
Chapter 4

Multi-scale Analysis

4.1 Introduction

At its core, image processing is simply a computer manipulation of a ma-
trix of luminosity values. The manipulation may be complex, for example
the reconstruction of a full image using only a small number of pixels from
the original image, or quite simple, for example reducing the resolution or
size of an image. Due to the development of digital technology and the
vast amount of image data readily available there is an increasing need for
computer based image processing and analysis. It may be a manipulation
to improve a photograph for viewing purposes, such as deblurring, sharpen-
ing, colour manipulation or red eye reduction. These are examples of our
most common requirements as humans from image editing. The relatively
recently developed field of computer vision has seen the addition of other re-
quirements. This field involves developing methods which allow a computer
or robot to analyze an image automatically, similar to the way in which the
human vision system (HVS), that is the eyes plus the brain or visual cortex,
analyzes its surroundings. With the computer representing the brain, the
camera the eyes, and the video or image captured the surroundings, the ul-
timate aim is to eliminate human involvement in the process. For example,
consider applications in security such as target detection, identification and
tracking, applications in medical imaging to automatically detect anomalies
thereby enforcing a doctor’s findings, or applications in industry to detect
when a production plant is producing reduced quality products.

Obviously the human vision system is highly complicated. The introductions
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of [252] and [84] provide insight into what little we do know about the brain
and the visual cortex. Research into the brain has provided only glimpses of
how subprocesses work and how we could relate the brain to our minds or
consciousness. The question of the fruitfulness of computer vision then arises.
If we are attempting to model a human action, but we do not understand how
it works, how can we hope to replicate this action? It is obvious that the
human brain learns as it progresses through life thus offering the solution
to a complicated process - we need to provide our techniques with useful
extracted information and then teach our algorithms to learn from this data.
It is human nature to be inquisitive and research in computer vision can only
advance. At some point brain research will have reached heights we cannot
now fathom, as with scientific research over the centuries. It only makes
sense then to attempt to keep up in the field of computer vision, and to
model our computer visual system as closely as possible to the HVS for now,
and as advances are made in brain research this can replicated in computer
vision. This said, methods which do not attempt to model the HVS should
not be discredited at all. The possibility of a smarter method is worth the
departure from modeling reality and a computer is obviously not a brain
so we cannot hope to treat them in the same manner. The field of super
resolution imaging is such an example. It provides the creation of a scene at
a higher resolution using a number of lower resolution captures of the same
scene.

This chapter deals with changing the representation of an image from two to
three dimensions by adding a scale parameter. The aim of this is to provide
a more efficient representation in the sense that certain aspects of the infor-
mation contained in the image is immediately accessible [129]. The original
two-dimensional matrix representation of an image is implicit in the sense
that the information is contained therein but is not directly accessible. The
idea of adding a scale parameter stems from the observation that objects in
our surroundings occur at different scales, either due to their size or their
resolution with respect to the observer. All around us we view objects of dif-
ferent sizes and this is transferred into an image when a scene is captured on
camera. Thus an image is made up of objects of varying sizes, or specifically
varying scales. The content of an image can each be present at more than
one scale with each scale representing information of varying importance or
detail. Consider an image of a face brick house. The wall can be identified
as a relatively large flat structuring element consisting of small rectangular
elements each porous in texture and varying shading, that is, the presence of
at least three different scales can be seen. This illustrates the importance of
being able to extract information at various scales. Thus the natural multi-
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scale nature of our surroundings encourages a model in which we include the
scale as a parameter. To connect the concepts of scale and the DPT pulses,
we consider the number of pixels included in a connected region , that is the
area of the connected region, [213] as its scale.

The next obvious question is which scale(s) to focus on. A specific object
will only be present in a certain range of scales, but this range could differ for
another object or even for the same object is a different scene. In addition,
as described in [109] there exists ‘outer’ and ‘inner’ scale restrictions in any
image we analyze, which refer to the maximum extent of the image window or
frame, that is, the coarsest detail, and the maximum resolution of the image,
that is, the smallest detail which can be observed, respectively. These scale
restrictions will differ from image to image as well, making matters more
complicated. For example, an object in a lower resolution as well as smaller
image will be present in a different range of scales to the same object in an
image with higher resolution and larger size, since the base scale, namely
1, is measured at the individual pixel level. The ‘inner’ scale also poses
an additional restriction compared to traditional numerical methods. The
maximum resolution is restricted so that we cannot increase it further to
improve our results as we do not have data at a higher resolution, as one can
do in approximation theory by making the approximation points gradually
closer and closer together [123]. There are also numerous operators available
which we can apply to images. Thus one may ask, what operator should I
use?, where should I use it exactly? and, what size scale should it act on?
[129]. This all depends on where the meaningful information in the image. As
discussed, this differs from image to image and also depends on the interest
of the observer. The nature of the problem at hand is also ill-posed [123].
Recall that according to Hadamard [74, 174] a problem is well-posed if a
solution exists, is unique and the solution depends continuously on the data.
The projection on a two dimensional image of any three dimensional object
or scene, except for simple cases such as a solid smooth sphere, may result
in an infinite number of different possible shapes.

The above thus presents a strong case for a representation which treats all
scales equally at first without any a priori information about the scene in
the image. This is in alignment with the universal physical law of scale
invariance, the Pi-theorem, namely that physical laws must be independent
of the choice of fundamental parameters or in other words a function relating
physical observables must be independent of the choice of dimensional units,
i.e. no change over scale [64]. Thus we assume nothing for our computer
visual front-end and initially consider all possible scales. This also allows
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Figure 4.1: Path of impulses received by the retina to the visual cortex (from
[252, figure 3.3, page 23])

for a large degree of generality in order for the model to be able to solve
a large number of problems [123]. Making use of scale-spaces or multiscale
methods to analyze an image allows the use of more information than the
pixel luminosity only. This allows for providing our algorithms with all the
necessary information with which to learn, and not restricting the view to
those scales we a priori assume are important. A scale-space is formally (and
in its original Gaussian form) the representation of an image f as a continuous
family {Tt(f) : t ≥ 0} of gradually smoother versions of it [238]. The original
image is represented at t = 0. As described by [168] it is ‘an ordered stack of
pictures each representing the same scene but at a different level of detail’.
This representation provides us with more in-depth information than when
the image is represented in its original form so this calls for an effective way
to manage this new data and an effective way in which to reduce it to the
significant information it is providing us with [246].

How does the human visual system operate? It is interesting to note that
the HVS is the best understood part of our complicated brains [84]. As seen
in Figure 4.1 the optic nerve carries the impulses received from the retina in
the eyes across the optic chiasm to the visual cortex. Note the interesting
routes the impulses travel.

There is strong evidence for a ‘perceptive’ cortex, the striate cortex, and an
‘association’ cortex, the cortex surrounding the striate cortex [252, Chapter
6]. This is interpreted as the HVS consisting of two stages [105, 156]: a pre-
attentive stage in which ‘pop-out’ [104] features are detected, and then an
attentive stage in which relationships between the features are detected and
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grouping takes place. The ‘pop-out’ features are considered salient, that is
more discriminating in some way. This idea of two-stage vision also influenced
Marr in his book Vision [138].

In addition there is strong evidence for a hierarchical process in the HVS [252,
Chapter 9]. An image of the surroundings is not projected into our eyes and
transmitted as is to the visual cortex. Experiments by Hubel and Wiesel
have proven the existence of a process at work which analyzes what we see
in a hierarchical or layered manner, that is, takes in the surroundings as a
number of building blocks which then make up the entire scene. Interestingly
there is also evidence of the HVS working in a parallel manner [252, Chapters
11, 13] with multiple visual areas processing separate things individually.

So our argument for the use of scale-spaces, a representation of an image at
all its scales, is strong if we prefer to make no prior assumptions about the
scene and allow the algorithm every possible piece of information to work
with. We now give a short overview of the scale-spaces researched before the
most famous linear scale-space of Witkin was introduced.

The pyramid was the first approach to strictly treating an image in a hierar-
chical manner, but some pioneers did investigate looking at multiple scales
at a time [129], namely, Rosenfeld and Thurston in 1971 who used opera-
tors of different sizes for edge detection [191], and [108, 226, 76, 224] who
investigated sub-sampling by different amounts.

The basic idea of a pyramid involves the concept of a quadtree. This is
obtained via recursive decomposition [202, 129, 123]. More specifically it
is the successive subdivision of an image into four equally sized quadrants
until the blocks obtained at some subdivision are homogeneous, for example,
consist only of 1’s and 0’s in a binary image. For a greyscale image a measure
Σ is defined to measure the homogeneity of the quadrants. It could be
for example standard deviation or a thresholding between maximum and
minimum pixel luminosity values. Consider an image f of size 2K×2K , K ∈ Z
and some subdivision f (k). If H(f (k)), the measure of homogeneity of f (k),

is too large according to some specific value, f (k) is split into f
(k−1)
j , j =

1, 2, ..., p according to some rule. Generally p is taken as 4, thus referring
to the resulting tree as a quadtree where the leaves f

(k−1)
j are homogeneous.

This is applied recursively to each subimage f
(k−1)
j until the homogeneity of

each subimage is satisfied.

This method can in fact be viewed as a simple segmentation algorithm and
has been adapted into the ‘split-and-merge’ algorithm in which adjacent ho-
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mogeneous regions (or quadrants) are merged if their measures of homogene-
ity are similar.

The pyramid is a version of the quadtree but includes a smoothing step at
each subdivision as well, see [202, 129, 128, 123], and can be credited to Burt
[31] and Crowley [43] individually. The subdivision is in fact a size reduction
step so that the image size decreases exponentially with the scale level. The
main advantage of a pyramid is that the reduction in image size leads to
reduced computational work. For example, consider a low-pass pyramid of
Burt and Crowley for a discrete one-dimensional signal f ,

f (k−1)(x) =
N∑

n=−N

c(n)f (k)(2x− n)

with filter coefficients c(n), n = −N, ..., N . Criteria with respect to the coef-
ficients include positivity c(n) ≥ 0, unimodality c(|n|) ≥ c(|n+1|), symmetry
c(−n) = c(n), normalization

∑N
n=−N c(n) = 1, and equal contribution. The

equal contribution criterion ensures that all pixels contribute equal amounts
to all levels by requiring the sum of the weights remains constant over the
levels.

In choosing coefficients [143] proposed that an ideal low-pass filter should be
approximated as best as possible. A low-pass pyramid involves a smoothing
filter first and then a subsampling of the image at each step. Examples
include the Gaussian pyramid and Laplacian pyramid, the latter of which is
a bandpass pyramid obtained as the difference between two adjacent levels
of a low-pass pyramid like the Gaussian pyramid. These have been used in
feature detection and image compression.

Wavelets are another early example of incorporating scale into the analysis.
The wavelet transform [133, 45, 147] was developed as an improvement over
the window Fourier transform.

The continuous wavelet transform [71, 229, 132, 45, 180] decomposes a signal
over a set of translated and dilated versions of a ‘mother wavelet’ ψ ∈ L2(R)
which has zero mean

∫
R ψ(t)dt = 0, is normalized ∥ψ∥L2 = 1 and is centered

at 0. The fact that ψ has zero mean also implies that the function must
be oscillatory and therefore is a wave. For various dilation and translation
parameters a and b a set of wavelets

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
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is obtained. The simplest example of a wavelet is the Haar wavelet, see
[45, 52]. The continuous wavelet transform is then a function of the two new
parameters a and b,

CWTf(a, b) = ⟨f, ψa,b⟩L2 =

∫
R
f(t)

1√
a
ψ∗
(
t− b

a

)
dt

where ψ∗ indicates the complex conjugate of ψ, and it decomposes f with
respect to wavelet basis set. The function can be fully recovered via the
inverse wavelet transform

f(t) =

∫ ∫
CWTf(a, b)ψa,b(t)dadb.

If ψ(t) satisfies the following admissibility criterion,∫
|Ψ(ω)|2

|ω|
dω <∞

where Ψ is the Fourier transform of ψ, then ψ can be used to analyze and
reconstruct the signal without loss of information [229]. Additional regularity
conditions are also imposed by [147], namely that the wavelet transform
decreases quickly with scale. The family of wavelets is considered redundant
[45] thus an orthogonal basis of wavelets is preferred [133, 132, 45]. In higher
dimensions the wavelet transform is simply the combination on a product
space of a number of separable one dimensional transforms [78].

In order to apply the wavelet transform to digital signals a discrete theory
is needed. This is simply attained by discretizing the continuous wavelet
transform. The set of wavelets become

ψj,n(m) =
1√
sj0

ψ(s−j
0 m− n)

where ψ is the original continuous mother wavelet, k ∈ Z, and sj0 indicates a
dilation of resolution sj0 (s0 = 2 corresponds to dyadic sampling). The signal
is then also discretized by sampling it at points m = 1, ..., N . The discrete
wavelet transform is then

DWTf(n, j) =
∑
m

f(m)ψ∗
j,n(m).

The discrete signal can similarly be fully recovered here,

f(m) =
∑
n,j

DWTf(n, j)ψj,n(m).
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The wavelet transform is useful for compression by efficiently and effectively
sampling from the parameters a and b [180]. In [180] a discrete time wavelet
theory is developed by redefining what is meant by discrete scale and resolu-
tion through the sampling rate - they do not simply discretize the continuous
theory.

4.2 Background Theory

For simplicity we present some background theory here which is needed later
in this chapter.

