 1000 instead of −N, ..., N . The amplitude of such a signal is

√
a2 + b2,

[66]. This signal is periodic and thus has an obvious cyclical trend which
enables easy detection of the true signal.

Typically the signal-to-noise ratio (SNR), [167], is used to measure the strength
of a signal. The three signals were chosen to have SNR 1, 5 and 9 respec-
tively, which correspond to a weak, medium and strong signal according to
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Distribution Shape L-moments:
(L1, L2, τ3, τ4)

Parameters of the GLD:
(α, β, δ, λ)

1. Symmetric, Uniform distributiona (0, 1, 0, 0) (0, 6, 0.5, 1)

2. Symmetric, short-tailed (0, 1, 0, 1
12 ) (0, 2.9989, 0.5, 0.3025)

3. Symmetric, Normal distributionb (
0, 1, 0, 30

π tan−1(
√
2)−9

)
(0, 0.2449, 0.5, 0.1416)

4. Symmetric, Logistic distribution (heavy-tailed)1 (0, 1, 0, 1
6 ) (0, 2, 0.5, 0)

5. Symmetric, truncated distribution
(
0, 1, 0, 1

6

)
(0, 42, 0.5, 5)

6. Skewed, Rayleigh distribution2 (
0, 1, 3

√
2+2

√
6−9

3(
√
2−1) , 20

√
6−9(4+

√
2)

6(
√
2−1)

)
(−1.0173, 2.6641, 0.7305, 0.2071)

7. Skewed, Gumbel distribution2 (
0, 1, ln (9/8)

ln 2 , 2 ln (256/243)
ln 2

)
(−1.1157, 2.1486, 0.7723, 0.0487)

8. Skewed, Exponential distribution (J-shaped)1 (0, 1, 1
3 ,

1
6 ) (−2, 2, 1, 0)

Table 5.5: Distributions Chosen to Simulate Noise (1Distribution is special case of the GLD, 2Distribution approxi-
mated by the GLD)

aDistribution is special case of the GLD
bDistribution approximated by the GLD
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the Rose Criterion [236]. As suggested by its name, the SNR is defined as the
signal relative to the noise, (see for instance [47]). To calculate the SNR, it
is common practice to use a measure of location for the signal and a measure
of spread for the noise. For example, the SNR can be calculated as the mean
signal relative to the standard deviation of the noise [167], and is given by
SNR = mean signal

std. dev(noise)
. We used L2 as measure of spread for the noise. Recall

that we set L2 = 1 for all eight GLDs used to simulate the noise. Since our
signals are periodic with zero mean levels, we decided to measure each signal
by its amplitude. Hence we calculated the SNR with SNR = amplitude of signal

L-scale of noise
.

So, given L2 = 1 and SNR equal to 1, 5 and 9 respectively, it then follows
that the signal parameters a and b are given by 0.5, 4.5 and 8.5, and 0.866,
2.179 and 2.958, respectively, for the weak, medium and strong signals. These
three signals are shown in Figure 5.5.

The DPT was then applied to (sji + nk
i ), j = 1, 2, 3, k = 1, 2, ..., 8 where

(sji ) is the jth underlying signal and (nk
i ) is the kth noise signal. In Figure

5.6, some of these contaminated signals are illustrated. The strength of the
signals for the various SNRs can be seen clearly. The DPT was applied in
four different ways in order to fully investigate the noise removal and any
bias due to the ordering, namely for (1) Ln◦Un◦Ln−1◦ Un−1◦...◦L1◦U1, (2)
Un◦Ln◦Un−1◦ Ln−1◦...◦U1◦L1, (3) Un◦Ln◦Ln−1◦Un−1◦...◦U1◦L1, and (4)
Ln◦Un◦Un−1◦Ln−1◦...◦L1◦U1. We shall use the notation LULU, ULUL, LUUL
and ULLU for these. The last two options are called the alternating bias
operators since they alternately swop between the two basic choices Ln ◦ Un

and Un ◦ Ln. See [100] for other possibilities of reducing the bias.

