
Chapter 3

The Discrete Pulse Transform

3.1 The Discrete Pulse Transform

The Discrete Pulse Transform based on the LULU operators for sequences
was derived in [183] [113] [184]. Using the extension of the LULU operators
to functions on Zd we present the DPT for functions in A(Zd). Similar to
the case of sequences we obtain a decomposition of a function f ∈ A(Zd),
with finite support. As usual supp(f) = {p ∈ Zd : f(p) ̸= 0}. Let N =
card(supp(f)). We derive the DPT of f ∈ A(Zd) by applying iteratively the
operators Ln, Un with n increasing from 1 to N as follows

DPT (f) = (D1(f), D2(f), ..., DN(f)), (3.1)

where the components of (3.1) are obtained through

D1(f) = (id− P1)(f) (3.2)

Dn(f) = (id− Pn) ◦Qn−1(f), n = 2, ..., N, (3.3)

and Pn = Ln ◦Un or Pn = Un ◦Ln and Qn = Pn ◦ ...◦P1, n ∈ N. We will show
that this decomposition has the property that each component Dn in (3.1)
is a sum of discrete pulses with pairwise disjoint supports of size n, where in
this setting a discrete pulse is defined as follows.

Definition 15 A function ϕ ∈ A(Zd) is called a pulse if there exists a con-
nected set V and a nonzero real number α such that

ϕ(x) =

{
α if x ∈ V
0 if x ∈ Zd \ V .

23

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 24

The set V is the support of the pulse ϕ, that is supp(ϕ) = V .

The concept of a pulse as defined in Definition 15 is similar to the idea of
a flat zone from mathematical morphology. It should be remarked that the
support of a pulse may generally have any shape, the only restriction being
that it is connected. Note that the smoothing process ultimately results in
the last component DN(f) being a constant image, that is, one pulse the size
of the entire image, and the remaining image component is QN(f) = 0.

It follows from (3.2) and (3.3) that

f =
N∑

n=1

Dn(f). (3.4)

The usefulness of the representation (3.4) of a function f ∈ A(Zd) is in the
fact that all terms are sums of pulses as stated in the sequel. First we need
to state a technical lemma.

Lemma 16 Let f ∈ A(Zd), supp(f) <∞, be such that f does not have local
minimum sets or local maximum sets of size smaller than n, for some n ∈ N.
Then we have the following two results.

a)

(id− Pn)f =

γ−(n)∑
i=1

ϕni +

γ+(n)∑
j=1

φnj, (3.5)

where Vni = supp(ϕni), i = 1, 2, ..., γ−(n), are local minimum sets of
f of size n, Wnj = supp(φnj), j = 1, 2, ..., γ+(n), are local maximum
sets of f of size n, ϕni and φnj are negative and positive discrete pulses
respectively, and we also have that

• Vni ∩ Vnj = ∅ and adj(Vni) ∩ Vnj = ∅,
i, j = 1, ..., γ−(n), i ̸= j, (3.6)

•Wni ∩Wnj = ∅ and adj(Wni) ∩Wnj = ∅,
i, j = 1, ..., γ+(n), i ̸= j, (3.7)

• Vni ∩Wnj = ∅
i = 1, ..., γ−(n) , j = 1, ..., γ+(n). (3.8)

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 25

b) For every fully trend preserving operator A

Un(id− AUn) = Un − AUn,

Ln(id− ALn) = Ln − ALn.

Proof
a) Let Vn1, Vn2, ..., Vnγ−(n) be all local minimum sets of size n of the function
f . Since f does not have local minimum sets of size smaller than n, then f is
a constant on each of these sets, by Theorem 8. Hence, the sets are disjoint,
that is Vni ∩ Vnj = ∅, i ̸= j. Moreover, we also have

adj(Vni) ∩ Vnj = ∅, i, j = 1, ..., γ−(n). (3.9)

Indeed, let x ∈ adj(Vni)∩Vnj. Then there exists y ∈ Vni such that (x, y) ∈ r.
Hence y ∈ Vni ∩ adj(Vnj). From the local minimality of the sets Vni and
Vnj we obtain respectively f(y) < f(x) and f(x) < f(y), which is clearly a
contradiction. For every i = 1, ..., γ−(n) denote by yni the point in adj(Vni)
such that

f(yni) = min
y∈adj(Vni)

f(y). (3.10)

Then we have

Unf(x) =


f(yni) if x ∈ Vni, i = 1, ..., γ−(n)

f(x) otherwise (by Theorem 9)

Therefore

(id− Un)f =

γ−(n)∑
i=1

ϕni (3.11)

where ϕni is a discrete pulse with support Vni and negative value (down
pulse).

Let Wn1,Wn2, ...,Wnγ+(n) be all local maximum sets of size n of the function
Unf . By [8, Theorem 12(b)] every local maximum set of Unf contains a
local maximum set of f . Since f does not have local maximum sets of size
smaller than n, this means that the sets Wnj, j = 1, ..., γ+(n), are all local
maximum sets of f and f is constant on each of them. Similarly to the local
minimum sets of f considered above we have Wni ∩ Wnj = ∅, i ̸= j, and
adj(Wni)∩Wnj = ∅, i, j = 1, ..., γ+(n). Moreover, since Un(f) is constant on
any of the sets Vni ∪ {yni}, i = 1, ..., γ−(n), see Theorem 8, we also have

(Vni ∪ {yni}) ∩Wnj = ∅, i = 1, ..., γ−(n), j = 1, ..., γ+(n), (3.12)

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 26

which implies (3.8).

Further we have

LnUnf(x) =


Unf(znj) if x ∈ Wnj, j = 1, ..., γ+(n)

Unf(x) otherwise

where znj ∈ adj(Wnj), j = 1, ..., γ+(n), are such that Unf(znj)= max
z∈adj(Wnj)

Unf(z).