The Gaussian

The univariate normal distribution [101] is given by

f(x) =
1√
2πσ2

e−
(
(x−µ)/σ)

)2
/2

for x ∈ R. More precisely, if a random variable X has a density function
f(x) as given above we say that X is distributed normally with mean µ and
variance σ2 (standard deviation σ), and we write X ∼ N(µ, σ2). The term
(x − µ)2/σ2 in the exponential exponent measures the distance from x to µ
in standard deviation units.

The normal distribution in p dimensions [101], for a vectorX = [X1, X2, ..., Xp],
has the following form,

f(x) =
1

(2π)p/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ) for −∞ < xi <∞, i = 1, 2, ..., p.

The vector random variable is then normally distributed with mean µ =
[µ1, µ2, ..., µp] and covariance matrix Σ where the covariance matrix is re-
quired to be positive definite. We write X ∼ N(µ,Σ). The term (x −
µ)′Σ−2(x − µ) in the density function above is called the Mahalanobis dis-
tance and measures the square distance from the vector x to the mean µ in
the units of the covariances.

For the bivariate case p = 2 (for application in images) we consider X1 and
X2 uncorrelated and with equal variances and means so that the correlation
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(a)

(b)

Figure 4.2: (a) One dimensional normal density function [101] with the areas
under the curve indicated by the vertical lines (b) Two dimensional normal
density function [101] which may be symmetric for the case of equal variances
or spherical for the case of unequal variances

matrix Σ has the form

Σ =

[
σ2 0
0 σ2

]
.

Of course the uncorrelated case is also a logical choice, as well as the case of
unequal variances.

Some properties of the Gaussian distribution are that any linear combination
of the components ofX is normally distributed, any subset of the components
of X have a normal distribution and the conditional distributions of the com-
ponents are normally distributed [101]. Figure 4.2 provides an illustration of
the one and two dimensional normal densities.
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Convolutions

A convolution [18] is an integral expression, involving two functions f and g,
for the amount of correlation of g with f as g is shifted and flipped over f .
In other words it blends the one function into the other. A beautiful moving
illustration of the concept in shown on the webpage [240]. The convolution
is defined as follows.

G(t) = (f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ (for a finite range) (4.1)

=

∫ ∞

−∞
f(τ)g(t− τ)dτ =

∫ ∞

−∞
g(τ)f(t− τ)dτ. (4.2)

The following properties hold for a convolution of f and g.

� f ∗ g = g ∗ f (commutativity)

� f ∗ (g ∗ h) = (f ∗ g) ∗ h (associativity)

� f ∗ (g + h) = (f ∗ g) + (f ∗ h) (distributivity)

� a(f ∗ g) = (af) ∗ g = f ∗ (ag) for a constant a

� (f ∗ g)′ = f ′ ∗ g = f ∗ g′ where ′ is the derivative

� F (f ∗ g) = F (f) ∗F (g) where F is the Fourier transform (Convolution
Theorem) [166]

Kernels

Schölkopf and Smola [205] provide an excellent work on kernels in computer
learning. The first use of the kernel arose as a function in the field of inte-
gral operators [80, 39, 144]. A function k giving rise to an operator Tk via
(Tk(f))(x) =

∫
X k(x, x

′)f(x′)dx′ is called the kernel of Tk. More specifically
a kernel k is a dot product of a feature space H via a mapping Φ : X → H,
that is k(x, x′) = ⟨Φ(x),Φ(x′)⟩. The standard requirement on a kernel is
positive definiteness. When H is R or C the kernel k is positive definite if
the kernel matrix (Gram matrix) K = [Kij] = [k(xi, xj)] is positive definite,
that is

∑
i,j cic̄jkij ≥ 0 ∀ci ∈ H.
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Name Formulation

Homogeneous
Polynomial Kernel

k(x, x′) = ⟨x, x′⟩d

Gaussian Kernel k(x, x′) = exp− 1
2σ2 ∥x−x′∥2

Inhomogeneous
Polynomial Kernel

k(x, x′) = (⟨x, x′⟩+ c)d for d ∈ N, c ≥ 0

Radial Basis Func-
tion Kernel

k(x, x′) = f(d(x, x′)) where d is a metric on X , and f a
function on R+

0

Table 4.1: Examples of Positive Definite Kernels

Some positive definite kernels are presented in Table 4.2. Other kernels in-
clude the cosine, Hilbert, exponential, Bn spline, rational quadratic, Bartlett,
Daniell and Parzen kernels. There also exist kernels which are not symmetric
[116]

In addition, if the solution of a partial differential equation, namely f , can be
written as Tk(f) above, then the kernel becomes the Green’s function. For
the heat or diffusion equation, the kernel is the Green’s function. The heat
kernel in Rd is as follows,

kt(x, y) =
1

(4πt)d/2
e−(x−y)T (x−y)/4t ∀x ∈ Rd and for any y ∈ Rd.

The reader will notice the heat kernel is in fact the Gaussian. The heat
kernel represents the evolution of temperature in a region whose boundary
is held fixed at a particular temperature and a initial heat source is placed
at a point at time 0 [16].

Kernel methods in machine learning include kernel principal components
for feature extraction, kernel Fisher discriminant for feature extraction and
classification, and Bayesian kernel methods to name but a few.

Modified Bessel Functions of Integer Order

The derivation of the discrete Gaussian scale-space involves in the use of
the modified Bessel function of integer order. We present them here for
simplicity.
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The solutions of the differential equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 + n2)y = 0

are called the Bessel functions of order n [10, 237]. These were first defined by
Daniel Bernoulli but then generalized by Friedrich Bessel. The two linearly
dependent solutions, for an integer n, are given by Jn(x) and J−n(x) where

Jn(x) =

(
1

2
x

)n ∞∑
k=0

(
−1

4
x2
)k

k!Γ(n+ k + 1)
.

The function Yn(x) is defined as

Yn(x) =
Jn(x) cos(nπ)− J−n(x)

sin(nπ)

so that Jn(x) and Yn(x) are linearly independent, and is called the Bessel
function of the second kind (also known as Weber’s function and Neumann
functions).

The modified Bessel functions of integer order, In(z), are obtained when
allowing x to be complex but the result real. The solutions of the differential
equation are then In(z) and I−n(z) when n is not an integer and In(z) and

Kn(z) =
1
2
π I−n(z)−In(z)

sin(nπ)
when n is an integer. In terms of the original Bessel

functions,

In(z) = i−nJn(iz) =
∞∑

m=0

(
1
2
x
)n+2m

m!Γ(n+m+ 1)
=

1

π

∫ π

0

exp{x cos τ} cos(nτ)dτ.

For more details, properties and results see [237, 178, 142, 159, 10].

4.3 Scale-Space History

In 1983 Witkin published the first work on the Gaussian scale-space [246,
245]. There was also a technical report from MIT by Stanfield in 1980 [220]
which describes a first thought on scale-spaces, as mentioned in [239]. In 1984
Koenderink published an equivalent formulation to Witkin’s as the solution
of the linear diffusion process [109]. These are considered the foremost work
on the linear Gaussian scale-space, which has now grown into a very well
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known topic in computer vision. Further pioneering work has been done by
Lindeberg, Weickert, Koendrink, ter Haar Romeny, Florack and Viergever,
to name the most prominent.

However, contrary to the timeline above, it seems that scale-spaces were in-
dependently developed in Japan by Iijima in 1959, [97] - [88]. The work
remained undiscovered by the western world, probably because the majority
of the works were in Japanese, until 1997 when the connection between the
two independent developments was provided in [239, 238]. Weickert also de-
scribes in these works that perhaps the research field of scale-spaces wasn’t
developed enough, or its importance thought of, in 1959 for Iijima’s work
to be appreciated and thus his work flew under the radar of computer vi-
sion scientists. In addition there are three other Japanese linear scale-space
approaches that were developed before 1983. All the work presented below
by Japanese scientists is from [239] and [238] where it is comprehensively
summarized.

The oldest is Taizo Iijima’s work done from 1959 [97, 86, 98, 87, 88]. Iijima
was working, at the time, at the Electrotechnical Laboratory on optical char-
acter recognition and realized the need for a general framework for extraction
of characteristic information from patterns. This first work was developed
for one dimensional signals from simplicity and relies on four axioms, namely,
linearity, translation invariance, scale invariance and a semigroup property.
Iijima chose these axioms to remain in line with requirements for object
recognition, that is, it should be invariant under changes in the reflected
light intensity, parallel shifts in position, and expansions or contractions of
the object. He also assumes that the observation results in a blurry transfor-
mation Φ and calls this class of blurring transformation ‘BOKE’ (defocusing).
More specifically, with an original image g(x) the blurred version obtained
via a convolution with a kernel ϕ has the structure

Φ(g, σ)(x) =

∫ ∞

−∞
ϕσ(x, x

′)g(x′)dx′ (4.3)

where σ is an observation parameter. Four axioms are assumed to be satisfied
by the transformation 4.3. They are linearity w.r.t scalar multiplication (if
the image intensity becomes a times more, then the transformed intensity
is similarly a times more), translation invariance, scale invariance and a
generalized semigroup property (if g is observed at scale σ1, and this is in turn
observed at scale σ2, then the equivalent observation scale is σ3(σ1, σ2) for
some σ3) [97, 86, 98, 87, 88, 239]. Note that for uniqueness of the scale-space
Iijima claims preservation of positivity is needed as an additional axiom,
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namely
Φ
(
g, x, σ

)
> 0 ∀ g(x) > 0, ∀ σ > 0.

However, in his 2002 PhD thesis Felsberg [58] shows that the Poisson kernel
also satisfies Iijima’s 5 axioms of linearity, scale and shift invariance, a semi-
group property and positivity preservation thus disputing the uniqueness
under these specific axioms.

Iijima derives the following from (4.3)

Φ
(
g, x, σ

)
=

1

2
√
πσ

∫ ∞

−∞
g(x′) exp

{
−(x− x′)2

4σ2

}
dx′,

which is a convolution between g and a Gaussian with standard deviation
σ
√
2. Iijima also argues for Gaussian blurring as our visual perception is

carried out through a lens which has a Gaussian-like blurring profile [88].

Iijima next generalized this derivation to two dimensions [98, 87]. His blurring
transformation is as follows,

Φ
(
f, x,Σ

)
=

∫ ∞

−∞

∫ ∞

−∞
ϕ(f(x′), x, x′,Σ)dx′1dx

′
2,

where Σ is a 2 × 2 symmetric positive definite matrix, x′ = (x′1, x
′
2), x =

(x1, x2), and the four axioms are, similar to the one-dimensional case, linear-
ity w.r.t multiplications, translation invariance, scale invariance and closed-
ness under affine transformations, and a generalized semigroup property
[98, 87].

If, in addition, positivity preservation is assumed then the blurring is called
the affine Gaussian scale-space:

Φ
(
f, x,Σ

)
=

∫ ∞

−∞

∫ ∞

−∞
f(x′1, x

′
2)ϕ(x1 − x′1, x2 − x′2,Σ)dx

′
1dx

′
2

with ϕ(u1, u2,Σ) =
1

4πσ2
exp

(
− µ22u

2
1 − 2µ12u1u2 + µ11u

2
2

4σ2

)
and Σ = σ2

[
µ11 µ12

µ12 µ22

]
, det

(
µ11 µ12

µ12 µ22

)
= 1.

To obtain the modern (Witkin and later) isotropic Gaussian scale-space ker-
nel an axiom of invariance under rotations is further needed. This provides
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a scale-space which is invariant with respect to direction and results in the
third axiom of scale invariance and closedness under affine transformations
being equivalent to ordinary pure scale invariance.

Iijima then further re-derived his scale-space in 1971 in order to obtain a
more physically consistent formulation [239]. This work of his appears in
[89, 91, 92, 90, 93, 94, 95, 96]. His idea is to generalize the original figure
(signal or image) f(r) to f(r, τ) such that the method attempts to model
the defocusing of the HVS or an optical system. He assumes two principles,
namely the conservation principle and the principle of maximum loss of figure
compression. The conservation principle requires the transformation not to
change the total energy of the image function so that the image function
satisfies the continuity equation

∂f(r, τ)

∂τ
+∇ · I(r, τ) = 0

where I is the flux (flow per unit) for the figure flow, r is the location, τ
the blurring parameter, and ∇ indicates divergence operation in R2. The
continuity equation states that the rate at which the image function energy
decreases is proportional to the outward flux. His second principle involves
maximizing the figure flow, that is, maximizing

J(I) =
|IT∇f |2

ITR−1I

where R(τ) is a positive definite matrix denoting the medium constant of the
blurring process. This is maximized for I(r, τ) = −R(τ) · ∇f(r, τ). These
two principles result in the anisotropic linear diffusion equation

∂f(r, τ)

∂τ
= ∇ · (R(τ) · ∇f(r, τ))

which Iijima calls the basic equation of figure. This is simply the formulation
of the affine linear Gaussian scale-space as a partial differential equation.

In 1981 another Japanese scientist, Nobuki Otsu, wrote his thesis entitled
‘Mathematical Studies on Feature Extraction in Pattern Recognition’ [161].
He modified Iijima’s five one dimensional axioms to derive a two dimensional
Gaussian scale-space. He derives a transformation f̃ of an image f such that
the axioms in Table 3.2 hold.

