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Chapter 1

Introduction

Gestalt theory sets a basis for vision perception [254, 130] but as it is non-
computational it doesn’t provide the required practical setting as well. David
Marr, a British neuroscientist and psychologist, published the famous book
known as the ‘Vision of Marr’ [138] in 1982 providing a modern theory for
visual perception. Image processing is not a purely algorithmic field. The
connection with artificial intelligence is undeniable and methods investigated
inevitably require thought into how the human vision system operates and
how it can be replicated. Marr realized this connection when writing his book
and a number of earlier works [136, 137, 140, 139]. He defines vision as the
‘process of discovering from images what is present in the world, and where it
is’, and defines three levels of the computer vision process (1) computational
theory, (2) representation and algorithm, and (3) hardware implementation.

In [52] the computational theory of the LULU operators and the Discrete
Pulse Transform (DPT) were presented in detail. Therein the algorithm was
also presented in which the DPT is the successive slicing off of local maximum
and minimum sets of increasing support size. Software implementation of the
DPT has also progressed from MATLAB to Python, one dimension to two
dimensions, and further implementation in three dimensions is envisioned. In
[138, Chapter 1] it is described how advanced human vision uses both sides
of the brain, the left side for shape vision and the right side to interpret the
purpose of what is seen, dealing with these separately and then combining
the interpretations. The Discrete Pulse Transform extracts discrete pulses of
the image of every possible shape and size thereby setting the stage for an
effective computer vision method.
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As we move from the human vision system to develop a computer vision
model, the first requirement is an operational definition of an image. Florack
[61] provides this is some detail in the setting of algebras and groups, but the
basic definition for practical purposes is the projection of a three dimensional
environment into a two dimensional digitized (discrete) space. The process
of acquiring an image is done by the capture of light onto a photographic
film or more modernly as the conversion of a similarly obtained electric signal
into a digital image. The most obvious acquirement process is with a normal
digital camera but others such as infrared (long-wave), laser, night vision, and
satellite cameras or capturing devices exist as well, including video capture
which is simply sequences of images with the third dimension as time. The
applications presented in this work are based on grey-scale images but can
quite easily be extended to colour images as well as other forms. Methods
presented would, however, need to be altered for the intrinsic manner in
which different image types represent the image content but the basic ideas
would still hold.

The main contributions of this thesis to the field of image analysis are as
follows.

Development of the theory of Discrete Pulse Transform (DPT) for images
This follows the extension of the LULU operators to multiple dimensions
which is presented in [52]. We prove that the properties if the DPT in one
dimension can be generalised almost unchanged for the DPT on multidi-
mensional arrays and in particular for images. The method of proof relies
on the properties of morphological connectivity rather than that of finite
sets of consecutive integers which makes proofs fundamentally different from
the one dimension case. Further, they are applicable for any kind of con-
nectivity since the only structure assumed for the domain is a morphological
connection. The established properties of consistent decomposition and total
variation preservation are applicable to any hierarchical decomposition and
can be considered as a step towards a general formulation-independent the-
ory of nonlinear hierarchical decompositions. Here we need to acknowledge
that the property of strong consistency or the so-called highlight conjecture,
formulated as an open problem for the one-dimensional DPT in 2005, was
first proved by Dirk Laurie [112]. However, the basic consistency property
stated here in Theorem 23 was proved first in our paper [8]. Moreover, the
method of analysis of the DPT in this paper also led to the Highlight theorem
thus providing an alternative proof of the result based on a morphological
approach rather than one based on graphs as in [112].
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DPT Scale-Space

Scale-space theory is an important approach to most of the problems in im-
age analysis, e.g. feature detection, segmentation, noise removal, etc. We
show that the DPT has a natural scale-space associated with it, namely the
space of discrete pulses, which can be used successfully in addressing the
mentioned problems. We further derived an axiomatic definition of a scale-
space, which is an attempt to develop a unified scale-space theory encom-
passing those scale-spaces defined by integral operators like the ever popular
Gaussian scale-space, and the morphological scale-spaces of which the DPT
scale-space is a part. This work was published in [7].

Implementation and Application

The presented theory is developed ultimately for practical goals, thus its im-
plementation and demonstration of usefulness in applications are its essential
partner. This is particularly important for the DPT since it is very computa-
tionally intensive. Using an efficient computer algorithm for derivation and
storage of the DPT pulses, the practical soundness of the DPT is investi-
gated in image sharpening, best approximation of an image, noise removal
in signals as well as images, feature point detection with ideas to extending
work to object tracking in videos, and lastly image segmentation.

In Chapter 2 we summarize the LULU theory thoroughly presented in [52]. A
look at characterizing the resulting Discrete Pulse Transform amongst nonlin-
ear decompositions is presented Chapter 3.4. The Discrete Pulse Transform
is connected to the frequently investigated scale-space theory in Chapter 4.
A thorough review of the original Gaussian scale-space, a linear scale-space,
is also provided as well as alternative scale-spaces and the progress of scale-
spaces after the Gaussian scale-space. A formal, much needed, definition of
a general scale-space is introduced together with a proof for the connection
of the LULU scale-space via the Discrete Pulse Transform to this definition.
In Sections 4.8.2 and 4.8.3 as well as Chapter 5 the basic image analysis
techniques, namely feature detection, image segmentation and cleaning up
of an image (sharpening and noise removal) are investigated. These provide
an indication of the ability of the LULU operators and the Discrete Pulse
Transform to perform the basics in image analysis. As a completely new
theory, the foundation methods need to be investigated before more precise
and more detailed methods are progressed towards. This work does just this.
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Chapter 2

LULU Theory Background

The LULU and Discrete Pulse Transform (DPT) theory on sequences and
multidimensional arrays was presented in detail in [52]. We repeat the work
here in a summarized manner for completeness.

2.1 Setting

Let Q2 be an abelian group, so that commutativity always holds. Recall
that an Abelian group is an algebraic structure with a set, say G, and set
operation, say *, satisfying the five axioms of closure (for all a,b € G =
axb € (@), associativity ((a*b) * ¢ = a* (b* c)), identity element (F e € G
such that a xe = e = ex a for all a € G e is called the identity element),
inverse element (for each a € G there exists b € G such that axb =e = bxa)
and commutativity (a * b = b= a for all a,b € G) [79]. Denote by A(£2)
the vector lattice of all real functions defined on ) with respect to the usual
point-wise defined addition, scalar multiplication and partial order. Let us
recall that

Definition 1 A partially ordered set L is a lattice if any (1,0y € L admit
a least upper bound €1V Uy and a largest lower bound ¢4 N\ {5. For a vector
lattice we have that for two sequences v = (x,),y = (yn) that x <y <=
Tp <Y, VnEZ.

11
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Figure 2.1: The action of a separator P

2.2 Separators

A common requirement for a filter P, linear or nonlinear, is its idempotence,
ie. Po P = P. For example, a morphological filter is by definition an
increasing and idempotent operator. For linear operators the idempotence of
P implies the idempotence of the complementary operator ¢d — P, where id
denoted the identity operator. For nonlinear filters this implication generally
does not hold so the idempotence of id — P, also called co-idempotence, [243],
can be considered as an essential measure of consistency.

For every a € 2 the operator E, : A(Q2) — A(QQ) given by E,(f)(x) =
f(z—a), x € Q, is called a shift operator. We now define a separator which
mimics the actions required of an operator P. The first three properties in

Definition 2 define a smoother. More detail on smoothers can be found in
[52].
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Definition 2 An operator P : A(Q) — A(?) is called a separator if

(i) PoE,=FE,oP a€ (Horizontal shift invariance)
(i) P(f+c)=P(f)+c, f,ce AQ), c a constant function
(Vertical shift invariance)
(iii) P(af)=aP(f), a e R, a>0, f e AQ)
(Scale invariance)
(iv) PoP =P (Idempotence)
(v) (id— P)o (id— P)=1d— P. (Co-idempotence)

Figure 2.1 illustrates the action of a separator P. It illustrates how a separa-
tor will separate the signal into noise and the true signal without the need for
recursive smoothing, that is, it does the separation the first time completely
so that there is no ‘signal’ left in the ‘noise’ nor any ‘noise’ left in the ‘signal’.
The median, for example, smoother requires recursive application and thus
does not possess this desirable property.

2.3 One Dimensional LULU

The LULU operators and the associated Discrete Pulse Transform developed
during the last three decades or so are an important contribution to the
theory of the nonlinear multi-scale analysis of sequences. The basics of the
theory as well as the most significant results until 2005 are published in the
monograph [183]. For more recent developments and applications see [5],
[38], [106], [113], [184]. This LULU theory was developed for sequences, that
is, the case Q = Z. Given a bi-infinite sequence & = (&;);cz and n € N the
basic LULU operators L,, and U, are defined as follows

(Ly€); = max{min{&;_,,,....,&},...,min{&;, ....&un} )y @ € Z. (2.1)
(U,€); = min{max{& _,,....,&}, ..., max{&;, ... &n}}, 1 € Z. (2.2)

Figure 2.2! illustrates how the operators L; and U, affect a sequence z, by
respectively lowering or raising a local maximum or minimum point to the
value of its nearest neighbour.

It is shown in [183] that for every n € N the operators L, and U,, as well as
their compositions are increasing separators. Hence they are an appropriate

LGraphs are from collaborative work done with PJ van Staden and K van Oldenmark
[56]
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Figure 2.2: An illustration of the effect of L1 and Uy on a sequence respec-
tively
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tool for signal extraction. Furthermore they are fully trend preserving in the
sense that both the operator and its complement preserve the monotonicity
between consecutive terms in the input sequence. This implies that these
operators are total variation preserving.

2.4 One Dimensions to n Dimensions

The definition of the operators L, and U, for sequences involves maxima
and minima over sets of consecutive terms, thus, making essential use of the
fact that Z is totally ordered. Since Z¢, d > 1, is only partially ordered the
concept of ‘consecutive’ does not make sense in this setting. Instead, we use
the morphological concept of set connection, [207].

Definition 3 Let B be an arbitrary non-empty set. A family C of subsets of
B is called a connected class or a connection on B if

(i)0ecC

(i1) {z} € C for all x € B

(iii) for any family {C;} C C we have (C; # 0 = |J C; € C.

iel il
If a set C' belongs to a connection C then C is called connected.

This definition generalizes the topological concept of connectivity (i.e. a set
is connected if it cannot be partitioned into two open disjoint sets) to arbi-
trary sets including discrete sets like Z?. It generalizes the concept of graph
connectivity. If the underlying set B is a graph, then the graph connectivity
also defines a connectivity.

2.5 n Dimensional LULU

Definition 4 Given a point x € Z% and n € N we denote by N, (z) the set
of all connected sets of size n + 1 that contain point x, that is,

No(z)={VeC:zeV, cad(V) =n+1}.

In addition to conditions assumed for the connection C we also assume that

card(N,(z)) < oo, Yn € N, Vz € Q. (2.3)
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In image analysis (d = 2) the simplest and most obvious connectivity to
make use of is a graph connectivity defined via a neighbour relation, e.g. 4-
connectivity, 8-connectivity. However, in order to have maximum generality,
we adopt the present axiomatic approach. Let us also mention that LULU
operators on a continuous domain (2 = R) are discussed in [9] and [5].

Now the operators L, and U, are defined on A(Z?) as follows.

Definition 5 Let f € A(Z%) and n € N. Then

L(f)@) =  max minf(y), =€ 2", (2:4)
Un(H)(@) = min maxf(y), x € A (2.5)

Let us confirm that Definition 5 generalizes the definition of L, and U, for
sequences. Suppose d = 1 and let C be the connection on Z generated by the
pairs of consecutive numbers. Then all connected sets on Z are sequences of
consecutive integers and for any i € Z we have

N (1) = {{i—n,i—n+1,....i}, {i—n+1,i—n+2,....i+1}, ..., {i,i+1, ..., i+n}}.

Hence for an arbitrary sequence £ considered as a function on Z the formulas
(2.4) and (2.5) are reduced to (2.1) and (2.2), respectively.

2.6 Properties

Matheron Pair

An essential property of L, and U, is that they form a Matheron pair [§],
that is we have

L,oU,oL,=U,oL, and U,oL,oU,=0L,oU,. (2.6)

Area Opening and Closing

The operators L, and U,, are an area opening and area closing respectively. It
is well known that the area opening (closing) is an algebraic opening (closing).
We may recall that a map is called an algebraic opening (closing) if it is
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increasing, idempotent and anti-extensive (extensive). Then the following
holds,

f<g= (La(f) < Lu(g), Un(f) < Unlg)) (2.7)
L,oL,=1L,, U,oU,=U, .
La(f) < f <UL(f) (2.9)

Monotonicity

The operators are monotone with respect to n in the following sense,

ny <ng => (Lp, > Lpy, Uy, < Up,). (2.10)

Semigroup

The operators L,,, U, and all their compositions form a four element semi-
group with respect to composition. Moreover, this semi-group is fully ordered
as follows,

L,<U,olL,<L,oU,<U,. (2.11)

The semi-group is also a band which means that all elements are idempotent.
Separators
The operators L, U, are separators for every n € N.

Action of the Operators

Similar to their counterparts for sequences the operators L, and U, defined
for multidimensional arrays above smooth the input function by removing
peaks (the application of L,) and pits (the application of U,,). The smoothing
effect of these operators is made more precise by using the concepts of a local
maximum set and a local minimum set defined below.

Definition 6 LetV € C. A point x ¢ V is called adjacent to V if VU{x} €
C. The set of all points adjacent to V is denoted by adj(V'), that is,

adj(V)={ze€Z': 2 ¢ V,Vu{z} eC}.

Definition 7 A connected subset V of Z¢ is called a local maximum set
of f € A(Z?) if
sup f(y) < inf f(z).

yeadj(V) zcV
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Figure 2.3: (a) A Local Mazimum Set (b) A Local Minimum Set

Similarly V' is a local minimum set if

ian) f(y) > sup f(x).

y€adj( €V

Figure 2.3 provides an illustration for the concepts introduced in Definition
41. In this figure the case of constant sets is presented. Although this is
not required by Definition 41 it is illustrated as such because the Discrete
Pulse Transform acts on such sets due to the mechanism employed in its
application. The following theorem illustrates this.

Theorem 8 For f € A(Z%),

a) L,(f) is constant on any local maximum set W of f with card(W) <
n+1

b) U,(f) is constant on any local minimum set W of f with card(W) <
n+1

We present two more theorems which illustrate the relationship between the
LULU operators and local maximum and minimum sets.

Theorem 9 Let f € A(Z?) and v € Z*. Then we have

a) L,(f)(x) < f(x) if and only if there exists a local mazimum set V of f
such that x € V and card(V') < n;



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W VYUNIBESITHI YA PRETORIA

CHAPTER 2. LULU THEORY BACKGROUND 19

b) Un(f)(z) > f(x) if and only if there exists local minimum set V' of f
such that x € V and card(V') < n.

Theorem 10 Let f € A(Z%). Then

a) the size of any local maximum set of the function L, (f) is larger than
n;

b) the size of any local minimum set of the function U, (f) is larger than
n.

In summary the theorems provide the following characterization of the effect
of the operators L, and U, on a function f € A(Z%):

e The application of L,, (U,,) removes local maximum (minimum) sets of
size smaller or equal to n.

e The operator L, (U,) does not affect the local minimum (maximum)
sets in the sense that such sets may be affected only as a result of the
removal of local maximum (minimum) sets. However, no new local
minimum (maximum) sets are created where there were none. This
does not exclude the possibility that the action of L,, (U,) may enlarge
existing local minimum (maximum) sets or join two or more local min-
imum (maximum) sets of f into one local minimum (maximum) set of

Ln(f) (Un(f))-

o L,(f)=f (Uu(f) = f)if and only if f does not have local maximum
(minimum) sets of size n or less;

Furthermore, as a consequence of the preceding results we obtain the follow-
ing corollary.

Corollary 11 For every f € A(Z%) the functions (L, o U,)(f) and (U, o
L,)(f) have neither local maximum sets nor local minimum sets of size n or
less. Furthermore,

(Lo Un)(f) = (Uno Lp)(f) = f

if and only if f does not have local maximum sets or local minimum sets of
size less than or equal to n.
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Neighbour Trend Preservation

Definition 12 An operator P is neighbour trend preserving if for any
points p,q € Q, such that {p,q} € C, and for f € A(Z%) we have

flp) < flg) = P(f)(p) < P(f)(q)

The operator P is fully trend preserving if both P and id— P are neighbour
trend preserving.

In Definition 12, for P to be fully trend preserving the requirement on id — P,
that is the neighbour trend preserving property, can be equivalently formu-
lated as

[P(f)(p) = P(f)(@)] < |f(p) = fla)l- (2.12)
The property (2.12) is called difference reducing.

Theorem 13 The operators L,, U,, n = 1,2,..., and their compositions,
are all fully trend preserving.

Total Variation Preserving

We assume for this section that the connection C on Z¢ is defined via the
so-called graph connectivity. More precisely, the points of Z? are considered
as vertices of a graph with edges connecting some of them. Equivalently, the
connectivity of such a graph can be defined via a relation r C Z¢ x Z¢, where
p € Z% is connected (by an edge) to ¢ € Z% iff (p,q) € r.

The relation r reflects what we consider neighbours of a point in the given
context. For example, in image analysis (d = 2), it is common to use 4-
connectivity (neighbours left, right, up and down) and 8-connectivity (in
addition, the diagonal neighbours are considered). Let r be a relation on
Z4. We call a set C' C Z® connected, with respect to the graph connectivity
defined by r, if for any two points p,q € C there exists a set of points
{p1,p2, .-, pr} € C such that each point is neighbour to the next one, p is
neighbour to p; and py is neighbour to q. Here we assume that,

e 1 is reflexive, symmetric and shift invariant (2.13)
o (pp+er)€r forall k=12, .. dandpecZ (2.14)
where e;, € Z% is defined by (e;); = { 0 1fz 7k
1 ifi=k
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Figure 2.4: Sample images

Conditions (2.13) and (2.14) ensure that the set of connected sets C defined
through this relation is a connection in terms of Definition 3. Condition
(2.14) is essential to the definition of total variation as will be seen in the
sequel.

Since the information in an image is in the contrast, the total variation of the
luminosity function is an important measure of the quantity of this informa-
tion. Image recovery and noise removal via total variation minimization are
discussed in [34] and [193]. It should be noted that there are several defini-
tions of total variation for functions of multi-dimensional argument (Arzeld
variation, Vitali variation, Pierpont variation, Hardy variation, etc., see [2]
[36] [164]). In the applications cited above the total variation is the L' norm
of a vector norm of the gradient of the function. Here we consider a discrete
analogue of this concept. Namely, the Total Variation of f € A(Z?) if given
by

TV() =D > [f+(ex)s) = fp)l. (2.15)

peZd i=1

If TV (f) < oo, then f is said to be of bounded variation. Table 2.6 gives the
total variation of a few sample images seen in Figure 2.4. Notice that the
pure noise image, Figure 2.4(h), has the highest total variation and as the
images contain more homogenous areas their total variation reduces.

Let us denote by BV(Z?) the set of all functions of bounded variation in
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Image in Figure 2.4 | Total Variation (standardized)
@ 100173
(b) 132527
(©) 167011
() 193650
(©) 235908
(f) 245480
() 336408
(h) 703707

Table 2.1: Standardized Total Variation of Some Sample Images

A(Z?). Clearly, all functions of finite support are in BV (Z?). For example,
the luminosity functions of images are in BV (Z?). Note that when d = 1
equation 2.15 gives the total variation of sequences as discussed in [183,
Chapter 6]. Similar to sequences the total variation in equation 2.15 is a
semi-norm. An operator P on BV (Z?) is called total variation preserving if

TV(f) =TV (P(f)) +TV((id = P)(f))- (2.16)

It is natural to expect that a good separator P will not create new variation
as this property requires. An operator P satisfying property 2.16 is called
total variation preserving [185].

Theorem 14 The operators L, U,, n = 1,2, ..., and all their compositions,
are total variation preserving.

2.7 Conclusion

This chapter provided a summary on the theory of the LULU operators
developed for multidimensional arrays. We now proceed with the resulting
Discrete Pulse Transform.
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