Hence

(id− Ln)Unf =

γ+(n)∑
j=1

φnj (3.13)

where φnj is a discrete pulse with support Wnj and positive value (up pulse).
Thus we have shown that

(id− Pn)f = (id− Un)f + (id− Ln)Unf =

γ−(n)∑
i=1

ϕni +

γ+(n)∑
j=1

φnj.

b) Let the function f ∈ A(Zd) be such that it does not have any local
minimum or local maximum sets of size less than n. Denote g = (id −
AUn)(f). We have

g = (id− AUn)(f) = (id− Un)(f) + ((id− A)Un)(f). (3.14)

As in (a) we have that (3.11) holds, that is we have

(id− Un)(f) =

γ−(n)∑
i=1

ϕni, (3.15)

where the sets Vni = supp(ϕni), i = 1, ..., γ−(n), are all the local minimum
sets of f of size n and satisfy (3.6). Therefore

g =

γ−(n)∑
i=1

ϕni + ((id− A)Un)(f). (3.16)

Furthermore,

Un(f)(x) =


f(x) if x ∈ Zd \

γ−(n)∪
i=1

Vni

vi if x ∈ Vni ∪ {yni}, i = 1, ..., γ−(n),

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 27

where vi = f(yni) = min
y∈adj(Vni)

f(y). Using that A is fully trend preserving,

for every i = 1, ..., γ−(n) there exists wi such that ((id− A)Un)(f)(x) = wi,
x ∈ Vni ∪ {yni}. Moreover, using that every adjacent point has a neighbor
in Vni we have that min

y∈adj(Vni)
((id − A)Un)(f)(y) = wi. Considering that the

value of the pulse ϕni is negative, we obtain through the representation (3.16)
that Vni, i = 1, ..., γ−(n), are local minimum sets of g.

Next we show that g does not have any other local minimum sets of size
n or less. Indeed, assume that V0 is a local minimum set of g such that

card(V0) ≤ n. Since V0 ∪ adj(V0) ⊂ Zd \
γ−(n)∪
i=1

Vni it follows from (3.16) that

V0 is a local minimum set of ((id − A)Un)(f). Then using that (id − A) is
neighbor trend preserving and using [8, Theorem 17] we obtain that there
exists a local minimum set W0 of Un(f) such that W0 ⊆ V0. Then applying
again [8, Theorem 17] or [8, Theorem 12] we obtain that there exists a local
minimum set W̃0 of f such that W̃0 ⊆ W0 ⊆ V0. This inclusion implies
that card(W̃0) ≤ n. Given that f does not have local minimum sets of size
less than n we have card(W̃0) = n, that is W̃0 is one of the sets Vni - a
contradiction. Therefore, Vni, i = 1, ..., γ−(n), are all the local minimum sets
of g of size n or less. Then using again (3.11) we have

(id− Un)(g) =

γ−(n)∑
i=1

ϕni (3.17)

Using (3.15) and (3.17) we obtain

(id− Un)(g) = (id− Un)(f)

Therefore

(Un(id− AUn))(f) = Un(g) = g − (id− Un)(f)

= (id− AUn)(f)− (id− Un)(f)

= (Un − AUn)(f).

This proves the first identity. The second one is proved in a similar manner.

Theorem 17 Let f ∈ A(Zd). For every n ∈ N the function Dn(f) derived
through (3.2) and (3.3) is a sum of discrete pulses with pairwise disjoint

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 28

support, that is, there exist γ(n) ∈ N and discrete pulses ψns, s = 1, ..., γ(n),
such that

Dn(f) =

γ(n)∑
s=1

ψns, (3.18)

and
supp(ψns1) ∩ supp(ψns2) = ∅ for s1 ̸= s2. (3.19)

Moreover, if n1, n2, s1, s2 ∈ N are such that n1 < n2, 1 ≤ s1 ≤ γ(n1) and
1 ≤ s2 ≤ γ(n2). Then

supp(ψn1s1) ∩ supp(ψn2s2) ̸= ∅ =⇒ supp(ψn1s1) ⊂ supp(ψn2s2) (3.20)

Proof
According to (3.3),Dn is obtained by applying id−Pn to the functionQn−1(f)
which, by the results in Chapter 1, does not have local maximum or minimum
sets of size less than n. Thus by Lemma 16(a) we have that Dn(f) = (id −
Pn)Qn−1(f) is a sum of pairwise disjoint discrete pulses as given in (3.5).
More precisely,

Dn(f) =

γ(n)∑
s=1

ψns =

γ−(n)∑
i=1

ϕni +

γ+(n)∑
j=1

φnj,

where γ(n) = γ−(n) + γ+(n). Property (3.19) follows from (3.6)–(3.8).

Let supp(ψn1s1)∩ supp(ψn2s2) ̸= ∅. It follows from the construction of (3.18)
derived above that the functions Qn(f) and Ln+1(Qn(f)), n ≥ n1, are con-
stants on the set supp(ψn1s1). Furthermore, the set supp(ψn2s2) is a local
maximum set of Qn2−1(f) or a local minimum set of Ln2(Qn2−1(f)). From
the definition of local maximum set and local minimum set it follows that
supp(ψn1s1) ⊂ supp(ψn2s2).

Using Theorem 17, the identity (3.4) can be written in the form

f =
N∑

n=1

γ(n)∑
s=1

ψns. (3.21)

The equality above is the discrete pulse decomposition of f , where the pulses
ψns have the properties (3.19) and (3.20).

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 29

3.2 Connectivity

Besides the formal connectivity definition presented in [207] and Definition 3,
various examples have been investigated to deal with certain applications as
well as specific problems encountered when using standard connectivity. (See
[186] for a good summary on connectivity.) The most active researchers in
the development of connectivity have been Serra [207, 214, 215, 42, 200, 208,
209, 210, 187, 212] and Braga-Neto [22, 23, 25, 24, 26, 20, 21, 27], as well as
their collaborators.

The usefulness of Definition 3 in image processing arises from a further result
of Serra’s, namely, that the sets of a connection C of subsets of B is equivalent
to the family of openings {γx : x ∈ B} such that (i) ∀ x ∈ B, γx(x) = {x},
(ii) ∀ A ⊂ B, x, y ∈ B, γx(A) and γy(A) are equal or disjoint, and (iii)
∀ A ⊂ B, ∀ x ∈ B, x /∈ A⇒ γx(A)∅. The class

C = {γx(A) : x ∈ B,A ⊂ B}

is a connection such that each A is partitioned into the smallest possible
number of components belonging to the class C and if A1 ⊂ A2 then any
connected component of A1 is included in a connected component of A2.
Note that as mentioned in [25] if one has a means of extracting connected
components, we have unambiguously defined a connection and vice versa.
We discuss variations of Serra’s connectivity.

λ-connectivity

Morphological filters by reconstruction have a leakage problem, that is two
connected blobs connected by a thin pixel-sized filament is deemed connected
although they should more realistically be considered two separate connected
components. Serra [212] introduced a new underlying lattice called the vis-
cous lattice, obtained as all the dilated (with a circular structuring element
with radius λ) subsets of B instead of simply the subsets, namely

L = {δλ(A), A ⊂ B, λ > 0}.

Santillán et al [203] define the lattice

Lλ = {δλ(A), A ⊂ B}

for a specific viscosity λ and the connected components of Lλ as λ-connected
components. It requires that a connected set be made up of at the very least

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 30

continuous paths made by disks with radius λ whose centers move along the
path.