For the three signals we thus apply the DPT with respect to (1)-(4) for the 8
different noise types. The total variation is tracked throughout the DPT and
the cumulative noise removed for (a) n where half of the added total variation
has been removed, and for (b) n0 where all the added total variation has been
removed, is investigated. We investigate (a) as it is understood that the most
disruptive noise occurs in the first levels of the DPT, and (b) because this
is where it is naturally thought that the original signal should be uncovered.
The respective true noise distribution for k = 1, 2, ..., 8 is fitted to these noise
samples using method of L-moment estimation, [232], to investigate if the
noise removed up to the two respective points is distributed similarly to the
original noise imposed.

Due to the total variation preservation of the DPT, total variation is a good
measure to track the smoothing process over n, i.e. from level to level of the
DPT. When the total variation removed with each n stabilizes, i.e. doesn’t
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Figure 5.5: Original Signals with SNR 1 (weak), 5 (medium) and 9 (strong)

Noise Type 1 2 3 4 5 6 7 8
SNR = 1 2050 2066 2072 2078 2075 2056 2056 2039

SNR = 5 2055 2070 2077 2083 2082 2061 2062 2047

SNR = 9 2070 2087 2094 2101 2101 2078 2079 2071

Table 5.6: Total Variation (rounded) of the 24 Contaminated Signals

change significantly from n to n + 1, the added noise has been removed
effectively. From the results of the 24 different contaminated signals, the
total variation removed at each level remains similar whichever combination,
LULU, ULUL, LUUL or ULLU, is used to obtain the DPT, and for each of
the three SNRs. A slight difference can only be seen in the three skewed
noise types, namely types 6, 7 and 8. It can be seen in Figure 5.7 how
the total variation progresses through the DPT levels. The differences seen
between the different SNRs are due to the fact that the weak, medium and
strong original signals have a total variation of 40.491, 204.487 and 368.423
respectively, thus the smoothing (decrease in total variation) occurs sharply
up until that point and then stabilizes. The contaminated signals have total
variation as indicated in Table 5.6. Comparing Table 5.6 with Figure 5.7
it can be seen a huge proportion of the total variation is removed in the
first level of the DPT as the remaining total variation drops to around 600
in all cases. The stabilization of the total variation removal varies for the
three SNRs investigated. For the weak signal (SNR = 1) half the total
variation is removed at around n = 3 and all the added total variation (i.e.
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SNR = 1, Noise = 2 SNR = 1, Noise = 5

SNR = 5, Noise = 3 SNR =5, Noise = 7

SNR = 9, Noise = 1 SNR = 9, Noise = 8

Figure 5.6: A Sample of the 24 Different Contaminated Signals
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SNR = 1, Noise = 1 SNR = 5, Noise = 1

SNR = 9, Noise = 1 SNR = 1, Noise = 8

SNR = 5, Noise = 8 SNR = 9, Noise = 8

Figure 5.7: Total Variation Removed at each Level of the DPT for Noise
Type 1 (Noise Types 1-5 are similar) and 8 (Noise Types 6-8 are similar)
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at stabilization) is removed by around n = 14 for LULU and ULLU and by
around n = 19 for LUUL and ULUL.

For the medium signal (SNR = 5) half the total variation is removed at
around n = 3 as well and all the added total variation (i.e. at stabilization)
is removed by around n = 6. For the strong signal (SNR = 9) half the total
variation is removed at around n = 2 and all the added total variation (i.e. at
stabilization) is removed by around n = 5. It would thus seem, as expected,
that the stronger the signal (or the weaker the noise) the quicker and more
effective the noise removal, and also that the bias between the four Ln and
Un combinations decreases.

To investigate whether the smoothed signal obtained when the total variation
stabilizes does in fact resemble the original uncontaminated signal, the MSE
measure was used to calculate the differences between the smoothed signal
through the DPT levels and the original signal. The MSE is calculated as

MSE(x) =

∑1000
i=1 (xi − x̄)2

1000
.