Axiom 2 in Table 3.2 implies that the integral kernel is symmetric (W (r, r′+
a) = W (r − a, r′)) and thus it is a convolution kernel, namely,

W (r, r′) = W (r − r′). (4.4)
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Axiom Formulation
1. Linear Integral

Operator
∃W : R2 × R2 7→ R2 such that
f̃(r) =

∫
R2 W (r, r′)f(r′)dr′ ∀ r ∈ R2

2. Translation
Invariance

∀ r ∈ R2, a ∈ R2,
f̃(r − a) =

∫
R2 W (r, r′)f(r′ − a)dr′

3. Rotation Invariance
of the Kernel

For any rotation matrix TΘ, and
∀ r = (x, y)T ∈ R2,
W (TΘr) = W (r) = W (x2 + y2)

4. Separability ∃u : R 7→ R such that W (r) = u(x)u(y)
5. Normalization of

Energy
preservation of nonnegativity:
f̃(r) ≥ 0 ∀ f(r) ≥ 0
average grey level invariance:∫
R2 f̃(r)dr =

∫
R2 f(r)dr

Table 4.2: Otsu’s Two Dimensional Axioms [161]

From Axioms 3 and 4 in Table 3.2 W (r) = k exp{c(x2 + y2)} for some pa-
rameters k, c ∈ R can be easily derived. Axiom 5 in Table 3.2 implies that
W (r) ≥ 0 and

∫
R2 W (r)dr = 1 respectively. Using these results and the five

axioms he shows that k = 1
2πσ2 and c = − 1

2σ2 and the Gaussian kernel is
obtained,

W (r) =
1

2πσ2
exp

{
− x2 + y2

2σ2

}
.

Otsu also derives an N -dimensional Gaussian scale-space in his thesis [161].
Taking ρ = σ2/2, he starts by defining

T (ρ)f(r) =
1

(4πρ)N/2
exp

{
− |r|2

4ρ

}
,

and then via Fourier techniques obtains

∂f̃(r, ρ)

∂ρ
= ∆

(
exp(ρ∆)f(r)

)
= ∆f̃(r, ρ)

so that f̃ satisfies the isotropic linear diffusion equation.

All these Japanese works only became known from 1997. Before this Witkin’s
1983 work was believed to be the starting point of the Gaussian scale-space.
We go into this is more detail in this next section.
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4.4 The Gaussian Scale-Space

The Gaussian convolution was first represented as a scale-space by Witkin in
1983 [246]. In 1980, though, Stansfield also discusses a Gaussian scale-space
idea but without the necessary axioms and mathematical backbone [220].
He applies the idea to designing a commodity expert. In addition, in 1980
Marr published his well-known work ‘Theory of Edge Detection’ [139], in
which he describes using a Gaussian convolution as a smoother and tracks
zero-crossings to aid edge detection. Zero-crossings are those points where
significant intensity changes are detected. Additional work was done by
Crowley in his PhD thesis [44]. He developed the DOLP transform, a class
of reversible transforms, and uses the cascading property of the Gaussian
(discussed later on) to speed up his algorithm from O(N2) to O(NlogN).
He makes use of a discretized Gaussian though by sampling the domain
and constructs a tree-like representation for an image using his transform.
Additional attempts have also been published [109, 250, 32, 77, 191, 136, 140].

Wikin’s 1983 formulation is as follows. His first formulation is for one-
dimensional signals in order to initially develop his ideas. By assuming lin-
earity the integral operator to be used must then involve a family of kernels
{kt : t ≥ 0} such that Tt(f)(x) =

∫
R kt(x, x

′)f(x′)dx′ [239]. By additionally
assuming translation invariance, so that τaTt = Ttτa ∀(a ∈ R, t > 0) and
for a shift operator τa, the kernel must be a convolution kernel (Equation
4.4) [239]. The Gaussian convolution is thus argued for based on its ‘well-
behavedness’, namely that it is symmetrical about its mean and decreases
away from the mean providing less weight to pixel values further away from
the focus pixel. The additional assumption is that zero-crossings of the Gaus-
sian and its derivatives may appear but not disappear as scale decreases. This
assumption ensures that the Gaussian is the only convolution kernel which
provides the ‘well-behavedness’ required. Gaussian smoothing is obtained for
a continuous signal f : R 7→ R as follows:

� The Gaussian smoothed version of f at scale t ∈ R+\{0} is obtained
as the convolution

Lf (t)(x) =

∫ ∞

−∞
gt(ξ)f(x− ξ)dξ = (gt ∗ f)(x) ∀ x ∈ R, t > 0

where g : R× R+\{0} 7→ R is the one-dimensional Gaussian kernel

gt(x) =
1√
2πt

e−x2/2t.
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� The original signal f is defined as the representation at scale 0:

Lf (0)(x) = f(x) ∀ x ∈ R. (4.5)

For every t > 0, Lf (t), is called the scale-space image of f at scale t. Succes-
sive smoothing gradually suppresses fine detail making the signal smoother
and more blurred each time.

For an N -dimensional signal f : RN 7→ R the scale-space representation is
similarly obtained using the N -dimensional Gaussian kernel.

� The Gaussian smoothed version of f at scale t ∈ R+\{0} is obtained
as the convolution

Lf (t)(x) =

∫
ξ∈RN

gt(ξ)f(x− ξ)dξ = (gt ∗ f)(x)

∀ x = (x1, x2, ..., xN) ∈ RN where g : RN × R+\{0} 7→ R is the N -
dimensional Gaussian kernel

gt(x) =
1

(2πt)N/2
e−

1
2t
xT x.

� The original signal f is defined as the representation at scale 0:

Lf (0)(x) = f(x) ∀ x ∈ RN . (4.6)

We see that Gaussian smoothing a simply a diffusion process by which the
high frequencies are removed. This can be seen easily by applying the con-
volution theorem [166] as the Fourier transform of the Gaussian remains the
Gaussian. The two-dimensional Gaussian scale-space can be derived as the
solution of the diffusion equation

∂Lf (t)(x)

∂t
=

1

2

∂2Lf (t)(x)

∂x2

with initial condition Lf (0)(·) = f(·), see [109]. As is well-known, this
parabolic partial differential equation models the evolution over scale [67,
242, 221]. In its original form (see [30]) it models the flow of heat along a
rod length ℓ, say, at time t with initial state f(x) such that along each cross-
section the temperature is uniform. The constant on the right hand side is
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determined by the heat-conductive properties of the rod material. In higher
dimensions the partial differential equation has the form

∂Lf

∂t
= κ▽2 Lf ,

where κ is the thermal diffusivity as in one dimension and ▽2 is the Laplace
operator. Koenderink’s scale-space derivation, as described in [123], is done
for two dimensions but can be reduced to one dimension as well.

The term scale-space is reserved for multi-scale representations for which
similar theoretical properties can be proven, the most important being that
of non-creation of ‘new’ or ‘artificial’ structures [123]. We provide a formal
definition in Section 4.6. Note that there is a subtle difference between the
terms multi-scale and multiresolution, however the terms are used freely and
no exact difference is clear.

4.4.1 Gaussian Scale-Space Properties

How the Gaussian kernel smooths a signal

The scale parameter t is the standard deviation in the Gaussian kernel. Thus
it acts by averaging the signal symmetrically in every direction with increas-
ing window size as t increases. Structures with support smaller than t will
then be suppressed [123].

The smoothness obtained is measured in different ways by different authors.
For example, in [250] regularity appears as the convergence of the convolution
kernels to the Dirac delta distribution and in [64] as the Fourier transform
becoming 1 everywhere. In [12, 61] infinitely differentiable convolution ker-
nels are assumed which are rapidly decreasing functions of x. In [120] the
kernels are assumed to be Borel measurable and in [125] the kernels are as-
sumed to converge for t → 0+ in the L1 norm to the Dirac distribution. In
[4] it is required that for smooth f and g

∥Lf+hg(t)− (Lf (t) + hg)∥∞ ≤ Cht, ∀h, t ∈ [0, 1]

where C may depend on f and g and Lf (t) is the Gaussian convolution of f .
In [168] the kernels are assumed to be separately continuous in x and t. More
in line with signal and image processing, the LULU smoothers for sequences
[183] create smoother versions of their input which are n-monotone if every
window of length n is monotone non-increasing or non-decreasing. A similar
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definition applies for the LULU smoothers for images, see Section 5.3. Other
filters in signal and image processing have similar results.

Of all the possible probability density functions the Gaussian is the one with
maximum entropy [12]. Entropy (known as Shannon entropy) is a measure
of uncertainty associated with a random variable. With the Gaussian having
maximum entropy we are thus making use of a kernel which applies the least
amount of prior assumptions and structure onto the signal, as is desired,
thereby further enabling smoothing with the Gaussian kernel.

Semigroup and Cascading Property

Since the Gaussian kernel exhibits the semigroup property g(·, t) ∗ g(·, s) =
g(·, t + s), a representation at a coarser scale t2 can be computed from a
representation at a finer scale t1 by an additional convolution with parameter
t2 − t1 > 0 i.e. Lf (t2)(·) = (gt2−t1 ∗ Lf (t1)) (·), so that a cascade smoothing
property is implied [123].

Separability

The N -dimensional Gaussian kernel g : RN 7→ R can be written as the
product of N one-dimensional Gaussian kernels g1 : R 7→ R,

g(x, t) =
N∏
i=1

g1(xi, t), x = (x1, x2, ..., xN) ∈ RN

since
1

(2πt)N/2
e−

1
2t
x′x =

N∏
i=1

1

(2πt)1/2
e−

x2i
2t .

This is a useful property, especially for decreasing computational complexity
[123].

The Maximum Principle

This property is exactly the strong maximum principle of parabolic equations
[158] which states that if a function attains its maximum on the interior of its
domain the function is constant. In terms of the scale-space then if x0 ∈ R
is a local maximum of x 7→ Lf (t0)(x) at a certain scale t0 ∈ R+, then the
Laplacian is negative ▽2Lf (t0)(x0) < 0 i.e. ∂tLf (t0)(x0) < 0, and if this x0
is a local minimum then ▽2Lf (t0)(x0) > 0 i.e. ∂tLf (t0)(x0) > 0. This means
that small local variations are suppressed so that a ‘hot spot’ will not become
warmer and a ‘cold spot’ not cooler [12, 85, 125].
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Scaling Property

If f(x) = f ′(sx), let x′ = sx and t′ = s2t. Then L′(·, t′) = g(·, t′) ∗ f ′

and it can be shown that the two representations are the same L(x, t) =
L′(x′, t′) i.e. stretching the parent kernel such that the areas remain the
same [168] (see [123] for a proof). Also see [125] where it is shown that this
scale invariance follows from the semi-group property when combined with
isometry invariance (symmetry) and causality.

Scale-Space Derivatives and Infinite Differentiability

We recall the notation for multi-scale derivatives. Let n = (n1, n2, ..., nN) ∈
ZN

+ , ni ∈ Z+, x = (x1, x2, ..., xN) ∈ RN and xn = xn1
1 x

n2
2 ...x

nN
N . The

∂xn = ∂xn1
1
∂xn2

2
...∂xnN

N

is the derivative of order |n| = n1+n2+ ...+nN . The multi-scale derivatives
are the scale-space derivatives of f at scale t and are given by

Lxn

f (t)(x) = ∂xnLf (t)(x) =
(
gx

n

t ∗ f
)
(x)

where gx
n

t is the partial derivative of the Gaussian

kernel of order |n|

=

∫
x′∈RN

gx
n

t (x− x′)f(x′)dx′

=

∫
x′∈RN

gx
n

t (x′)f(x− x′)dx′.

The scale-space derivatives are guaranteed to converge for any t > 0 if f is
bounded above by some polynomial. Since the Gaussian function decreases
exponentially if there exists c1, c2 ∈ R+ such that |f(x)| ≤ c1(1+ x′x)c2 then
even if f is not differentiable convergence is guaranteed. The convolution
provides a strong regularizing property and for every t > 0 the scale-space
derivatives can be treated as infinitely differentiable [123].

In addition the scale-space properties mentioned thus far transfer to the scale-
space derivatives as well. Namely, they satisfy the diffusion equation, also
get successively smoother, ensure non-enhancement of extrema and possess
the cascading smoothing property. They satisfy a scaling property but one
which is slightly different,

gxn(x, t) = sN+|n|gxn(sx, s2t).
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We then have that Lxn

f (t)(x) = ∂xnL′
f (t

′)(x′) = s|n|L′x′n

f (t′)(x′). The coordi-

nates can however by normalized to ξ = x/
√
t and ξ′ = x′/

√
t′ to make them

dimensionless and then Lξn

f (t)(x) = L′ξ′n
f (t′)(x′).

Other Properties [123]

For a function h with Fourier transform ĥ the normalized second moments
∆x and ∆ω in the spatial and Fourier domain, which describe the spread of
the distribution of these two functions, are

∆x =

∫
x∈R x

′x|h(x)|2dx∫
x∈R |h(x)|2

dx and ∆ω =

∫
ω∈R ω

′ω|ĥ(ω)|2dω∫
ω∈R |ĥ(ω)|2

dω.

The uncertainty relation states that ∆x∆ω ≥ 1
2
and the Gaussian kernel is

the only real kernel that gives equality here. The Gaussian kernel is also the
only rotationally symmetrical kernel that is separable in Cartesian coordi-
nates.

4.4.2 Gaussian Scale-Space Axioms for Uniqueness

A number of authors have, since Witkin and Koenderink’s work, made similar
derivations of the Gaussian scale-space and its uniqueness based on various
sets of axioms. The main idea throughout all the research done is that
the smoothing mechanism does not allow creation of spurious structures.
This idea has been formulated in various works. We discuss them now. A
summary table is presented in Table 4.4.2 (replicated from [239]). Note,
that the uniqueness referred refers to the Gaussian kernel in the convolution
formula, not the unique existence of only the Gaussian scale-space.