Pseudo-connectivity

To combat the leakage problem pseudo-connections are introduced in [198]
to improve segmentation. The minima of the negative distance function,
namely −dist(f), are ultimate erosions obtained via the watershed trans-
form. Instead a thresholded version of the distance function is used, Dℓ(f) =
− (dist(f)

∧
ℓ). The case ℓ = 0 corresponds to the classical connection by

an erosion of size ℓ and ℓ = ∞ corresponds to the case of ultimate erosions.
Choosing a value of ℓ > 0 results in a pseudo-connectivity. This solves the
leakage problem but does introduce false contours for larger values of ℓ, so
to combat this instead of applying the watershed transform to −dist(f) it is
applied to the distance transform of the closing by reconstruction which fills
the holes which cause the false contours.

Hyperconnectivity Filters

In his 2009 PhD thesis, Ouzounis [162] describes hyperconnectivity intro-
duced by Serra [208] for the improvement of attribute filters due to their
leakage and overlap issues. Hyperconnectivity is a relaxation of the connec-
tion defined in Definition 3.

Definition 18 Operator ⊥: P(P(B)) 7→ {0, 1} is an overlap criterion such
that ⊥ is decreasing A1 ⊂ A2 ⇒⊥ (A1) ≤⊥ (A2) and ⊥ (A) = 1 means that
A is overlapping and non-overlapping otherwise.

Definition 19 Let B be an arbitrary non-empty set. A family H of subsets
of B is called a hyperconnected class or a hyperconnection on B if
i) ∅ ∈ H
(ii) {x} ∈ H for all x ∈ B
(iii) for any family {Ci} ⊆ H for which ⊥ ({Ci}) = 1 we have

∪
i∈I
Ci ∈ H.

If a set C belongs to a hyperconnection H then C is called hyperconnected.

All connectivity classes are special cases of hyperconnectivity with

⊥ ({Ci}) =
{

1 if
∩
Ci ̸= ∅

0 otherwise
.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 31

Constrained Connectivity

Soille [217] restricts Definition 3 by requiring that the intensity value differ-
ence between neighbouring pixels in a connected set do not exceed a specified
value α. He calls this constrained connectivity α-connectivity and based on
this develops a connectivity index for each pixel.

Jump Connection

Serra [211] defines a jump connection which provides good segmentations
in that the are fewer point zones (regions of only a few pixels), visually
significant clusters and can be computed fast. The connected components

A(m) = {x : x ∈ B, 0 < f(x)−m ≤ k}
where m if the minimum of f form a connection.

Multiscale Connectivity

As Braga-Neto and Goutsias [24, 22] state, important information is not
confined to a single scale, but rather is spread out over several scales. The
connectivity should also thus depend on the scale. Let Σ be the set of possible
scales. We provide a brief definition of multiscale connectivity.

Definition 20 For a connectivity measure ρ defining the degree of connec-
tivity of a set A on a lattice, the set A is σ-connected if ρ(A) ≥ σ for σ ∈ Σ.
A set is then fully connected if it is σ-connected for all σ ∈ Σ or fully
disconnected otherwise.

In [27] Braga-Neto and Goutsias discuss three techniques for constructing
multiscale connectivities, namely, pyramids of clustering, granulometries and
clustering of openings. In [20] they apply multiscale connectivity to deter-
mine a scale-space representation for automatic target detection. They also
describe connectivity for greyscale images [26]. A greyscale image is con-
nected if all level sets below a pre-specified threshold are connected, namely
level-k connectivity requires all level sets at level k or below are non-empty
and connected. They investigate applications in object extraction, segmen-
tation, object-based filtering and hierarchical image representations.

Other Connections

Ronse and Serra [187] define geodesic connectivity. Braga-Neto and Goutsias
[25] elaborate on fuzzy connectivity first introduced by Rosenfeld [188, 189,
190].

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 32

Connected Operators

Salembier and Wilkinson [201] describe how filters based on shapes not re-
lated to the input result in distortion and thus must be adapted to local
structures as well as connected operators made use of. Connected operators
preserve edge, and thus shape, information in an image [26, 42].

Definition 21 An operator P is connected [26] if for any f ∈ A(Ω) the
partition zP (f) is coarser than the partition zf , that is, zf (x) ⊆ zP (f)(x) ∀ x ∈
Ω, or equivalently P (f) is constant over any flat zone of f . Here, zf (x) =
γx(f(x)), x ∈ Ω is the connectivity opening associated with the connection
C discussed at the beginning of the section and a flat zone is that largest
connected region where the value of f is constant.

Connected operators have been widely made use of due to their preserva-
tion properties. Salembier et al [199, 197] state that the first reported con-
nected operators were the binary openings by reconstruction done in 1976
and generalized to gray-level functions by reconstruction in 1993. They men-
tion other connected operators as the λ-max operator, the area opening, dy-
namic filtering, volumic operator, complexity operator, motion operator, and
moment-oriented operators which all preserve contours. Jones [102] intro-
duces non-flat gray-level connected filters. Crespo and Schafer [41] specify
two constraints for connected operators which morphological operators do
satisfy, but the median operator, for example, does not.

Wilkinson and Ouzounis [244] state the obvious about standard morpho-
logical connected operators, that is, each type of structuring element has a
limited power to represent an image due to its specific shape. The LULU
operators act like the morphological area operators in that the shape is not
specified, only the size, thus allowing far more flexibility. The fact that
the LULU operators are connected according to Definition 21 adds further
strength to their capabilities. We discuss these capabilities later in this chap-
ter.

3.3 LULU Implementation

In [52] a MATLAB implementation of the DPT was presented. The algorithm
used was by no means optimal nor real time. Since then collaboration with

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 33

Figure 3.1: Snapshot of the DPT User Interface

Dr S van der Walt from Stellenbosch University has resulted in a Python

implementation of the DPT in two dimensions (for image analysis) which
provides a user interface, see Figure 3.1, with which to choose scale levels and
other parameters and view the transformed image, in addition to significantly
faster processing times [55, 231]. We discuss this implementation now which
is collaborative work presented in [55].