For SNR = 1 the combination ULLU provides the lowest MSE from the be-
ginning of the smoothing process. The combination ULUL gives the highest
MSE although the differences between the combinations are not drastic. For
SNR = 5 and 9 the same is seen. See Figure 5.8 for the MSE for noise type
1. The medium and strong signal give very interesting results for the MSE
measurements. It can be seen in Figure 5.8 that the MSE starts to increase
from level 14 of the DPT onwards. This indicates that from this point on-
wards the smoothing process begins to smooth out the uncovered original
signal instead of the noise. As the SNR increases the MSE in the beginning
levels of the DPT is more similar for the four Ln and Un combinations, see
Figure 5.8.

In Figure 5.9, the smoothed signals can be visually analysed. The higher the
SNR the more effective the noise removal, i.e. the more the smoothed signal
resembles the original signal.

As discussed above, the cumulative noise removed when (a) half of the added
total variation has been removed, and (b) when all the added total variation
has been removed, is investigated. The original noise distributions were fitted
to this cumulative removed noise. The L-moments and four parameters of
the GLD were then compared to evaluate the fit of the removed noise. The
results for the L-location, L1, and the L-skewness ratio, τ3, are given in
Tables 5.7 and 5.8. The following observations can be made:
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SNR = 1

SNR = 5

SNR = 9

Figure 5.8: MSE at each Level of the DPT for Noise Type 1 (other noise
types are similar)
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SNR = 1

SNR = 5

SNR = 9

Figure 5.9: The Smoothed Signals for Noise Type 1 and using LULU (all
noise types and Ln, Un combinations are visually similar): Left column in-
dicates the smoothed signal when half the added TV has been removed, Right
column indicates the smoothed signal when all the added TV has been removed
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� From Table 5.7 we see that LULU and ULLU result in a negative
shift in location for each SNR, although the shift seems to reduce from
noise type 1 through to 8. The shift in location is of course due to
the biasedness of the various smoothers, already discussed. For ULUL
and LUUL the shift in location is seen to be positive for each SNR, but
again generally increases from noise type 1 through to 8. An interesting
phenomenon can be seen for noise types 6 and 7 for ULLU. For noise
type 7 we see a shift of 0 for SNR = 1 and 5, but a negative shift for
SNR = 9. Noise distributions 6 and 7 are very similar and thus behave
similarly. It is thus evident that the smaller SNRs result in poorer
removal of noise type 7, i.e. do not as effectively remove the same noise
that was imposed.

� The shift in L-location must be considered simultaneously with the
change in the L-skewness ratio, as seen in Table 5.8, since a change
in the level of skewness of a distribution will result in a shift in the
location of that distribution. There we see a decrease in the L-skewness
ratio for LULU and ULLU. This decrease become less prominent as
SNR increases however. See Figure 5.10 for the fitted and original
distributions for noise types 3 and 7. The shift in location and change in
skewness can be seen. The changes are due to the fact that Un is applied
first in LULU and ULLU. The operator Un removes negative pulses
and thus the removed noise favours slightly the negative direction. For
ULUL and LUUL there is a general increase in the L-skewness ratio for
noise types 1 to 5, and the trend becomes stronger as SNR increases.
The changes are due to the fact that Ln is applied first in ULUL and
LUUL. The operator Ln removes positive pulses and thus the removed
noise favours slightly the positive direction. For noise types 6 to 8, a
decrease in the L-skewness ratio is still observed. This is due to the
fact that these noise distributions are already positively skewed and
thus contain more negative pulses from the start. Although the above
discussed change in the L-skewness ratio is clear, the change is very
slight, as can be seen by the values in Table 5.8.

� The fitted distributions fit the original distribution very well when half
the added total variation has been removed. Furthermore, in general
the fit improves towards the full removal of the added total variation.

� The L-scale does not vary significantly at all for any of the fits and
for each SNR investigated. This is an important result as it indicates
that the removed noise has very similar spread to the noise which was
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SNR = 1, Noise = 3 SNR = 1, Noise = 7

Figure 5.10: Theoretical and Fitted Noise Distributions

initially imposed on the signals and almost none of its variation has
been left in the smoothed signal.

� The L-kurtosis ratio also does not vary significantly at all for any of
the fits and for each SNR investigated, indicating the mass in the tails
and centre for each distribution of the imposed noise has been removed
intact.