Witkin 1983 [246]

Witkin introduced the theory for one-dimensional signals and observed that
new local extrema were not created. This property extends to the scale-space
derivatives and he thus tracked the zero-crossings across scale forming a tree
data structure for the signal. He mentions a link between the length of the
branches of the tree and the perceptual saliency of the viewer.
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Axiom I1 I2 I3 O K Y B L1 F1 A P N L2 F2

Convolution Kernel • • • • • • • • • • •
Semigroup Property • • • • • • • • •
Locality •
Regularity • • • • • • • •
Infinitesimal Generator •
Maximum Loss Principle •
Causality • • • • •
Nonnegativity • • • • • •
Tikhonov Regularization •
Average Grey Level Invariance • • • • • •
Flat Kernel for t→ ∞ • •
Isometry Invariance (symmetry) • • • • • • • • • •
Homogeneity and Isotropy •
Separability • •
Scale Invariance • • • • • • • •
Valid for which dimensions? 1 2 2 2 1,2 1,2 1 1 > 1 N 1,2 N N N

Table 4.3: Comparison of the Gaussian Scale-Space Axioms [239]. (Key: I1 = [97][98][87][88], I2 = [98][87]), I3 =
[89], O = [161], K = [109], Y = [250], B = [12], L1 = [120], F1 = [64], A = [4], P = [168], N = [157], L2 = [125],
F2 = [61]
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Koenderink 1984 [109]

Koenderink shows that the family generated by using the Gaussian convolu-
tion is unique when assuming axioms of causality, homogeneity and isotropy.
These are, more specifically, that ‘spurious events’ may not be generated so
that every feature at a coarse scale level must have a ‘cause’ at a finer scale
level (every isophote - constant luminosity levels - in scale-space must be
upwards convex), and that smoothing is both scale and spatially invariant.
Using these he shows that the scale-space representation must satisfy the
diffusion equation and since the Gaussian kernel is the Green’s function of
the diffusion equation the uniqueness of the solution follows. Green’s func-
tion is a function used to show existence and uniqueness of the solution of
inhomogeneous differential equations [10]. Since the scale-space derivatives
also satisfy the diffusion equation the property of no new zero-crossings with
increasing scale still holds.

Yuille and Poggio 1983 [250]

Yuille and Poggio impose their assumptions on the filter F used as boundary
conditions in two dimensions. Their assumptions are as follows.

1. The filter is shift-invariant: The filter is therefore a convolution
F ∗ f =

∫
F (x− ξ)f(ξ)dξ.

2. The filter has no preferred length

3. The filter covers the entire image at sufficiently small scales:
limt→0 F (x, t) = δ(x) where δ(x) is the Dirac delta function.

4. The position of the center of the filter is independent of t

5. A Flat kernel as t → ∞: As |x| → ∞ and t → ∞ we have that the
filter goes to 0 and so limt→∞ kt(x) = 0.

Note that symmetry is not one of their requirements. With these assumptions
they are able to prove that in one and two dimensions the Gaussian filter is
the only filter which doesn’t create zero-crossings as scale increases, and in
two dimensions, when using the directional operator along the gradient, there
is no filter which obeys their assumptions and does not create zero-crossings
as scale increases.
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A related uniqueness formulation is also presented in [85].

Witkin et al 1986 [12]

Witkin et al prove the uniqueness of the Gaussian kernel in one dimension
under a number of conditions, the main one being a monotonicity condi-
tion such that zero-crossings appear from coarse to fine scale but existing
ones never disappear. This means that the local maxima (and minima)
of the surface swept out by f always increase (and decrease) as scale in-
creases so that peaks and valleys become more pronounced as scale increases.
Their additional assumptions in order to prove the uniqueness are that the
kernel g is infinitely differentiable and rapidly decreasing (Schwartz), there
exists a kernel h such that g(x, t) = th(xt) so that the scale parameter t
stretches the kernel along the x-axis while keeping its area invariant, the
kernel is symmetric, that is g(x, t) = g(−x, t), the kernel is normalized so
that

∫∞
−∞ g(u, t)du =

∫∞
−∞ h(v)dv = 1, and there exists a p ∈ Z such that

h(2p)(0) ̸= 0, that is, not all derivatives of h vanish at 0. The normalization
assumption insures that if f is a constant signal then it remains the same
constant though the convolution. The authors also show that the diffusion
equation is equivalent to requiring the monotonicity condition.

In two dimensions the zero-crossings are more complicated. They do not
vanish as scale increases but can split and merge.

Florack et al 1992 [64]

Florack et al also prove that the Gaussian kernel is unique. They use the
assumptions of linearity, spatial shift invariance, isotropy and scale invariance
as the basic axioms, and then derive a weak semi-group property which
ensures that several successive scalings is the same as performing a single
equivalent scaling and combine it with a uniform scaling property over scales
to finally show the uniqueness.

Lindeberg 1994 [123]

In Lindeberg’s 1994 book all his work over the previous decade is nicely sum-
marized. He uses non-creation of features as well as a semi-group structure to
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prove the uniqueness of the Gaussian kernel (proven in his 1990 paper [120]).
He also shows that the number of zero-crossings in the second derivative
decreases monotonically with scale.

In a later paper by Lindeberg [124] the main results of his book are summa-
rized.

Alvarez et al 1993 [4]

Alvarez et al present a very theoretical paper on the requirements of an image
processing transform. They classify the requirements as either architectural,
stability or morphological. The architectural axioms are those of recursivity
(semi-group property, causality), existence of an infinitesimal generator (to
remove the dependence on h, the sampling distance), regularity

∥Lf+hg(t)− (Lf (t) + hg)∥∞ ≤ Cht ∀h, t ∈ [0, 1],

for smooth f, g where C depends on f, g, and locality, namely, for small t,
Lf (t) at any point x is determined by its vicinity, namely, for all f, g ∈ C∞

whose derivatives are equal at x,

(Lf (t)− Lg(t))(x) = o(t) as t→ 0+.

The stability axioms boil down to the comparison principle i.e. no enhance-
ment can be made. This is also interpreted by [239] as nonnegativity, that
is, kt(x) ≥ 0 ∀x, ∀t > 0, to ensure new level crossings do not appear. This
is satisfied if we require monotonicity,

f ≤ g −→ Lf (t) ≤ Lg(t) ∀t > 0,

or preservation of non-negativity,

f ≥ 0 −→ Lf (t) ≥ 0 ∀t > 0.

The morphological axioms are average grey level invariance, translation in-
variance, isometry invariance and scale invariance:

AGLI:
∫
RN Lf (t)(x)dx =

∫
RN f(x)dx ∀t > 0. This requires that the kernels

be normalized
∫
RN kt(x)dx = 1 or that grey level shift invariance is

satisfied
Lf (t)(0) = 0, Lf+c(t) = Lf (t) + c.
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TI: Lτhf (t) = τh(Lf (t)) where τhf = f(x+ h).

II: LRf (t) = RLf (t) for all orthogonal transforms R defined by (Rf)(x) =
f(Rx).

SI: For any λ and t, there exists t′ such that DλLf (t
′) = Lf (t)Dλ so that

the result of Lf (t) is independent of the size of the features involved.

They show that a sequence of multi-scale operators Lf (t)(x) = u(t, x) is a
solution of a second order partial differential equation

∂u

∂t
F (D2u,Du) with u(0, x) = f(x)

with certain requirements satisfied, namely recursivity, regularity, locality,
translation and shift invariance. The heat equation is then the only linear
isometrically invariant special case of this

They in addition combine the multi-scale ideas of Witkin et al (Gaussian
scale-space and the heat equation) with the morphology scale-space ideas
(structuring elements of differing sizes and the opening and closing opera-
tions) to obtain a ‘class of morphological multi-scale analyses’. These satisfy

∂u

∂t
β(tcurv(u))|Du|

where β is an arbitrary non-decreasing real function and curv(u) is the cur-
vature of the level set of u passing through x. This combination keeps the
noise-elimination properties of the heat equation but is now shape-preserving
due to the morphological operators.

Pauwels et al 1995 [168]

In this well-written 1995 paper by Pauwels, it is described how by assuming a
semi-group property (what they and [4] call recursivity) and scale-invariance,
and other more trivial assumptions, it is possible to derive a class of scale-
space operators which depend on a parameter α for which the Gaussian is a
special case when α = 2.

They begin with assuming that the operators are linear, as all the other
authors do as well, and are integral operators. This also allows operations
to be run in parallel as as comparisons of neighbouring pixels are done.
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So the operator has the form (Lf (t)(x) =
∫
R kt(x, ξ)f(ξ)dξ where kt is the

integral kernel. By also assuming shift-invariance the kernel must then be a
convolution kernel i.e. kt(x, t) = kt(x− t), and so Kt = kt ∗ f . They impose
the following conditions on the kernel kt:

� kt is mass-preserving:
∫
kt(x)dx = 1 so that kt∗1 = 1 and a constant

signal is not changed.

� kt is even: kt(x) = kt(−x)

� kt is integrable (kt ∈ L1): otherwise the convolution is not well-
defined

� kt is a continuous function of t and x

Then assuming an additive property, namely recursivity: K0(f) = f and
KtKs = Kt+s ∀t, s ≥ 0 (the kernel also forms such a semi-group: kt ∗ ks =
kt+s) and scale-invariance they derive a rescaling of this kernel family from
a fixed kernel ϕ which depends on a parameter α. Thus recursivity and
scale-invariance are not sufficient to single out the Gaussian kernel as unique
as it is a special case when α = 2. They obtain this same result for two
dimensions. They delve deeper and show that the Gaussian kernel is only
unique if requiring the existence of an infinitesimal generator of differential
form. Then the α’s can only be even integers and only for α = 2 do we
obtain positivity everywhere.

Nielson et al 1996 [157]

In this paper scale-space, functional minimization and edge detection filters
are compared. They show that the Gaussian scale-space can be obtained
through Tikhonov regularization if requiring scale invariance and a semi-
group constraint (recursivity). Regularization is the minimization of a signal
with respect to an energy functional. A function u is a Tikhonov regulariza-
tion of a signal f ∈ L2(R2) if it minimizes the energy function

Ef [u] =

∫
R

[
(f − u)2 +

∞∑
i=1

λi

(
diu

dxi

)2
]
dx

where λi ≥ 0. They also show that this regularization then further more
results in the heat equation. Their results are also proven for higher dimen-
sions.
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Florack 1996 [61]

In this paper Florack presents a formal theoretical definition of an image
with an associated filter space as well as group structure. He also shows in
this manner, that the Gaussian is the unique filter for a linear convolution
integral operator.

Relation to the Japanese Gaussian Scale-Space Axioms [239]

The Japanese axioms for uniqueness differ from the more recent approaches in
two ways. Firstly, the earlier Japanese approaches use less axioms than even
recent approaches. Secondly, the axioms are simpler as they don’t require
any Fourier analysis, complex integrals nor functional analysis.

4.4.3 Discretizing the Gaussian Scale-Space

In practice signals are not continuous. We only have discrete data when a
signal, image or video is captured. A signal is captured as a discrete sequence,
an image as a matrix, and a video as a discrete sequence of matrices. The
Gaussian scale-space theory presented up to now has assumed a continuous
input f . The actual implementation of the continuous Gaussian scale-space
thus proves difficult. There are two options presented in [120, 121, 123].

The first option is the obvious one, namely, the sampled application of the
continuous theory. More specifically this involves discretizing the developed
continuous theory and the equations therein via numerical methods. This
can be done relatively effectively by using sampled values of the Gaussian
kernel together with the rectangle rule of integration. This method, although
it gives accurate numerical results, does not guarantee the non-creation of
structure as scale increases, which is the most important requirement for
a scale-space. The discretization of the diffusion equation is also an op-
tion. This is proposed and done with the ordinary 5-point Laplace operator
thereby forming a set of ordinary differential equations. We will return to the
discretized diffusion equation after we first deal with the second option. The
scale, currently continuous, should also be discretized in a logical manner to
enable the application. This will be discussed later in this chapter.

In order to maintain the desired theoretical structure of the continuous theory
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through the discretization process, the second option is to develop an entirely
new (discrete) theory based on the same axioms but modified for the discrete
structure we must now work with. This method in fact gives a computational
advantage over the first option as well. A discrete convolution of f by a kernel
T , namely T (·, t) ∗ f(·), is obtained as

Lf (t)(x) =
∞∑

n=−∞

T (n, t)f(x− n), t > 0.

The scale parameter t will be kept continuous though to allow for the freedom
of choosing any scale t greater than zero instead of only certain values.

Lindeberg first develops this new theory for one dimension. His main require-
ment for the discrete kernel, T (n, t), is that the number of local extrema in
the convolved signal does not exceed the number of local extrema in the
original signal. This implies that the amount of structure in the signal will
decrease as scale increases, as is the case with the continuous theory. He calls
a kernel which satisfies this property as a scale-space kernel. He then derives
the discrete scale-space as

Lf (0)(x) = f(x)

Lf (t)(x) =
∞∑

n=−∞

T (n, t)f(x− n), t > 0

where T (n, t) = e−tIn(t) and In is the modified Bessel functions of integer
order which was discussed in the earlier part of this chapter. This discrete
scale-space satisfies the following properties:

� The amount of structure does not increase with scale so that for t2 > t1
the number of local extrema in Lf (t2)(x) is not more than the number
in Lf (t1)(x).

� A semi-group property: Lf (t2)(·) = T (·, t2 − t1) ∗ Lf (t1)(·).

� Normalization:
∑∞

n=−∞ T (n, t) = 1.