The Discrete Pulse Transform decomposes a signal into a collection of pulses.
In one dimension, a pulse is characterised by its start and end position, as
well as by its amplitude. In two dimensions, a pulse describes a connected
region over which function values are constant (for simplicity, we restrict
ourselves here to 4-connectivity - where two function values are equal in
the North-South or East-West directions). The number of pulses may vary
from approximately 30,000 for a typical 300 × 300 image to over a hundred
thousand for a 500 × 500 image. Since the decomposition produces such a
large number of pulses, we need an efficient storage scheme to represent these
in memory. Furthermore, we need to be able to calculate certain attributes
of the pulses (such as the area and the boundary values) rapidly.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 34

3.3.1 Storage

The storage scheme used is based on the popular Compressed Sparse Row
(CSR) format, [49, 14], for representing sparse matrices. Using this scheme,
the matrix

5 0 1 2 0
0 0 0 3 0
0 0 0 0 0
0 6 0 9 0

 is written as

�

�

�

�

� values =
[
5 1 2 3 6 9

]
� columns =

[
0 2 3 3 1 3

]
� row−offset =

[
0 3 4 5

] .

The values of the non-zero elements are stored in values, and their column-
positions given by columns. Each entry of row−offset specifies an offset
into columns, indicating the starting position of a new row. In the example
above, we see that the second row (second element of row−offset) starts
at position 3 of columns. The number of elements in row j is given by
row−offset[j + 1]− row−offset[j].

When storing 2-dimensional pulses, we know that the pulse may only oc-
cupy a small portion of the image, has a single value across the pulse and
consists of regions connected horizontally or vertically. We therefore mod-

ify the storage structure, so that the pulse


0 0 0 0 0
1 1 1 1 1
0 1 1 0 1
0 1 1 1 0

 is written as

'

&

$

%

� value = 1

� columns =
[
0 5 1 3 4 5 1 4

]
� start−row = 1

� row−offset =
[
0 2 6 8

]
.

Instead of specifying column values, columns now indicates the start and
past-end indices of the one-dimensional pulses that comprise the rows. The
values of row−offset, as in the previous example, specify where in columns

each new row starts. The pulse may only cover a few rows of the entire
image, therefore we use start−row to indicate the first occurrence, saving
us from storing every single row.

As an example, consider the third row of the two-dimensional pulse above,
which consists of two one-dimensional pulses: the first stretching from col-
umn 1 up to (but excluding) 3, the other from 4 up to 5. Since we are inter-

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 35

Pulse Boundary

Figure 3.2: Boundary positions of a pulse.

ested in the third row (row number 2), and we only start recording rows at
start−row = 1, we find the corresponding column indices in row offset[2−
1] = 2. At position 2, columns contains 1, 3 and 4, 5 as expected.

An advantage of this storage scheme is that it can also be used to store
connected regions, a capability we exploit later to initialize the algorithm.

3.3.2 Queries

Given a pulse in the above format, we’d like to compute the following queries
rapidly:

Area/number of non-zeros The area of the pulse is the sum of the
lengths of the one-dimensional pulses comprising its rows. Each such length
is given as the corresponding difference between the pulse start-end positions
in columns. In the example above, the area would be (5− 0)+ (3− 1)+ (5−
4) + (4− 1) = 5 + 2 + 1 + 3 = 11.

Adjacent Set/Boundary positions Each pulse has four or more bound-
ary positions – connected to the pulse in a 4-connected sense (see Fig 3.2)
– that form the adjacent set. To find the boundary positions, we follow a
scanline approach, with three scanlines moving from the top of the pulse to
the bottom (see Fig. 3.3). Here, we describe the operation once the scanlines
have entered the pulse (in other words, neglecting top and bottom bound-
aries, which need to be handled separately):

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 36

Figure 3.3: Scanlines used to find boundary positions.

1. The scanlines are centred around row j and are formed by constructing
the pulse at rows j − 1, j and j + 1.

2. For each element of the central scanline that does not belong to the
pulse, determine whether any of its neighbours (above, below, left or
right) belong to the pulse. If they do, then that element lies on the
boundary.

3. Move the scanlines one row down and repeat (it is only necessary to
recalculate the bottom scanline at each step).

3.3.3 Operations

Merging Two Pulses Later on, when performing the Discrete Pulse Trans-
form, we shall be required to merge two pulses that touch. This is done on
a row-by-row basis. In the trivial case where a row is contained in only one
of the two pulses, we simply include that row in the output. Otherwise,
we need to sort and join the one-dimensional pulses that comprise the row
carefully. Note, however, that these one-dimensional pulses cannot overlap
in our problem description. We therefore:

1. Extract the stop-start intervals that form the one-dimensional pulses
in row j.

2. Sort the intervals according to their starting position.

3. Step over the intervals and link them if they touch.

4. Save the linked intervals as the representation of row j.

5. Proceed to row j + 1 and repeat.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 37

Figure 3.4: Two trees with labeled nodes.

3.3.4 Algorithm Overview

Each step of the Discrete Pulse Transform is now described in more detail.
We’ll use the following terms:

Input image The input image or data – an M ×N matrix of integer values
between 0 and 255.

Label image An M × N array of integer values that indicate the connec-
tivity of pixels in an image. If neighbouring pixels have the same value
(i.e., are 4-connected), then they are assigned the same label value.

Intermediate reconstruction An M ×N image can be decomposed into
pulses with areas ranging from 1 through MN . When summed, these
pulses reconstruct the input image. It is also possible to only sum
pulses with area > k. We call this an intermediate reconstruction, as
it approximates the image up to a certain level only.

Finding Connection Regions First, we identify all 4-connected regions
in the image (these are the initial pulses that are processed to yield the Dis-
crete Pulse Transform), a pre-processing step also suggested by Lindeberg
[123, Chapter 9.1] for comparing properties of constant grey-level regions.
Our implementation uses the the Union-Find connected component algo-
rithm of Fiorio and Gustedt [60], with the connectivity tree stored in an
array as suggested by Wu et al. in [248]. It is shown in [248] that this al-
gorithm executes in an optimal O(N), and we give a brief overview of its
functioning:

Representing a tree using an array One or more trees consisting of N
nodes can be stored in an array of length N . Examine the trees shown in

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 38

Figure 3.4 with nodes labeled n = 0, . . . , 8. These trees can be represented
as the array

x =
[
0 0 2 1 0 4 4 2 2

]
where xn gives the parent of node n. For example, x3 = 1, which tells us
that the parent of node three is node one. Similarly, x2 = 2 implies that
node two has no parent–it is the root of a tree.

Labeling connected regions as trees The goal of the connected com-
ponents algorithm is to assign unique labels to each connected region in an
M×N image I. An array, L, of lengthMN is used to store trees as indicated
in the paragraph above.

The image is traversed in raster scan order (i.e. along rows). A region
counter, k, is initialized to zero. At each pixel position (r, c):

1. Calculate the offset into the tree array as t = rN + c.

2. If the pixel is not connected to (does not have the same value as) the
pixel above it or to the left, assign Lt = t, effectively creating a new
tree.