The ability of the LULU smoothers to remove the different noise types for
this simple signal is very effective and from the results we see that the noise
removed is distributed similarly to the noise originally imposed. The under-
lying smoothed signal is also effectively uncovered when the total variation
removed at each step begins to stabilize. The effect of the different combina-
tions of Ln and Un produce interesting results as indicated. Future work will
look at implementing more effective combinations of Ln and Un to reduce the
bias, such as those in [100]. As expected the fit of the noise removed improves
as n increases towards the optimum n0. A further possibility for this study is
to investigate using as a measure of smoothing the number of pulses removed
at each level of the DPT, i.e. at each n, and to compare this with using the
total variation as a measure for this purpose. In addition, further work into
more complicated naturally occurring signals should be investigated.
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5.4.2 Noise Removal in Two Dimensions

The applicable extension of the noise removal work done in the previous
section from signals to images must be carefully considered. Various images
should be contaminated with simulated noise and subsequently removed as
in the previous section. The nature of the mechanism of adding the noise can
vary in a number of ways. Firstly, independent one dimensional noise can be
simulated for each pixel and easily removed by retaining only the appropriate
pulses of the DPT. The pulses retained are chosen so that the total variation
is reduced from the total variation of the contaminated image to that of
the original, uncontaminated image. The seven sample images considered
can be seen in Figures 5.11 to 5.17, which each show the various levels of
contamination. The images were each contaminated with various noise types,
namely exponential, gumbel, normal, rayleigh, uniform and weibull, at signal-
noise-ratio values 1, 5 and 9, as was similarly done in the previous section.
The details of these distributions are given in Table 5.9. The formula used
for the signal-noise-ratio was SNR = mean(signal)

std.dev.(noise)
. All distributions were

centered so that the mean is 0. The sample images were chosen to represent
a variety of possible image content, that is, textured as well as homogeneous.
The increase in pulse numbers as well as total variation in the contaminated
images is given in Tables 5.10 and 5.11. Figure 5.18 provides the noise added
to the Chelsea image at the various signal-noise-ratios and distributions. The
distributions look very similar for the other six sample images and were thus
not included.

Figures 5.19 to 5.24 show the smooth Chelsea images with the removed noise.
Table 5.12 shows the pulse size c in the DPT at which the total variation of
the contaminated image has been reduced to the original total variation. The
smoothed images are reconstructed from this pulse size upwards. Similarly
the noise image is obtained by reconstructing from pulse size 1 up to c − 1.
By comparing the histograms in Figures 5.19 to 5.24 to those in Figure 5.18
it is clear that the noise removed does not follow the same distribution as the
noise added. The removed noise seems to follow a symmetrical distribution in
most cases. The remaining sample images produce similar results. It is clear
the method of image contamination, noise removal with the DPT as well as
fitting of the removed noise to the original distribution must be investigated
in more depth.

A more appropriate method of contaminating the images is with two-dimensional
noise so that the dependency from pixel to pixel can be realized in the con-
tamination. The fitting of the removed noise should be done with two di-

 
 
 



C
H
A
P
T
E
R

5.
IM

P
R
O
V
IN

G
IM

A
G
E
Q
U
A
L
IT

Y
163

Table 5.9: Noise distributions used to contaminate the sample images
Distribution Parameters Mean Variance Comments

Exponential X ∼ exp(λ) λ λ2 Must be shifted
Gumbel X ∼ gum(α, β) α− γβ 1

6
π2β2 γ: Euler-Mascheroni constant

Normal X ∼ N(µ, σ2) µ σ2

Rayleigh X ∼ ray(s) s
√

π
2

4−π
2
s2 Must be shifted

Uniform X ∼ U(a, b) 1
2
(a+ b) 1

12
(b− a)2

Weibull X ∼ wei(β, α) βΓ(1 + α−1) β2(1− π/4) α chosen as 1.5, Must be shifted
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Table 5.10: Number of pulses of the DPTs of the various contaminated images
Image Chelsea Tank Fabric Bricks Texture Blocks Regions