� Symmetry: T (−n, t) = T (n, t).

� var (T (·, t)) =
∑∞

n=−∞ n2T (n, t) = t.

There are a few points to consider for numerical implementation of this dis-
crete scale-space. Firstly, the infinite sum needs to be replaced by a finite
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one, that is, we sum from n = −N to N for some finite N . This N can
be chosen such that the absolute error in L due to the truncation does not
exceed a given error limit ϵtrunc. Secondly, the modified Bessel function need
to be calculated with the recurrence relation,

In−1(t)− In+1(t) =
2n

t
In(t)

which is stable for backward iteration. In Lindeberg’s work he states that
built in routines are not available to evaluate the In’s and hence his develop-
ment of code making use of this recurrence relation. However, at present this
is no longer true. In Mathematica the function BesselI[n,t] is available, in R
the function besselI[n,t,expon.scaled=FALSE] is available, in SAS the func-
tion IBESSEL(t,n,0) is available, and in MATLAB the function besseli(t,n)
is available, to name a few. This is thus no longer a major problem for the
implementation.

We return to investigating the discretization of the diffusion equation. The
convolution Lf (t)(x) above is the solution of the following partial differential
equation

∂Lf (t)(x)

∂t
=

1

2
(Lf (t)(x+ 1)− 2Lf (t)(x) + Lf (t)(x− 1) for x ∈ Z) .

A two-dimensional discrete scale-space is more tricky to develop since the
non-creation of structure as scale increases isn’t always true in two dimen-
sions. Lindeberg requires instead that local extrema must simply not be
enhanced as scale increases, that is local maxima must not increase and local
minima not decrease as scale increases. This reduces to the one dimensional
axiom if the space is reduced to one dimension. He derives the scale-space
operator as

Lf (t)(x, y) =
∞∑

m=−∞

∞∑
n=−∞

T (m,n, t)f(x−m, y − n), t > 0

which satisfies the differential equation

∂Lf (t)(x, y)

∂t
=

1

2

(
(1− γ)▽2

5 Lf (t)(x, y) + γ ▽2
× Lf (t)(x, y)

)
where ▽2

5 is the five-point operator

(▽2
5f)(x, y) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)− 4f(x, y)
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and ▽2
× is the cross operator

(▽2
×f)(x, y) =

1

2
(f(x− 1, y − 1) + f(x− 1, y + 1) + f(x+ 1, y − 1)

+f(x+ 1, y + 1)− 4f(x, y)) ,

both approximations of the two-dimensional Laplace operator ∂2

∂x2 + ∂2

∂y2
.

The kernel T is symmetric, that is, T (−x, y, t) = T (x, y, t) and T (y, x, t) =
T (x, y, t) and satisfies a continuity property

∥T (·, ·, t)− δ(·, ·)∥1 → 0 as t→ 0

where δ is the two-dimensional delta function which is 1 at (0, 0) and 0
elsewhere. The operator Lf is linear, shift-invariant and satisfies the semi-
group property. If γ = 0 then T (m,n, t) is a separable convolution kernel
and so

Lf (t)(x, y) =
∞∑

m=−∞

T (m, t)
∞∑

n=−∞

f(x−m, y − n), t > 0

where T (n, t) = e−tIn(t). In addition if (x0, y0) is a local maximum (mini-
mum) point then

∂Lf (t)(x0, y0)

∂t
≤ (≥) 0.

Lindeberg defines (x, y) as a local maximum (minimum) point if for f : Z2 7→
R, we have f(x, y) ≥ (≤)f(ξ, η) ∀ (ξ, η) ∈ N8(x, y) where N8(x, y) defines the
eight vertical, horizontal and diagonal neighbours of the point (x, y). This
two dimensional formulation can also be generalized to higher dimensions,
see [123, Chapter 4].

4.4.4 Relating Scales

Having thus obtained a scale-space of the signal f the true question now is
how do we use all these smoothed versions of the signal as one? How do
we construct links between the scale levels? Witkin [245] presents a tree
structure in this regard however as stated in [4] this method implies heavy
implementation from the computational point of view and is unstable because
of the follow-ups to check for edges (zero-crossings) at each scale. However,
with today’s computing power this statement may no longer be valid. Re-
lating the scales is directly related to feature detection via the scale-space,
so we’ll return to this in Chapter 4.8.2.
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4.5 Other Scale-Spaces Developed

The Gaussian scale-space provides a multi-scale representation of an image
such that a full image is derived at each possible (or required) scale level
[123]. This is in contrast to a pyramid representation in which the original
image size is reduced at every step and provides then a multiresolution repre-
sentation. Such a multiresolution technique provides reduced computational
requirements but does not allow for explicit access to each of the scale levels.
Even more importantly, it does not allow for a method of associating struc-
tures over the scale levels, and for which a scale-space does. Thus we focus
on multi-scale methods.

Numerous researchers have introduced multi-scales methods different to the
Gaussian scale-space. We discuss them now. Note the the uniqueness of the
Gaussian scale-space is specific to the axioms imposed.

Scale-Space via the Gabor Functions

Daniel Gabor suggested the Gabor functions in 1946 [68] when Fourier anal-
ysis didn’t provide him with the freedom to vary the frequency parameter
through time. The Gabor functions are as follows,

gℓ,n(x) = g(x− aℓ)e2πibnx,−∞ < ℓ, n <∞

where g ∈ L2(R) and ∥g∥ = 1, i.e. they are a family of functions built
from translations and modulations of a function g. By choosing the function
g to be the Gaussian, a scale parameter is introduced and a hierarchical
decomposition of a signal can be obtained.

In [134] the Gabor functions are used to develop a time-frequency dictionary
of functions gγ(t) to yield an adaptive decomposition of a signal f , namely,

f(t) =
∞∑

n=−∞

angγn(t),

in which the functions are selected in order to best match the structure of the
signal. The possibility of applying this to signal coding is discussed since it
will provide a more efficient coding than orthogonal decompositions. In [72]
Granlund designs a general parallel and hierarchical operator and bases it in
the Gabor functions with g as the Gaussian. His basic idea is for the operator
to describe the image locally as a vector with two components, direction and
magnitude. In [149] a hierarchical model using multi-oriented, multi-scale
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Gabor functions is presented which models the human visual cortex. The
model is used for multi-class object recognition by extracting a feature set
representing the salient characteristics of the objects.

Nonlinear Anisotropic Diffusion

In 1984 Cohen and Grossberg [37] discuss the diffusion of boundary feature
information for a boundary-completion process in the HVS and provide a
nonlinear diffusion equation to model the activity, but in 1990 Perona and
Malik [170] presented the anisotropic diffusion scale-space in order to im-
prove on the non-meaningful and blurred edges resulting from the Gaussian
scale-space. Instead of the constant diffusion coefficient c in Koenderink’s
linear diffusion equation It = c(Ixx+ Iyy) [109] they use a coefficient c(x, y, t)
dependent on the spatial and scale parameters thereby introducing the non-
linear equation It = c(x, y, t)(Ixx+Iyy)+∇c ·∇I. They apply the scale-space
for improved edge detection. Whitaker and Pizer [241] combine the infor-
mation over the scales effectively for edge detection. Shah [216] investigates
using nonlinear diffusion for improved segmentation. Alvarez et al [4] dis-
cuss Perona and Malik’s nonlinear anisotropic equation as well as their own
adapted nonlinear approach which is linked with a morphology approach.

Mathematical Morphology

Scale-spaces are also prominent in mathematical morphology. They result
from the recursive applications of morphological operators. Some examples
follow.

Maragos [135] investigates the morphological scale space using morphological
openings and closings which ensure the preservation of edges. Braga-Neto
[20] defines a σ-connected operator, that is, an operator connected at scale σ.
He uses these operators to obtain a morphological scale-space representation
and applies it for automatic target detection. Braga-Neto and Goutsias [26]
use greyscale connectivity, namely a grayscale image is connected if all level
sets below a pre-specified threshold are connected, to build a morphological
scale-space. The apply the scale-space to object extraction, segmentation,
and object-based filtering. Brag-Neto [21] also investigates a nonlinear pyra-
midal image representation scheme via multiscale grain filters by gradually
removing connected components from an image that fail to satisfy a given
criterion.
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4.6 Scale-Space: A Formal Definition

In [20] a scale-space is referred to as a representation which allows for the
tracking of the evolution of image structures (e.g. regional maxima and
minima) through a continuous range of scales, from fine to coarse, basically
an ordered set of derived images which represent the original at alternative
scales [123]. These descriptions are very vague although clear as to their
intention. We proceed to define a scale-space formally. Let Ω be an infinite
space (for example Rn or Zn) and A(Ω) the set of all real functions defined
on Ω. The space Ω is purposefully general so as to provide an axiomatic
definition of a scale-space.

First we provide an axiomatic definition for a scaling operator. This definition
makes allowance for any domain, discrete, continuous or otherwise.

Definition 28 An operator φ : Ω 7→ Ω is called a scaling operator if it is 1)
an order preserving mapping, and 2) ∀ x ∈ Ω there exists ax ∈ Ω such that
φ−1(x) = φ−1(0) + ax.

We now define a measure of smoothness.

Definition 29 A function S : A(Ω) 7→ A(Ω) is called a measure of smooth-
ness if the following axioms hold for any f, g ∈ A(Ω):

A1 Sf = 0 ⇐⇒ f is constant.

A2 S(αf) = |α|S(f)

A3 S(f + g) ≤ S(f) + S(g)

A4 S(f ◦ Eα) = Sf for α ∈ Ω (translation invariance)

A5 S(f ◦ φ) = Sf (scale invariance)

In Definition 29 for α ∈ Ω the operator Eα : A(Ω) 7→ A(Ω) is a shift opera-
tor, namely, (Eαf)(x) = f(x − α), and the function φ : Ω 7→ Ω is a scaling
operator as in Definition 28. Note that the first three axioms for the smooth-
ing operator in Definition 29 are those for a semi-norm. Axioms 4 and 5 are
invariance properties. Note also that the operator S is actually a measure of
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‘roughness’ since a larger value indicates less ‘smoothness’. As mentioned in
[81], the choice of S in general depends on the requirements of the specific
task so Definition 29 sets general axioms. A number of alternatives for S have
been suggested in literature. For example, in [234] smoothness is considered
as a measure of how each data point is similar to or well supported by the
data points in its vicinity. Qi and Sun [175] consider a function smooth if it
is continuously differentiable, that is the function as well as its first deriva-
tive are continuous. We could also consider a function smooth provided the
derivatives up to a specific order are continuous, choosing the specific order
based on the task at hand.

We now define a scale-space operator.

Definition 30 Let Λ ⊂ R+ be the an unbounded set of scale parameters.
An operator L(f, λ) : A(Ω) × Λ → A(Ω) where f ∈ A(Ω) is a scale-space
operator if it satisfies the following axioms:

A1 L(f, 0) = f

A2 For every λ1, λ2 ∈ Λ, λ1 < λ2 we have S(L(f, λ2)) ≤ S(L(f, λ1)).
Moreover,

lim
λ→∞

S(L(f, λ)) = 0.

A3 L(αf, λ) = αL(f, λ) ∀α > 0 (Positive Homogeneity)

A4 For every λ1, λ2 ∈ Λ, λ1 < λ2, there exists an operator M(λ1, λ2) :
A(Ω) 7→ A(Ω) such that M(λ1, λ2) ◦ L(f, λ1) = L(f, λ2). (Cascading
Property)

A5 Eα ◦ L(f, λ) = L(f, λ) ◦ Eα (Translation Invariance)

A6 For each λ ∈ Λ there exists λ′ ∈ Λ such that L(f, λ′) ◦ φ = L(f ◦ φ, λ)
(Scale Invariance)

Some points to take note of. Axiom A1 ensures that the original image forms
part of the scale-space. Axiom A4 enables the successive smoothing by L(f, ·)
first at a scale λ1 and then at scale λ2 > λ1 on the already smoothed L(f, λ1).
Notice also that L need not necessarily be linear. In [123, Chapter 3] some
general axioms are presented for a linear scale-space ensuring the smoothing
operation is a convolution.
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For convenience we denote L(f, λ) as Lf (λ) since the first parameter f is
fixed and the second parameter λ varied in applications.

Following Definition 30, we define a precise definition of a scale-space asso-
ciated with a given function f ∈ A(Ω) as the range of the operator Lf .

Definition 31 Let f ∈ A(Ω). The set

Sf,Λ = {(λ,Lf (λ)) : λ ∈ Λ}

is called a scale-space of f generated by the operator L with respect to scale
parameter set Λ and measure of smoothness S ∈ A(Ω).

In the literature the term scale-space is used with more broad meaning. In
addition to the set in Definition 31 the term is also referred to its subsets or
to the operator L. As this may lead to confusion, we will use it here only
with the meaning given in Definition 31.

We show that the Gaussian scale-space satisfies the axioms of Definition 30
and 31.

Theorem 32 The Gaussian scale-space operator defined in Section 4.4 sat-
isfies the axioms of Definition 30.

Proof
For the Gaussian scale-space the scale parameter set Λ is continuous and is
given by {t : t ≥ 0}.

A1 This follows from Equations 4.5 and 4.6.

A2 For the Gaussian scale-space operator the measure of smoothness S ∈
A(Ω) defined in Definition 29 is the continuous total variation, namely

TV (f) =

∫
Ω

|∇f(x)|dx.