3. If the pixel is connected to the pixel above, assign Lt = Lt−N , joining
node t to its parent in the previous row.

4. If, in addition, the pixel is connected to the left, assign Lt−1 = Lt−N .

5. If the pixel is only connected to the left, assign Lt = Lt−1.

Appropriate care needs to be taken in the first row and column to prevent
indexing errors on the image boundary.

The label vector, L, can also be seen as the flattened version of a label image
so that Lr,c = LrN+c. From this image, all connected regions are extracted as
pulses and stored in the format discussed in Section 3.3.1. We then proceed
to perform the Discrete Pulse Transform as discussed next.

Identifying Pulses to Merge The Discrete Pulse Transform is performed
by alternately executing the Lk (lower) and Uk (upper) operators on pulses
of area k. Thinking of the image as a height-map, the U1-operator removes

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 39

all valleys of area one. Here, a valley is defined as a connected area that is
surrounded only by higher values. Similarly, the L1-operator removes peaks
of area one, where peaks are connected areas surrounded only by lower values.

After applying the L1 and U1 operators and storing the removed peaks and
valleys (those form the first level of the DPT), we need to merge pulses that
were joined in the process. Note that, at each decomposition level, we have
the intermediate reconstruction available. It is obtained by setting the image
values corresponding to the removed positive (negative) pulses equal to the
maximum (minimum) value on the adjacent set.

For each pulse, we calculate its boundary positions using the method de-
scribed in Section 3.3.2. We then examine the boundary values on the in-
termediate reconstruction, and if any of those values are equal to the pulse
value, a merge is required. After examining all boundary positions, a list is
drawn up of all coordinates that fall on merge boundaries. At each of those
positions, a merge is performed as described in Section 3.3.3, after which the
label image is updated. The Lk+1 and Uk+1 operators are now repeatedly
applied, until the image has been entirely decomposed (in other words, until
the finalMN -sized pulse has been removed). All the removed pulses together
from the Discrete Pulse Transform or decomposition.

3.3.5 Algorithm Optimizations

Area Histogram For an M ×N image, the discrete pulse decomposition
has pulses with areas ranging from L = 0, . . . , MN . In practice, however,
many values of L have no corresponding pulses. When applying the L and U
operators, time is saved by skipping these cases entirely. We can track these
cases by constructing a histogram, H[k], of the pulse sizes during the initial
connected component search. Thereafter, whenever merging two regions, the
histogram is updated. Then, when Uk or Lk is executed, we simply verify
that H[k] > 0 before proceeding.

A Benchmark of Accidental Recombinations The decomposition was
implemented and executed on a Intel Core Duo 3.16 GHz processor. Memory
utilisation peaked at less that 150MB during decomposition of the 512× 512
Airplane and roughly 60MB while processing the 300×451 Chelsea (including
the memory required to store the decomposition itself). Computation times
were 3.73s (Airplane) and 1.51s (Chelsea). Reconstruction executed in a few

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 40

Figure 3.5: Two test images used for benchmarking the 2D DPT. On the left
is Chelsea the Cat ( 300× 351) and on the right is Airplane (512× 512).

milliseconds.

Figure 3.6 shows benchmark times for the Discrete Pulse Transform applied
to random matrices. Random matrices with a large number of discrete values
seem to be the worst case scenario—execution times are much lower for
real photographs and for signals limited to, say, 255 discrete values. Both
these observations are explained intuitively: a random matrix has many more
pulses than a typical photograph and limited discrete values cause merging
of pulses that would otherwise remain separated. It would be interesting to
investigate whether a link exists between image entropy and the number of
pulses generated.

3.3.6 Reproducibility and Code

The code for this Python implementation is available under the open source
BSD licence at http://dip.sun.ac.za/∼stefan/lulu.

Further collaborative work into a parallel implementation as well as smarter
storage methods for the pulses are being looked into to further improve the
two dimensional implementation and provide a three dimensional implemen-
tation for video analysis.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 41

0 20000 40000 60000 80000 100000 120000 140000 160000
Number of pixels

0

20

40

60

80

100

T
im

e
 (

s)

Execution times

Quadratic fit

Execution times (recombination)

Figure 3.6: Benchmark of the Discrete Pulse Transform on random images
of varying size. Values on the x-axis indicate the total number of pixels, i.e.,
N2 for an N ×N matrix. In the bottom curve, labeled “recombination”, the
number of discrete input values were limited to 255. For large images, this
quantisation causes the algorithm to execute more quickly than expected due
to an increased number of merges.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 42

3.4 Properties of the Discrete Pulse Trans-

form

3.4.1 Linear versus Nonlinear

As discussed in [52], the nonlinearity of the LULU smoothers, as mentioned in
Chapter 2, make theoretical development more complicated than for linear
operators. However, taking on the additional complexity is justified since
in two dimensions an image is basically the transformation of data by a
human eye or measuring instrument. This transformation is significantly
complicated to be considered nonlinear [184]. Thus taking this stance the
analysis of images via nonlinear operators is more logical than that of linear.

Linear processing techniques are however a natural starting point for analysis
due to the simplicity of their application and theoretical backbone available.
Examples of linear filters are the Fourier transform, Hadamard transform, the
discrete cosine transform, and wavelets. They also provide sufficient results
in most applications, but there are problems in which a nonlinear process
would prove more viable and efficient [172]. Pitas and Venetsanopoulos [172]
provide examples of such cases, such as signal dependent noise filtering e.g.
photoelectron noise of photosensing devices; multiplicative noise appearing
as speckle noise in ultrasonic imaging and laser imaging; and nonlinear image
degradations e.g. when transmission occurs through nonlinear channels. Ad-
vantages of nonlinear filters are 1) the ability to handle various noise types,
2) edge preservation, 3) fine detail preservation, 4) unbiasedness (directional
and illumination based) or invariance, and 5) computational complexity [172].