451× 300 512× 512 512× 512 512× 512 512× 512 512× 512 512× 512

Original 32 534 113 769 184 395 159 043 194 422 68 19

Exponential
Weak 122 336 238 223 231 678 239 696 226 741 222 876 223 612
Medium 105 754 212 642 204 471 220 011 209 000 214 120 213 940
Strong 90 428 190 965 194 656 207 163 202 819 200 680 200 992

Gumbel
Weak 123 955 240 590 238 414 219 307 231 490 222 028 224 308
Medium 107 645 216 600 206 135 222 307 210 156 213 676 214 748
Strong 92 022 193 145 194 916 211 293 202 581 203 452 202 996

Normal
Weak 123 815 240 392 238 036 228 538 232 110 224 128 217 632
Medium 109 432 219 236 207 565 224 483 211 382 217 280 205 148
Strong 93 565 195 530 195 320 212 828 202 819 205 648 225 616

Rayleigh
Weak 123 572 239 656 237 298 232 205 231 770 225 184 225 336
Medium 109 389 219 610 207 146 225 104 210 588 217 972 218 112
Strong 93 406 195 551 195 396 212 525 202 906 205 604 205 232

Uniform
Weak 123 180 238 272 237 855 224 829 232 015 222 400 223 864
Medium 111 737 223 040 208 359 226 863 210 924 219 612 220 180
Strong 95 015 197 930 195 551 215 489 203 074 208 812 206 928

Weibull
Weak 121 547 235 504 233 531 230 395 229 264 226 346 227 382
Medium 112 924 224 932 212 703 228 897 214 440 223 992 225 380
Strong 101 719 207 927 200 092 217 732 206 035 211 848 213 107
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Table 5.11: Total Variation of the various contaminated images standardized to a 100× 100 image
Image Chelsea Tank Fabric Bricks Texture Blocks Regions

Original 104 476 146 811 534 132 258 511 773 118 29 811 28 119

Exponential

Weak 1 781 355 1 794 930 1 692 171 2 023 529 1 726 580 1 693 810 1 667 785
Medium 559 331 597 336 751 765 721 073 940 046 569 851 549 092
Strong 315 361 366 065 623 481 531 754 840 889 341 266 321 171

Gumbel

Weak 1 894 796 1 927 598 1 781 975 2 018 560 1 839 134 1 851 147 1 819 823
Medium 580 900 621 596 752 650 882 999 950 634 625 283 597 234
Strong 321 174 370 745 623 131 602 261 842 431 368 494 344 476

Normal

Weak 1 974 865 2 002 748 1 868 928 2 142 431 1 911 105 1 927 362 1 895 941
Medium 600 613 641 361 766 432 865 754 958 189 642 763 615 413
Strong 326 102 377 681 625 409 598 959 844 907 375 356 350 786

Rayleigh

Weak 1 988 674 2 015 667 1 878 047 2 197 820 1 913 162 1 931 278 1 896 754
Medium 598 822 640 380 767 572 832 454 956 990 636 143 608 763
Strong 326 021 377 710 625 772 585 645 844 758 371 208 347 501

Uniform

Weak 2 134 810 2 158 766 2 002 617 2 276 176 2 029 272 2 075 086 2 043 683
Medium 611 045 653 898 772 210 894 792 963 614 660 462 631 344
Strong 330 405 380 886 626 511 613 692 845 476 381 766 356 076

Weibull

Weak 2 138 747 2 160 672 2 042 201 2 347 492 2 070 727 2 103 500 2 071 604
Medium 745 343 788 130 869 599 943 707 1 036 931 769 550 743 923
Strong 441 371 487 486 679 910 666 989 886 394 477 309 453 457
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Figure 5.11: Contaminated Chelsea images, rows (top to bottom): Exponen-
tial, Gumbel, Normal, Rayleigh, Uniform and Weibull noise, columns (left to
right): SNR = 1, 5 and 9

Table 5.12: Pulse size indicated by the DPT for reduction in total variation
to the original total variation

SNR 1 5 9

Exponential 5 3 3
Gumbel 6 3 3
Normal 6 3 3
Rayleigh 6 3 3
Uniform 6 3 3
Weibull 6 3 3

 
 
 



CHAPTER 5. IMPROVING IMAGE QUALITY 167

Figure 5.12: Contaminated Tank images, rows (top to bottom): Exponen-
tial, Gumbel, Normal, Rayleigh, Uniform and Weibull noise, columns (left to
right): SNR = 1, 5 and 9
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Figure 5.13: Contaminated Fabric images, rows (top to bottom): Exponen-
tial, Gumbel, Normal, Rayleigh, Uniform and Weibull noise, columns (left to
right): SNR = 1, 5 and 9
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Figure 5.14: Contaminated Brick images, rows (top to bottom): Exponen-
tial, Gumbel, Normal, Rayleigh, Uniform and Weibull noise, columns (left to
right): SNR = 1, 5 and 9
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Figure 5.15: Contaminated Texture images, rows (top to bottom): Exponen-
tial, Gumbel, Normal, Rayleigh, Uniform and Weibull noise, columns (left to
right): SNR = 1, 5 and 9
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Figure 5.16: Contaminated Blocks images, rows (top to bottom): Exponen-
tial, Gumbel, Normal, Rayleigh, Uniform and Weibull noise, columns (left to
right): SNR = 1, 5 and 9
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Figure 5.17: Contaminated Regions images, rows (top to bottom): Exponen-
tial, Gumbel, Normal, Rayleigh, Uniform and Weibull noise, columns (left to
right): SNR = 1, 5 and 9
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Figure 5.18: Added noise, rows (top to bottom): Exponential, Gumbel, Nor-
mal, Rayleigh, Uniform and Weibull noise, columns (left to right): SNR =
1, 5 and 9
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Figure 5.19: Exponential contamination, columns (left to right): smoothed
Chelsea image, noise removed, histogram of removed noise, rows: SNR = 1,
5 and 9

Figure 5.20: Gumbel contamination, columns (left to right): smoothed
Chelsea image, noise removed, histogram of removed noise, rows: SNR =
1, 5 and 9
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Figure 5.21: Normal contamination, columns (left to right): smoothed
Chelsea image, noise removed, histogram of removed noise, rows: SNR =
1, 5 and 9

Figure 5.22: Rayleigh contamination, columns (left to right): smoothed
Chelsea image, noise removed, histogram of removed noise, rows: SNR =
1, 5 and 9
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Figure 5.23: Uniform contamination, columns (left to right): smoothed
Chelsea image, noise removed, histogram of removed noise, rows: SNR =
1, 5 and 9

Figure 5.24: Weibull contamination, columns (left to right): smoothed
Chelsea image, noise removed, histogram of removed noise, rows: SNR =
1, 5 and 9
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mensional distribution fitting. This method should prove much more effec-
tive since the relationships between neighbouring pixels and pulses will be
captured. In addition, an intense look into noise types encountered in real
images would improve the investigation into the noise removal ability of the
two dimensional DPT. An ideal way to measure the noise removal in im-
ages may be by making use of the structural similarity index of Wang et al
[235] discussed already in Chapter 3. Current work with junior postgraduate
students involves building this research further.

5.5 Conclusion

In this chapter we looked at basic methods to improve the quality of an
image before further analysis takes place. Sharpening an image, discussed
in Section 5.2, reduces the number of pulses in the DPT thus reducing the
computational complexity of the already heavy algorithm. Section 5.3 pro-
vides theory for the use of the LULU operators in approximating the true
underlying signal from a noisy one. Although, the best approximation is
not achieved, the approximation is near best and produces good visible re-
sults. Further reconstruction of the approximations can be obtained via
image inpainting and various partial differential equation techniques, which
essentially add previously unknown non-noise data points into the image,
to reduce the ‘blockiness’ of LULU smoothed images and signals. The noise
removal ability of the LULU operators, investigated in Section 5.4, is promis-
ing. Further detailed work needs to be done for the case of images but the
results are still visibly good for signal-to-noise-ratio values likely to be ob-
served in practice. A study into other types of noise encountered in all areas
of practice in image processing would be very helpful in enabling further
investigation. There is work done in this direction already.
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