It is clear that TV (f) satisfies the axioms of Definition 29. Since the
derivative of the Gaussian scale-space operator is

∂

∂x
Lf (t)(x) =

(
∂

∂x
g(x, t)

)
∗ f(x),
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and it is well known that the Gaussian density function flattens out as
the variance t increases, namely g satisfies for t1 < t2

∂

∂x
g(x, t2) ≤

∂

∂x
g(x, t1),

we know that
|∇Lf (t2)(x)| ≤ |∇Lf (t1)(x)|

so that TV (Lf (t2)) ≤ TV (Lf (t1)). Also as t → ∞ ∂
∂x
g(x, t) → 0 so

that ∂
∂x
Lf (t)(x) → 0 and so

lim
t→∞

TV (Lf (t)) = 0.

A3 This follows immediately for a convolution.

A4 The cascading property of the Gaussian scale-space operator is as fol-
lows for t2 > t1, [123, Chapter 2.4.4]

L(·, t1) = g(·, t2 − t1) ∗ L(·, t1).

So the operator M(t1, t2) is given by a convolution with a Gaussian
kernel with parameter t2 − t1.

A5 Translation-invariance is a required property of the Gaussian scale-
space operator [123].

A6 In [123, Chapter 2.4.8] it is verified that for each t ∈ Λ there exists
t′ ∈ Λ such that L(f, t)(x) = L(f ′, t′)(x′) where f ◦ φ(x) = f ′(sx),
t′ = s2t and x′ = sx for s ∈ R+.

4.7 The LULU Scale-Space

The DPT forms a scale-space in the sense of Definitions 30 and 31 when
applied to a function f . We shall prove this. Firstly note that due to the
idempotence of the LULU operators Lf (λ) = LLf (λ1)(λ), indicating it doesn’t
really make sense to apply Lf (λ1) first as the same is achieved by applying
Lf (λ) for λ > λ1. However, the information which is peeled off by first Lf (λ1)
and then Lf (λ) indicates the reason for applying them step by step. Total
variation as defined in Definition 2.15 is a smoothing operator as described
in Definition 29. The five axioms are proved in [52].
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Theorem 33 The Discrete Pulse Transform, when applied to f : Zd → R,
derives a scale-space SLULU

f = {(n, Pn(f)) : n ∈ Λ0 = {0, 1, 2, ..., N}} as
described by Definition 31 which we call the LULU scale-space.

Proof We proceed to show that the axioms in Definition 30 are satisfied by
the LULU scale-space.

A1 Since the DPT is the result of Pn, n = 1, 2, ..., N , where N is the total
number of data points, it is trivial then to have P0(f) ≡ f .

A2 By Theorem 14 we know Pn(f) is total variation preserving so for
n2 > n1

TV (Pn1) =
N∑

n=n1+1

TV (Dn(f))

≤
N∑

n=n2+1

TV (Dn(f))

= TV (Pn2(f)).

Since DN(f) is constant we know that

lim
n→N+

TV (Pn(f)) = 0.

A3 Axiom A3 holds as discussed in detail in Chapter 1 and presented in
Theorem 26.

A4 Due to the idempotence of the LULU operators

LLf (n1)(n2) = Pn2(LLf (n1)(n2 − 1))

= Pn2 ◦ ... ◦ Pn1+1(LLf (n1)(n1))

= Pn2 ◦ ... ◦ Pn1+1(Pn1 ◦ Pn1(Lf (n1 − 1))

= Pn2 ◦ ... ◦ Pn1+1(Pn1(Lf (n1 − 1)) by idempotence

= Pn2 ◦ ... ◦ Pn1+1(Lf (n1))

= Lf (n2)

A5&A6 These axioms of translation and scale in variance follow immediately
from the properties of a separator given in Definition 2 since the LULU
operators are separators.
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Definition 34 The Discrete Pulse Transform, when applied to f : Zd → R,
also derives a related scale-space SLULUC

f = {(n, Pn(f)−Pn−1(f)) : n ∈ Λ0 =
{0, 1, 2, ..., N}} = {(n,Dn(f)) : n ∈ Λ0 = {0, 1, 2, ..., N}} which we call the
complimentary LULU scale-space.

Theorem 35 If Lf : A(Ω) 7→ R satisfies the cascading property in Axiom 4
of Definition 30, then for every λ1, λ2 ∈ Λ, λ1 < λ2,

Lf (λ1) = Lg(λ2) ⇒ Lf (λ2) = Lg(λ2).

Proof
By the cascading property we have

Lf (λ1) = M(λ1, λ2) ◦ Lf (λ1)

= M(λ1, λ2) ◦ Lg(λ2)

Definition 36 Given a measure of smoothness S, a function g ∈ A(Ω) is
an event of f ∈ A(Ω) if

S(f − g) + S(g) = S(f).

Definition 36 indicates that by removing g from f the smoothness has in-
creased (or roughness has reduced) as a part of f has been removed.

Definition 37 An event g ∈ A(Ω) of f ∈ A(Ω) is present at scale λ if
Lf−g(λ) ̸= Lf (λ).

Note also that if g ∈ A(Ω) is an event of f ∈ A(Ω) we have

S(Lf−g(λ)) < S(Lf (λ)).

Theorem 38 For every λ1, λ2 ∈ Λ, λ1 < λ2, if g ∈ A(Ω) is an event of
f ∈ A(Ω), then

Lf (λ1) = Lf−g(λ1) ⇒ Lf (λ2) = Lf−g(λ2).
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Proof
Follows by Theorem 35.

Theorem 38 shows that if an event is present at scale λ1, the same event is
present at scale λ2 > λ1.

The local maximum and minimum sets (see Definition 41) derived by the
DPT are exactly such events.

As mentioned before the Gaussian scale-space shifts and blurs edges through
its scales and also does not correspond directly to object shapes at each scale
[135]. The LULU scale-space does not suffer from this disadvantage. The
LULU scale-space satisfies the axioms of the Gaussian scale-space as shown
above but has the benefit of nonlinearity. This results in excellent shape and
preservation properties, namely consistent separation, and total variation
and shape preservation [8]. The Discrete Pulse Transform, f =

∑N
n=1Dn(f),

forms a scale-space where the scaled image is Pn(f) for discrete scales n =
1, 2, 3, ..., N . A second advantage of this LULU scale-space is then clear -
it is already discrete and no approximations or sampling needs to be done,
unlike with the Gaussian scale-space [12, 120, 109].

Often, a limited number of specific scales can sufficiently describe the impor-
tant parts of an image, with discarded scales representing the background
or noisy parts of the image. In addition, scales that repeat the representa-
tion of the same structures can be discarded or reduced, thereby reducing
the amount of data but preserving the information contained in the image.
Figure 4.3 gives an example of the break-down of an image into one possible
LULU scale-space.

How do the individual pixel values change through the scale-space? We refer
to this change over the scales as the DPT pixel signatures. Each pixel belongs
to k pulses, ϕn1sn1

, ϕn2sn2
, ..., ϕnksnk

, at scales {n1, n2, ..., nk} ⊆ {1, 2, 3, ..., N}.
For each pixel x, we then have what we call a Discrete Pulse Vector (DPV)
for a specified pixel x ∈ Z2,

px =

[
n1 n2 n3 . . . nk

ℓ1 ℓ2 ℓ3 . . . ℓk

]T
, x ∈ Z2 (4.7)

where for each scale ni, we have the corresponding relative luminosity ℓi of
the pulse ϕnisni

, that is, the height (positive) or depth (negative) of the local
maximum or minimum set which pixel x belongs to at scale ni. Figures 4.5 to
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(a) (b)

(c) (d)

Figure 4.3: A LULU scale-space for the Chelsea image (a) Original Image
(b) Details - Scales n = 1 to 35 (c) Smoothed Image - Scales n = 36 to 8000
(d) Large Pulses - Scales n = 8001 to N = 33900
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Figure 4.4: Original Canoeist image with the direction of the pixel indices
indicated

4.8 show the DPT pixel signatures of the canoeist, white water, dark water
and ‘normal’ water areas of the image in Figure 4.4. The signatures indicated
are similar for the same regions.

As a starting point in using the DPT for feature detection we investigate
the DPV lengths. We detect the longest DPV’s which represent pixels which
are present over the most scales and reconstruct the image using only the
discrete pulses that these pixels belong to. Figure 4.9 illustrates this idea.
The method picks out the bottom left hand potato most likely because it
has a background shadow as opposed to the rest of the potatoes. Figure 4.10
shows a similar result.

4.8 Scale-Space Applications

Scale-spaces have been used in a variety of applications namely image clus-
tering and segmentation, deblurring and denoising of images, image enhance-
ment, image compression, feature, corner and edge detection, as well as tex-
ture and shape analysis, to name a few.

In [118] the Gaussian scale-space is used to create a tree structure and then
a stack approach used on this tree to segment the image. In [196] the hi-
erarchical wavelet decomposition and Daubechieś four-tap filter are used to
decompose the image into three detail images and a single approximate im-
age. This is done recursively through the resulting pyramid to result in final
improved segmentation via texture features. In [148] a hierarchical Markov
Random Field (MRF) is used in segmenting high-resolution sonar images
(in an unsupervised manner) using what they introduce as the scale casual
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Figure 4.5: DPT signatures of randomly selected pixels of the canoeist in the
Canoeist Image
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Figure 4.6: DPT signatures of randomly selected pixels of the white water in
the Canoeist Image
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Figure 4.7: DPT signatures of randomly selected pixels of the dark (shadowed)
water in the Canoeist Image

 
 
 



CHAPTER 4. MULTI-SCALE ANALYSIS 104

Figure 4.8: DPT signatures of randomly selected pixels of the normal water
in the Canoeist Image
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(a) (b)

(c)

Figure 4.9: (a) Original (b) Ten largest DPV’s (b) Largest DPV only
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Figure 4.10: (a) Original (b) 28 largest DPV’s

multigrid (SCM) algorithm. In [115] use of the Gaussian scale-space is jus-
tified as it simulates the action of the human visual system and a nested
clustering dendrogram is produced such that data falling within the same
region of the tree form a cluster in the segmentation. They also produce a
non-nested hierarchical segmentation. In [146] a nonlinear scale-space via a
general class of morphological levelings is presented and a brief description
of how these levelings produce a segmentation is discussed. In [1] an im-
proved segmentation is presented by using the morphological operators area
open-close and close-open to produce a scale-space. In [111] use the Gaus-
sian scale-space and its ‘deep structure’ to improve segmentation. In [171] a
nonlinear scale-space is constructed via a diffusion equation, a tree is created
and then unsupervised as well as supervised segmentation is presented via
the edges through the scales of the scale-space. In [194] look at the spatial
gradients between scales in the Gaussian scale-space and present a temporal
segmentation of a sequence of images via the resulting scale-space tree. In
[195] unsupervised discovery of valid clusters using statistics on the modes
of the probability density function in the Gaussian scale space is shown.

In [192] multiscale total variation is introduced to improve their previous
technique on textured regions for image recovery. In [51] a scale-adaption
algorithm for reliable edge detection and blur estimation is presented. In
[154] noise estimation is investigated via (i) multi-scale transforms, including
wavelet transforms; (ii) a data structure termed the multiresolution support;
and (iii) multiple scale significance testing. In [223, 222] an iterative varia-

 
 
 



CHAPTER 4. MULTI-SCALE ANALYSIS 107

tional decomposition via a minimizer functional is presented for deblurring,
denoising and segmentation. In [247] a scale-space is developed via Markov
Random Fields for the application of restoring degraded images.

In [19] an image compression scheme is introduced which involves a multires-
olution decomposition derived from the wavelet transform. In [145] a cascade
of compressions are produced via wavelet packets by coding the residual parts
of each layer in a lossy manner which provides a sparse representation.

In [127] feature detection is determined via automatic scale selection in the
Gaussian scale-space. In [228] a scale-space is created via pyramids of mor-
phological operators and features are measured according to their persistence
through the scales. In [149] multi-oriented, multi-scale Gabor filters are used
to build a hierarchical model based on the visual cortex.

In [139] the raw primal sketch obtained with the Gaussian scale-space and
its applicability for edge detection is presented.

In [177] the Gaussian scale-space is also made use of for corner detection.
In [122] edge detection is investigated via automatic scale selection in the
Gaussian scale-space. In [126] an edges strength is measured via the zero-
crossings in the Gaussian scale-space and thereby enables edge detection.
In [59] a thermodynamic model is employed for scale-space generation and
significant edges (thin regions) are detected via this.

In [153] the curvature scale-space is presented (together with two additional
versions of it) for shape representation at arbitrary scales and orientations.
This provides insight into texture analysis. The author continues his work
in [151, 152, 150] discussing shape matching similarity retrieval.

In [219] the author combines Shannons entropy and Witkin and Koenderinks
scale-space to establish a precise connection between the heat equation and
the thermodynamic entropy in Scale-Space. Experimentally the entropy
function is used to study global textures.

Other applications of scale-spaces involve image fusion [225], image water-
marking [173, 83], road extraction [141], astronomy [154], fingerprint en-
hancement [3], object tracking and recognition as well as image retrieval
[105], surface editing in images [17] and palm print verification [119]. In [4] a
multi-scale video analysis is described, an extension of their work for images,
in which they introduce a new axiom namely that of Galilean invariance.
This requires that the motion of the whole picture at constant velocity does
not alter the analysis.

 
 
 



CHAPTER 4. MULTI-SCALE ANALYSIS 108

In [160] an imaged is decomposed into two images namely cartoon and the
texture or noise and image deblurring denoising are presented as applications.

This is by no means an exhaustive list but simply an indication of the wide
variety of applications in which scale-spaces are made use of.

4.8.1 Feature Detection in the Gaussian Scale-Space

One drawback of the Gaussian scale-space is its linearity. It removes small
scale features (noise) very well but results in spatial distortions as scale
increases, i.e. reduced sharpness of edges and shapes [129, 62]. To pre-
vent this a nonlinear smoothing step is introduced in the literature, see
[124, 170, 99, 63, 28, 230], and the LULU scale-space, obtained as the DPT,
does the same (see [52] and [8] for the edge preserving properties of the DPT).
Nonlinear filtering needs to be introduced into image analysis if realistic
structures are the aim of the detection [123]. Koenderink and collaborators
introduce the idea of using nonlinear, possibly, combinations of derivatives
i.e. differential geometric descriptors, to introduce nonlinearity.

In [123, Chapter 6] a basic introduction into the use of the Gaussian scale-
space and its scale-space derivatives for edge detection, junction (corner)
detection and feature detection is presented. For edge detection the local di-
rectional derivatives are used to detect maximum gradient changes. Junction
detection is obtained at high curvature combined with high gradient points
. Feature detection is obtained by detecting zero-crossings and/or local ex-
trema. Weickert et al [239] detect regions of interest as the stable stationary
points in the Gaussian scale-space tree within a surrounding circular radius
of appropriate radius.

4.8.2 Feature Detection in the LULU Scale-Space

With the availability of all the pulses of the Discrete Pulse Transform, the
question arises as to how we can utilize all the obtained pulses to solve some
of the problems encountered in image analysis? From the DPT, we no longer
only have the original luminosity at each pixel, but instead have an otherwise
invisible insight into the make-up and content of the image and the pixels
within.

The additional image structure provided by the DPT provides improved fea-
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ture detection over standard approaches using only luminosity values. This
chapter will first look at the philosophy of feature detection in images and
then introduce a number of techniques which utilize the DPT. The tech-
niques investigated are rudimentary as we investigate the basis for using the
DPT for feature point detection and feature detection. Advancements can
be made once ability of the DPT in feature point detection as well as feature
detection has been explored.

Philosophy of Feature Detection

In 1978 the ability of the human visual system (HVS) to discriminate an
object in a random dot display was investigated by Barlow [13]. The aim
was to determine estimates for the efficiency of the HVS to achieve this task,
which Barlow refers to as absolute measures of sensory performance. He de-
termined, albeit with a sample size of only 2, that the efficiency limit is 50%
i.e. the HVS uses 50% of the data available for recognition tasks. In more
obvious discrimination tasks this measured efficiency was less. Other exper-
imenters determined similar results. Also in 1978, according to Barrow and
Tenenbaum [15], the HVS easily characterizes a scene with respect to range,
orientation, reflectance and incident illumination on first the first view. It
contains cells which measure these individual characteristics and in a manner
sums them to estimate the shape information [169]. Mishra and Jenkins [149]
also designed feature extractors based on Gabor filters and motivate them
with their link to detecting natural stimuli i.e. they are biologically inspired.

A feature extraction method needs to, in some manner, extract the signa-
ture of the objects in the scene. This should be done as accurately and
uniquely as possible, as emphasized in [149], and the salient characteristics
of the object should be measured. Salient is defined very nicely as prominent
or conspicuous in the Oxford English Dictionary. A high profile paper in
Nature [103], describes textons. These are local conspicuous features. The
pre-attentive texture probing by the HVS uses these textons and first order
moments for discrimination rather than higher order moments, that is, the
simplest and most obvious is the most useful the descriptor. We can in fact
go one step further than feature extraction and look into recognition of the
feature detected. This then requires a type of classification based on the
salient features we can extract from the object.

The aim of our feature detection using the DPT is to determine salient feature
points of the image using the pulses in the DPT, as opposed to full features
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extracted as objects (i.e. targets). Very importantly, we do not make any
initial assumptions for the image regarding luminosity, amount of variation,
size of objects present, texture etc., so that we can process any possible
image. There does exist literature which assume a model for the image
data, for example, a normal distribution [11], or a model for the way in
which the image was obtained, for example when making use of the camera
technique to remove illumination. In order to make our method applicable in
all situations we shall ignore such ideas (although they are very useful when
such assumptions are indeed true for a sample of images and thus improve
the processing of the image). Of course, the interested reader could make
improvements on our ideas if such assumptions are valid for their case.

How do we decide how salient a feature is? The most obvious is that large,
high-contrast objects will naturally be more salient than small, low-contrast
objects, in the absence of complicated backgrounds, but then at what size
and contrast does the required saliency begin? In [107] this is determined by
measuring the ability of the agent to draw a line around the target distinc-
tively and they present a theory of optimal linear edge detection. According
to Chi and Leung [35] humans recognize line drawings as quickly and almost
as accurately as full detailed images. In addition they follow the five laws
of Gestalt theory, which describe human perception of significant shape fea-
tures, to set up good edge detectors. These five laws are focal point, that is
select the top a% longest lines and arcs, proximity, continuity, similarity and
symmetry, the latter four which choose the neighbours of the focal features
concurrently according to these properties.

By using the edges or boundaries of an object we can also enter the field
of shape analysis. Colour alone will not provide enough concrete data for
detection as two vastly different objects present in an image may have the
same luminosity. It is shape that represents the inherent structure of the
image [50]. However, as mentioned in [69] by storing all the shape informa-
tion we extract a huge amount of data from the image. There are measures
available which can accurately describe a shape in a simple manner avoid-
ing additional storage memory. This is also a very important strategy to be
considered since the DPT produces a large number of pulses and thier anal-
ysis can require significant computational effort. The idea is to represent
each object in the image with a feature vector, and not each pixel, thereby
reducing the information that would need to be processed. Urdiales et al
[227] describe some ideal properties of a feature vector, namely, uniqueness
for each object, resistant to noise and as compact as possible for storage.
Loncaric [130] gives a nice summary of shape analysis techniques.
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Feature Extraction

In the absence of prior knowledge about the feature characteristics and size
one has to keep every scale. Reflecting on how a human eye picks out fea-
tures in an image the Human Vision System (HVS) model [105] provides
some insight. It consists of a first stage, the Pre-Attentive Stage, in which
the features are detected and then a second stage, the Attentive Stage, in
which matching takes place between the detected features of the first stage
and the rest of the image. It is clear that the HVS possesses a degree of
saliency to detect the ‘pop-out’ features. We will show how the LULU op-
erators can be used to detect these ‘pop-out’ features. Following the HVS
model, the features are those areas in the image that are stable, that is, the
areas that survive over a wide range of scales, [129, 122]. This is simple
to apply to the LULU scale-space. Indeed, each pixel belongs to k pulses,
ϕn1sn1

, ϕn2sn2
, ..., ϕnksnk

, at scales {n1, n2, ..., nk} ⊆ {1, 2, 3, ..., N}. For each
pixel x, we then have what we call a Discrete Pulse Vector (DPV) for a
specified pixel x ∈ Z2,

px =

[
n1 n2 n3 . . . nk

ℓ1 ℓ2 ℓ3 . . . ℓk

]T
, x ∈ Z2 (4.8)

where for each scale ni, we have the corresponding relative luminosity ℓi
of the pulse ϕnisni

, that is, the height (positive) or depth (negative) of the
local maximum or minimum set which pixel x belongs to at scale ni. The
simplest and most obvious way of using these DPV’s for feature detection is
by keeping only those pixels belonging to DPV’s that contain a large number
of scales, i.e. large values of k. This is illustrated in Figure 4.11. Whiter
values (higher luminosity) indicate larger values of k. In the last image only
the top 20% proportion of the largest values of k and their respective pixels
are kept. Notice how the front of the tank is a strong feature. We refer to the
value k as the impulse strength. Van der Walt refers to this as the strength
of the pixel [231].

An alternative is to consider the ranges nk−n1, referred to as the scale-space
lifetime at the pixel [122], but this method does not differentiate between
features as effectively as the first. Compare Figure 4.11 with Figure 4.12.
We clearly see this measure does not pick out dominant features as well. For
this method one needs to probably do some removal of outliers and cleaning
of the data first. It still picks out the tank as a feature (seen in white) but
the background also gets picked out and remains even if we threshold. This
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(a) (b)

(c)

Figure 4.11: (a) The original tank image with (b) its impulse strength shown,
as well as (c) only the top 20% largest impulse strength pixels
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(a) (b)

(c)

Figure 4.12: (a) The original tank image with (b) its scale-space lifetimes
shown, and (c) only the top 0.01% largest scale-space lifetime pixels

can be understood logically, however, since a discrete pulse vector may be for
example only of length 2 and have only a small scale and a very large scale,
giving a large value for nk−n1. The pixel however does not exist over a large
range of scales and should not be classified as such. The scale-space life-time
may however provide an indication of whether a pixel is noise, texture, small
detail, large detail etc.

As mentioned in [122] a two stage approach may be better, thus we present a
method in which first the feature are detected via impulse strength mentioned
above and then fine-tuned using finer scale data and shape descriptors. We
present three examples to illustrate this idea. Further research is currently
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(a) (b)

(c)

Figure 4.13: Pulse strength illustrated on (a). (b) Only pixels included in at
least 59 out of the 126 possible pulse scales are shown. (c) The circularity of
the pulses used in (b) is restricted to between 0.3 and 0.6 to extract the eyes
of the cat.

being conducted to perfect this technique.

In Figure 4.13, we keep only the pixels which have discrete pulse vectors with
at least 59 scales out of the maximum of 126 over all the pixels. We can see
that the cat’s two eyes and nose are picked out as features. We also see that
some large background pulses are detected as features. These large noise
pulses can be filtered out with a circularity shape descriptor. A circularity
value close to 1 then indicates higher circularity than a value closer to 0.

In Figure 4.14, we keep only the pixels that have discrete pulse vectors with
at least 65 scales out of a maximum of 105 over all the pixels. The three
vehicles are detected as features. In Figure 4.15, we first remove the glint on
the surface of the ocean by limiting the luminosity of the individual pulses.
The third image in Figure 4.15 indicates the impulse strength of the image
with the glint removed. The two main features in this image are the yacht and
surprisingly the atmospheric mist effect on the land sea border. Atmospheric
conditions often affect feature detection in marine images. In addition, when
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Figure 4.14: Impulse strengths illustrated on Trucks & APCs.

we talk about features we refer to those ‘objects’ which ‘pop-out’ first, and
indeed when looking at the image in Figure 4.15 the yacht and the mist stand
out first. Notice also though that the small boat in the background is also
picked out via the impulse strength, even though it is very dark and almost
camouflaged into the water. We can filter out the effect of the mist, and
other effects, by using only pulses with specific areas, see the fourth image
in Figure 4.15. The small boat is picked out in a similar manner.

These examples give an overview of the capability of the DPT for feature
detection.

4.8.3 Segmentation in the LULU Scale-Space

Segmentation is the process of partitioning an image or signal into segments
which provide a simpler representation more indicative of the image content
with respect to visual characteristics. Serra provides a formal definition in
terms of partitions and connectivity in [213]. It is immediately obvious that
different segmentations could be obtained by using different measures for
the similarity of image content. An obtained segmentation may be over-
segmented meaning there exist some pairs of regions for which the between-
region variation is small compared to the within-region variation, so that
there are too many regions in the segmentation, [57]. In [163] a connection is
presented which can be used in place of the usual image connectivity to avoid
over-segmentation. An image may also be under-segmented meaning there
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Figure 4.15: Impulse strengths illustrated on yacht.
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exists a way to further segment regions without causing over-segmentation
so that there are too few regions in the segmentation [57]. Felzenszwalb and
Huttenlocher [57] and Hoover et al [82] provide examples of graph-theoretical
and set-theoretic definitions for over- and under-segmentation respectively.
Zhang discusses techniques to measure the quality of a segmentation, namely
analytical, which involves looking at the actual algorithm and its properties,
most importantly convergence properties; empirical goodness, which is based
on human perception of a good segmentation; and empirical discrepancy,
which involves a comparison with the ground truth segmentation, if available
[253].

Algorithms for segmentation may take into account a priori information
about an image. Methods like this, when the features in the image are known,
are called supervised segmentation . Methods may also be semi-supervised in
which case features are only partially known. Unsupervised methods assume
no knowledge of the image features and learn as the algorithm proceeds.
Song and Fan [218] present a study on the different techniques based on the
availability of image features. The number of segments an algorithm should
aim for is also a problem which has been given attention. If this is known
before hand it can be specified. Other methods determine this as the algo-
rithm proceeds. For example, Nakamura and Kehtarnavaz [155] provide a
method to determine the appropriate number of clusters by making use of
scale-space theory in which a prominent data structure is one which survives
over many scales and Sakai and Imiya [195] use the modes of a probability
density function obtained via the Gaussian scale-space for cluster discovery.

As discussed in detail in Chapter 4, the human vision system has a big effect
on the philosophy of imaging techniques, and this is true for segmentation
as well. Zahn segments into Gestalt clusters which are those perceived by
humans [251]. Ramos et al base a segmentation into strong edges, smooth
regions and textured regions on psychophysical studies [176]. Leung et al
present a clustering by using scale-space’s to simulate the human visual sys-
tem [115].

Segmentation using connected operators has proved very effective. Salem-
bier and Serra [200] argue for the use of filters by reconstruction since they
simplify the image while preserving contours and are thus good for noise can-
celation and improved segmentation. In [215] the same authors use pyramids
of nested flat zones based on connected operators. This also provides good
segmentation since simplified into flat zones and preserves contour informa-
tion. Soille [217] goes further and deals with a constrained connectivity for
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which 2 pixels are connected if they satisfy a series of constraints in terms of
simple measures. He uses this connectivity for segmentation.