Nonlinear filtering techniques can be broadly classified accordingly in the fol-
lowing areas: order statistic filters, homomorphic filters, polynomial filters,
mathematical morphology, neural networks, and nonlinear image restoration
[172]. The LULU operators fit nicely into the areas of mathematical mor-
phology as well as order statistics, two areas which have been integrated
quite effectively in literature [172]. Examples of order statistics, discussed in
detail in [172], are the median, rank-order filters, max-min filters, Lp-mean
filters, and α-trimmed mean filters. The LULU operators are examples of
max-min filters but with the disadvantages listed in [172] improved upon.
The basic filters of mathematical morphology are the erosion and dilation,
and subsequently the morphological opening and closing, to which the LULU
filters are again closely related as area openings and closings.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 43

?
f (Image)








J
J

J
F1

��	
D1(f)

@@?
f1








J
J

J
F2

��	
D2(f)

@@?
f2








J
J

J
F3

��	
D3(f)

@@?
f3

. . . ?fN−1








J
J

J
FN

��	
DN(f)

Figure 3.7: A typical hierarchical decomposition

3.4.2 Nonlinear Decompositions

Figure 3.7 presents the structure of a hierarchical decomposition. The oper-
ator F1 is applied to the input image f to obtain a decomposition of f into
f1, the smoother image, and D1, the noise component removed. This process
is repeated with F2, F3,...,FN until there is nothing left to remove except
the constant image DN . The decomposition then has the form

f = D1(f) +D2(f) + ...+DN(f). (3.22)

Such a hierarchical decomposition has been investigated intensively in liter-
ature, see [223, 65, 247] for some nonlinear cases. However, in no literature
we have come across have we found a unified theoretical backbone to connect
such nonlinear hierarchical decompositions and provide methods of compar-
ison nor methods of testing the capability of the structure of the decomposi-
tion. In Tadmor et al [223], for example, a decomposition f =

∑k
j=1 uj + vk

is obtained, where vk is the noise component and the uj’s the decomposition
components, by functional minimization. Tadmor et al discuss convergence
of the minimizer, localization and adaptability, but nothing to indicate the
strength of the decomposition save numerical visual examples. Wong et al
[247] similarly do not provide a theoretical indication of the strength of their
decomposition obtained as a probabilistic scale-space derived from the non-

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 44

linear diffusion equation of Perona and Malik [170]. In [65], Florack et al
even state that comparisons with their proposed nonlinear scale-space and
other nonlinear hierarchical decompositions ‘are to be made with care’. It
is thus clear that a unified theoretical setting for nonlinear decomposition
escapes us.

A major advantage of the Discrete Pulse Transform is that it comes with
its own theory comprising properties like consistent decomposition and total
variation preservation, as is discussed in the next sections.

3.4.3 Consistent Decompositions

Definition 22 A decomposition of the form (3.22) is called consistent if for
every f in the considered domain and a set of nonnegative number α1, α2, ..., αN

we have

Dj

(
N∑
i=1

αiDi(f)

)
= αjDj(f), j = 1, 2, ..., N.

Definition 22 essentially means that the function

g =
N∑
i=1

αiDi(f)

decomposes into its summands as is illustrated in Figure 3.8. This prop-
erty is trivially true if Dj is a linear operator. However, it is also a desirable
property for nonlinear decompositions. It implies that the components of the
decomposition are in some sense ‘quantitatively’ different from each other, for
example, multiplying one component by a positive number will not change
it to another. This can be considered as an indication that each compo-
nent extracts a feature or information which is to some extent unaltered and
independent of the remaining part of f .

The property of consistency has a long history within the development of the
Discrete Pulse Transform. Recall that the DPT of f ∈ A(Z2) is given by
(3.1)-(3.3). In the one-dimensional case, i.e. f ∈ A(Z), the first result is the
consistent decomposition of sums of the form

g =
n∑

i=m

Di(f), 1 ≤ m < n ≤ N.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 45

This property is called basic decomposition, see [183, Theorem 8.3]. In the
same reference the full consistency is also proved [183, Theorem 8.4].

Note that for the DPT we have

Dn(f) =

γ(n)∑
s=1

ψns

so that

f =
N∑
i=1

γ(n)∑
s=1

ψns.

The success with the consistency property made the author believe that a
stronger property might hold, namely that the sum

g =

γ(n)∑
s=1

αnsψns, αns ≥ 0

decomposes consistently, that is,

Dn(g) =

γ(n)∑
i=1

αnsψns, n = 1, 2, ..., N.

This was formulated as the Highlight conjecture in [183, p. 100] and restated
later in [113]. The proof in the one-dimensional case was claimed in [114]
but not shown. In our work on the multidimensional DPT, we proved the
basis consistency of the decomposition, published in [8]. This was followed
by a publication of D Laurie [112] where he proved the Highlight conjecture
for functions derived on graphs, hence also applicable to A(Z2).

Here we present theorems proving the basic consistency as in [8] and the
Highlight conjecture in the setting of A(Zd) since they each use different
methods. In particular, the method of proof of the Highlight theorem shows
the power of the morphological approach adopted here and applies the tech-
niques in Theorem 17 which was originally presented in [8].

Theorem 23 Let f ∈ A(Zd). For any two integers m and n such that m < n
the function g = Dm(f) + Dm+1(f) + ... + Dn(f) decomposes consistently,
that is

Dj(g) =

{
Dj(f) for m ≤ j ≤ n
0 otherwise

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 46

The proof uses the following lemmas.

Lemma 24 a) Given V,W ∈ C with W ⊂ V . Then for x /∈ V but x ∈
adj(W ), we have x ∈ adj(V ).
b) Given distinct V,W ∈ C with V ∩W ̸= ∅, there exists an x ∈ V \W such
that x ∈ adj(W ).
c) For any V ∈ C, we have card(V ) <∞ =⇒ card(adj(V )) <∞.

Proof
a) V andW+{x} are connected and have a nonempty intersection thus their
union V ∪ {x} is also connected. Then by Definition 40, x ∈ adj(V ).
b) Note that the following is true:

V,W ∈ C, W ( V =⇒ adj(W ) ∩ V ̸= ∅. (3.23)

Applying (3.23) to V ∪W , since V ( V ∪W , we get adj(W )∩V = adj(W )∩
(V ∪W ) ̸= ∅. Thus there exists x ∈ V \W such that x ∈ adj(W ).
c) This follows from condition (2.3). Let card(V ) = n then for an arbitrary
x ∈ V we have {{a} ∪ V : a ∈ adj(V )} ⊂ Nn+1(x), so that card(adj(V )) ≤
card(Nn+1(x)) <∞.

Lemma 25 Let Qn = PnPn−1...P1 where Pk = LkUk or Pk = UkLk. We
have

a) QnQm = Qmax{n,m}

b) Qm(id−Qn) = Qm−Qn = (id−Qn)Qm for all integers m,n such that
m ≤ n.

Proof
We consider only Pk = LkUk as the other case is dealt with by symmetry.
Let f ∈ A(Zd).
a) It follows from Corollary 11 in Chapter 2 that Qn(f) does not have any
local minimum or local maximum sets of size n or less. Hence Pk(Qn(f)) =
Qn(f) for k = 1, ..., n. For m ≤ n this implies that Qm(Qn(f)) = Qn(f). If
m > n then we have
(QmQn)(f) = (Pm...Pn+1Pn...P1)(Qn(f)) = (Pm...Pn+1)(Qn(f)) = Cm(f).
b) We use induction on j as in the proof of this property in the one dimen-
sional case, see [182]. Let j = 1. Using the result in Lemma 16(b), the full

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 47

trend preservation property of the LULU operators established in Chapter 2
and the absorbtion property in a) we have

Q1(id−Qn) = L1(U1(id−QnL1U1)) = L1(U1 −QnL1U1)

= L1(id−QnL1)U1 = (L1 −QnL1)U1 = Q1 −Qn = (id−Qn)Q1.

Assume now that the statement is true for some m = j < n. From the
inductive assumption we have

Qj+1(id−Qn) = Pj+1Qj(id−Qn) = Pj+1(Qj −Qn)

= Pj+1(Qj −QnQj) = Pj+1(id−Qn)Qj.

Using Lemma 16(b), the fully trend preserving property and a) as for j = 1
we obtain further

Pj+1(id−Qn)Qj = Lj+1Uj+1(id−QnLj+1Uj+1)Qj

= (Lj+1Uj+1 −QnLj+1Uj+1)Qj = Qj+1 −Qn = (id−Qn)Qj+1.

Proof of Theorem 23
Using Lemma 25, function g can be written in the following equivalent forms

g = ((id− Pm)Qm−1 + (id− Pm+1)Qm + ...+ (id− Pn)Qn−1)(f)

= (Qm−1 −Qn)(f) = (id−Qn)Qm−1 = Qm−1(id−Qn). (3.24)

It follows from the fact that since for every f ∈ A(Zd) the functions (Ln ◦
Un)(f) and (Un ◦Ln)(f) have neither local maximum sets nor local minimum
sets of size n or less, as well as the neighbour trend preserving property
of the LULU operators that g does not have any local maximum or local
minimum sets of size less than m. Hence Pk(g) = g for k = 1, ...,m− 1 and
therefore Qk(g) = g for k = 1, ...,m − 1. Then it follows from (3.24) that
Dj(g) = (id − Pj)(g) = 0 for j < m. Let m ≤ j ≤ n. Then using again
Lemma 25 we obtain

Dj(g) = (Qj−1 −Qj)(g) = (Qj−1(id−Qn)Qm−1 −Qj(id−Qn)Qm−1)(f)

= ((id−Qn)Qj−1Qm−1 − (id−Qn)QjQm−1)(f)

= ((id−Qn)Qj−1 − (id−Qn)Qj)(f) = (Qj−1 −Qn −Qj +Qn)(f)

= (Qj−1 −Qj)(f) = Dj(f).

Finally, for k ≥ n we have

Qk(g) = (Qk(id−Qn)Qm−1)(f) = (QkQn(id−Qn)Qm−1)(f) = 0,

which implies that Dj(g) = 0 for j > n.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 48

Theorem 26 For a DPT decomposition of f

DPT (f) = (D1(f), D2(f), ..., DN(f)) where Dn(f) =

γ(n)∑
s=1

ψns, n = 1, 2, ..., N

let g =
∑N

n=1

∑γ(n)
s=1 αnsψns where the constants αns are positive. Then the

DPT decomposition of g is obtained as

DPT (g) = (D1(g), D2(g), ..., DN(g)) where Dn(g) =

γ(n)∑
s=1

αnsψns, n = 1, 2, .., N

so that the pulses of g are obtained as αnsψns. If αns = αn for each n then
DPT (g) =

∑N
n=1 αnDn(f), so that Dn(g) = αnDn(f).

Proof
We carry out the proof by using mathematical induction. Denote gm =∑N

n=N−m+1

∑γ(n)
s=1 αnsψns. Note that DN(f) consists of only a single pulse

ψN . Hence, the statement is trivially true for g1 = αNψN .

Assume that it holds for some m < N and consider gm+1 =
∑N

n=N−m αnsψns.
Considering the properties of the supports of the DPT pulses as stated in
(3.19) and (3.20) we deduce that

(i) gm+1 does not have local maximum or minimum sets of size less than
N −m,

(ii) the local maximum and local minimum sets of gm+1 of size N −m are
exactly {supp{ψN−m,s}, s = 1, 2, ..., γ(N −m)},

(iii) for every s = 1, 2, ..., γ(N − m) the function gm+1 is constant on
supp{ψN−m,s} and the difference with the nearest value on the adjacent
set is αN−m,s multiplied by the height of ψN−m,s.

Then by Corollary 11

Di(gm+1) = (id− Pi)Pi−1...P2P1(gm+1) = 0, i = 1, 2, ..., N −m− 1.

Further, it follows from Lemma 16 that

DN−m(gm+1) = (id− PN−m)PN−m−1...P2P1(gm+1)

= (id− PN−m)gm+1

=

γ(N−m)∑
s=1

αN−m,sψN−m,s.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 49

?
f (Image)








J
J

J
F1

��	
D1

@@?
f1

������

α1D1








J
J

J
F2

��	
D2

@@?
f2

������

α2D2

. . . ?fN−1








J
J

J
FN

��	
DN������

αNDN

? @
@

@
@
@
@

@
@
@
@

@
@
@@








J
J

J
F1

��	
α1D1

@@?








J
J

J
F2

��	
α2D2

@@?

. . .
?








J
J

J
FN

��	
αNDN

Figure 3.8: Illustration of consistent decomposition

By the inductive assumption the function gm = gm+1 −DN−m(gm+1) decom-
poses consistently. Hence gm+1 also decomposes consistently. The statement
of the theorem is the obtained for m = N .

3.4.4 Total Variation Preservation

Although the importance of total variation preservation for separators can-
not be doubted, it is even more so for hierarchical decompositions like the
Discrete Pulse Transform, due to the fact that they involve iterative appli-
cations of separators. Since the operators Ln, Un, n = 1, 2, ..., and all their
compositions, are total variation preserving, it is easy to obtain the state-
ment of the following theorem, which shows that, irrespective of the length
of the vector in (3.1) or the number of terms in the sum (3.21), no additional
total variation, or noise, is created via the decomposition.