Using the pulses of the DPT we obtain improved segmentation. Each pixel
in the image belongs to a number of pulses in the DPT but not at every
scale. We associate a Discrete Pulse Vector (DPV) with each pixel, namely

DPV (x) =

(
s
(x)
1 s

(x)
2 ... s

(x)
m

ℓ
(x)
1 ℓ

(x)
2 ... ℓ

(x)
m

)
,

where the s
(x)
i ’s for i = 1, 2, ...,m are the scales at which pixel x appears

in a pulse and the the relative luminosities ℓ
(x)
i ’s for i = 1, 2, ...,m are the

respective heights or depths of the pulse at that scale containing x. Various
pixels may be present in a large number of scales resulting in very large
DPV’s as well as DPV’s of different lengths so the DPV’s cannot be clustered
directly. This information needs to be summarized into only a few values in
order for each pixel to be clustered using the algorithm. We investigated
using the following possible summarizing measures,

�

∑m
i=1 |ℓi|

�

∑m
i=1 |ℓi|si

�

∑m
i=1 ℓisi

�

∑m
i=1 ℓi

√
si

�

∑m
i=1(ℓi)

2si.

The investigations indicate that
∑m

i=1 |ℓi| performs best in representing the
content of the image obtained from the DPT and we use this measure through-
out. The measure can in addition be broken into bands

m1∑
i=1

|ℓi|,
m2∑

i=m1+1

|ℓi|, ...,
m∑

i=mn+1

|ℓi| (4.9)

and a vector clustering algorithm applied. As long as the number of bands
is not too large this is fairly simple and provides better segmentations.

We make use of the FCM algorithm for initial illustrations. We present some
examples in Figures 4.16 to 4.20. FCM is an alternative to the standard
k-means algorithm and incorporates a degree of fuzziness with respect to
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the cluster assignments, as opposed to the hard clustering of the k-means
algorithm where each observation can belong to only one cluster. Duda
and Canty [48] compare a number of algorithms and conclude that fuzzy
association works the best. Each observation xp is assigned a coefficient
wi(xp) representing the degree of association of xp with cluster i such that∑c

i=1wi(xp) = 1 for each xp. A larger coefficient indicates a better strength
of association with that respective cluster. The centers are calculated as

µi =

∑
xp
wi(xp)

mxp∑
xp
wi(xp)m

where m is the fuzzy exponent (usually taken as 2) and the coefficients up-
dated as the inverse distance from the observation to the cluster

wi(xp) =

(
c∑

j=1

(
∥µi − xp∥
∥µj − xp∥

)2/(m−1)
)−1

.

Convergence of the fuzzy c-means (FCM) algorithm is obtained when the co-
efficients no longer change significantly. The final segmentation is obtained
by assigning observations to the cluster i for which wi is the largest of the
coefficients for that observation. The FCM algorithm results in similar poor
segmentation sometimes. Gath and Geva [70] provide an unsupervised FCM
algorithm which determines the number of clusters as it proceeds. Xie and
Beni [249] introduce a validity measure for the FCM clusters. Krishnapuram
and Keller [110] compare fuzzy and hard k-means with possibilistic cluster-
ing since the former two encounter trouble in noisy environments. Possi-
bilistic clustering softens the requirements on the fuzzy coefficients such that∑k

i=1wi(xp) ≤ 1 for each xp. Pal et al [165] also include a possibilistic ele-
ment to the algorithm to improve its effect on noise. Hammah and Currah
[75] look at using different distance measures and how they affect the algo-
rithm. They also introduce a new measure based on the Kent probability
distribution.

In Figure 4.16 the improved segmentation using the LULU scale-space is
shown. In Figure 4.17 the same is illustrated on the sharpened image (see Sec-
tion 5.2) giving similar results, but in fact the segmentation appears worse.
This can be attributed to the low resolution of the image. We include it
none-the-less as it does provide insight into the cluster scale distributions.
Figure 4.18 shows the distributions of the scales represented by the three
clusters of Figure 4.16(b). Although similar there are distinct difference too.
The black cluster, for example, represents more smaller scales than larger
scales, as opposed to the white cluster.
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(a) (b) (c)

Figure 4.16: (a) Original Image, (b) Clustering the DPT into 3 clusters, (c)
Ordinary FCM with 3 clusters

(a) (b)

Figure 4.17: (a) Sharpened Original Image, (b) Clustering the DPT into 3
clusters

The fact that the DPT provides us with pulses of every size also allows us to
remove certain scales before segmentation. Figure 4.19 illustrates this idea
on the previous example. Only pulses larger then 150 are used in the seg-
mentation. The result is a very sound segmentation. The scale distributions
amongst the 3 clusters are given in Figure 4.20 yielding similar results.

The ICM clustering algorithm presented in [46] is effective yet simple enough
to illustrate improved segmentation as well. The ICM algorithm follows.
Notice that k-means is used as an initial step for the algorithm providing
even better segmentation.

ITERATED CONDITIONAL MODES ALGORITHM

For a segmentation of an image I with N pixels represented by (i, j), and

given feature vectors fij for each pixel, into K clusters C
(α)
1 , C

(α)
2 , ..., C

(α)
K

where α is the number of iterations the steps proceed as follows:

1. Use the k-means algorithm to obtain initial cluster mean vectors µ
(0)
k

for clusters k = 1, 2, 3, ..., K.
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Figure 4.18: Scale distributions within each cluster of Figure 4.16(b) (a)
Black Cluster, (b) Grey Cluster, (c) White Cluster

Figure 4.19: Clustering of the sharp DPT into 3 clusters using only pulses
larger than 150 i.e. fnew =

∑N
n=150Dn(f)
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Figure 4.20: Scale distributions within each cluster of Figure 4.19 (a) Black
Cluster, (b) Grey Cluster, (c) White Cluster
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2. Assign pixel (i, j) to cluster k for which the minimum of(
fij − µ

(α)
k

)T (
fij − µ

(α)
k

)
− βν(α)N

(α)
ij (k)

is obtained, where

� β is a spatial penalization parameter (suggested as 1.5 in [46]),

� ν(α) = 1
N

∑N
k=1

∑
(i,j)∈C(α)

k

(
fij − µ

(α)
k

)T (
fij − µ

(α)
k

)
is the within

cluster variance, and

� N
(α)
ij (k) is the number of neighbours of pixel (i, j) currently clas-

sified in cluster k at iteration α.

3. Recalculate the cluster mean vectors

µ
(α)
k =

1

N
(α)
k

∑
(i,j)∈C(α)

k

fij.

4. Repeat steps 2 and 3 until convergence (no change).

We illustrate the effect of β in Figure 4.21. Notice how the regions in the
image are more smoothed with less detail as β increases.

We repeat the ICM segmentation on the image used to illustrate the k-means
algorithm in Figures 4.22 to 4.24 . Figure 4.22 shows the ICM algorithm
applied to the original image without the use of the DPT. Notice the im-
provement over the k-means results already in the 3 cluster segmentation. In
Figure 4.23 the segmentation is done with the DPT. There doesn’t seem to
be a huge improvement and in fact the segmentation requires 5 clusters now
to pick up the canoeist effectively. However, in Figure 4.24 the segmentation
is done again using the DPT but only pulses larger than 100, as was dis-
cussed in Chapter 4.8.2 as significant structures are very unlikely to be this
small (depending on the total image size of course). The canoeist is picked
out in the 3-, 4- and 5-cluster segmentation in this case. It is not surprising
the 2-cluster segmentation cannot pick the canoeist out as there are clearly
three patterns in the image - the dark water, white water and the canoeist,
thus the canoeist will end up being classified with one of the water patterns.

We now look at the Tank image introduced in Figure 4.21. Figure 4.25
presents the ICM segmentation of the Tank image without using the DPT.
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(a) (b) (c)

(d) (e) (f)

Figure 4.21: The effect of parameter β in the ICM algorithm illustrated on
the Tank image clustered into 3 clusters (a) β = 0.1 (b) β = 0.5 (c) β = 1
(d) β = 1.5 (e) β = 2 (f) β = 2.5

(a) (b) (c) (d)

Figure 4.22: ICM segmentation illustrated on the Canoeist for (a) 2 (b) 3 (c)
4 (d) 5, clusters
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(a) (b) (c) (d)

Figure 4.23: ICM segmentation of the Canoeist image using the DPT into
(a) 2 (b) 3 (c) 4 (d) 5, clusters

(a) (b) (c) (d)

Figure 4.24: ICM segmentation of the Canoeist image using the DPT and
only pulses 100 and larger into (a) 2 (b) 3 (c) 4 (d) 5, clusters

Notice has ‘messy’ the segmentations are - the clusters are not easily dis-
cernable. Figure 4.26 shows the improved segmentation using the DPT. The
segmentations are more clear.

Since the DPT provides us with all the scale information and the ICM al-
gorithm can be vectorized, further improved segmentation may be obtained
by separating the |ℓi| into bands indicated in (4.9). Figure 4.27 shows this
method by separating the number of scales in half, the lower half representing
the smaller scales and the upper half the larger scales. Notice that in the vec-
tor segmentation on (a) already shows an improvement over Figure 4.26(b).
In Figure 4.27(b) the algorithm does not converge as there are not signif-
icantly different patterns in the information provided by the lower scales.
Figure 4.27(c) also provides better segmentation - the background grass seg-
ments more consistently than before. Figure 4.28 shows the segmentation
by separating the scales into three bands. By applying the ICM algorithm
to the lower and middle band individually doesn’t result in convergence and
are thus not included.

By using the total variation spectrum we can improve the grouping used
above. Figure 4.29 shows the variation spectrum [52] for the Tank image.
There seem to be five distinct bands of total variation, namely, 1 - 30000,
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(a) (b)

(c) (d)

Figure 4.25: ICM segmentation of the Tank image into (a) 2 (b) 3 (c) 4 (d)
5, clusters
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(a) (b)

(c) (d)

Figure 4.26: ICM segmentation using the DPT of the Tank image into (a) 2
(b) 3 (c) 4 (d) 5, clusters

(a) (b) (c)

Figure 4.27: ICM segmentation of the Tank image into three clusters using
the DPT separated into two bands (a) both bands clusters (b) lower band
clustered (c) upper band clustered
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(a) (b)

Figure 4.28: ICM segmentation of the Tank image into three clusters using
the DPT separated into three bands (a) both bands clustered (b) upper band
clustered

Figure 4.29: Total Variation Spectrum of the Tank Image

30001 - 50000, 50001 - 70000, 70001 - 120000, 120001 - 130139. The result
of vectorized ICM segmentation using the total variation spectrum is shown
in Figure 4.30. The individual segmentations of bands 1 - 30000, 30001 -
50000 and 50001 - 70000 do not converge illustrating the information within
each of these bands has low variation. Figure 4.30(a) and (e) present the best
segmentations by picking out the two different background grass shades, some
significant features in the grass, as well as the tank with its different features.

In Chapter 4.8.2 it was discussed that pulses of size larger than 100 should
be used for feature detection as significant structures are very likely to be
smaller (depending on the total image size of course). Incorporating this into
segmentation gives the results in Figure 4.31. We combine this idea with the
total variation spectrum and investigate bands 100 - 30000, 30001 - 50000,
50001 - 70000, 70001 - 120000, 120001 - 130139. The result is shown in Figure
4.31(e) - notice it is very similar to (b).
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(a) (b) (c)

(d) (e)

Figure 4.30: ICM segmentation of the Tank image into three clusters using
the DPT and the total variation spectrum shown in Figure 4.29 (a) all 5 TV
bands (b) scales 70001 - 120000 (c) scales 120001 - 130139 (d) Scales 1 -
70000 (e) Scales 70001 - 130139
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(a) (b) (c)

(d) (e)

Figure 4.31: The ICM algorithm illustrated on the Tank image using only
pulses of size 100 and larger (a) 2 clusters (b) 3 clusters (c) 4 clusters (d) 5
clusters (e) 3 clusters using the TV bands
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The results presented in this section are by no means the end-all of segmenta-
tion with the DPT and have been presented as an indication of the usefulness
of the DPT in image segmentation. Future research will involve making use
of the LULU scale-space to determine the number of clusters beforehand as
Nakamura and Kehtarnavaz [155] do with the Gaussian scale-space; use the
scale-space life-times for the segmentation as these may clearly distinguish
noise, texture, small detail and large detail; look at alternative connectivity
approaches for improved segmentation such as the work done by Soille in
[217]; comparisons with state-of-the-art segmentation; and using the shape
measures, such as the shape number and shape dispersion matrix, discussed
in detail in Section 4.8.2 to obtain further improved segmentation as Ur-
diales et al [227] do. This last approach ventures into the realm of pattern
recognition which will enable the modeling of backgrounds in images and the
subsequent removal of them for accurate target detection and tracking.

4.9 Conclusion

In this chapter we have presented an overview of the development of the
original Gaussian scale-space of Witkin and Iijima, further works resulting
from this, as well the various pre-scale-space notions of introducing scale
into analysis of signals and images. We also briefly listed the numerous
applications of scale-spaces in image analysis. Most importantly, we provided
a formal definition of a scale-space (Section 4.6), which has not been done
to our knowledge. The Discrete Pulse Transform results in a scale-space,
named the LULU scale-space, according to this definition and we prove this
in Section 4.7. The opportunity to investigate the practical use of the LULU
scale-space is now available and we delve into this in Sections 4.8.2 and 4.8.3.
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