Theorem 27 The discrete pulse decomposition in (3.1) is total variation

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 50

preserving, that is

TV (f) =
N∑

n=1

γ(n)∑
s=1

TV (ψns). (3.25)

The proof of Theorem 27 can be found in [8, 52]. We should remark that
representing a function as a sum of pulses can be done in many different
ways. However, in general, such decompositions increase the total variation,
that is, we might have strict inequality in (3.25) instead of equality. Based on
Theorem 27 we can construct the total variation distribution of images. More
precisely, this is the distribution of the total variation of an image among the
different layers of the DPT. That is, essentially the plot of TV (Dn(f)) vs.
n. In Figure 3.9 we present the total variation distributions of some images,
where one can observe how the total variation of each image as given in Table
2.6 is distributed over the pulse size. A log scale is used on the vertical axis
and the pulse size values are grouped to form a histogram. The different
character of the images naturally manifests through different kinds of total
variation distributions.

3.4.5 Measuring the Smoothing Ability of the LULU
Operators

The ability of an operator to effectively remove noise and smooth the signal
is usually measured by its output variance or the rate of success in the noise
removal [172]. Other measures used to assess the performance are the mean
square error (MSE) and signal-noise-ratio (SNR) [172]. We investigate the
noise removal Chapter 5 in detail. In this section we shall present a method
in which to measure the quality of smoother or equivalently the resulting
smoothed image. In [131] an operator Eγ : X → X, for a Hilbert space X,
is a smoother in the sense that

w − lim
γ→0

Eγf = f.

Velleman [234] states that it is required from a smoother to separate the
signal into noise and a smooth signal and suggests measuring the success of
a smoother by obtaining a regression coefficient near one for the fit of a least
squares regression of the smoothed signal compared to the original signal. In
[175], a smoothing function Gϵ of f is defined such that for ϵ > 0,Gϵ : Rn →
Rn is continuously differentiable on Rn and for all x ∈ Rn, ∥f(z)−Gϵ(z)∥ → 0
as ϵ→ 0, z → x.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 51

(a) (b)

(c) (d)

Figure 3.9: Total Variation Distributions of Images in: (a) Figure 2.4(h)-
Noise, (b) Figure 2.4(a)-Potatoes, (c) Figure 2.4(c)-Tank, (d) Figure 2.4(f)-
Boat with Glint

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 52

The question of measuring the smoothing ability of the DPT arises. The aim
of a smoother primarily to remove the noise element present. The noise can
be due to a number of factors, for example, acquisition, processing, compres-
sion, storage, transmission and reproduction of the image [235]. The easiest
method of evaluation is purely subjective - namely, human visual investiga-
tion. In order for evaluation to be objective, quantitative methods need to
be used instead. Quantitative methods can be divided into three categories
[235]. First, full-reference, where the complete reference (undistorted) image
is known with certainty, secondly, no-reference, where this reference image is
not known at all, and third, reduced-reference, where only part of the original
reference image is known, for example, a set of extracted features. We mea-
sure the similarity of the smoothed images Pn(f) to the original unsmoothed
image f with the structural similarity index [235],

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

for two corresponding sets of pixels, x and y, in each image, where µi, i = x, y
is the mean of the pixel values in i; σ2

i , i = x, y is the variance of the pixel val-
ues in i; σxy the covariance between x and y; cj = (kjL)

2 , j = 1, 2 constants
to stabilize the division by the weak denominator; L = 255 for greyscale
images and kj ≪ 1 constants (we used kj = 0.05). This measure is a full-
reference measure which provides a useful framework since we are comparing
a smoothed version of the original distorted image with the original dis-
torted image. The most widely used such measures are the mean-square-
error (MSE) and the peak signal-noise-ratio (PSNR), but these measures do
not compare well with the perceived visual quality of the human visual sys-
tem [235]. Wang et al [235] introduce the SSIM measure in order to penalize
errors based on their visibility, that is, to simulate the HVS as much as pos-
sible. This measure is applied to 8 × 8 windows in the image for each pixel
and a final mean structural similarity index is calculated as the average of
these SSIM values, called the MSSIM. An MSSIM value closer to 1 indicates
stronger similarity. Wang et al provide MATLAB code for the implemen-
tation of the SSIM at www.cns.nyu.edu/∼lcv/ssim which was made use
of.

Figure 3.10 provides MSSIM values for various images as the LULU smooth-
ing progresses through the DPT from scale n = 1 up to n = N . Notice how,
based on the content of the images, the reduction in the MSSIM values as
the DPT progresses varies from image to image. The graphs provide a mech-
anism to determine where visual structure is in the image, that is, when the
HVS would pick out structures of significance. Figure 3.11 plots the differ-

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 53

0 1 2 3 4 5 6

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.10: MSSIM values comparing Pn(f) with f values plotted against
scale for Chelsea, Tank, Potatoes, Ocean and Jetski (values indicated are for
increments of 10 up to scale 100, then increments of 100 up to scale 10000,
and then increments of 1000 up to the maximum scale)

ences between the smoothed images as the DPT progresses. The graphs also
give an indication of how the information is removed at each step. Figures
3.12 and 3.13 provide an indication of the structure found at big jumps in
Figures 3.10 and 3.11.

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 54

Figure 3.11: MSSIM values comparing Pn(f) with Pn−1(f) plotted against
scale for Chelsea, Tank, Potatoes, Ocean and Jetski (values indicated are
for increments of 10 up to scale 100, then increments of 100 up to scale
10000, and then increments of 1000 up to the maximum scale)

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 55

Figure 3.12: Specific scales of Chelsea picked out using Figures 3.10 and
3.11: 1 to 4030 (detail), 4031 to 58571 (big background pulses), 4234 to
4236 (left eye), 4325 to 4335 (forehead), 14565 to 14575 (facial features)

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 56

Figure 3.13: Specific scales of Potatoes picked out using Figures 3.10 and
3.11: 1 to 2002 (detail), 2003 to 57478 (big background pulses), 4712 (far
left, middle row potato), 5900 (right, last row potato)

 
 
 



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 57

3.4.6 Pulse Shape

Lastly, an important aspect of the DPT is the provision of pulses without
restricting their shape in any way. Recall they we only require the pulses
to be connected, most commonly with 4-connectivity. This provides a vast
area of investigation into the nature of the pulse shapes and what the shapes
mean relative to the image structure, image patterns and image content. We
look into exploiting this information in Section 4.8.2.

3.5 Conclusion

We have presented the Discrete Pulse Transform resulting from the alterna-
tive and recursive application of the LULU operators Ln and Un, known as
the DPT. In particular we looked at the characterization of the DPT with
respect to its nonlinearity, consistency, shape preservation properties such as
total variation preservation, as well as its ability as a smoother.

 
 
 


	Front
	Chapters 1-2
	CHAPTER 3
	3.1 The Discrete Pulse Transform
	3.2 Connectivity
	3.3 LULU Implementation
	3.4 Properties of the Discrete Pulse Transform
	3.5 Conclusion

	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography



