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Synopsis

This study proposes novel optimization methodologies for the optimization of problems

that reveal non-physical step discontinuities. More specifically, it is proposed to use

gradient-only techniques that do not use any zeroth order information at all for step

discontinuous problems.

A step discontinuous problem of note is the shape optimization problem in the pres-

ence of remeshing strategies, since changes in mesh topologies may — and normally do —

introduce non-physical step discontinuities. These discontinuities may in turn manifest

themselves as non-physical local minima in which optimization algorithms may become

trapped.

Conventional optimization approaches for step discontinuous problems include evo-

lutionary strategies, and design of experiment (DoE) techniques. These conventional

approaches typically rely on the exclusive use of zeroth order information to overcome

the discontinuities, but are characterized by two important shortcomings: Firstly, the

computational demands of zero order methods may be very high, since many function

values are in general required. Secondly, the use of zero order information only does not

necessarily guarantee that the algorithms will not terminate in highly unfit local minima.

In contrast, the methodologies proposed herein use only first order information, rather

than only zeroth order information. The motivation for this approach is that associated

gradient information in the presence of remeshing remains accurately and uniquely com-

putable, notwithstanding the presence of discontinuities. From a computational effort

point of view, a gradient-only approach is of course comparable to conventional gradient-

based techniques. In addition, the step discontinuities do not manifest themselves as

local minima.

KEYWORDS: shape optimization; gradient-only optimization; unstructured remesh-

ing; truss analogy; analytical sensitivity analysis; consistent tangent; local minima; step

discontinuity; partial differential equation; non-constant discretization; error indicator;

r-refinement; radial basis function; variable discretization
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Sinopsis

Hierdie studie stel ’n nuwe optimerings-metodologie vir die optimering van probleme

met nie-fisiese trap diskontinüıteite voor. In besonder word voorgestel om slegs-gradiënt

tegnieke, wat glad nie nulde orde inligting benut nie, te gebruik vir trap diskontinue

probleme.

’n Trap diskontinue probleem van belang is die vormoptimerings-probleem waar her-

maas strategieë gebruik word, omdat veranderinge in maastopologie nie-fisiese trap dis-

kontinüıteite mag veroorsaak. Hierdie diskontinüıteite mag om die beurt weer as nie-

fisiese lokale minima te voorskyn kom, waarin optimeringsalgoritmes vasgevang kan raak.

Konvensionele optimeringstegnieke vir trap diskontinue probleme sluit evolutionêre

strategieë asook ontwerp van eksperiment (OvE) tegnieke in. Hierdie konvensionele teg-

nieke maak tipies staat op die uitsluitlike gebruik van nulde orde inligting om diskon-

tinüıteite te oorkom, maar word gekarakteriseer deur twee tekortkominge: Eerstens, die

berekeningskoste van nulde orde metodes mag baie hoog wees, omdat baie funksie eva-

luerings benodig word. Tweedens verseker die gebruik van slegs nulde orde inligting nie

dat die algoritmes nie in ongewensde lokale minima termineer nie.

In teenstelling hiermee gebruik die metodologie wat hierin voorgestel word slegs eerste

orde inligting, in plaas van nulde orde inligting. Die motivering vir hierdie benadering

is dat geassosieerde gradiënt inligting in die aanwesigheid van hermasing akkuraat en

uniek berekenbaar is, nieteenstaande die teenwoordigheid van diskontinüıteite. Vanuit ’n

berekeningsoogpunt is ’n slegs-gradiënt metode natuurlik vergelykbaar met konvensionele

gradiënt gebaseerde tegnieke. Boonop manifesteer trap diskonitnüıteite hulself nie as

lokale minima nie.

SLEUTELWOORDE: vormoptimering; slegs-gradiënt optimering; ongestruktureerde

hermasing; vakwerk-analogie; analitiese sensitiwiteitsanalise; konsekwente gradiënt; lo-

kale minima; stap diskontinüıteit; parsiële differensiaalvergelyking; nie-konstante diskre-

tisering; fout aanwyser; r-verfyning; radiale basis funksie; veranderlike diskretisering
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CHAPTER 1

Overview

The following four chapters document the author’s contribution as a postgraduate stu-

dent in the Department of Mechanical and Aeronautical Engineering at the University of

Pretoria. Each of the following four chapters is a self-contained advancement towards ac-

commodating remeshing in shape optimization, and are based on published or submitted

papers.

In Chapter 2 [66], a novel unstructured remeshing environment for gradient based

shape optimisation using triangular finite elements is presented. The remeshing algorithm

is based on a truss structure analogy; in solving for the equilibrium position of the truss

system, the quadratically convergent Newton’s method is used. Analytical sensitivity

information of the numerically approximated optimization problem is made available to

the shape optimisation algorithm, which results in highly efficient gradient based shape

optimisation.

In solving the truss structure analogy in Chapter 2, we compare our quadratically

convergent Newton solver with a previously proposed forward Euler solver; this includes

notes regarding mesh uniformity, element quality, convergence rates and efficiency. We

present three numerical examples; it is then shown that remeshing may introduce discon-

tinuities and local minima. We demonstrate that the effects of these on gradient based

algorithms are alleviated to some extent through mesh refinement, and may largely be

overcome with a simple multi-start strategy.

In Chapter 3 [65], we study the minimization of objective functions containing non-

physical jump discontinuities. These discontinuities arise when (partial) differential equa-

tions are discretized using non-constant methods and the resulting numerical solutions

are used in computing the objective function, as observed in Chapter 2 using remesh-

ing in shape optimization. Although the functions may become discontinuous and non-

differentiable we can compute analytical gradient information of the numerical solution

where the function is differentiable, and approximate gradient information where it is

discontinuous. At a non-differentiable point a partial derivative of the gradient vector is

1

 
 
 



CHAPTER 1. OVERVIEW 2

constructed by a one-sided directional derivative when the function is respectively non-

differentiable or given by the partial derivative itself when the function is differentiable

along the partial derivative direction. Such a constructed gradient field follows from the

computational scheme since every point has an associated discretization for which sensi-

tivities can be calculated. We refer to this as the associated gradient field. Hence, from

a computational perspective the associated gradient field of these discontinuous func-

tions are everywhere defined albeit approximated at the discontinuities. Rather than

the construction of global approximations using only function value information to over-

come the discontinuities, as is often done, we propose to use only the associated gradient

information.

We elaborate on the modifications of classical gradient based optimization algorithms

for use in gradient-only approaches, and we then present gradient-only optimization

strategies using both BFGS and a new spherical quadratic approximation for sequen-

tial approximate optimization (SAO). We also use the BFGS and SAO algorithms to

solve three problems of practical interest, both unconstrained and constrained. For the

constrained problems we only consider smooth volume constraint functions.

In Chapter 4, we consider some theoretical aspects of gradient-only optimization for

the unconstrained optimization of objective functions containing non-physical step or

jump discontinuities. The (discontinuous) associated gradients are however assumed to

be accurate and everywhere uniquely defined. This kind of discontinuity indeed arises

when the optimization problem is based on the solution of a system of partial differential

equations, when variable discretization techniques are used (remeshing in spatial domains

or variable time stepping in temporal domains). These discontinuities, which may cause

local minima, are artifacts of the numerical strategies used and should not influence

the solution to the optimization problem. We demonstrate that it is indeed possible to

ignore these local minima due to discontinuities, if only associated gradient information

is used. Various gradient-only algorithmic options are discussed. The implications are

that variable discretization strategies, so important in the numerical solution of partial

differential equations, can be combined with efficient local optimization algorithms.

In Chapter 5, we extend our uniform mesh generator presented in Chapter 2. Herein,

we turn our quadratically convergent mesh generator into an adaptive generator, by allow-

ing for a spatially varying ideal element length field, computed using the Zienkiewicz-Zhu

error indicator. The remeshing strategy makes (semi) analytical sensitivities available for

use in gradient based optimization algorithms. To circumvent difficulties associated with

local minima due to remeshing, we again rely on gradient-only optimization algorithms,

which do not use zeroth order function information. Numerical results are presented

for an orthotropic cantilever beam, an orthotropic Michell-like structure and a spanner

design problem.

This study is concluded in Chapter 6, which offers conclusions and recommendations.

 
 
 



CHAPTER 2

Remeshing shape optimization strategy

A novel unstructured remeshing environment for gradient based shape optimiza-

tion using triangular finite elements is presented. The remeshing algorithm is

based on a truss structure analogy; in solving for the equilibrium position of the

truss system, the quadratically convergent Newton’s method is used. Analytical

sensitivity information of the numerically approximated optimization problem is

made available to the shape optimization algorithm, which results in highly effi-

cient gradient based shape optimization. In solving the truss structure analogy, we

compare our quadratically convergent Newton solver with a previously proposed

forward Euler solver; this includes notes regarding mesh uniformity, element qual-

ity, convergence rates and efficiency.

We present three numerical examples; it is then shown that remeshing may in-

troduce discontinuities and local minima. We demonstrate that the effects of

these on gradient based algorithms are alleviated to some extent through mesh

refinement, and may largely be overcome with a simple multi-start strategy.

This chapter is constructed as follows: An outline of shape optimization strate-

gies is given in Section 2.1, followed by the unstructured remeshing strategy is

in Section 2.2. In particular, the previously proposed linearly convergent mesh

generator based on a truss structure analogy proposed by Persson and Strang is

outlined. The mesh generator is then modified to exhibit quadratic convergence

in solving for the equilibrium positions of the nodal coordinates of the truss struc-

ture. We also present an analytical sensitivity analysis, i.e. the computation of the

derivatives of the mesh node positions w.r.t. the design domain control variables.

The formulation of the shape design problem is considered in Section 2.3. Finally,

numerical results for three example problems are presented in Section 2.4, where

after we offer conclusions and recommendations for future work.

3

 
 
 



CHAPTER 2. REMESHING SHAPE OPTIMIZATION STRATEGY 4

2.1 Introduction

Shape optimization involves the constrained minimization of a cost function. The cost

function in turn typically involves the solutions of a system of partial differential equa-

tions, which depend on parameters that define a geometrical domain [34]. The continuum

description of the geometrical domain is normally discretized. This allows efficient solu-

tion of the system of partial differential equations, using for example the finite element

method (FEM). Normally, the discretized geometric domain is defined by control variables

with predefined freedom. The control variables in turn bound the geometrical domain

through a predefined relationship, which may be piecewise linear, or based on B-splines,

etc.

In shape optimization, different meshing strategies can be used. These include fixed

grid strategies [20, 35, 67], design element concepts [28], adaptive mesh strategies [6, 50],

and remeshing strategies. The first three methods imply an a priori mesh discretiza-

tion with obvious limitations, for example when dealing with large shape changes in the

geometry during optimization. On the other hand, some of the drawbacks of remeshing

strategies are the implementation expense, and the possible introduction of local minima,

which may cause gradient based optimization methods to become trapped in local min-

ima [1]. However, (unstructured) remeshing strategies allow for generality in structural

models and objective functions. Large shape changes can be accommodated using the

remeshing strategy with minimal mesh distortion.

In shape optimization, the cost function may be optimized using either a gradient

free or gradient based optimization method. While the gradient free methods require

only the relationship between the cost function and the discretized geometric domain

to be specified, the gradient based optimization methods require additional sensitivity

information. The sensitivities needed for the gradient optimization techniques can either

be calculated numerically, semi-analytically or analytically. All these methods have merits

and drawbacks. Numerical gradients using finite difference methods are computationally

expensive, but are easily implementable. The semi-analytical and analytical methods are

more complex to implement, but are computationally cheaper.

An advantage of gradient free evolutionary strategies is their global optimization ca-

pability. They have been used with success by Xie and Steven [35, 67] in a fixed grid

strategy. Related works that reflect evolutionary strategies in shape optimization, are

the biological growth method of Mattheck and Burkhardt [38], and the genetic algorithm

used by Garcia and Gonzalez [20]. They are in general however, still very expensive,

and the solutions are normally inferior to those obtained with gradient based methods.

Most certainly so for problems with many design variables. Hence we restrict ourselves

to gradient based methods in this study.

Mesh generation plays an important role in shape optimization and in general con-
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tributes largely to the computational expense per iteration when unstructured remeshing

strategies are used. This cost may however be offset many times over when exact analyt-

ical gradients can be made available to the algorithm used in solving the shape optimiza-

tion problem. Remeshing strategies in shape optimization accentuate the importance

of robustness, computational speed, flexibility and accuracy of the mesh generator in

discretizing the geometrical domain.

In this study a novel remeshing shape optimization environment is presented. The

environment is based on an elegant truss structure analogy proposed by Persson and

Strang [42]. It is however developed such that the analytical sensitivities are available,

cost effectively. Two gradient based optimization algorithms are implemented, namely

the Dynamic-Q algorithm [56], and sequential quadratic programming (SQP) [4]. These

algorithms are then used to solve example problems in shape optimization. In turn,

this demonstrates that remeshing may introduce discontinuities, which may cause the

gradient based algorithms to become trapped in local minima. We then investigate the

ability of h-refinement to escape from these local minima.

2.2 Mesh generation

Computational meshes are used extensively in engineering and physics to discretize a

continuous geometrical domain Ω with boundary ∂Ω. The computational mesh

Λ ∈ {X = (X i)i=1,...,nn;T = (T kj )j=1,...,ne;k=1,...,nv}, (2.1)

defined on the domain Ω describes the position X ∈ R3 of the nn nodes, and gives for

each of the j = 1, . . . , ne computational elements the set T k=1,...,nv
j of its nv vertices [34].

In addition the set of nodes X are the union of the boundary nodes X ∂Ω and the interior

nodes XΩ.

In this study we limit the nodal positions to two dimensions X ∈ R2. In this section,

we present triangulation based on the truss structure analogy proposed by Persson and

Strang [42]. This incorporates a Delaunay strategy [18] to ensure good mesh quality,

albeit at the cost of potentially introducing discontinuities between consecutive meshes

due to the addition or removal of nodes.

2.2.1 Mesh generator based on a truss structure analogy

The mesh generator proposed by Persson and Strang is based on a truss structure analogy

that solves for the equilibrium position of a truss structure. The geometrical domain is

defined by a signed distance function that signs the nodes outside the domain as positive,

inside as negative and zero on the boundary. The distance function is a function of the
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control variables through the interpolation of the domain. The initial mesh is gener-

ated using the simple algorithm of Persson and Strang, which mostly creates equilateral

triangles in the domain.

The truss force function z is defined with a force discontinuity, as no tensile forces

are permitted in the truss elements. This allows the propagation of the nodes X to the

boundary ∂Ω. The nodes are kept inside the geometrical domain by external forces acting

on the boundary nodes X ∂Ω. The forces act perpendicularly to the boundary, keeping the

nodes from moving outside the boundary while allowing movement along the boundary.

The truss force function z is defined as

z(l, h0) =

{
k(h0 − l) if l < h0

0 if l ≥ h0

(2.2)

with k the spring (truss) stiffness, l the current spring length and h0 the undeformed

spring length (also referred to as the ideal element length). The undeformed spring length

h0 is a user specified parameter whereas the current spring length l(X ) is a function

of the nodal positions X . The nodal positions X (x) in turn depends on the control

variables x. There is also a dependency of l on the mesh topology T , which we omit

since the mesh topology T converges to a constant topology as the equilibrium of the

truss structure converges. The implication is the introduction of discontinuities in the

residual of the equilibrium of the truss structure whenever T or X changes, due to

Delaunay triangulation. In the implementation of Persson and Strang [42], all springs

are precompressed by 20%, which provides the driving force necessary to propagate nodes

to the boundary.

The truss system F (X ) = 0 is transformed to a system of ordinary differential equa-

tions through the introduction of artificial time-dependence in the equations. The system

is then solved by a forward Euler method

X n+1 = X n + ∆tF (X n). (2.3)

The forward Euler method is essentially a matrix free method ideally suited to create

meshes with a very large number of elements. This method exhibits linear convergence

rates.

However, in general, the structural meshes (number of elements) in shape optimiza-

tion tend to vary from small to moderate for practical optimization problems, since op-

timization is per se computationally expensive. Emphasis is placed on mesh quality and

accurate representation of the geometrical domain. It may therefore be beneficial from a

computational cost perspective to replace the forward Euler method with a quadratically

convergent scheme. We will do so in the next subsection.
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2.2.2 Quadratic convergent Newton solver for the mesh gener-

ator

The truss system equilibrium equations F (X ) = 0 are partitioned along the internal

nodes XΩ and boundary nodes X ∂Ω i.e.

F (X ) =

{
F Ω(X )

F ∂Ω(X )

}
=

{
F Ω(XΩ,X ∂Ω)

F ∂Ω(XΩ,X ∂Ω)

}
=

{
0

0

}
. (2.4)

For the sake of simplicity, the boundary nodes X ∂Ω are seeded along the geometrical

boundary ∂Ω and are chosen to remain fixed during the shape mesh generation process.

Nodes are explicitly placed on the control variable locations to ensure accurate represen-

tation of the defined geometrical domain Ω. Since the boundary nodes X ∂Ω are fixed, the

system of unknowns reduces to XΩ. Hence, we rewrite F Ω(XΩ,X ∂Ω) as F Ω(XΩ). Also,

the reactions at the boundary nodes are not of immediate interest, so we only solve for

F Ω(XΩ) = 0. (2.5)

The reduced truss system in Eq. (2.5) is solved directly via the quadratically convergent

Newton’s method, i.e. we solve for ∆XΩ from

∂F Ω

∂XΩ
∆XΩ = −F Ω (2.6)

to update the nodal coordinates

XΩ
n+1 = XΩ

n + ∆XΩ. (2.7)

The consistent tangent ∂FΩ

∂XΩ is computed analytically for every iteration, since the number

of elements (and hence the number of unknowns) and element connectivity may change

between consecutive iterations, due to Delaunay triangulation. Although unusual, the

possible change in the number of system unknowns requires no special treatment.

Since the force function z proposed by Persson and Strang in Eq. (2.2) is discontinu-

ous, (which is undesirable in gradient based implementations), it is now changed to allow

for both tensile and compressive forces in the truss elements in finding the equilibrium

position, i.e.

z(l(X (x)), h0) = k(h0 − l(X (x))) for all l. (2.8)

Furthermore, we do not require any precompression in the springs.
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Table 2.1: Cartesian coordinates for the piece-wise linear boundary description of the circular
part of the quarter circular disc.

x 0 2.9264 5.7403 8.3336 10.6066 12.472 13.8582 14.7118 15
y 15 14.7118 13.8582 12.472 10.6066 8.3336 5.7403 2.9264 0

2.2.3 Evaluation of the mesh generators

We now compare our novel quadratically convergent Newton solver to the forward Euler

solver. The boundary nodes are treated as discussed in Section 2.2.2 for both the Newton

and forward Euler implementations.

A comparative study is done for the mesh generation of a quarter circular disk with a

radius of 15 units. The x and y coordinates for the piece-wise linear boundary representa-

tion of the circular part of the quarter circular disk is given in Table 2.1. The comparison

focuses on the computational expense and the convergence rate of both solvers. (In cases

where the sensitivities are not needed, i.e. for gradient free optimization methods, im-

plementations of Quasi-Newton or Modified Newton methods can be used to obtain a

computational advantage. Additionally, the residual convergence tolerance may also be

relaxed.)

A disadvantage of the Newton solver is that matrix methods require extensive mem-

ory resources when the mesh size is increased, when compared to the matrix-free forward

Euler solver. However, we utilise sparse matrix manipulation techniques whenever possi-

ble.

For both the forward Euler and Newton methods, we express the stopping condition

in terms of the maximum nodal displacement, i.e. we stop when |X n+1 − X n|∞ < ε,

with ε > 0, small and prescribed. This stopping criterion was also used by Persson and

Strang [42]. The study is conducted using a 3GHz Pentium IV machine with 512 MB

RAM running under the Linux operating system.

Figure 2.1 depicts the computational effort comparison for the Newton and forward

Euler solvers for different mesh sizes. For a stopping tolerance of ε = 0.04h0, the compu-

tational expense of the forward Euler method is comparable to Newton’s method, where

we use a stopping tolerance of ε = 10−8h0. However, decreasing the stopping tolerance

for the forward Euler solver by a factor 10 increases the computational effort on average

by a factor of 16.

Figure 2.2 depicts the force residual versus the number of iterations for both solvers

using an ideal element length of h0 = 0.375. After the mesh stabilises the convergence rate

is quadratic for the Newton solver. (We define mesh stability to imply that no elements

are added or removed from the mesh from one iteration to the next as a result of Delaunay
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Figure 2.1: Computational effort required to solve the truss equilibrium with the Newton and
the forward Euler methods.
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Figure 2.2: Force residual comparison for an ideal element length of h0 = 0.375 with 1492
nodes.

triangulation.) In general, this requires between 1-2 iterations. The discontinuity in the

force residual visible after the first iteration in Figure 2.2 is an example of such an event.

(Even including these events, Newton’s method requires only 6 iterations on average for

all meshes we constructed.) Also illustrated is the linear convergence rate of the forward

Euler solver. For this solver the average number of iterations increases from 10 to 155

as the tolerance is decreased from 0.04h0 to 0.004h0. For our implementation however,

the average computational cost per iteration of the forward Euler solver is some 30% less

than the average computational cost for the Newton solver.

The forward Euler implementation is different from our implementation since it does

not allow tensile forces in the trusses and a precompression is imposed. It is therefore

necessary to verify that the changes we made are not detrimental to the element quality

and mesh uniformity reported in [42].

Element quality is defined as twice the ratio of the radius of the largest inscribed
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Figure 2.3: Comparison between the different solvers in terms of a) mean element quality and
b) mesh uniformity for the quarter circular disc.

Table 2.2: Minimum element qualities for the forward Euler and Newton solvers.

h0 forward Euler (ε = 0.04h0) forward Euler (ε = 0.004h0) Newton (ε = 10−8h0)

3 0.7942 0.8197 0.7435
1.5 0.7323 0.7384 0.6915
0.75 0.6312 0.7644 0.6665
0.375 0.5845 0.7191 0.6571
0.1875 0.6245 0.7625 0.6538

circle over the radius of the smallest circumscribed circle. Hence the element quality of

an equilateral triangle for example is 1.00, while the element quality of a 30-60-90 angle

triangle is only 0.68.

Mesh uniformity is defined as the standard deviation of the ratio of the circumradii

of all the triangles in the mesh to the ideal element length h0. The mesh uniformity

is normalized by the mean ratio, and then expressed as a percentage. Hence a mesh

uniformity of 0% is the ideal.

We compare the mean element quality and mesh uniformity of the two solvers in

Figures 2.3(a) and 2.3(b) respectively. For this comparison we again use the quarter

circular disc. In essence, the mean element quality and the mesh uniformity are similar.

In Table 2.2, the lowest element quality in the meshes are compared. Again, the solvers

perform comparable.

2.3 Problem formulation

In general the shape optimization problem is given in the following abstract form [34].
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Problem 2.3.1. Find the optimal shape Ω∗ such that

F∗Ω = FΩ

(
Ω∗, S∗Ω

)
= min

Ω
{FΩ

(
Ω, SΩ

)
: G
(
Ω
)
≤ ε0}, (2.9)

with SΩ the state solution of the partial differential equations pΩ(Ω, SΩ) = 0, which char-

acterizes the system [34].

Here, Ω denotes the unknown shape, which is a subset in R3. Ω is usually defined

by a finite set of control variables x ∈ Rn and G(Ω) ≤ ε0 the set of nonlinear design

constraints, with ε0 given.

Problem 2.3.1 is ill-posed but can be reduced to an approximate problem by discretiz-

ing the domain Ω with a computational grid Λ (see Eq. (2.1)). The computational grid

Λ can then be used to approximate the state equation pΛ(Λ, SΛ) = 0 and to define an

approximate solution SΛ to the state equation. The set of nonlinear design constraints

G
(
Ω
)
≤ ε0 can then also be expressed as m functions of the computational grid Λ as

follows

gi
(
Λ(x),x

)
≤ 0, i = 1, . . . ,m. (2.10)

Consequently the shape optimization problem reduces to the following approximate

problem.

Problem 2.3.2. Find the minimum F∗ such that

F∗ = F
(
Λ∗(x∗), S∗Λ(x∗)

)
= min
x∈Rn
{F
(
Λ(x), SΛ(x)

)
: g
(
Λ(x),x

)
≤ 0}, (2.11)

with SΛ the approximate state solution of the approximate partial differential equations

pΛ(Λ, SΛ) = 0, which characterizes the system.

For the sake of brevity, the objective function and the constraints will respectively be

denoted by F(x) and g(x); this notation will however imply dependency on Λ(x). The

objective and constraint functions can be selected in many ways. In structural shape

optimization the objective function is usually chosen as the weight or volume of the

structure, subject to displacement and stress constraints [16].

In our case, the objective function F(x) = F
(
u(Λ(x))

)
is an explicit function of the

nodal displacements u, which are obtained by solving the approximate finite element

equilibrium equations for linear elasticity, formulated as

Ku = f , (2.12)

where K represents the assembled structural stiffness matrix and f the consistent struc-

tural loads. Following the usual approach, the system in Eq. (2.12) is partitioned along
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the unknown displacements (uf) and the prescribed displacement (up), i.e.

Ku =

[
Kff K fp

Kpf Kpp

]{
uf

up

}
=

{
f f

fp

}
, (2.13)

where f f represents the prescribed forces and fp the reactions at the nodes with prescribed

displacements. The unknown displacements (uf) are obtained from

Kffuf = f f −K fpup. (2.14)

We choose to represent the geometrical domain boundary ∂Ω by a simple piecewise

linear interpolation between the control variables. However, Bezier curves or B-splines,

etc. may of course also be used. We subject the structure to a volume constraint g(x)

which reduces to a linear function of the control variables x.

2.3.1 Analytical sensitivities

Recall that the cost function F(x) is an explicit function of the nodal displacements u.

Using gradient based optimization algorithms, we therefore require the sensitivity of the

structural response u w.r.t. the design variables (control variables) x. In general, the

stiffness partition matrices Kff and K fp, the nodal displacement vector uf and the load

vector f f in Eq. (2.14) depend on the design variables x, i.e. Kff(x)uf(x) = f f(x) −
K fp(x)up(x).

The analytical gradient
duf
dx

is obtained by differentiating Eq. (2.14) w.r.t. the control

variables x, i.e.

Kff
duf

dx
=
df f

dx
− dK fp

dx
up −K fp

dup

dx
− dKff

dx
uf. (2.15)

In this study the load vector f f is assumed to be independent of the control variables x,

hence
df f
dx

= 0. For Dirichlet boundary conditions, up = 0, and Eq. (2.15) reduces to

Kff
duf

dx
= −dKff

dx
uf. (2.16)

Eq. (2.16) is solved to obtain
duf
dx

, using the factored stiffness matrix Kff, available from

the primary analysis when solving Eq. (2.14). The unknown
dKff
dx

is computed from

dKff

dx
=
dKff

dX
dX
dx

, (2.17)

where
dKff
dX is obtained by differentiating the stiffness matrix analytically with respect to

the nodal coordinates X . This is done on the element level and then assembled into the

global system. For simplicity’s sake we choose to use the constant strain triangle (CST)
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element. The element stiffness matrix Ke of the CST element is given by

Ke = tABTDB, (2.18)

where t and A denote the element thickness and element area. Hence dKe

dX is given by

dKe

dX = t

(
dA

dXB
TDB + A

dBT

dX DB + ABTD
dB

dX

)
. (2.19)

The area of the CST element is given by

A = 0.5|detJ | = 0.5|x13y23 − x23y13|. (2.20)

Here, J represents the Jacobian matrix and xij = xi − xj, etc. Subscripts i, j = 1, 2, 3

denote the element node numbers. The CST element strain-displacement matrix is

B =
1

detJ

 y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 . (2.21)

It follows from Eqs. (2.18), (2.20) and (2.21) that Ke is a nonlinear function of the nodal

coordinates X . B and A are differentiated directly to obtain dKe

dX ; assembly yields
dKff
dX .

To complete the sensitivity analysis, we still need to evaluate dX
dx

present in Eq. (2.17).

To emphasize the dependency on the control variables x, the reduced truss system F Ω is

now expressed as a function of both the interior nodes XΩ(x) and the boundary nodes

X ∂Ω(x), i.e.

F Ω(XΩ(x),X ∂Ω(x)) = 0. (2.22)

To determine the relationship between the nodal coordinates X and the control variables

x, we take the derivative of Eq. (2.22) w.r.t. x, i.e.

dF Ω

dx
=
∂F Ω

∂XΩ

dXΩ

dx
+

∂F Ω

∂X ∂Ω

dX ∂Ω

dx
= 0 (2.23)

hence

∂F Ω

∂XΩ

dXΩ

dx
=− ∂F Ω

∂X ∂Ω

dX ∂Ω

dx
. (2.24)

dXΩ

dx
can be obtained if ∂FΩ

∂X∂Ω
dX∂Ω

dx
and ∂FΩ

∂XΩ are known, either analytically or numerically.

Although the relationship between the control variables x and the boundary nodes X ∂Ω

is known explicitly due to the linear relationship of our piece-wise linear boundary, we

compute ∂FΩ

∂X∂Ω
dX∂Ω

dx
using a semi-analytical sensitivity analysis [40]. ∂FΩ

∂XΩ is available from
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Newton’s method (cf. Eq. (2.6)) implemented in the mesh generation step. Therefore we

obtain dX
dx

as the union of dXΩ

dx
and dX∂Ω

dx
. The semi-analytical sensitivity calculation re-

quires finite difference perturbations from an unperturbed geometry. For the unperturbed

and perturbed geometries we ensure the mesh topology T remains the same by deactivat-

ing the Delaunay triangulation for the duration of the sensitivity calculation. This avoids

remeshing between the unperturbed and perturbed geometries and any inconsistencies in

mesh topology that may occur.

In summary, the primary and sensitivity analyses proceed as follows:

1. Solve for the nodal positions XΩ by solving Eq. (2.6) repeatedly. ∂FΩ

∂XΩ and F Ω are

recomputed at each iteration.

2. Calculate ∂FΩ

∂X∂Ω
dX∂Ω

dx
semi-analytically and then solve for dXΩ

dx
from Eq. (2.24), using

∂FΩ

∂XΩ from step 1 above.

3. Assemble Kff and f f, then solve for uf from Eq. (2.14).

4. Compute dKe

dX using Eq. (2.19) and assemble over all elements to obtain
dKff
dX .

5. Compute
dKff
dx

using Eq. (2.17), and using dX
dx

from step 2 above.

6. Solve for
duf
dx

using Eq. (2.16).

2.3.2 Gradient sensitivity comparison

To verify that no errors were made during the analytical gradient derivations, we compare

our analytical sensitivities to numerical sensitivities obtained with the forward finite

difference method. We use the bow-tie structure and mesh depicted in Figure 2.4 to

compute the sensitivity of the displacement at the point of load application (uF) w.r.t.

the indicated control variables. The x and y coordinates for control variables and applied

load F of the the bow-tie structure of the unperturbed structure are given in Table 2.3.

Calculation of the numerical sensitivities is conducted without Delaunay triangulation

steps, to avoid the introduction of any discontinuity (due to the addition or removal of

Table 2.3: Cartesian coordinates for control variables and applied load F of the unperturbed
bow-tie structure.

Control variable 1 2 3 4 5 6 7 8 F
x 5 10 15 20 5 10 15 20 20
y 15 9 15 15 0 6 0 0 7.5
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(a) (b)

Control

variables

20

5 7 8

F, u
F

43

6

2

1

1
5

y

x

Figure 2.4: a) Bow-tie structure defined by the indicated control variables and b) the associ-
ated mesh for an ideal element length of h0 = 2.0.

nodes) in the numerical sensitivity analysis. In Table 2.4 the numerical gradients for a

perturbation of 10−6 are compared to the analytical gradients. It follows from Table 2.4

that our computations are correct and accurate.

In comparison, let us consider the procedure required to compute the sensitivities

using the forward Euler implementation. Two strategies exist: First, if dX
dx

in Eq. (2.17)

is available,
duf
dx

is solved from the FE sensitivity analysis in Eqs. (2.16) and (2.17). Since
dX
dx

is not available analytically, one needs to compute dX
dx

numerically, using a finite

difference approach. This requires a complete mesh generation step for each perturbation.

To compute dX
dx

accurately is computationally intensive due to the slow convergence rate.

Alternatively,
duf
dx

can be computed directly via finite differences. The drawback here is

that a complete mesh generation step and FE analysis are needed for each perturbation.

Using this strategy, the increased computational cost due to the additional FE analyses

is offset by using a coarser tolerance during mesh generation. From a computational cost

perspective none of these strategies compare favourably with the analytical sensitivities

available from Newton’s method. However, if sensitivities are not required, as in gradient

free optimization, the forward Euler method with a coarse tolerance is a feasible mesh

Table 2.4: Analytical and forward finite difference sensitivities calculated for the bow-tie struc-
ture depicted in Figure 2.4.

Point Analytical Numerical Point Analytical Numerical
(×10−3) (×10−3) (×10−3) (×10−3)

1 -0.111215 -0.111215 5 0.094632 0.094632
2 -1.788542 -1.788540 6 1.818842 1.818844
3 -0.043842 -0.043841 7 0.034656 0.034656
4 -0.002512 -0.002512 8 0.001624 0.001623
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F, u F

30

x

Figure 2.5: Initial structure and definition for the cantilever beam.

generation option in shape optimization.

2.4 Numerical examples

We implement two gradient based optimization algorithms, namely the Dynamic-Q

method developed by Snyman and Hay [56], and the well known sequential quadratic

programming (SQP) method [4]. All problems are allowed a maximum of 100 iterations,

although in most cases the best objective function values fbest are obtained within 20

iterations for both algorithms. All the linear elastic FE analyses are performed using

E = 200× 103 for Young’s modulus, ν = 0.3 for Poisson’s ratio and thickness 1.0, under

plane stress conditions. We investigate the effect of the number of control points (NCP).

2.4.1 Example problem 1: Cantilever beam

Consider the cantilever beam depicted in Figure 2.5. The domain has a predefined length

of 30 and a maximum allowable height of 10. The objective is to minimise uF, the vertical

displacement at the point of load application, subject to a maximum volume constraint

of 70%. The magnitude of F is 10 N. The problem is conducted for an ideal element

length of h0 = 1.0. The control points are linearly spaced along the length of the top of

the cantilever beam, as indicated in Figure 2.5.

The results obtained with both algorithms are summarized in Table 2.5. The optimal

Table 2.5: Best function value obtained for the cantilever beam problem.

NCP Dynamic-Q SQP

4 1.0073×10−2 1.0068×10−2

7 1.0011×10−2 1.0013×10−2

13 0.9996×10−2 1.0005×10−2
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(a) (b) (c)

Figure 2.6: Cantilever beam: optimal shapes for a) 4, b) 7 and c) 13 control points respectively
obtained with the Dynamic-Q algorithm.

shapes obtained with the Dynamic-Q algorithm are depicted in Figure 2.6; the SQP

shapes are similar and therefore not shown. It is clear that as the NCP increases, the

optimal designs converge.

2.4.2 Example problem 2: Full spanner

Consider the full spanner problem depicted in Figure 2.7. The structure has a predefined

length of 24 and a maximum allowable height of 10. The control points are linearly

spaced along the length of the spanner with half the control points describing the bottom

and half the top of the geometry, as indicated in Figure 2.7. Note that no control

points are used to describe the left- and right-most extremities of the spanner, which

are stationary as indicated. The objective is to minimise 1
2
(uFA − uFB), with uFA and

uFB the vertical displacement at the point of load application, for the two load cases

FA and FB respectively. The corresponding boundary conditions for each load case are

indicated by A and B respectively in Figure 2.7. In addition the problem is subjected to

a maximum volume constraint of 30% of the defined domain together with a minimum

handle thickness of 2. The loads FA and FB both have a magnitude of 10 N. The meshes

are generated for an ideal element length h0 of 0.5.

This problem should result in a symmetric geometry. However, symmetry is not en-

forced; deviations from symmetry are used to qualitatively evaluate the obtained designs.

The results obtained with both algorithms are summarized in Table 2.6. The optimal

shapes obtained with the Dynamic-Q algorithm are depicted in Figure 2.8; again the SQP

F , u

2
1

0 2

B

A
B

A

1
1

24

FA

FBB

F , u
A

x

Figure 2.7: Initial structure and loads for the full spanner problem.
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Table 2.6: Best function value obtained for the full spanner problem.

NCP Dynamic-Q SQP

4 5.7917 ×10−1 5.7934×10−1

10 3.5133×10−1 3.5150×10−1

22 3.1911×10−1 3.1905×10−1

(a) (b) (c)

Figure 2.8: Full spanner problem: optimal shapes for a) 4, b) 10 and c) 22 control points
respectively obtained by the Dynamic-Q algorithm.

shapes are similar and therefore not shown. From Figure 2.8 it is evident that symmetric

designs are obtained in all cases.

2.4.3 Example problem 3: Michell-like structure

The geometry [20] for this problem is depicted in Figure 2.9. The structure has a prede-

fined length of 15 and a maximum allowable height of 10. The control points are linearly

spaced along the length of the Michell-like structure with two additional control points

describing the top as opposed to the bottom of the structure, as depicted in Figure 2.9.

The objective is to minimise uF, the vertical displacement at the point of load applica-

tion, subject to a maximum volume constraint of 50%. The magnitude of F is 10 N. The

problem is conducted for an ideal element length of h0 = 0.75.

10

15

F, uF

Lower control variables

Upper control variables
xx 8 9

Figure 2.9: Initial structure and definition of half the Michell-like structure. (Control points
x8 and x9 are indicated for the 16 NCP problems.)
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Table 2.7: Best function value obtained for the Michell structure problem.

NCP Dynamic-Q SQP

4 1.4847×10−3 1.4327×10−3

8 1.2690×10−3 1.2722×10−3

16 1.2038×10−3 1.2084×10−3

(a) (b) (c)

Figure 2.10: Michell-like structure: optimal shapes for a) 4, b) 8 and c) 16 control points
respectively obtained with the Dynamic-Q algorithm.

The results are summarized in Table 4.2 and Figure 2.10. As before, both algorithms

obtain essentially the same solutions. One peculiarity however, is the optimal shape

depicted in Figure 2.10(c). The shape of the right tip of the structure is counter intuitive;

the origin thereof is the topic of the next section.

Objective function characteristics

Our resulting objective function contain numerically induced discontinuities since we use

remeshing in our shape optimization strategy. Even with the presence of these discon-

tinuities we were able to obtain intuitive designs for the cantilever beam and spanner

problems. However, the Michell structure resulted in a counter intuitive design, which

we expect to be a complication of these discontinuities in the objective function.

To investigate the nature of the objective function of the Michell structure, the two

rightmost upper control variables x8 and x9 (see Figure 2.9) are perturbed. These control

variables are varied between −1 and 1 (with equal intervals of 0.05), about the best

objective function value found by the Dynamic-Q algorithm for the 16 NCP problem.

As shown in Figure 2.11, the objective function is discontinuous and local minima

are present. These local minima and discontinuities are not physical phenomena but are

purely due to remeshing. In fact, the objective function discontinuity is due to the mesh

discontinuity, i.e. a change in a control variable value leads to the introduction or removal

of an additional element. This is depicted in Figure 2.11: a small increase in x9 results in

5 elements (top insert in Figure 2.11) instead of 4 elements (bottom insert in Figure 2.11)

on the rightmost edge of the structure.
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Figure 2.11: Vertical displacement at the point of load application for the variations of the 2
rightmost upper control variables (x8, x9) for the mesh depicted in Figure 2.10(c).

(a) (b) (c)

Figure 2.12: Michell-like structure: optimal shapes for ideal element lengths of a) 0.75, b)
0.375 and c) 0.1875 respectively for the 16 NCP problem obtained by the
Dynamic-Q algorithm.
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Figure 2.13: Vertical displacement at the point of load application for the variation of the
rightmost upper control variable (x9) for the meshes depicted in Figure 2.12(a),
2.12(b) and 2.12(c).

(a) (b)

Figure 2.14: Michell-like structure: effect of different starting points on the optimal shape for
a) the course, and b) the fine mesh, obtained with the Dynamic-Q algorithm
using 16 control points.

Since the mesh discontinuity is responsible for the discontinuities in Figure 2.11, it

follows that a decrease in element size should decrease the magnitude of these disconti-

nuities although their number will increase. To investigate the effect of h-refinement, the

16 NCP problem is repeated here for ideal element lengths of h0 =0.375 and h0 =0.1875.

The optimal shapes are depicted in Figure 2.12. It is clear that as the element size

decreases, the right tip of the structure gradually flattens off. To quantify the number

of discontinuities and their magnitude, only the rightmost upper control variable x9 is

varied between −1 and 1 about the optimal designs depicted in Figure 2.12. Figure

2.13 confirms that as the element size decreases, the number of discontinuities increases,

while the magnitudes decrease. These discontinuities are however still severe enough to

adversely affect the performance of gradient based optimization algorithms.

To demonstrate that the geometric anomalies are indeed associated with local minima,

we now restart the Dynamic-Q algorithm at an arbitrary starting point. (The results in

the foregoing were all obtained for an initial volume fraction of 1.0.) For the coarse

(h0 = 0.75) and fine (h0 = 0.1875) meshes respectively, the optimal shapes obtained are

depicted in Figure 2.14(a) and 2.14(b).

For the coarse mesh, the objective function uF decreases from 1.204 × 10−3 when
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the geometric anomaly due to the local minimum is present, to 1.186 × 10−3, which is

(presumably) the global optimum. For the fine mesh, the objective function uF decreases

from 1.417×10−3 with the geometric anomaly due to the local minimum, to 1.395×10−3,

again presumably the global optimum.

While h-refinement does seem to reduce the severity of local minimum, h-refinement

seems unable to assist in escaping from local minima. This observation is of course

problem specific, and may even be proved incorrect in the limit of mesh refinement.

However, for practical meshes, it is clear that solutions may be local minima when convex

solvers are used. A simple multi-start strategy is likely to be of great benefit in attempting

to find the global optimum (or at least some ‘good’ local optimum).

2.5 Conclusion

We have applied gradient based optimization techniques to shape design problems. In

doing so, we have created a novel unstructured remeshing shape optimization environ-

ment, based on a truss structure analogy. The remeshing environment is quadratically

convergent in solving for the equilibrium positions of the truss structure.

As expected the objective function value decreases as the number of control points

are increased. This is a direct result of the number of possible design configurations that

increases. However, due to the unstructured remeshing, discontinuities (local minima)

are introduced into the optimization problem. In two of the three problems we studied,

namely the cantilever and spanner design, these discontinuities did not seem to hamper

the optimization. However, they hampered the optimization of the Michell structure as

the final design converged to a counter intuitive design which we showed to be a local

minimum caused by a discontinuity. Although the magnitude of these discontinuities de-

creases with mesh refinement, their number increases. For the gradient based algorithms,

the severity of the anomaly is alleviated as the mesh is refined. Polynomial refinement

e.g. linear strain triangles, may further decrease the magnitude of the discontinuities.

It is however suggested that local minima may efficient and effective be overcome with

a simple multi-start strategy.

Even with the most inaccurate 2-D element available, namely the CST triangular

element, we have demonstrated that gradient based algorithms are able to solve shape

optimization problems efficiently using an unstructured remeshing strategy which makes

analytical gradients available to the optimization algorithms.

 
 
 



CHAPTER 3

Applications of gradient-only optimization

In this chapter we study the minimization of numerically approximated objective

functions containing non-physical jump discontinuities. These discontinuities arise

when (partial) differential equations are discretized using non-constant methods

and the resulting numerical solutions are used in computing the objective func-

tion. Although these functions may become discontinuous and non-differentiable

we can compute exact gradient information where the function is differentiable

and construct approximate gradient information where it is discontinuous. At a

non-differentiable point, a partial derivative of the gradient vector is constructed

by a one-sided directional derivative or given by the partial derivative itself, when

the function is respectively non-differentiable or differentiable along the partial

derivative direction. Such a constructed gradient field follows from the computa-

tional scheme, since every point has an associated discretization for which (semi)

analytical sensitivities [40] of the numerically approximated optimization problem

can be calculated. The only requirement is that we use a constant discretiza-

tion topology when computing the sensitivities. Hence, from a computational

perspective the gradient field of these discontinuous functions are defined every-

where albeit constructed at the discontinuities. In this study we refer to this

gradient field as the associated gradient field. Rather than the construction of

global approximations using only function value information to overcome the dis-

continuities, we propose to use only associated gradient information.

We elaborate on the modifications of classical gradient based optimization al-

gorithms for use in gradient-only approaches, and we then present gradient-only

optimization strategies using both BFGS and a new spherical quadratic approxima-

tion for sequential approximate optimization (SAO). We then use the BFGS and

SAO algorithms to solve three problems of practical interest, both unconstrained

23
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and constrained.

This chapter develops as follows: An overview of discontinuous objective functions

in optimization is given in Section 3.1. We then present the classical mathematical

programming problem and the corresponding gradient-only optimization problem

in Section 3.3. The optimization algorithms used in this study are then out-

lined in Section 3.4. We then consider three example problems in the remainder

of Section 3.5. These are a one dimensional transient heat transfer problem; an

unconstrained and a constrained shape design problem, and lastly a material iden-

tification study. Finally, we offer conclusions in Section 3.6. The derivation of the

required sensitivities for the test problems is outlined in an Appendix.
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3.1 Introduction

Many problems in engineering and the applied sciences are described by ordinary or par-

tial differential equations (ODEs/PDEs), e.g. the well-known elliptical PDEs of struc-

tural mechanics. Analytical solutions to these are seldom available and in many cases,

(approximate) numerical solutions need to be computed.

Temporal (P)DEs may be solved using fixed or variable time steps; for spatial (P)DEs,

the equivalents are fixed and mesh moving spatial updating strategies on the one hand,

and remeshing on the other. Fixed time steps and mesh moving strategies however may

imply serious difficulties, e.g. impaired convergence rates and highly distorted grids and

meshes, which may even result in failure of the computational procedures used. The

variable or ‘non-constant’ strategies are preferable by far.

(P)DEs also often describe the physics of some problem that is to be optimized using

numerical optimization techniques. Indeed, the numerical solution of (P)DE problems

is regularly used to numerically approximate optimization problems in science and engi-

neering. However, variable methods now become problematic since they may result in

non-smooth or step-discontinuous objective functions of the design variables, whereas the

‘constant strategies’ result in smooth continuous objective functions. The step discontinu-

ities resulting from the variable methods are non-physical, since they are mere artifacts of

the numerical strategies used to approximate the inherently smooth objective function of

the exact optimization problem described by the (P)DE under consideration. Although

these functions may become discontinuous and non-differentiable we can compute ex-

act gradient information where the function is differentiable and construct approximate

gradient information where it is discontinuous. At a non-differentiable point, a partial

derivative of the gradient vector is constructed by a one-sided directional derivative or

given by the partial derivative itself, when the function is respectively non-differentiable

or differentiable along the partial derivative direction. Such a constructed gradient field

follows from the computational scheme, since every point has an associated discretization

for which (semi) analytical sensitivities [40] of the numerically approximated optimization

problem can be calculated. The only requirement is that we use a constant discretization

topology when computing the sensitivities. Hence, from a computational perspective the

gradient field of these discontinuous functions are defined everywhere albeit constructed

at the discontinuities. In this study we refer to this gradient approximation as the asso-

ciated gradient, which we denote ∇Af(x) which gives an associated directional derivative

when ∇Af(x) is used to compute the directional derivative.

Consider Figure 3.1, which depicts three functions that describe an optimization prob-

lem. fA(x) is the unknown analytical function to an exact optimization problem described

by a system of partial differential equations; fN(x) is the numerically computed piece-wise

smooth step discontinuous objective function which is an approximation to fA(x); fC(x)
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Figure 3.1: Plot depicting a piece-wise smooth step discontinuous numerical objective function
fN (x) together with the corresponding underlying (unknown) continuous analyt-
ical objective function fA(x) of an optimization problem. In addition we depict
a projected piece-wise smooth continuous objective function fC(x) obtained by
removing the step discontinuities from fN (x).

is a constructed piece-wise smooth continuous objective function from fN(x) by removing

the discontinuities. The optimum x∗ and positive associated gradient projection point

x∗g, of fN(x) are also indicated. We refer to x∗g as a positive associated gradient projection

point since the associated directional derivatives in all directions around that point are

positive. However, to avoid using long descriptive names we will merely refer to x∗g as a

positive projection point. The discontinuities in fN(x) as well as the associated gradient

field (and associated directional derivatives) are a direct consequence of a sudden change

in the discretization used to compute an approximate solution to a system of partial

differential equations.

As long as the changes in the discretization vary smoothly, the underlying objective

function is smooth. This is obtained when using constant discretization strategies, since

the underlying discretization errors vary smoothly. The use of such smooth objective

functions are prevalent in engineering optimization [34, 45]. When the objective function

is smooth, as opposed to the objective function depicted in Figure 3.1, the optimum x∗

and positive projection point x∗g define the same point. This point is usually assumed to

be close to the exact optimizer, in particular when good numerical strategies are used.

If however when the discretization changes abruptly, a step discontinuity results. The

reponse could be suddenly underestimated (as depicted by xc), or overestimated (as

depicted by xi), as demonstrated in Figure 3.1. We refer to these two points respectively

as a consistent (xc) and inconsistent (xi) step discontinuities. The function and the

slope of the function (associated derivative) around the consistent discontinuity indicates

descent. Around an inconsistent discontinuity the function value indicates ascent, as
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opposed to descent by the slope, and are hence inconsistent with each other. Therefore,

inconsistent discontinuities would be completely ignored when conducting optimization

that only relies on the associated derivative, whereas they would manifest as local minima

when conducting optimization that also uses function values.

The premise of this study is that the piece-wise continuous parts in the numeri-

cally approximated objective function fN(x), where the error is smoothly varying, better

describes the behaviour of the underlying unknown analytical function fA(x) than the

abrupt changes in the discretization error. This premise holds in particular, when redis-

cretization is done to increase the accuracy of the analysis by reducing the discretization

error. The motivation for our premise is as follows: consider the optimum x∗ that occurs

over an inconsistent discontinuity, as depicted in Figure 3.1. The associated derivative

at x∗ indicates further possible improvement if x is increased. It is reasonable to believe

that had the discretization been varied smoothly with no discontinuity present, then the

function value would continue to decrease as the error would change smoothly as before.

However, when rediscretization is conducted the discretization error changes abruptly

and hence introduces a discontinuity. The function value and associated gradient vector

obtained after the rediscretization is more accurate if we assume that the rediscretization

increases the accuracy of the analysis and consequently reduces the discretization error.

If the function continues to decrease along this direction (even if it starts at a higher

value), then the optimum at the discontinuity could be safely discarded as an unwanted

or inferior solution to the optimization problem. A more suitable solution to the opti-

mization problem would then be a local minimizer of the piece-wise smooth continuous

function fC(x), as depicted in Figure 3.1. However, such a point is also characterized by

a positive projection point x∗g of fN(x), as depicted in Figure 3.1.

Consider the positive projection point x∗g that occurs over a discontinuity as depicted

by fN(x) in Figure 3.1, with a piece-wise smooth part L of the function to the left and

a piece-wise smooth part R of the function to the right of it. If rediscretization was

omitted and the piece-wise smooth part L extended an optimal solution would occur to

the right of x∗g and similarly an optimum to the left by the extended piece-wise smooth

part R. Therefore, x∗g would be bounded by the two optima of the two extended piece-

wise continuous pieces and consequently within a domain of uncertainty of the numerical

model. In order to distinguish between these three possible solutions one would have

to increase the accuracy of the numerical model or obtain information regarding the

absolute error w.r.t the exact solution, which is usually not available. Lastly, when the

optimum x∗ and the positive projection point x∗g coincide the use of only the associated

derivative is an efficient strategy to ignore the local minima introduced by inconsistent

step discontinuities.

Hence, variable time step methods and variable remeshing techniques are normally

avoided in optimization, due to the very fact that the discontinuities present may cause
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numerous difficulties during the optimization steps. An important spatial example is

structural shape optimization, in which fixed or moving grid strategies are almost always

used; the very motivation for this being that remeshing strategies cannot be used effi-

ciently in optimization, due to the induced discontinuities during optimization, e.g. see

References [1, 9, 32, 39].

The reasons for this are obvious: discontinuous cost functions are difficult to optimize

in comparison to smooth convex cost functions, since the discontinuities may introduce

spurious or false local minima which may make the use of efficient gradient based opti-

mization algorithms difficult, if not impossible. Accordingly, the optimization of discon-

tinuous functions usually requires highly specialized optimization strategies, and possibly,

heuristic approaches.

For the continuous programming problem, many well known minimization algorithms

are available, e.g. steepest descent, (preconditioned) conjugate gradient methods, and

variable metric methods like BFGS. However, if f is discontinuous, i.e. f /∈ C0, the

minimizer x∗ of the mathematical programming problem may not satisfy the standard

optimality criteria. Indeed, the optimality criteria may not even be defined. Accordingly,

the well-known efficient optimization algorithms mentioned above may be unable to mini-

mize the resulting step discontinuous function. Conventional gradient based optimization

approaches have been used in restart strategies that restarts the optimization process af-

ter a discontinuity to continue with the conventional optimization process [26, 30]. Such

an approach would eventually converge to a positive projection point x∗g and not neces-

sarily the optimum x∗ as might be expected. The computational efficiency of such an

approach however requires two analysis per design over a discontinuity in addition to the

computations required to identify the discontinuity.

As a solution strategy, some researchers in structural optimization have resorted to

surrogate optimization in which approximations are constructed using function values

only, in combination with design-of-experiments (DoE) techniques. The resulting ap-

proximations are smooth, and are often assumed to be valid over large regions of the

design domain. Known as so-called global approximations, they may be optimized using

gradient based techniques, if so desired. (Although the use of function values only is

popular, gradient information is sometimes also used. In addition, ‘mid-range’ surrogates

are sometimes also constructed, in combination with elaborate strategies for controlling

the step sizes, and the acceptance and rejection of points.) A drawback of surrogate

optimization is that problems are limited to moderate dimensions since the algorithms

scale poorly with dimensionality. For an overview of these methods, see Barthelemy and

Haftka [3], Haftka and Gurdal [24], Sacks et al. [47], Toropov [59], and many others. The

interested reader is also referred to the recent review paper by Simpson et al. [51] as well

as the paper by Forrester and Keane [19].

Accurate associated gradient information of the numerically approximated optimiza-
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tion problem is indeed available for the (P)DEs that occur so frequently in engineering

and applied mathematics. This does of course not hold for ‘inherently noisy objective

functions’ like crash-simulations, etc. An important example of non-physical disconti-

nuities introduced by variable discretization methods occurs in shape optimization, a

problem we will elaborate on in some detail herein.

Yet, few gradient-only optimization algorithms seem to be available, even though

gradient-only optimization algorithms are by no means new to optimization. The first

gradient-only optimization algorithm developed is the widely known Newton’s method,

e.g. see Wallis [64]. However, Newton’s method has several drawbacks for practical op-

timization. Firstly, it requires that a function be twice-differentiable, since Hessian in-

formation is needed to compute the update steps. Secondly, Newton’s method locates

diminishing gradients which may converge to suboptimal designs. In addition, Newton’s

method may oscillate around an optimal solution or even diverge.

To the best of our knowledge, only a few other gradient-only optimization algorithms

have been developed, see References [4, 43, 44, 49, 53, 54]. Most of these algorithms also

address some of the major difficulties of Newton’s method.

Gradient-only optimization has also been extended to nonsmooth functions with the

introduction of subdifferentials1 by Shor et al. [49]; these methods are used to compute

and define the gradient of a function where it is not differentiable. Subdifferentials are

however defined as the set of subgradients for which a hyperplane (linearization of the

function) defined by the subgradient at the discontinuity is less or equal to the actual

function value. At a step or jump discontinuity the subdifferential is the empty set at

the side of the discontinuity where the hyperplane lies above the function. In addition

subgradient methods reduces to steepest descent methods with a priori selected step

lengths which often require tuning (in particular for larger problems [5]) and Lipschitz

conditions regarding the function. Although the use of a priori selected step lengths

increases the flexibility of the algorithm (e.g. when optimizing piece-wise linear functions)

it increases the computational cost when the additional flexibility is not required. Lastly,

all these methods are employed and designed to find the point for which the objective

function is a minimum, with the exception of Newton’s method which is often employed

to merely find stationary points of a function.

Our gradient-only approach however solely aims to find positive projection points

x∗g. For smooth convex functions this is equivalent to finding the optimum x∗ of the

function. However, when piece-wise smooth step discontinuous functions are considered,

the optimum x∗ may be distinct from the positive projection point x∗g as they define

two generalizations of solutions for piece-wise smooth step discontinuous functions. Our

gradient-only approach merely requires that the gradient field be everywhere computable

as for example with associated gradients. Gradient-only optimization approaches are

1A subdifferential is a set of subgradients at a point.
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merely conventional gradient based optimization algorithms slightly modified to use only

gradient information, and have comparable computational efficiency to conventional gra-

dient based optimization algorithms. In addition, we require no assumptions regarding

the Lipschitz conditions of a function. Consider again Figure 3.1 for which we note

that by only considering the associated derivative of fN(x) during optimization we effec-

tively optimize fC(x) without having to go through the computational effort of distilling

fC(x) from fN(x), since the associated derivative field of fN(x) and fC(x) are the same.

Gradient-only optimization effectively reduces the complexity of functions plagued with

numerically induced step or jump discontinuities by acting as a filter to ignore these dis-

continuities, on the condition that a positive projection point (defined as the solution to

the gradient-only optimization problem presented herein) is a suitable solution for the

problem at hand.

If it is known or assumed that x∗g coincides with a minimizer x∗ of f(x) then these

problems can be approached from a classical mathematical programming perspective

which have to be solved using global optimization algorithms. This is due to the numer-

ically induced step discontinuities that manifest as local minima in the function domain.

However, the resulting discontinuous problems may still be optimized efficiently using

gradient-only optimization as the numerically induced step discontinuities are ignored,

which is an alternative to constructing global approximations.

Lastly, both the function values and analytically computed associated derivatives are

consistently computed for a numerically computed objective function and prone to dis-

cretization errors, in particular discretization errors that changes abruptly. We do how-

ever note that inconsistent step discontinuities in the function value may result in local

minima and trap conventional optimization approaches. However, step discontinuities

in the associated derivative from our experience mostly result in abrupt changes in the

magnitude of the associated derivative but not the sign of the associated derivative which

indicates the direction of ascend of f(x). This only affects the convergence rate of the

gradient-only optimization approaches and not the robustness thereof. If however, the

error in the associated derivative changes the sign of the associated derivative, it would

manifest as a positive projection point. However, such a point would also manifest as

a local minimum in the function value. We show numerically that our premise and

gradient-only approaches yield promising results for multidimensional problems.

To ease the presentation of the remainder of this chapter we will merely refer to f as

the objective function for which we would like to find the positive projection point x∗g,

but this implies the numerically approximated objective function fN .
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3.2 Definitions

The functions we consider in this study are step discontinuous and therefore not ev-

erywhere differentiable. However computationally the derivatives and gradients are ev-

erywhere computable since the analysis is per se restricted to the part of the objective

function before, or after a discontinuity. We therefore define an associated derivative

f ′A(x) and associated gradient ∇Af(x) which follow computationally when the sensitiv-

ity analysis is consistent [48]. Firstly, we define the associated derivative

Definition 3.2.1. Let f : X ⊂ R → R be a real univariate piece-wise smooth step

discontinuous function that is everywhere defined. The associated derivative f ′A(x) for

f(x) at a point x is given by the derivative of f(x) at x when f(x) is differentiable at x.

The associated derivative f ′A for f(x) non-differentiable at x, is given by the left-sided

derivative of f(x) when x is associated to the left piece-wise continuous section of the

discontinuity, otherwise it is given by the right-sided derivative.

Secondly, the associated gradient is defined as follows:

Definition 3.2.2. Let f : X ⊂ Rn → R be a real multivariate piece-wise smooth step

discontinuous function that is everywhere defined. The associated gradient ∇Af(x) for

f(x) at a point x is given by the gradient of f(x) at x when f(x) is differentiable at

x. The associated gradient ∇Af(x) if f(x) is non-differentiable at x is defined as the

vector of partial derivatives where each partial derivative is an associated derivative (see

Definition 4.2.1).

It follows from Definitions 4.2.1 and 4.2.2 that the associated gradient reduces to the

gradient of a function that is everywhere differentiable.

Secondly, we present definitions for univariate and multivariate associated gradient

unimodality based solely on the associated gradient field of a real valued function [4].

Definition 3.2.3. A univariate function f : X ⊂ R → R with associated derivative

f ′A(λ) uniquely defined for every λ ∈ X, is (resp., strictly) associated derivative unimodal

over X if there exists a x∗g ∈ X such that

f ′A(x∗g + λu)u ≥ (resp., >) 0, ∀ λ ∈ {β : β > 0 and β ⊂ R}

and ∀ u ∈ {−1, 1} such that [x∗g + λu] ∈ X. (3.1)

We now consider (resp., strictly) associated derivative unimodality for multivariate

functions [46].

Definition 3.2.4. A multivariate function f : X ⊂ Rn → R is (resp., strictly) associated

derivative unimodal over X if for all x1 and x2 ∈ X and x1 6= x2, every corresponding
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univariate function

F (λ) = f(x1 + λ(x2 − x1)), λ ∈ [0, 1] ⊂ R

is (resp., strictly) associated derivative unimodal according to Definition 4.4.2.

Note that our definition of associated derivative unimodality excludes functions that

are unbounded in the associated derivative although such functions are bounded from

below e.g. f(x) = −x
2

+ b|x|c.

3.3 Problem formulation

We consider both unconstrained and constrained optimization problems; we depart with

the former.

3.3.1 Unconstrained minimization problem

Consider the following general unconstrained minimization problem:

Formulation 3.3.1. Let f(x∗) be a real-valued function f : X ⊆ Rn → R that is bounded

from below. Find the minimum value f(x∗), such that

f ∗ = f(x∗) {<} ≤ f(x), ∀ x ∈ X, (3.2)

with X the convex set of all possible solutions. �

If the function f is unimodal and at least twice continuously differentiable, i.e. f ∈ C2,

the minimizer x∗ ∈ X is characterized by the optimality criterion

∇f(x∗) = 0, (3.3)

with H(x∗) semi-positive definite. Here, ∇ represents the gradient operator, and H the

Hessian matrix.

However, if f is discontinuous, i.e. f /∈ C0, the minimizer x∗ of the mathematical op-

timization problem (3.2) may not satisfy the optimality criterion given in (3.3). Indeed,

the optimality criterion (3.3) may not even be defined. If f is an associated deriva-

tive unimodal discontinuous function with associated gradient field everywhere defined,

an alternative generalization to Formulation 3.3.1 may be written in derivative form as

follows:
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Formulation 3.3.2. Find the non-negative gradient projection point x∗g (hereafter re-

ferred to as a positive projection point), of a given {strictly} associated derivative uni-

modal real-valued function f : X ⊆ Rn → R, such that

∇T
Af(x∗ + δu)u {>} ≥ 0, ∀ u ∈ Rn and ∀ (δ > 0) ∈ R such that x∗ + δu ∈ X, (3.4)

with X the convex set of all possible solutions. �

Formulation 3.3.2 implies, in the strict case, that departure from the positive pro-

jection point x∗g in any search direction u ∈ Rn, and for any step size δ > 0, results

in positive associated directional derivatives. It follows that the sign of the projected

gradient onto the search direction along some descent direction u changes from negative

to positive at the positive projection point x∗.

For f smooth, i.e. f ∈ C2, Formulations 3.3.1 and 3.3.2 are equivalent, since the

condition ∇f(x∗) = 0 follows, and the positive projection point x∗ in Formulation 3.3.2

is identical to the minimizer x∗ in Formulation 3.3.1. The second order condition i.e.

H positive definite is implied by the requirement that the associated directional deriva-

tives w.r.t. all search directions u is larger than 0. For associated derivative unimodal

step discontinuous objective functions, Formulations 3.3.1 and 3.3.2 may define different

solutions.

3.3.2 Equality constrained minimization problems

Next, we consider the following general equality constrained minimization problems:

Formulation 3.3.3. Find the minimum value f(x∗) of a given real-valued function f :

X ⊆ Rn → R, such that

f ∗ = f(x∗) {<} ≤ f(x), ∀ x ∈ X, such that hj(x) = 0, j = 1, 2, . . . , r ≤ n, (3.5)

with X the convex set of all possible solutions and with hj : X ⊆ Rn → R, j = 1, 2, . . . , r ≤
n. �

For smooth objective and constraint functions, we can transform problem (3.5) into

an unconstrained optimization problem via the Lagrangian function

L(x,λ) = f(x) +
r∑
j=1

λjhj(x), (3.6)

which allows us to solve (3.5) using the dual formulation

max
λ
{min

x
L(x,λ)}. (3.7)
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If the objective and constraint functions are convex then the solution of Eq. (3.7) is also

the optimum.

Finally, we progress to discontinuous equality constrained optimization problems that

is smooth around the positive projection point x∗g in the objective and constraint func-

tions:

Formulation 3.3.4. Find the positive projection point x∗g of a given {strictly} associated

derivative unimodal real-valued function f : X ⊆ Rn → R that, such that

∇T
Af(x∗g + δu)u {>} ≥ 0, ∀ x∗g + δu ∈ X,

such that hj(x
∗
g) = 0, ∀ j = 1, 2, . . . , r ≤ n,

and u ∈ {ū : ∇T
Ahj(x

∗
g)ū = 0, ∀ j = 1, 2, . . . , r ≤ n, } (3.8)

with X the convex set of all possible solutions and δ a real positive value and x∗g ∈ X. �

The condition ∇T
Ahj(x

∗
g)ū = 0 [46], reduces the set of projection directions u to a

set of feasible directions. Firstly, we construct the Taylor expansion of the jth equality

constraint hj(x
∗
g) around x∗g to give

h̃j(x
∗
g + ū) = hj(x

∗
g) +∇T

Ahj(x
∗
g)ū+O

(
(ū)2

)
, (3.9)

which reduces to

hj(x
∗
g + ū) ≈ hj(x

∗
g) +∇T

Ahj(x
∗
g)ū. (3.10)

Since x∗g is feasible by definition we have hj(x
∗
g) = 0, in addition we require Eq. (3.10) to

be feasible which gives

hj(x
∗
g + ū) ≈ hj(x

∗
g) +∇T

Ahi(x
∗
g)ū = ∇T

Ahj(x
∗
g)ū = 0, (3.11)

and similarly Eq. 3.11 needs to hold for all j = 1, 2, . . . , n ≤ r constraints. Consequently,

u is required be in the set {ū : ∇T
Ahj(x

∗
g)ū = 0, ∀ j = 1, 2, . . . , r ≤ n, }.

Again using the Lagrangian function we may transform problem (3.8) into an uncon-

strained optimization problem.

This time in solving (3.8) we use a gradient-only dual formulation

g
max
λ
{

g

min
x
L(x,λ)}, (3.12)

with
g

max
λ

defined as follow: Find λ, such that

∇T
Aλ
L(x,λ+ γvv)v ≤ 0, ∀ v ∈ Rr, (3.13)
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and similarly for
g

min
x

: Find x, such that

∇T
AxL(x+ δuu,λ)u ≥ 0,∀ u ∈ Rn such that x+ δuu ∈ X, (3.14)

withX the convex set of all possible solutions,∇Ax the partial associated derivatives w.r.t.

x, ∇Aλ the partial associated derivatives w.r.t. λ and δu and γv real positive numbers.

For step discontinuous functions, inconsistencies between Formulations 3.3.1 and 3.3.2

on the one hand, and Formulations 3.3.3 and 3.3.4 on the other may arise.

3.4 Optimization algorithms

Most (if not all) classical optimization algorithms can be modified to use only gradient

information instead of both function value and gradient information. To illustrate, we

consider two classes of algorithms, namely line search descent methods and approximation

methods.

In classical line search descent methods, the search direction is obtained from gradient

information. The step length is usually obtained using some line search strategy that

uses function information. However, gradient-only line search descent methods may be

formulated by merely changing the line search strategies to use only associated gradient

information. In this study, we will consider a bracketing-interval line search strategy,

although many alternative and more efficient line search strategies are available. (As an

alternative, Snyman [54] presents a gradient-only implementation of an interpolation line

search strategy.) In particular, we will consider the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) second order line search descent algorithm [55], which is suitable for problems

that range from from small to large dimensionality. For large-scale problems [21], the

limited memory BFGS algorithm [36] is indeed widely used. Lastly, the BFGS algorithm

can be used without a line search strategy as a monotonically decreasing superlinear

convergent BFGS has been demonstrated using only fixed step length updates [68], when

certain Lipschitz continuity assumptions regarding the objective function hold.

In sequential approximation optimization (SAO), the approximation functions are

normally constructed using both function and gradient information. Function values

may for example be used to approximate the curvature used in the approximations, as is

done in spherical quadratic approximations, e.g. see Reference [52]. Again, gradient-only

optimization is however possible.

We would like to emphasize that our choice for BFGS and SSA algorithms is arbitrary

and merely to illustrate the ease with which we can transform conventional gradient based

algorithms to be gradient-only optimization algorithms. We deliberately chose one line

search algorithm and one approximation algorithm, as they represent two widely used

classes of optimization algorithms. By following the same methodology other optimiza-
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tion algorithms which require a decision to be made between a current and proposed

solution using function value information, can be extended using the proposed method-

ology. Hence, to the best of our knowledge all conventional gradient based algorithms

could be modified using our methodology. Considering the extension of gradient-only

optimization to alternative classes of optimization algorithms, as for example population

based methods, may prove a bit more challenging, in particular when the features of these

methods are to be preserved.

We note that gradient-only algorithms based on classical optimization algorithms

that scale well, may also be expected to scale well (provided the associated gradient com-

putation scales well). Finite difference strategies may become prohibitively expensive to

compute the full associated gradient vector for large-scale problems, but may be adequate

for the computation of the associated directional derivatives2. Automatic differentiation

or (semi-) analytical sensitivity analyses are alternatives to compute computationally

efficient associated gradient information.

3.4.1 BFGS second order line search descent method

In the BFGS algorithm, the iterates are updated using

x{k} = x{k−1} + λ{k}u{k}, (3.15)

where the superscript k indicates the iteration number, x the design vector and u the

descent direction. λ is a scalar value obtained from a line search.

The descent direction u{k} is obtained from

u{k} = −G{k−1}∇Af(x{k−1}), (3.16)

and G{k} is updated using

G{k} = G{k−1} +

[
1 +

(y{k})TG{k−1}y{k}

(v{k})Ty{k}

] [
v{k}(v{k})T

(v{k})Ty{k}

]

−

[
v{k}(y{k})TG{k−1} +G{k−1}y{k}(v{k})T

(v{k})Ty{k}

]
, (3.17)

with

v{k} = λ{k}u{k},

2Computation of accurate and consistent gradients using finite differences requires a temporary de-
activation of the non-constant discretization strategy, in order to avoid a finite difference step over a
discontinuity [48].
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and

y{k} =
(
∇Af(x{k})−∇Af(x{k−1})

)
.

G{0} is commonly initiated with the n×n identity matrix I, and reset to G{k} = I after

every n iterations [55].

Let us return to the line search strategies needed to determine the λ{k}. The line

search conducted at the kth iteration from the point x{k−1} along a descent direction u{k}

is described by the univariate function

F (λ) = f(x{k−1} + λu{k}), λ ≥ 0 ⊂ R. (3.18)

Generally, line searches use function values to locate the minimum of F (λ). Various

strategies exist to conduct function value based line searches, e.g. explicit searches us-

ing golden section or implicit searches using some interpolation strategy with Powell’s

method, to name one example.

Alternatively, line searches can be conducted solely based on the associated derivative

of F (λ), with F ′A(λ) given by

F ′A(λ) =
[
∇T
Af(x{k} + λu{k})

]
u{k}. (3.19)

Line searches using function value information

We use a crude three point bracketing strategy to locate a minimum of F (λ), which is

assumed to be unimodal. Three points from the sequence [w(l− 1), w(l), w(l+ 1)], l =

1, 2, . . . , lmax are used, with w(l) = lγ. Here, the bracketing step size γ is a user selected

positive real number. The line search iterations l are incremented until either a minimum

is bracketed, or the maximum number of line search iterations lmax is exceeded.

We then refine the location of the minimum using a four point (3 interval) golden

section search to within a specified user tolerance ξ, or until the maximum number of

iterations lmax is reached. After each golden section iteration the total interval length

is reduced by removal of a sub interval, whereafter a new point is generated within the

remaining interval.

The aim therefore is to find λ{k} for ξ ∈ R, with ξ > 0, such that

F (λ{k} + ξ) = f
(
x{k−1} + (λ{k} + ξ)u{k}

)
> F (λ{k}),

and

F (λ{k} − ξ) = f
(
x{k−1} + (λ{k} − ξ)u{k}

)
> F (λ{k}).

We will refer to the BFGS algorithm using this function-value-based line search as

BFGS(f).
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Line searches using only gradient information

This time, we use a two point bracketing strategy to locate a minimum of F (λ). Two

points from the sequence [w(l − 1), w(l)], l = 1, 2, . . . , lmax are used, with w(l) = lγ.

The line search iterations l are incremented until either a sign change in the associated

derivative F ′A(λ) is located, or the maximum number of line search iterations lmax are

reached.

We then refine the location of the sign change in the associated derivative using a

three point (2 interval) bi-section method to within a specified user tolerance ξ, or until

the maximum number of iterations lmax is reached. After each bi-section iteration, the

total interval width is reduced by half, whereafter a new point is generated in the middle

of the remaining interval.

The aim is therefore to find λ{k} for ξ ∈ R with ξ > 0, such that

F ′A(λ{k} + ξ) =
[
∇T

Af
(
x{k−1} + u{k}(λ{k} + ξ)

)]
u{k} > 0,

and

F ′A(λ{k} − ξ) =
[
∇T

Af
(
x{k−1} + u{k}(λ{k} − ξ)

)]
u{k} < 0.

Note that the gradient-only interval shrinks faster than the classical (function value)

interval, as the bi-section interval is reduced by 50%, as opposed to the ≈ 38% of the

golden section interval after every iteration. We will refer to the BFGS algorithm with

the derivative-based-line-search as BFGS(g).

Termination criteria

Termination criteria need some consideration: if the function values and gradients of an

objective or cost function contain step discontinuities, these quantities may not provide

robust termination information. Accordingly, we only advocate the robust termination

criterion

‖∆x{k+1}‖ = ‖x{k+1} − x{k}‖ < ε, (3.20)

with ε small, positive and prescribed. (A maximum number of iterations may of course

also be prescribed.)

Algorithmic implementation

Given an initial point x{0}, the second order line search BFGS method for unconstrained

minimization proceeds as follows:

1. Initialization: Select real constants ε > 0, ξ > 0 and γ > 0. Select integer

constants kmax and lmax. Set G{0} = I. Set k := 1 and l := 0.
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2. Gradient evaluation: Compute ∇Af(x{k}).

3. Update the search direction u{k+1} using (3.16).

4. Initiate an inner loop to conduct line search: Find λ{k+1} using one of the

line search strategies described in Section 3.4.1.

5. Test for reinitialization of G{k}: if k mod n = 0 then G{k} = I else update

G{k} using (3.17).

6. Move to the new iterate: Set x{k+1} := x{k} + λ{k+1}u{k+1}.

7. Convergence test: if ‖x{k+1} − x{k}‖ ≤ ε OR k = kmax, stop.

8. Initiate an additional outer loop: Set k := k + 1 and goto Step 2.

3.4.2 Sequential spherical approximations (SSA)

In sequential approximation optimization (SAO) methods, the approximation functions

used can easily be formulated using truncated Taylor expansions in which the curvature

may be approximated using function values and gradient information, e.g. Snyman and

Hay [52] and Groenwold et al. [22]. For illustrative purposes, we will construct two

spherical quadratic approximations for use in SAO algorithms. For the first, we use both

function value and gradient information for approximating the curvature; for the second,

we use gradient information only.

In both cases, we begin with the second order Taylor series expansion of a function f

around some current iterate x{k}, given by

f̃ {k}(x) = f(x{k}) + ∇T
Af(x{k})(x− x{k}) +

1

2
(x− x{k})TH{k}(x− x{k}), (3.21)

where superscript k represents an iteration number, f̃ the second order Taylor series

approximation to f , ∇A the associated gradient operator and H{k} the Hessian. f(x{k})

and ∇Af(x{k}) respectively represent the function value and associated gradient vector

at the current iterate x{k}.

For the sake of brevity and simplicity, we will now restrict ourselves to spherical

approximations to the Hessian H{k}. Hence, the approximate Hessian or curvature is of

the form H{k} = c{k}I, with c{k} a scalar, and I the identity matrix. This gives

f̃ {k}(x) = f(x{k}) + ∇A
Tf(x{k})(x− x{k}) +

c{k}

2
(x− x{k})T(x− x{k}), (3.22)

with the scalar curvature c{k} unknown. We will return to the computation of c{k} shortly.
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Since the sequential approximate subproblems are continuous they may be solved

analytically; the minimizer of subproblem k follows from setting the gradient of (3.22)

equal to 0 to give

x{k∗} = x{k} − ∇Af(x{k})

c{k}
. (3.23)

In SAO, termination and convergence may be effected through the notion of con-

servatism. Here, we start with a note on the structure of the spherical approximation

functions: they are separable. If these approximation functions are also strictly con-

vex then convergence is guaranteed for a sequence of SAO iterates using conservatism

[58]. Arguably, this results in the simplest algorithmic implementation for which termi-

nation is guaranteed. Therefore the minimizer of the subproblem x{k∗} is accepted i.e.

x{k+1} = x{k∗} only if x{k∗} yields a conservative point. We will revisit implementations

of conservatism shortly.

Using function value information

If historic function value information is exploited, it is possible to solve for c{k} by en-

forcing f̃ {k}(x{k−1}) = f(x{k−1}), which results in

f(x{k−1}) = f(x{k}) + ∇T
Af(x{k})(x{k−1} − x{k})

+
c{k}

2
(x{k−1} − x{k})T(x{k−1} − x{k}), (3.24)

e.g. see Snyman and Hay [56]. The scalar c{k} is then obtained as

c{k} =
2
(
f(x{k−1})− f(x{k})

)
(x{k−1} − x{k})T(x{k−1} − x{k})

− 2∇T
Af(x{k})(x{k−1} − x{k})

(x{k−1} − x{k})T(x{k−1} − x{k})
. (3.25)

To ensure that approximation (3.22) is strictly convex, we will herein enforce c{k} =

max(β, c{k}), with β > 0 small and prescribed.

Classical conservatism is solely based on function values, for which Svanberg [58]

demonstrated that the SAO sequence k = 1, 2, · · · will terminate at the minimizer x∗ ↔
f ∗, if each kth approximation f̃(x{k∗}) is conservative, i.e. if

f(x{k∗}) ≤ f̃(x{k∗}). (3.26)

We will refer to this SSA algorithm, using conservatism defined by (3.26) and the termi-

nation criteria discussed in Section 3.4.1, as SSA(f). We note that the principle behind

(3.26) is that updates are only accepted for which the real quality measure (f(x{k∗}) in

this instance) is guaranteed to be less than or equal to the approximate quality measure

(f̃(x{k∗})).
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Using only gradient information

Approximations to the gradient field may be constructed by simply taking the derivatives

of (3.21), which gives

∇f̃ {k}(x) = ∇Af(x{k}) +H{k}(x− x{k}). (3.27)

At x = x{k}, the gradients of the function f and the approximation function f̃ match

exactly. The approximate Hessian H{k} of the approximation f̃ is chosen to match

additional information. Here we again only consider the case of a spherical quadratic

approximation, where H{k} = c{k}I. c{k} is obtained by matching the gradient vector

at x{k−1}. Since only a single free parameter c{k} is available, the n components of the

respective gradient vectors are matched in a least square sense.

The least squares error is given by

E{k} = (∇f̃ {k}(x{k−1})−∇Af(x{k−1}))T(∇f̃ {k}(x{k−1})−∇Af(x{k−1})), (3.28)

which, after substitution of (3.27) into (3.28), gives

E{k} = (∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1}))T(∇Af(x{k})

+ c{k}(x{k−1} − x{k})−∇Af(x{k−1})). (3.29)

Minimization of the least squares error E{k} w.r.t. c{k} then gives

dE{k}

dc{k}
= (∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1}))T(x{k−1} − x{k})

+ (x{k−1} − x{k})T(∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇A(x{k−1})) = 0, (3.30)

hence

c{k} =
(x{k−1} − x{k})T(∇Af(x{k−1})−∇Af(x{k}))

(x{k−1} − x{k})T(x{k−1} − x{k})
. (3.31)

Again, to ensure that approximation (3.22) is strictly convex, we enforce c{k} =

max(β, c{k}), with β > 0 small and prescribed.

We now introduce conservatism, effected using only gradient information. At iterate

k, the update is given by x{k∗} − x{k}. This update represents descent of f(x) if the

projection of the actual function gradient ∇Af(x{k∗}) onto the update direction (x{k∗}−
x{k}) is negative, i.e. if

∇T
Af(x{k∗})(x{k∗} − x{k}) ≤∇T

Af̃(x{k∗})(x{k∗} − x{k}) = 0. (3.32)

Accordingly, any gradient-only approximation may be defined as conservative if (3.32)
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holds.

Our gradient-only definition of conservatism is similar in spirit to Svanberg’s function

value based definition given in (3.26). We only accept updates x{k∗} for which we can

guarantee that the real quality measure (∇T
Af(x{k∗})(x{k∗} − x{k})) for gradient-only

problems) is less than or equal to the approximate quality measure (∇T
Af̃(x{k∗})(x{k∗}−

x{k})). Although no formal proofs are presented in this study, we can show that our

definition of conservatism guarantees convergence for certain classes of functions e.g.

smooth convex functions. However, for discontinuous functions in general our definition

is not sufficient to guarantee convergence. The challenge however lies in establishing

whether a particular practical engineering problem is part of an associated convergent

class of discontinuous functions or not. Although we lack strong theoretical evidence for

convergence in general, we note that in our experience this gradient-only definition of

conservatism suffices to achieve convergence for practical engineering problems.

We will refer to this SSA algorithm, using conservatism defined by (3.32) and the

scalar curvature given by (3.31), as SSA(g).

Algorithmic implementation

Given an initial point x{0}, a {gradient-only}/classical conservative algorithm based on

convex separable spherical quadratic approximations for unconstrained minimization pro-

ceeds as follows:

1. Initialization: Select real constants ε > 0, α > 1 and initial curvature c{0} > 0.

Set k := 1, l := 0.

2. Gradient evaluation: Compute {∇Af(x{k})}/f(x{k}) and ∇Af(x{k}).

3. Approximate optimization: Construct local approximate subprob-

lem {(3.27)}/(3.22) at x{k}, using

{(3.31)}/(3.25). (In an inner loop, use c{k} as calculated in Step 6(b)). Solve this

subproblem analytically, to arrive at x{k∗}.

4. Evaluation: Compute {∇Af(x{k∗})}/f(x{k∗}).

5. Test if x{k∗} is acceptable: if {(3.32)}/(3.26) is satisfied, goto Step 7.

6. Initiate an inner loop to effect conservatism:

(a) Set l := l + 1.

(b) Set c{k} := αc{k}.

(c) Goto Step 3.

7. Move to the new iterate: Set x{k+1} := x{k∗}.
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8. Convergence test: if ‖x{k+1} − x{k}‖ ≤ ε, OR k = kmax, stop.

9. Initiate an additional outer loop: Set k := k + 1 and goto Step 2.

3.5 Example problems

We now present three example problems to demonstrate the robustness of gradient-only

optimization when compared with classical gradient-based optimization in the presence

of step discontinuities.

We deliberately choose a small bracketing step size in an attempt to mimic an exact

line search. This choice allows us to verify numerically for our examples whether these

numerical step discontinuous functions are robustly optimizable in the multidimensional

search space. The high number of required inner loops for the BFGS algorithms should

therefore be interpreted with this in mind and not be misinterpreted as inherent to line

search descent methods or the BFGS algorithm. The performance of the BFGS algorithms

herein can readily be enhanced by considering for example an interpolation line search

strategy, inexact line searches or just simply appropriate step sizes.

In addition we choose to illustrate an expected difference between gradient-only opti-

mization and classical gradient-based optimization using sequential approximation meth-

ods. These methods are well suited to optimize objective functions that have local minima

that do not dominate an underlying global function trend, which are reminiscent to the

functions we consider in this study.

In all the examples presented here we use remeshing whenever spatial discretizations

are required and adaptive time stepping whenever temporal discretizations are required.

3.5.1 Numerical settings

The settings used for the BFGS(f) and BFGS(g) algorithms discussed in Section 3.4.1

are as follows:

• the line search convergence tolerance ξ = 10−5,

• the maximum number of line search iterations lmax = 1000, and

• the bracketing step size γ = 10−1, except for the material identification study, when

we use γ = 10−2.

For the SSA(f) and SSA(g) algorithms discussed in Section 3.4.2, the settings used are

as follows:

• the curvature factor α = 2, and

• the initial curvature c{0} = 1.
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Throughout, we use a convergence tolerance ε = 10−4, and a maximum number of outer

iterations kmax = 500.

3.5.2 Example problem: temporal and spatial partial differen-

tial equations

We consider the sizing design of a fin subjected to a constant volume constraint. The

base of the fin initially experiences steady state conditions, whereafter it is exposed to

a sinusoidal surge in heat flux. The objective is to minimize some average measure of

temperature T over the base of the fin.

For the sizing problem we consider an array of fins of which we only depict half a fin

in Figure 3.2, due to symmetry. The two design variables for the sizing problem are the

height th and width tw of the triangular part of the fin denoted by xT = [x1 x2]T =

[th tw]T. The temperature field T of the transient problem is solved using the finite

element method (FEM) which allows for the construction of the objective function f(x).

The objective function is the average nodal temperature over the base of the fin after

tf = 2 seconds, i.e. f(x) = T̄b(x). The sizing problem is subjected to an equality

constraint of constant lateral surface area bwbh+0.5tw(th−bh) = A0. Hence, we can solve

for x2 in terms of x1 from the equality constraint which renders the problem unconstrained

in the single variable x1.

The fin has has constant unit thickness and constant lateral surface area A0 =

300mm2. The base of the fin has a fixed width bw = 25 mm, and fixed height bh = 4 mm.

We generate the meshes required for the FEM using a quadratically convergent

remeshing strategy [66] that is based on a scheme proposed by Persson and Strang [42].

The resulting meshes have a varying number of nodes and nodal connectivity, which in-

duces jump discontinuities into the objective function, since the objective function is

formulated in terms of the mesh-dependent3 temperature field T .

Initially, the nodal temperatures T in the fin are the steady state temperatures T 0

resulting from a steady state heat flux input q(0) = q0 = 30× 103 Wm−2 at the base of

the fin, solved using the approximate FE equations

KT 0 = q0. (3.33)

The matrix K is partitioned into contributions from thermal conductivity (we have used

w = 100 W m−1 K−1), and surface convection (we have used h = 100 Wm−2K−1), at a

constant ambient temperature Ta = 300 K.

3The mesh generator described in [66] uses linear strain triangle (LST) elements, and we have used
an ideal element edge length of h0 = 3.
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Figure 3.2: Fin model with a uniform time varying heat flux q(t) input at the base, top surface
convection with constant convection coefficient h and ambient temperature Ta.
The design variables for the sizing problem are the width tw and height th of the
triangular part of the fin.

The time dependent heat flux q(t) is given by

q(t) =

q0 + qp sin
(
πt
tf

)
, 0 ≤ t ≤ tf

q0, t > tf
(3.34)

with tf = 2 s and qp = 3× 105 Wm−2.

The semi-discrete transient heat equation is given by

CṪ +KT = q, (3.35)

with Ṫ denoting the first time derivative of the nodal temperatures T and the C matrix

containing contributions from specific heat with a specific heat capacity of 450 J kg−1 K−1

and material density of 2770 kg m−3. We solve (3.35) using a fully implicit backward

Euler finite difference scheme, given by

(C + ∆t{i+1}K)T {i+1} = CT {i} + ∆t{i+1}q{i+1}, (3.36)

i = 0, 1, 2, . . . , while ∆t{i+1} indicates the time step t{i+1} − t{i}.
We start the adaptive time stepping sequence using an initial time step of ∆t{1} = 0.1.

For iteration {i+ 1}, we compute the absolute change in average temperature ∆T̄b
{i+1}

over the base of the fin using

∆T̄b
{i+1} = |T̄b{i+1} − T̄b{i}|. (3.37)

The updated temperature T {i+1} is accepted, and the step size ∆t{i+2} is simultaneously
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increased by a factor 1.5, if T̄b
{i+1} < 20 K. Else, ∆t{i+1} is halved, and iteration {i+ 1}

is repeated.

Although the algorithms outlined in Sections 3.4.1 and 3.4.2 are developed to optimize

multidimensional functions they can nonetheless be applied to 1D functions, without

requiring any modifications. Results are summarized in Table 3.1, obtained for a starting

point x = 30. Figure 3.3 depicts f(x) and f ′(x) for x ∈ [30, 90]. Note that the inserts

in Figure 3.3 highlight the behavior of the objective function f(x) and it’s associated

derivative f ′A(x) in the vicinity of the results in Table 3.1.

Algorithm f(x{Nk}) f ′A(x{Nk}) x{Nk} Nk Nl

BFGS(f) 4.885E+02 -2.804E+00 3.385E+01 3 79
BFGS(g) 4.459E+02 -6.366E-04 7.950E+01 3 522
SSA(f) 4.458E+02 -2.324E-02 7.720E+01 22 48
SSA(g) 4.459E+02 -5.827E-04 7.950E+01 19 16

Table 3.1: Results obtained with BFGS(f), BFGS(g), SSA(f) and SSA(g) for the univariate
transient heat transfer problem.

The optimal solution and positive projection point may coincide, as shown by the

inserts in Figures 3.3(a) and (b). Note that the optimal solution occurs over a jump

discontinuity. Although SSA(f) is able to overcome many of the numerically induced

local minima it is clear from Figure 3.3 that both BFGS(f) and SSA(f) converged to

such local minima. To the contrary, both BFGS(g) and SSA(g) are able to robustly

overcome the numerically induced local minima and terminate at a positive projection

point (indicated by a sign change in f ′A(x) for univariate functions). At first glance the

reported results for both BFGS(g) and SSA(g) in Table 3.1 seems inferior to SSA(f).

However, at closer inspection it is clear that the function value decreases from 445.9 to

445.7 over the discontinuity, by infinitesimally perturbing the gradient-only solution x∗g

to the right. In addition, the gradient-only solution x∗g and the optimum x∗ describes the

same design for all practical purposes. It is clear that when the gradient-only solution

x∗g occurs over a discontinuity for univariate functions then two function values could be

reported as f(x∗g), the one obtained by the left-hand limit and the other by the right-hand

limit.

At closer inspection it is clear that SSA(f) converged to a local minimum that is not

a positive projection point since the sign of f ′(x) remains negative around this point.

However, a slight perturbation around this point results in an increase in function value.

3.5.3 Example problems: spatial partial differential equations

Next, we consider firstly the unconstrained design of an orthotropic Michell-like structure,

and secondly the equality constrained design of an orthotropic Michell-like structure.
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Figure 3.3: (a) Function values, and (b) associated derivatives for the univariate transient
heat transfer sizing problem. Note the sign change in f ′A(x) at x∗g = x∗ = 79.5.

Again, both problems are analyzed using methods that are prone to step discontinuities.

The Michell-like structure is depicted in Figure 3.4; the figure depicts the symmetry

and support conditions. The structure has a predefined length of 30 mm and thickness of

1 mm. A point load F of 10 N acts at the center bottom of the structure. The boundary

of the structure is controlled by the 16 control points x that can only move vertically,

which are the 16 design variables in the shape design problem. The control points are

linearly spaced along the top and bottom of the Michell-like structure with the first nine

control points along the top and the remaining seven along the bottom, as depicted in

Figure 3.4. The boundary is linearly interpolated between the control points.

A linear elastic FEM is used to solve the approximate nodal displacement field u from

the structural equilibrium PDEs. The spatial discretizations (meshes) for the FEM are
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Figure 3.4: Initial geometry of half the Michell-like structure using 16 control points x.

again4 generated using our quadratically convergent remeshing strategy [66].

As in the previous example, the remeshing strategy results in meshes with a varying

number of nodes and nodal connectivity, which induces numerical jump discontinuities

into the objective function, since the cost function will be formulated in terms of the

mesh dependent displacement field u.

The nodal displacements u are obtained from the linear elastic approximate finite

element equilibrium equations

Ku = f , (3.38)

where K represents the assembled structural stiffness matrix and f the consistent struc-

tural loads. Following the usual approach, the system in (3.38) is partitioned along the

unknown displacements (uf) and the prescribed displacement (up), i.e.

Ku =

[
Kff K fp

Kpf Kpp

]{
uf

up

}
=

{
f f

fp

}
, (3.39)

where f f represents the prescribed forces and fp the reactions at the nodes with prescribed

displacements. The unknown displacements (uf) are obtained from

Kffuf = f f −K fpup. (3.40)

The sensitivity of the displacement at the center uF w.r.t x is obtained by direct differ-

entiation of (3.40) as shown in Chapter 2.

The orthotropic stiffness matrix K is computed for Boron-Epoxy in a tape outlay i.e.

the fibers are all aligned in a single direction along the longitudinal axis, as indicated by

x1 in Figure 3.4.. We assume plane stress conditions. The orthotropic material properties

for Boron-Epoxy used in this study are a Young’s modulus along the longitudinal axis

of E1 = 228 GPa, along the transverse axis of E2 = 145 GPa and a shear modulus of

G12 = 48 GPa. The last independent parameter in classical laminate theory (CLT) is the

4This time, we use an ideal element edge length h0 = 1.
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Table 3.2: Tabulated results obtained for the unconstrained Michell-like structure.

Algorithm f(x{Nk}) ‖∇Af(x{Nk})‖ ‖∆x{Nk}‖ Nk Nl

BFGS(f) 7.740E-01 4.705E-02 0.000E+00 3 60
BFGS(g) 5.941E-01 1.938E-03 0.000E+00 36 717
SSA(f) 6.470E-01 1.602E-02 4.822E-05 15 59
SSA(g) 5.938E-01 1.052E-03 9.582E-05 41 29

Poisson ratio ν12 = 0.23, since ν21 follows from the symmetry relation E1ν21 = E2ν12.

Unconstrained shape design of a Michell structure

Consider the unconstrained shape design of the orthotropic Michell structure [20]; we

minimize the weighted sum of the displacement and normalized volume of the structure.

The cost function is given by

f(u,x) = βuF(x) + f2(x),

where uF is the displacement at the point of load application of the structure, f2 is

the volume of the structure V (x) divided by V0 and β a weight parameter. Both the

displacement at the point of load application uF(x) and the volume of the structure

V (x) depend on the design variables x. For this study we select V0 = 150 mm3 and

β = 100.

Results for the unconstrained Michell-like structure The results for the

BFGS(f), BFGS(g), SSA(f) and SSA(g) algorithms are summarized in Table 3.2 with

the respective final designs depicted in Figures 3.5 (a)-(d). Table 3.2 summarizes the

function value f(x{Nk}), gradient norm ‖∇Af(x{Nk})‖, the norm of the solution update

‖∆x{Nk}‖, number of outer iterations Nk as well as the number of inner iterations Nl.

Consider BFGS(f) which converged after 3 outer iterations Nk and, evidently got

trapped in a local minimum due to numerical induced step discontinuities. The premature

final design is apparent from Figure 3.5 (a).

Similarly, SSA(f) converged after 15 outer iterations Nk also after getting trapped

in a step discontinuous minimum. Significant improvements are evident by comparing

Figure 3.5 (c) to Figure 3.5 (a), although noticeable improvements could still be made.

Clearly, conservative approximation methods are able to overcome some step discontinu-

ities and of course even more so when conservatism is relaxed.

Conversely, BFGS(g) and SSA(g) were able to optimize the Michell structure without

getting trapped in numerical induced step discontinuities. Consider the similar designs

depicted in Figures 3.5 (b) and (d). It is clear that BFGS(g) and SSA(g) improved
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Figure 3.5: Michell-like structure: converged designs obtained with (a) BFGS(f), (b)
BFGS(g), (c) SSA(f), and (d) SSA(g).

10 20 30

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

k

F
u

n
c
ti
o

n
 v

a
lu

e
 f

(x
{k
} )

 

 

BFGS(f)

BFGS(g)

10 20 30

10
−2

10
−1

k

G
ra

d
ie

n
t 

n
o

rm
 |
|∇

 f
(x

{k
} )
||

 

 

BFGS(f)

BFGS(g)

5 10 15 20 25 30 35

10
−1

10
0

k

||
∆
x
{k
} |
|

 

 

BFGS(f)

BFGS(g)

(a) (b) (c)

A

Figure 3.6: Michell-like structure: BFGS(f) and BFGS(g) algorithms convergence history plot
of the (a) function value f(x{k}) and (b) gradient norm ‖∇Af(x{k})‖ and (c) the
norm of the solution update ‖∆x{k}‖.

notably on the designs obtained with BFGS(f) and SSA(f).

We further present for each algorithm their respective convergence histories w.r.t.

function value f(x{k}), gradient norm ‖∇Af(x{k})‖ and the norm of the solution update

‖∆x{k}‖. The respective histories for the BFGS algorithms are depicted in Figures 3.6 (a)-

(c) and for the SSA algorithms in Figures 3.7 (a)-(c).

Monotonic function value decrease for both BFGS(f) and SSA(f) is clearly depicted

in respectively Figure 3.6(a) and Figure 3.7(a).

Conversely, non-monotonic function value decrease for both BFGS(g) and SSA(g) is

evident in Figure 3.6(a) and Figure 3.7(a).

Constrained shape design of a Michell structure

We now consider the constrained shape design of the orthotropic Michell structure [20].

We minimize the displacement of load application point uF subject to an equality volume

constraint V (x) = V0 where V0 is the prescribed volume of the structure. As indicated,

we do so using a Lagrangian formulation.

To solve the dual of the Lagrangian using line search descent methods, we use the

BFGS algorithms as described in this chapter except for the following modifications: in

the line search strategy every design step x is followed by a multiplier step (V (x)− V0)
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Figure 3.7: Michell-like structure: SSA(f) and SSA(g) algorithms convergence history plot of
the (a) function value f(x{k}) and (b) gradient norm ‖∇Af(x{k})‖ and (c) the
norm of the solution update ‖∆x{k}‖.

Table 3.3: Tabulated results obtained for the constrained Michell-like structure.

Algorithm L(x{Nk}, λ{Nk}) ‖∇AL(x{Nk}, λ{Nk})‖ ‖∆x{Nk}‖ ‖∆λ{Nk}‖ Nk Nl

BFGS(f) 8.239E-01 2.191E-01 0.000E+00 2.459E-01 11 348
BFGS(g) 3.635E-01 5.092E-03 0.000E+00 3.104E-04 53 1188
SSA(f) 3.712E-01 2.992E-02 1.778E-07 1.762E-02 41 129
SSA(g) 3.564E-01 4.292E-03 0.000E+00 2.645E-04 144 238

in the outer loop. In turn, the multiplier λ is kept constant during the inner loop where

the bracketing search and golden section refinement occurs.

On the other hand we solve the dual of the Lagrangian using the SSA algorithms as

described in this chapter with the following adjustments: every design update x in the

outer loop is followed by a multiplier step (V (x)− V0). In turn, the multiplier λ is kept

constant during the inner loops.

Both the BFGS and SSA algorithms are terminated when ‖[∆xNk ∆λNk ]‖ < ε or,

when ‖∆xNk‖ < ε for five consecutive iterations.

Results for the constrained Michell-like structure The results for the BFGS(f),

BFGS(g), SSA(f) and SSA(g) algorithms are summarized in Table 3.3, with the respec-

tive final designs depicted in Figures 3.8 (a)-(d). Table 3.3 summarizes the Lagrangian

L(x{Nk}, λ{Nk}), the norm of the Lagrangian gradient ‖∇AL(x{Nk}, λ{Nk})‖, the design

variable update ‖∆x{Nk}‖, the Lagrange multiplier update ‖∆λ{Nk}‖, the number of outer

iterations Nk, and the number of inner iterations Nl.

BFGS(f) converged to a numerically induced local minimum after 11 outer iterations

Nk, with the final design depicted in Figure 3.8 (a). Similarly, SSA(f) converged to a

numerically induced local minimum after 41 outer iterations Nk, with the final design

depicted in Figure 3.8 (c). As shown in Table 3.3, the respective Lagrange multiplier

updates ‖∆λ{Nk}‖ are orders larger than the design variable updates ‖∆x{Nk}‖, since both
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Figure 3.8: Michell-like structure: converged designs obtained with (a) BFGS(f), (b)
BFGS(g), (c) SSA(f), and (d) SSA(g).
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Figure 3.9: Michell-like structure: BFGS(f) and BFGS(g) algorithms convergence history plot
of (a) the Lagrangian L(x{k}, λ{k}), (b) the norm of the Lagrangian gradient
‖∇AL(x{k}, λ{k})‖ and (c) the norm of the solution update ‖∆[x{k} λ{k}]‖.

algorithms got stuck in numerically induced local minima for five consecutive iterations,

while significantly violating the equality constraint.

Conversely, BFGS(g) and SSA(g) were able to optimize the Michell structure with

the respective designs depicted in Figures 3.8 (b) and (d). It is clear that BFGS(g) and

SSA(g) improved notably on the designs obtained with BFGS(f) and SSA(f). As shown

in Table 3.3, the Lagrange multiplier updates ‖∆λ{Nk}‖ are small.

We further present for each algorithm their respective histories w.r.t. the Lagrangian

L(x{k}, λ{k}), the norm of the Lagrangian gradient ‖∇AL(x{k}, λ{k})‖ and the norm of

the solution update ‖∆[x{k} λ{k}]‖. The respective histories for the BFGS algorithms are

depicted in Figures 3.9 (a)-(c) and for the SSA algorithms in Figures 3.10 (a)-(c).

3.5.4 Example problems: temporal partial differential equa-

tions

To illustrate the advantages of gradient-only optimization for cost functions formulated

from temporal PDEs discretized using non-constant strategies, we finally perform a ma-

terial identification study. The aim of the material identification study is to find the

parameter values of a modified Voce model (law) [33] which best describe experimentally

measured yield stress data. We achieve this by merely minimizing the least squares er-
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Figure 3.10: Michell-like structure: convergence histories for SSA(f) and SSA(g) of (a)
the Lagrangian L(x{k}, λ{k}), (b) the norm of the Lagrangian gradient
‖∇AL(x{k}, λ{k})‖ and (c) the norm of the solution update ‖∆[x{k} λ{k}]‖.

ror between the experimental data and the modified Voce model data points. Although

inverse problems are usually ill-posed we obtained promising results without regularizing

the problem.

The Voce model [31, 62] is given by

dσy
dεp

= θ0

(
1− σy

σys

)
, (3.41)

where σy represents the evolving yield stress, εp the plastic strain, σys the saturation

stress and θ0 the extrapolated strain hardening rate for zero flow stress.

Although the Voce model describes yield stress evolution to moderate strains ade-

quately, it usually has poor validity at large strains. To overcome large strain deficiencies,

we use a modified Voce model to capture linear hardening behavior observed at larger

strains. The Voce model is modified to include a stage IV evolution equation [33],

dσ4

dεp
= c, (3.42)

to obtain
dσy
dεp

= θ0

(
1− σy

σys
+
σ4

σy

)
. (3.43)

We calculate σy for a specific value of εp by numerically integrating (3.42) and (3.43),

using a forward Euler method in which we first solve for the stress contribution from the

stage IV evolution equation given by

σ
{i+1}
4 = σ

{i}
4 + c∆ε{i}p . (3.44)

Here, the superscript {i} indicates the iteration number and ∆ε
{i}
p the plastic strain step

size at iteration {i}, i.e. ε
{i+1}
p − ε{i}p .
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The updated evolving yield stress is then computed using

σ{i+1}
y = σ{i}y + θ0

(
1− σ

{i}
y

σys
+
σ
{i+1}
4

σ
{i}
y

)
∆ε{i}p . (3.45)

Each first order system of DEs requires an initial condition at {i} = 0. To allow for

optimization flexibility, the initial conditions for σ
{0}
4 and σ

{0}
y are chosen to be design

variables. ∆ε
{i}
p is adjusted using an adaptive time step scheme.

We start with an initial ∆ε0p = 10−3 in the adaptive time step scheme. For each

iteration {i} we compute ∆σ
{i}
y , i.e. σ

{i+1}
y − σ{i}y . The step size ∆ε

{i+1}
p increases by a

factor 1.5 from iteration {i+ 1} to {i+ 2}, unless ∆σ
{i}
y is more than a defined maximum

allowable evolved stress update ∆σmax
y = 10 MPa. We then half ∆ε

{i}
p and redo the

{i+ 1}th iteration. During the entire numerical integration procedure, we limit the step

size ∆ε
{i}
p between a maximum allowable step ∆εmax

p = 10−1 and a minimum allowable

step ∆εmin
p = 10−3.

Let us consider the experimental measured data taken at various plastic strain points.

The experimental data may range from a few, to many hundreds of points at arbitrarily

spaced intervals, depending on the experimental setup. The resulting discrete model

points in turn have their own arbitrarily spaced intervals. Some interpolation strategy

is required since the experimental data points and the modified Voce model data points

may not always coincide. Three obvious linear interpolation strategies that come to mind

are interpolating

• the experimental data points to the model data points,

• the model data points to the experimental data points, and

• both the model and experimental data points to intermediate points.

In this study we only consider the first interpolation strategy. The experimental data

required for the inverse problem is obtained by solving the modified Voce model with the

parameter values given in Table 3.4. This allows for a zero error solution. We identify the

following five design variables: x = [x1, x2, . . . , x5] = [c, θ0, σys, σ
{0}
4 , σ

{0}
y ], to minimize

the least squares error between the experimental and model data points.

In order to improve the variable scaling we normalize the design vectors by the op-

timum x∗ given in Table 3.4, although the results are only presented as non-normalized

variables.

Finally, we consider the interpolation of the experimental data points to the model

data points. We therefore linearly interpolate between the experimentally measured data

to obtain experimental data for the corresponding plastic strains in the numerical model.

The disadvantage being that the number of experimental data points used depends on

the time step sequence of the numerical model.
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Table 3.4: Parameter values used to construct experimental data for the inverse problem using
the modified Voce model with the adaptive time step algorithm.

c θ0 σys σ
{0}
4 σ

{0}
y

90 1000 180 0.5 1

Table 3.5: Tabulated results for the least squares fit between the modified Voce model data
points and the linearly interpolated experimental data points.

Algorithm f(x{Nk}) ‖∇Af(x{Nk})‖ ‖∆x{Nk}‖ Nk Nl

BFGS(f) 2.605E+03 9.284E+03 0.000E+00 3 35
BFGS(g) 1.981E-04 3.200E-01 0.000E+00 36 1695
SSA(f) 1.392E+01 1.220E+03 7.172E-05 16 39
SSA(g) 3.939E-01 7.206E+00 9.086E-05 22 8

The cost function of the design problem is given by

f(x) =
r∑
j=1

(djei − djm)2, (3.46)

where r is the number of model data points i.e. the numerical integration sequence, djei is

the linearly interpolated yield stress from the experimental data and djm is the yield stress

obtained from the numerical model. Details regarding the computation of the analytical

sensitivities for this problem are given in Section 6 of the Appendix.

Results obtained for interpolated experimental data The results obtained with

the BFGS(f), BFGS(g), SSA(f) and SSA(g) algorithms are summarized in Table 3.5. The

table presents the function value f(x{Nk}), the gradient norm ‖∇Af(x{Nk})‖, the norm

of the solution update ‖∆x{Nk}‖, the number of outer iterations Nk and the number of

inner iterations Nl.

From Table 3.5 it is clear that both BFGS(f) and SSA(f) converged to suboptimal lo-

cal minima, in particular when considering the large norm of the gradient at the solutions.

In turn, BFGS(g) and SSA(g) obtained solutions with the norms of the gradient consid-

erably lower at the converged solution. To investigate the nature of the local minimum

of BFGS(f) we depict the function value and associated derivative (around the converged

solution) along the final search direction in Figures 3.11 (a) and (b) respectively. Con-

versely, BFGS(g) and SSA(g) were able to effectively minimize the least squares error.

We also depict for BFGS(g) the function value and associated derivative (around the

gradient projection point) along the final search direction in Figures 3.12 (a) and (b)

respectively.
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Table 3.6: Final designs obtained for the least squares fit between the modified Voce model
data points and the linearly interpolated experimental data points.

c θ0 σys σ
{0}
4 σ

{0}
y

x∗ 90 1000 180 0.5 1

BFGS(f) 69.88 1453.97 148.52 0.60 1.20
BFGS(g) 90.85 999.49 179.74 0.50 1.00

SSA(f) 71.12 1025.31 181.32 0.59 1.20
SSA(g) 71.39 1004.91 186.17 0.59 1.20

Consider the history plots for BFGS(f) and BFGS(g) depicted in Figures 3.13 (a)-

(c): BFGS(f) result in a monotonic decrease in function value f(x{k}), as opposed to

the non-monotonic decrease of BFGS(g). The associated gradient norm is depicted in

Figure 3.13 (b). The distance from the optimum ‖x∗−x{k}‖, depicted in Figure 3.13 (c),

shows how BFGS(g) approaches the optimum.

The history plots for SSA(f) and SSA(g) are depicted in Figures 3.14 (a)-(c) which

illustrates that a monotonic decrease in function value is obtained by SSA(f) as opposed

to a non-monotonic decrease for SSA(g). The distance from the optimum ‖x∗ − x{k}‖
depicted in Figure 3.14 (c), indicates how SSA(g) approaches the optimum.
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Figure 3.11: Function value and associated derivative along the search direction around the
optimal point obtained with BFGS(f) for the linearly interpolated experimental
data.
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Figure 3.12: Function value and associated derivative along the search direction around the
solution obtained with BFGS(g) for the linearly interpolated experimental data.

Lastly, we include the final design vectors x{Nk} obtained in Table 3.6.

 
 
 



CHAPTER 3. APPLICATIONS OF GRADIENT-ONLY OPTIMIZATION 57

10 20 30

10
−2

10
0

10
2

k

F
u

n
c
ti
o

n
 v

a
lu

e
 f

( 
x

{k
} )

 

 

BFGS(f)

BFGS(g)

10 20 30

10
0

10
2

10
4

k

G
ra

d
ie

n
t 

n
o

rm
 |
|∇

 f
( 

x
{k

} )|
|

 

 

BFGS(f)

BFGS(g)

5 10 15 20 25 30 35

10
1

10
2

k

||
 x

* −
 x

{k
} ||

 

 

BFGS(f)

BFGS(g)

(a) (b) (c)

A

Figure 3.13: Modified Voce model: BFGS(f) and BFGS(g) algorithms convergence history
plot of (a) the function value f(x{k}), (b) the gradient norm ‖∇Af(x{k})‖ and
(c) the distance from the optimum ‖x∗ − x{k}‖, for the linearly interpolated
experimental data.
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Figure 3.14: Modified Voce model: SSA(f) and SSA(g) algorithms convergence history plot of
(a) the function value f(x{k}), (b) the gradient norm ‖∇Af(x{k})‖ and (c) the
distance from the optimum ‖x∗−x{k}‖, for the linearly interpolated experimental
data.

3.6 Conclusions

We have studied the minimization of objective functions containing non-physical step

or jump discontinuities. These discontinuities arise when (partial) differential equations

are discretized using non-constant methods: the functions become discontinuous and

non-differentiable at these discontinuities. We can however compute (semi) analytical

sensitivities [40] at these discontinuous points since every point has an associated dis-

cretization for which such a computation can be performed.

To illustrate, we proposed gradient-only implementations of the BFGS algorithm and a

SAO algorithm for discontinuous problems, and applied these algorithms to a selection of

problems of practical interest, both unconstrained and constrained. These are the design

of a heat exchanger fin, the shape design of an orthotropic Michell-like structure, and a

material identification study using a modified Voce law, all discretized using non-constant

methods. In each instance, the gradient based algorithms found superior solutions to the

classical methods that use both function and gradient information.
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As opposed to surrogate methods based on design of experiments techniques, which

scale poorly, gradient-only algorithms based on classical optimization algorithms that

scale well, may also be expected to scale well (provided the gradient computations scale

well); this may well become an important application of gradient-only methods. Another

envisaged application of gradient-only algorithms are any problem for which gradient

computations are inexpensive.

 
 
 



CHAPTER 4

Theory of gradient-only optimization

In this chapter we consider some theoretical aspects of gradient-only optimization

for the unconstrained optimization of objective functions containing non-physical

step or jump discontinuities. The (discontinuous) gradients are however assumed

to be accurate and everywhere uniquely defined. This kind of discontinuity in-

deed arises when the optimization problem is based on the solutions of systems

of partial differential equations, when variable discretization techniques are used

(remeshing in spatial domains or variable time stepping in temporal domains).

These discontinuities, which may cause local minima, are artifacts of the nu-

merical strategies used and should not influence the solution to the optimization

problem. We demonstrate that it is indeed possible to ignore these local minima

due to discontinuities, if only gradient information is used. Various gradient-only

algorithmic options are discussed. The implications are that variable discretization

strategies, so important in the numerical solution of partial differential equations,

can be combined with efficient local optimization algorithms.

This chapter is organized as follows: We give an introduction to discontinuous

objective functions in Section 4.1. We then define an optimization problem and

solution to the problem that is solely based on the gradient of a function in Sec-

tion 4.2. In Section 4.3, we introduce the gradient-only optimization problem

and in Section 4.4 we offer proofs of convergence of descent sequences defined

in the previous section. We give practical considerations regarding gradient-only

optimization algorithms in Section 4.5, and present a brief comparative discussion

of classical mathematical programming and gradient-only optimization in Sec-

tion 4.6. In Section 4.7 we present a shape optimization problem of practical

importance, and a number of analytical test functions. Concluding remarks then

follow.
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4.1 Introduction

In this study we consider theoretical aspects regarding gradient-only approaches to avoid

spurious (local) minima for unconstrained optimization. Here, gradient-only optimization

algorithms refers to optimization strategies that solely considers first order information of

a scalar (cost) objective function in computing update directions and update step lengths.

Many problems in engineering and the applied sciences are described by (partial)

differential equations (P)DEs, e.g. Newton’s second law, Poisson’s equations, Maxwell’s

electromagnetic equations, the Black-Scholes equations, the Lotka-Volterra equations and

Einstein’s field equations. Analytical solutions to these are seldom available and in many

cases, (approximate) numerical solutions need to be computed. These (approximate)

numerical solutions are often obtained by employing discretization methods e.g. finite

difference, finite element and finite volume methods.

(P)DEs also often describe the physics of some optimization problem. These opti-

mization problems are usually numerically approximated that results in an approximate

optimization problem, which are then optimized using numerical optimization techniques.

During optimization the domain over which the (P)DEs are solved may remain constant

but the discretization may be required to change to ensure convergence or efficiency of

the solution e.g. integrating over a fixed time domain using variable time steps. Alterna-

tively, the design variables may describe the domain over which the (P)DEs are solved.

A change in design variables therefore change the solution domain, which in turn requires

the discretization to change e.g. shape optimization.

In order to affect these discretization changes, we distinguish between two classes of

strategies. First, constant discretization strategies continuously adjusts a reference dis-

cretization when the solution domain change (and hence generates a fixed discretization

if the solution domain remains fixed). Secondly, variable discretization strategies gener-

ate new independent discretizations irrespective of whether or not the solution domain

changes. For example, temporal (P)DEs may be solved using fixed or variable time steps.

For spatial PDEs, the equivalents are fixed and mesh movement strategies on the one

hand, and remeshing on the other. Fixed time steps and mesh movement strategies how-

ever may imply serious difficulties, e.g. impaired convergence rates and highly distorted

grids and meshes, which may even result in failure of the computational procedures used.

The variable discretization strategies are preferable by far.

One consequence of using variable discretization while solving an optimization prob-

lem, is that the resulting objective functions contain discontinuities.

Accordingly, the optimization of piece-wise smooth step discontinuous functions usu-

ally requires highly specialized optimization strategies, and possibly, heuristic approaches.

In contrast, constant discretization strategies result in smooth, continuous objective func-

tions that present no significant challenges to optimization algorithms.
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It therefore appears that the analyst has two options, namely i) combining an efficient

local optimization algorithms with non-ideal constant discretization, or ii) combining a

less efficient global optimization algorithm with ideal non-constant discretization.

Hence, variable time step methods and remeshing techniques are normally avoided in

optimization, due to the very fact that the required global optimization algorithms are

prohibitively expensive. An important spatial example is structural shape optimization,

in which fixed or mesh movement strategies are almost always used; the very motivation

for this being that remeshing strategies cannot be used efficiently, due to the induced

non-physical local minima during optimization, e.g. see References [1, 9, 32, 39].

To avoid confusion, we emphasize the difference between physical discontinuities that

occur in the solution domain of PDEs, such as shear banding in plasticity and shock waves

in supersonic flow, and non-physical discontinuities. The non-physical discontinuities

we refer to occur in the objective function of an optimization problem as opposed to

discontinuities in the solution of a PDE.

As we aim to develop a theoretical framework for gradient-only optimization in this

chapter we will invariably restrict ourselves to various classes of objective functions in

our discussions and analysis through the course of this chapter. In addition, we re-

strict ourselves to unconstrained optimization and note that some practical constrained

optimization problems can be successfully reformulated as unconstrained optimization

problems using a penalty formulation. Consider the following unconstrained minimiza-

tion problem: find the minimizer x∗ of a real-valued function f : X ⊆ Rn → R, such

that

f(x∗) ≤ f(x), ∀ x ∈ X, (4.1)

with X the convex set of all possible solutions. If the function f is strictly convex, coer-

cive and at least twice continuously differentiable, i.e. f ∈ C2, the minimizer x∗ ∈ X is

characterized by the optimality criterion ∇f(x∗) = 0, with the Hessian matrix H(x∗)

positive semi-definite at x∗. Here, ∇ represents the gradient operator. For this program-

ming problem, many well known minimization algorithms are available, e.g. steepest

descent, (preconditioned) conjugate gradient methods and quasi-Newton methods like

BFGS. However, if f is discontinuous, i.e. f /∈ C0, the minimizer x∗ of the mathematical

programming problem (4.1) may not satisfy the optimality criterion given above. Indeed,

the optimality criterion may not even be defined in the classical sense although it may

be defined using generalized gradients (subdifferential) ∂f(x) [12, 13, 17] which requires

0 ∈ ∂f(x∗).

To the best of our knowledge, only a few gradient-only optimization algorithms have

been developed, see References [4, 43, 44, 49, 53, 54, 64]. This includes the widely

known gradient-only Newton’s method [64], which locates diminishing gradients.. A

notable contribution on the optimization of functions that are not everywhere uniquely
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differentiable (non-differentiable) is the subgradient methods [49]. Subgradient methods

reduce to steepest descent algorithms with step lengths a priori determined i.e. the line

searches do not depend on any computed information during optimization, when an

objective function is continuously differentiable. All of these algorithms are used to

minimize objective functions and require the condition that the gradient ∇f(x∗) = 0

or the subdifferential1 ∂f(x∗) must contain 0 depending on the differentiability of f(x)

at x∗. Accordingly, the well-known efficient optimization algorithms mentioned above

may be unable to find x∗g since they are concerned with obtaining a minimizer x∗ for an

objective function [17].

In turn, if it is known or assumed that x∗g coincides with a minimizer x∗ of f(x) then

these problems can be approached from a classical mathematical programming perspec-

tive which have to be solved using global optimization algorithms. This is due to the

numerically induced step discontinuities that manifest as local minima in the function

domain. We however show that if it is known that accurate associated gradient infor-

mation that is everywhere defined is available, the resulting discontinuous problems may

still be optimized efficiently since gradient-only optimization ignores these numerically

induced step discontinuities. Gradient-only optimization therefore transforms a problem

plagued with numerically induced local minima to a problem free from it. Recall that a

third option now becomes available to the analyst: combine an efficient local optimization

algorithm with ideal non-constant discretization.

Let us first present two illustrative examples of non-physical step discontinuities, to

set the tone for this chapter. The first is rather trivial, the second not quite.

4.1.1 Univariate example problem: Newton’s cooling law

Consider Newton’s law of cooling, which states that the rate of heat loss of a body is

proportional to the difference in temperature between a body and the surroundings of

that body, given by the linear first order DE:

dT

dt
= −κ(T (t)− Tenv), (4.2)

with the well known analytical solution

T (t) = Tenv + (Tinit − Tenv)e−κt. (4.3)

Here κ is a positive proportionality constant, T (t) the temperature of the body at time

t and Tenv the temperature of the surroundings of the body.

We consider the temperature T (t) of a body after 1s, for 0.5 ≤ κ ≤ 2, with

T (0) = 100◦C at t = 0, and Tenv = 10◦C for all t. The analytical solution of the

1A subdifferential is the set of subgradients at a point.
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Figure 4.1: Numerical and analytical solutions for Newton’s cooling law. (a) Temperature T
after 1 second for 0.5 ≤ κ ≤ 2, and (b) the corresponding associated derivative
dT (1)
dκ .

bodies temperature T (1) is depicted in Figure 4.1(a) and the first associated derivative

of T (1) w.r.t. κ is depicted in Figure 4.1(b).

Solving Eq. (4.2) for 0.5 ≤ κ ≤ 2 with a forward Euler method using a variable

time stepping strategy introduces step discontinuities in the temperature response; this

is shown in Figure 4.1(a). For the variable time step strategy we decrease the time step

whenever an allowed temperature increment is exceeded, otherwise we gradually increase

the time step. The corresponding discontinuous derivatives are plotted in Figure 4.1(b).

Note that although discontinuous, the associated derivatives are everywhere uniquely

defined for the numerically computed objective function.

4.1.2 Multivariate example problem: Shape optimization
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Figure 4.2: (a) Structure, boundary conditions and control variables and (b) the vertical dis-
placement uF for variations of the two rightmost upper control variables (x8, x9)
for the Michell shape optimization problem.

Next, we consider a non-trivial benchmark problem in structural shape optimization,

namely the so-called Michell structure [20] depicted in Figure 4.2(a). The geometry is

represented using 16 control variables that are linearly spaced horizontally with only
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vertical degrees of freedom and piecewise linear interpolation between control points.

The objective of this shape optimization problem is to minimize the sum of the weighted

vertical displacement βuF at the point of load application and normalized volume V
V0

for

a unit thickness structure with F = 1N, V0 = 150mm3 and β = 1. The displacement

uF is computed using a linear elastic finite element method with linear strain triangular

elements (e.g. see [15]). For the material properties we use Young’s modulus E = 200GPa

and Poisson’s ratio ν = 0.3. The meshes required for the finite element analyses are

generated using a quadratic convergent remeshing strategy [66] with ideal element length

h0 = 1mm. To illustrate the discontinuous nature of the objective function, the two

control variables x8 and x9 are perturbed around the reference configuration depicted in

Figure 4.2(a) over the range -1.0 through 1.0, using constant intervals of 0.05.

The resulting objective function values are shown in Figure 4.2(b). The step discon-

tinuities due to remeshing are clearly evident; they result since the number of nodes, and

the nodal connectivity, changes. This is evident from Figure 4.2(b): a small decrease in

x9 results in 3 elements (top insert in Figure 4.2(b)) as opposed to 4 elements (bottom

insert Figure 4.2(b)) on the rightmost edge of the structure.

4.1.3 Introductory comments

Clearly, the introduced non-physical discontinuities cannot be accommodated in opti-

mization methods developed for C1 continuous objective functions. However, again note

that the associated gradients of the piece-wise smooth step discontinuous functions con-

sidered in this study are everywhere uniquely defined. Consider the positive projection

point x∗g that occurs over a discontinuity as depicted by fN(x) in Figure 3.1, with a

piece-wise smooth part L of the function to the left and a piece-wise smooth part R of

the function to the right of it. Both the left and the right hand limits represent approx-

imations to the analytical value of the objective function; the left and right hand limits

differ only as a result of the discretization technique used, and these values approach each

other in the limit of mesh refinement anyway. Hence, the value of the objective function

being reported is not unique.

In this study, we consider the unconstrained optimization of objective functions con-

taining non-physical step or jump discontinuities with accurate associated gradients that

are everywhere defined. For the sake of brevity, we restrict our efforts to unconstrained

optimization (but the implications for constrained optimization are clear).

4.2 Definitions

Not all step discontinuities are necessarily problematic for classical optimization, and

we distinguish between two step discontinuity types, namely those that are inconsistent
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with the function trend, and those that are consistent with the function trend, as shown

in Figure 4.3. (All other discontinuities may be taken to be representable of either a

minimum or a maximum.) To represent semi-continuity of f we introduce a double

empty/filled circle convention as depicted in Figure 4.3(a), where a filled circle indicates

F (λ0). Upper semi-continuity is represented by the filled/empty circle pair indicated by

1’s in Figure 4.3(a) i.e. the filled/empty circles lie above f . Lower semi-continuity in turn

is represented by the empty/filled circle pair indicated by 2’s, i.e. the empty/filled circles

lie below f , in Figure 4.3(a).

0 0

F F

(a) (b)

1

1

2

2

1

1

2

2

Figure 4.3: Upper and lower semi-continuous univariate functions with (a) an inconsistent
step discontinuity, and (b) a consistent step discontinuity.

Figure 4.3(a) depicts an inconsistent step discontinuity; the function decreases as λ

increases, but the step discontinuity results in an increase of the function over the step

discontinuity. Similarly, Figure 4.3(b) depicts a consistent step discontinuity.

The functions we consider in this study are step discontinuous and therefore not

everywhere differentiable. However computationally the derivatives and gradients are

everywhere computable since the analysis is per se restricted to the part of the objective

function before, or after a discontinuity. We therefore define an associated derivative

f ′A(x) and associated gradient ∇Af(x) which follow computationally when the sensitivity

analysis is consistent [48]. Firstly, we define the associated derivative

Definition 4.2.1. Let f : X ⊂ R → R be a real univariate piece-wise smooth step

discontinuous function that is everywhere defined. The associated derivative f ′A(x) for

f(x) at a point x is given by the derivative of f(x) at x when f(x) is differentiable at x.

The associated derivative f ′A for f(x) non-differentiable at x, is given by the left-sided

derivative of f(x) when x is associated to the left piece-wise continuous section of the

discontinuity, otherwise it is given by the right-sided derivative.

Secondly, the associated gradient is defined as follows:

Definition 4.2.2. Let f : X ⊂ Rn → R be a real multivariate piece-wise smooth step

discontinuous function that is everywhere defined. The associated gradient ∇Af(x) for

f(x) at a point x is given by the gradient of f(x) at x when f(x) is differentiable at

x. The associated gradient ∇Af(x) if f(x) is non-differentiable at x is defined as the
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vector of partial derivatives where each partial derivative is an associated derivative (see

Definition 4.2.1).

It follows from Definitions 4.2.1 and 4.2.2 that the associated gradient reduces to the

gradient of a function that is everywhere differentiable.

We now proceed to develop a self-contained theoretical framework for gradient-only

optimization. Although what follows is rather straightforward extensions of classical

concepts, it is included for the sake of completeness.

Definition 4.2.3. Let f : (a, b) ⊂ R → R be a real univariate function that is not

necessarily continuous in both function value f(λ) and associated derivative f ′A(λ) but

for which f(λ) and f ′A(λ) are uniquely defined for every λ ∈ (a, b). Then, f(λ) is said

to have a (resp., strictly) negative associated derivative on (a, b) if f ′A(λ) (resp., <) ≤
0, ∀ λ ∈ (a, b), e.g. see Figure 4.3. Conversely, f(λ) is said to have a (resp., strictly)

positive associated derivative on (a, b) if f ′A(λ) (resp., >) ≥ 0, ∀ λ ∈ (a, b).

Next, we define lower and upper semi-continuity of the associated gradient .

Definition 4.2.4. Let f : X ⊂ Rn → R be a real valued function with an associated

gradient field ∇Af(x) that is uniquely defined for every x ∈ X.

• Then the associated directional derivative along a normalized direction u ∈ Rn is

lower semi-continuous at y ∈ X if

∇A
Tf(y)u ≤ lim inf

λ→0±
∇A

Tf(y + λu)u, λ ∈ R.

• The associated directional derivative along a normalized direction u ∈ Rn is upper

semi-continuous at y ∈ X if

∇A
Tf(y)u ≥ lim sup

λ→0±
∇A

Tf(y + λu)u, λ ∈ R.

• The associated directional derivative along a normalized direction u ∈ Rn is pseudo-

continuous at y ∈ Rn if it is both upper and lower semi-continuous at y.

We note that a univariate function f(λ) may be step discontinuous at a point λ̄ ∈
(a, b), but the associated derivative may still be pseudo-continuous at λ̄, e.g. the function

f(λ) =

{
λ2, λ < −1

λ2 − 2, λ ≥ −1
,

is not pseudo-continuous at λ̄ = 1. However, the associated derivative

f ′A(λ) =

{
2λ, λ < −1

2λ, λ ≥ −1
,
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is pseudo-continuous at λ̄ = −1, where we defined the associated derivative at λ̄ = −1

by the right-hand limit.

4.3 Gradient-only optimization problem

We now present the general unconstrained gradient-only optimization problem that is

equivalent to the classical minimization problem presented in Section 4.1 for smooth

convex cost functions.

Problem 4.3.1. Given a real-valued function f : X ⊂ Rn → R, find a non-negative

associated gradient projection point x∗g ∈ X such that for every u ∈ {y ∈ Rn / ‖y‖ = 1}
there exists a real number ru > 0, and the following holds:

∇A
Tf(x∗g + λu)u ≥ 0 ∀ λ ∈ (0, ru].

Accordingly, we define (resp. non-negative) non-positive generalized associated gradi-

ent projection points that characterizes a solution to imply a (resp. minimum) maximum

according to the associated gradient field of a scalar function, be it local or global, as

follows:

Definition 4.3.1. Suppose that f : X ⊂ Rn → R is a real-valued function for which the

associated gradient field ∇Af(x) is uniquely defined for every x ∈ X.

Then, a point x∗g ∈ X is a generalized non-negative associated gradient projection

point (G-NN-GPP) if there exists a real number ru > 0 for every u ∈ {y ∈ Rn / ‖y‖ = 1}
such that

∇A
Tf(x∗g + λu)u ≥ 0, ∀ λ ∈ (0, ru].

Similarly, a point x∗g ∈ X is a generalized non-positive associated gradient projection

(G-NP-GPP) point if there exists a real number ru > 0 for every u ∈ {y ∈ Rn / ‖y‖ = 1}
such that

∇A
Tf(x∗g + λu)u ≤ 0, ∀ λ ∈ (0, ru].

A special case of Problem 4.3.1 is given below which we refer to as the strict uncon-

strained gradient-only optimization problem.

Problem 4.3.2. Given a real-valued function f : X ⊂ Rn → R, find a x∗g ∈ X such that

for every u ∈ {y ∈ Rn / ‖y‖ = 1} there exists a real number ru > 0, and the following

holds:

∇A
Tf(x∗g + λu)u > 0 ∀ λ ∈ (0, ru].

Accordingly, we define strict associated gradient projection points (resp. non-

negative/non-positive) to imply a (resp. minimum/maximum) according to the associated

gradient field of a scalar function, be it local or global, as follows:
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Definition 4.3.2. Suppose that f : X ⊂ Rn → R is a real-valued function for which the

associated gradient field ∇Af(x) is uniquely defined for every x ∈ X.

Then, a point x∗g ∈ X is a strict non-negative associated gradient projection point

(S-NN-GPP) if there exists a real number ru > 0 for every u ∈ {y ∈ Rn / ‖y‖ = 1} such

that

∇A
Tf(x∗g + λu)u > 0, ∀ λ ∈ (0, ru].

Similarly, a point x∗g ∈ X is a strict non-positive associated gradient projection point

(S-NP-GPP) if there exists a real number ru > 0 for every u ∈ {y ∈ Rn / ‖y‖ = 1} such

that

∇A
Tf(x∗g + λu)u < 0, ∀ λ ∈ (0, ru].

It follows that the strict unconstrained gradient-only optimization problem is included

in the generalized unconstrained gradient-only optimization problem.

We now show that our definition for a generalized non-negative associated gradient

projection point (G-NN-GPP) is consistent with the classical mathematical programming

(MP) definition of a minimizer. To do so we consider the associated gradient at a G-NN-

GPP for C1 continuous functions.

Proposition 4.3.3. Let f : X ⊂ Rn → R be continuous with continuous first partial

derivatives around a generalized non-negative associated gradient projection point (G-

NN-GPP) x∗g ∈ X. Then, ∇Af(x∗g) = 0.

Proof. By Definition 4.3.1 of a G-NN-GPP, ∇A
Tf(x∗g + λu)u ≥ 0 ∀ u and λ > 0 suffi-

ciently small. Also for all corresponding −u, ∇A
Tf(x∗g+λ(−u))(−u) ≥ 0. Consequently

since f(x) ∈ C1,

lim
λ→0
∇A

Tf(x∗g + λu)u = ∇A
Tf(x∗g)u ≥ 0

and

lim
λ→0
∇A

Tf(x∗g − λu)u = ∇A
Tf(x∗g)u ≤ 0.

Thus, since u 6= 0 is arbitrarily chosen and ∇Af(x) continuous the above two state-

ments can only be true simultaneously if ∇Af(x∗g) = 0, which completes the proof.

4.3.1 Discontinuous gradient projection points (GPP)

Our newly introduced definitions for a non-negative associated gradient projection point

(NN-GPP) or a non-positive associated gradient projection point (NP-GPP) of a func-

tion only require that the associated gradient field be uniquely defined everywhere; no

assumptions regarding the continuity of the function are required. Hereafter associated

gradient projection point (GPP) or associated gradient projection set (GPS) is used to

imply either a non-negative or non-positive associated gradient projection (point / set).

We therefore omit the conventional inclusion of a saddle (point / set). In addition the
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Figure 4.4: An illustration of (a) the function value and (b) the corresponding associated
derivative that is either upper or lower semi-continuous, with a step discontinuous
strict non-negative associated gradient projection point (S-NN-GPP) in ∈ (d, e).

function may be discontinuous at a GPP. We first consider discontinuous GPPs for uni-

variate functions and then for multivariate functions. An example of a function with a

discontinuous NN-GPP is the absolute value function with the associated derivative at

the minimum point λ∗ defined by either the left or right limit as depicted in Figure 4.4, as

opposed to the conventional undefined derivative at λ∗. The associated derivative at λ∗ is

therefore either upper or lower semi-continuous as indicated by the double empty/filled

notation.

Proposition 4.3.4. Let f : [d, e] ⊂ R → R be a real univariate function that is not

necessarily continuous in both function value f(λ) and associated derivative f ′A(λ) but

for which f(λ) and f ′A(λ) are uniquely defined for every λ ∈ [d, e]. In addition, let f ′A(λ)

be step discontinuous (upper or lower associated derivative semi-continuous) at a (resp.

generalized / strict) associated gradient projection point ((resp. G/S)-GPP) λ∗ ∈ (d, e)

according to Definition (resp. 4.3.1 / 4.3.2). Let λ∗L be the left limit and λ∗R the right

limit of λ∗.

Then in addition to the (resp. G/S)-GPP λ∗, either λ∗L is a (resp. G/S)-GPP if

lim
λ→λ∗−

f ′A(λ) 6= f ′A(λ∗),

or λ∗R is a (resp. G/S)-GPP if

lim
λ→λ∗+

f ′A(λ) 6= f ′A(λ∗).

Proof. This is immediate from Definition (resp. 4.3.1 / 4.3.2).

For multivariate functions we can state a similar proposition.

Proposition 4.3.5. Let f : X ⊂ Rn → R be a real valued function with associated

gradient field ∇Af(x) that is uniquely defined for every x ∈ X. In addition let ∇Af(x)
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be step discontinuous at a (resp. G/S)-GPP x∗g ∈ X according to Definition (resp. 4.3.1

/ 4.3.2). Then the limit of every sequence to x∗g is also a (resp. G/S)-GPP if

lim
x→x∗

g

∇Af(x) 6= ∇Af(x∗g).

Proof. This is immediate from Proposition 4.3.4.

We now introduce a (resp. generalized / strict) associated gradient projection set

((resp. G/S)-GPS) to accommodate all the (resp. generalized / strict) associated gradient

projection points ((resp. G/S)-GPPs) at a (resp. G/S)-GPP x∗g.

Definition 4.3.3. Let f : X ⊂ Rn → R be a real valued function with associated

gradient field ∇Af(x) that is uniquely defined for every x ∈ X. In addition let x∗g ∈ X
be a (resp. G/S)-GPP according to Definition (resp. 4.3.1 / 4.3.2).

We define the set S as follows:

S =

{
x∗g,y : lim

y→x∗
g

∇Af(y) 6= ∇Af(x∗g), ∀ y ∈ Rn

}
The set S is then a (resp. generalized / strict) non-negative associated gradient projection

set (resp. SG−NN / SS−NN) of x∗g if every x ∈ (resp. SG−NN / SS−NN ) is a (resp. G/S)-

NN-GPP according to Definition (resp. 4.3.1 / 4.3.2).

The set S is then a (resp. generalized / strict) non-positive associated gradient pro-

jection set (resp. SG−NP / SS−NP ) of x∗g if every x ∈ (resp. SG−NP / SS−NP ) is a (resp.

G/S)-NP-GPP according to Definition (resp. 4.3.1 / 4.3.2).

We now show that our definition of a (resp. generalized / strict) associated gradient

projection set (resp. SG / SS) is consistent with the classical mathematical programming

definition of a minimum or maximum point.

Proposition 4.3.6. Let f : X ⊂ Rn → R be a real valued function with a continuous

associated gradient field ∇Af(x) with x ∈ X. Then, any (resp. generalized / strict)

associated gradient projection set (resp. SG / SS) of x∗g ∈ X is a singleton {x∗g} such

that ∇Af(x∗g) = 0.

Proof. It follows from the definition of a (resp. SG / SS) given in Definition 4.3.3 that

lim
y→x∗

g

∇Af(y) = ∇Af(x∗g), y ∈ Rn

since f(x) is C1 continuous at x∗g by premise of which (resp. SG / SS) is reduced to a

singleton.

The second assertion that ∇Af(x∗g) = 0 follows from Proposition 4.3.3.

 
 
 



CHAPTER 4. THEORY OF GRADIENT-ONLY OPTIMIZATION 71

4.3.2 Derivative descent sequences

Now that we have defined GPPs and GPSs solely based on the associated gradient field

of a function, we proceed to define descent sequences that only considers the associated

gradient field of a function.

Definition 4.3.4. For a given sequence {x{k} ∈ X ⊂ Rn : k ∈ P} suppose∇Af(x{k}) 6= 0

for some k and x{k} /∈ SG−NN with SG−NN defined in Definition 4.3.3. Then the sequence

{x{k}} is an associated derivative descent sequence for f : X → R, if an associated

sequence {u{k} ∈ Rn : k ∈ P} may be generated such that if u{k} is a descent direction

from the set of all possible descent directions at x{k}, i.e. ∇A
Tf(x{k})u{k} < 0 then

∇A
Tf(x{k+1})u{k} < 0, for x{k} 6= x{k+1} (4.4)

We also include the definition of a stricter class of associated derivative descent se-

quences which we require for convergence proofs of multimodal functions of dimension

two and higher in order to exclude oscillating sequences. Oscillating sequences may occur

when the sequence defined in Definition 4.3.4 is considered.

Definition 4.3.5. For a given sequence {x{k} ∈ X ⊂ Rn : k ∈ P} suppose ∇Af(x{k})

6= 0 for some k and x{k} /∈ SG−NN with SG−NN defined in Definition 4.3.3. Then the

sequence {x{k}} is a conservative associated derivative descent sequence for f : X → R,

if an associated sequence {u{k} ∈ Rn : k ∈ P} may be generated such that if u{k} is a

descent direction from the set of all possible descent directions at x{k} then

∇A
Tf
(
x{k} + λ(x{k+1} − x{k})

)
u{k} < 0,∀ λ ∈ [0, 1] for x{k} 6= x{k+1}. (4.5)

4.4 Proofs of convergence for derivative descent se-

quences

Before we present proofs of convergence of (conservative) associated derivative descent

sequences we include two gradient-only definitions of the well-known concepts in classical

mathematical programming to simplify our proofs of convergence. First, we present a

definition of coercive functions based solely on the associated gradient of a function [41].

Although this definition does not bear a strict analogy with the conventional coercive

definition it suffices for our purposes.

Definition 4.4.1. Let x1,x2 ∈ Rn. Then a real valued function f : X ⊂ Rn → R with

associated gradient field ∇Af(x) that is uniquely defined for every x ∈ X, is associated
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derivative coercive if there exist a positive number RM such that ∇A
Tf(x2)(x2−x1) > ε

with ε > 0 ∈ R for non perpendicular ∇Af(x2) and (x2−x1), whenever ‖x2‖ ≥ RM and

‖x1‖ < RM .

Secondly, we present definitions for univariate and multivariate associated gradient

unimodality based solely on the associated gradient field of a real valued function [4].

Definition 4.4.2. A univariate function f : X ⊂ R → R with associated derivative

f ′A(λ) uniquely defined for every λ ∈ X, is (resp., strictly) associated derivative unimodal

over X if there exists a x∗g ∈ X such that

f ′A(x∗g + λu)u ≥ (resp., >) 0, ∀ λ ∈ {β : β > 0 and β ⊂ R}

and ∀ u ∈ {−1, 1} such that [x∗g + λu] ∈ X. (4.6)

We now consider (resp., strictly) associated derivative unimodality for multivariate

functions [46].

Definition 4.4.3. A multivariate function f : X ⊂ Rn → R is (resp., strictly) associated

derivative unimodal over X if for all x1 and x2 ∈ X and x1 6= x2, every corresponding

univariate function

F (λ) = f(x1 + λ(x2 − x1)), λ ∈ [0, 1] ⊂ R

is (resp., strictly) associated derivative unimodal according to Definition 4.4.2.

4.4.1 Univariate functions

Now that we have an associated derivative based definition of unimodality for univariate

functions we present a proof of convergence for strict univariate associated derivative

unimodal functions when associated derivative descent sequences are considered.

Theorem 4.4.1. Let f : Λ ⊆ R →] − ∞,∞] be a univariate function that is strictly

associated derivative unimodal as defined in Definition 4.4.2, with first associated deriva-

tive f ′A : Λ →] − ∞,∞[ uniquely defined everywhere on Λ. If λ{0} ∈ Λ and {λ{k}}
is an associated derivative descent sequence, as defined in Definition 4.3.4, for f with

initial point λ{0}, then every subsequence of {λ{k}} converges. The limit of any conver-

gent subsequence of {λ{k}} is a strict non-negative associated gradient projection point

(S-NN-GPP), as defined in Definition 4.3.2, of f .

Proof. Our assertion that f is strict associated derivative unimodal as defined in Defini-

tion 4.4.2 implies that f has only one S-NN-GPS SS−NN ⊂ Λ as defined in Definition 4.3.3

at λ∗ ∈ Λ. Let λr ∈ SS−NN such that |λ{k} − λr| is a maximum. Consider a sequence
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of 1-balls {B(bk, εk)} defined around bk = 1
2
(λ{k} + λr) with radius of 1

2
|λ{k} − λr|. Then

every λ{k+1} ∈ B(bk, εk), since {λ{k}} is an associated derivative descent sequence as

defined in Definition 4.3.4 and f is strict associated derivative unimodal as defined in

Definition 4.4.2. Therefore, k → ∞ implies |λ{k} − λr| → 0. It follows from the Cauchy

criterion for sequences that {λ{k}} is convergent, which completes the proof of our first

assertion.

Now let {λ{k}m} be a convergent subsequence of {λ{k}} and let λm∗ be its limit.

Suppose, contrary to the second assertion of the theorem, that λm∗ is not a S-NN-GPP

as defined in Definition 4.3.2 of f . Since we assume that λm∗ is not a S-NN-GPP, and

by Definition 4.3.4, there exist a λm∗+ δ for δ 6= 0 ∈ R such that f ′A(λm∗+ δ) < 0, which

contradicts our assumption that λm∗ is the limit of the subsequence {λ{k}m}. Therefore,

for λm∗ to be the limit of an associated derivative descent subsequence {λ{k}m}, λm∗ ∈
SS−NN , which completes the proof.

We now proceed with a proof of convergence for generalized univariate associated

derivative unimodal functions when associated derivative descent sequences are consid-

ered.

Theorem 4.4.2. Let f : Λ ⊆ R →] −∞,∞] be a univariate function that is associated

derivative unimodal, as defined in Definition 4.4.2, with first associated derivative f ′A :

Λ→]−∞,∞[ uniquely defined everywhere on Λ. If λ{0} ∈ Λ and {λ{k}} is an associated

derivative descent sequence, as defined in Definition 4.3.4, for f with initial point λ{0},

then every subsequence of {λ{k}} converges. The limit of any convergent subsequence of

{λ{k}} is a generalized G-NN-GPP, as defined in Definition 4.3.1, of f .

Proof. Our assertion that f is associated derivative unimodal as defined in Definition 4.4.2

implies that f has at least one G-NN-GPS SG−NN ∈ Λ as defined in Definition 4.3.3.

Let S ⊂ Λ be the union of G-NN-GPSs SG−NN . Consider the jth sequence of 1-balls

{B(bk, εk)}j defined around bk = 1
2
(λ{k} + (λ∗j ∈ S)) and with radius εk = 1

2
|λ{k} − (λ∗j ∈

S)|. Then λ{k+1} ∈ B(bk, εk)j for every sequence j since {λ{k}} is a associated derivative

descent sequence as defined in Definition 4.3.4 and f is associated derivative unimodal

as defined in Definition 4.4.2. Therefore k →∞ implies |λ{k} − (λ∗j ∈ S)| → aj with aj a

constant. Since |λ{k}− (λ∗j ∈ S)|−aj → 0 for every j it follows from the Cauchy criterion

for sequences that {λ{k}} is convergent, which completes the proof of our first assertion.

Now let {λ{k}m} be a convergent subsequence of {λ{k}} and let λm∗ be its limit.

Suppose, contrary to the second assertion of the theorem, that λm∗ is not a G-NN-GPP

as defined in Definition 4.3.1 of f . Since we assume that λm∗ is not a G-NN-GPP, and

by Definition 4.3.4, there exist a λm∗ + δ for δ 6= 0 ∈ R such that f ′A(λm∗ + δ) <

0 which contradicts our assumption that λm∗ is the limit of the subsequence {λ{k}m}.
Therefore, for λm∗ to be the limit of an associated derivative descent subsequence (see

Definition 4.3.4) {λ{k}m}, λm∗ ∈ S, which completes the proof.
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Now that we have concluded our proofs of (strictly) associated derivative unimodal

univariate functions, we present a proof of convergence for univariate associated derivative

coercive functions that have at least one S-NN-GPS.

Theorem 4.4.3. Let f : Λ ⊆ R→]−∞,∞] be a univariate associated derivative coercive

function, as defined in Definition 4.4.1, with first associated derivative f ′A : Λ→]−∞,∞[

uniquely defined everywhere on Λ. If λ{0} ∈ Λ and {λ{k}} is an associated derivative de-

scent sequence, as defined in Definition 4.3.4, for f with initial point λ{0}, then there

exists at least one convergent subsequence of {λ{k}}. The limit of any convergent subse-

quence of {λ{k}} is a S-NN-GPP of f .

Proof. Since we only consider associated derivative descent sequences {λ{k}} our assertion

that f is associated derivative coercive implies the closed interval [a, b] ⊂ Λ. The sequence

{λ{k}} is bounded which follows from our premise of f . It follows from the Weierstrass-

Bolzano theorem that in a closed interval [a, b], every sequence has a subsequence that

converges to a point in the interval [8].

Now let {λ{k}m} be a convergent subsequence of {λ{k}} and let λm∗ ∈ Λ be its limit.

Suppose, contrary to the second assertion of the theorem, that λm∗ is not a S-NN-GPP

of f . Since we assume that λm∗ is not a S-NN-GPP, and by Definition 4.3.4, there exist

a λm∗ + δ for δ 6= 0 ∈ R such that f ′A(λm∗ + δ) < 0, which contradicts our assumption

that λm∗ is the limit of the subsequence {λ{k}m}. Therefore, for λm∗ to be the limit of an

associated derivative descent sequence (see Definition 4.3.4) {λ{k}m}, λm∗ ∈ SS−NN with

SS−NN ⊂ Λ which completes the proof.

4.4.2 Multivariate functions

We begin our proof of convergence of associated derivative descent sequences for multi-

variate functions with C1 continuous convex functions [41], whereupon we present proofs

of convergence for broader classes of functions.

Theorem 4.4.4. Suppose f : X ⊆ Rn → R is a C1 continuous convex function with

x ∈ X. If x{0} ∈ X and {x{k}} is an associated derivative descent sequence, as defined

in Definition 4.3.4, for f with initial point x{0}, then every subsequence of {x{k}} con-

verges. The limit of any convergent sequence of {x{k}} is a S-NN-GPP as defined in

Definition 4.3.2 of f .

Proof. Our assertion that f is convex and C1 continuous ensures that f has a single

global minimizer x∗g ∈ X. Also, by Definition 4.3.4 and the continuity of the first partial

derivatives, we see that {f(x{k})} is a decreasing sequence that is bounded below by

f(x∗g). It follows that {x{k}} is a bounded sequence since f is convex. The Bolzano-

Weierstrass theorem implies that {x{k}} has at least one convergent subsequence, which

completes the proof of our first assertion [41].
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Now let {x{k}m} be a convergent subsequence of {x{k}} and let xm∗ ∈ X be its

limit. Suppose, contrary to the second assertion of the theorem, that xm∗ is not a S-NN-

GPP as defined in Definition 4.3.2 of f which from our continuity assumption implies

∇Af(xm∗) 6= 0, which in turn implies that there exists a descent direction um∗ at xm∗,

such that um∗ 6= 0.

Since {x{k}m} is an associated derivative descent sequence as defined in Definition 4.3.4

of which the limit xm∗ is by assumption not a S-NN-GPP i.e.

−∇A
Tf(xm∗)∇Af(xm∗) < 0.

It follows from the continuity assumptions that there exists a small λ > 0 ∈ R such

that −∇A
Tf(xm∗ + λum∗)∇Af(xm∗) < 0 which contradicts our assumption that xm∗ is

the limit of the sequence {x{km}}. Therefore, for x∗m to be the limit of an associated

derivative descent sequence {x{km}}, ∇Af(xm∗) = 0, which in turn implies um∗ = 0.

The limit x∗m of an associated derivative descent sequence as defined in Definition 4.3.4,

is therefore a S-NN-GPP as defined in Definition 4.3.2, which completes the proof.

Before we proceed to present a proof of convergence for C1 continuous associated

derivative coercive functions, we show that if a function is associated derivative coercive

and C1 continuous it has at least one global minimizer.

Proposition 4.4.5. Suppose f : X ⊆ Rn → R is a C1 continuous associated derivative

coercive function as defined in Definition 4.4.1 with x ∈ X, then f has at least one

S-NN-GPP as defined in Definition 4.3.2.

Proof. Let x1,x2,x3 ∈ Rn. Since f is associated derivative coercive as defined in Defini-

tion 4.4.1, there exists by definition a number RM such that for every {x2 : ‖x2‖ > RM},
and every {x1 : ‖x1‖ < RM}, the following holds: ∇A

Tf(x2)(x2 − x1) > 0, for non

perpendicular ∇Af(x2) and (x2 − x1). In addition, there exists {x3 : ‖x3‖ < RM},
such that ∇A

Tf(x3)(x3 − x1) > 0. Therefore, the set {x : ‖x‖ < RM} is closed and

bounded, which by the continuity assumption implies that f(x) assumes a minimum

value on {x : ‖x‖ < RM} at a point x∗g ∈ X. From the continuity assumption of the first

partial associated derivatives, it follows that ∇Af(x∗g) = 0 [41]. It therefore follows from

the continuity assumptions that Definition 4.3.2 holds at x∗g.

Theorem 4.4.6. Suppose f : X ⊆ Rn → R is a C1 continuous associated derivative

coercive function, as defined in Definition 4.4.1, with x ∈ X. If x{0} ∈ X, and {x{k}} is

a conservative associated derivative descent sequence, as defined in Definition 4.3.5, for

f with initial point x{0}, then some subsequence of {x{k}} converges. The limit of any

convergent sequence of {x{k}} is a G-NN-GPP, as defined in Definition 4.3.1, of f .
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Proof. Our assertion that f is continuous and associated derivative coercive ensures that

f has a global minimizer x∗g ∈ X. Also, by the definition of a conservative associated

derivative descent sequence and the continuity of the first partial associated derivatives,

we see that {f(x{k})} is a decreasing sequence that is bounded below by f(x∗g). Note that

we require conservative associated derivative descent sequences, since derivative descent

sequence is not sufficient to guarantee convergence as it may result in oscillatory behavior

for n > 1. The remainder of the proof is similar to the proof of Theorem 4.4.4.

We now proceed to functions that are either C0 continuous or discontinuous, but for

which the function values and associated gradient field are uniquely defined everywhere.

We present classes of C0 continuous or discontinuous functions for which convergence is

guaranteed, since associated derivative descent sequences may not converge to NN-GPP

when all C0 continuous or discontinuous functions are considered, as is evident from the

following example.

Consider the linear programming problem of finding the intersection between two

intersecting planes. Since the associated gradient on each plane is constant, a steepest

descent sequence that terminates at the intersection of the two planes is an example of a

sequence that converges to some point that is not a NN-GPP.

Hence, we now present classes of well-posed discontinuous functions for which conver-

gence is guaranteed.

Definition 4.4.4. We consider the (resp. generalized / strict) gradient-only optimization

problem to be well-posed (resp. convex / unimodal) associated derivative when

1. the associated gradient field is everywhere uniquely defined,

2. the problem is associated derivative coercive as defined in Definition 4.4.1,

3. there exits one and only one (resp. G/S)-NN-GPS (resp. SG−NN / SS−NN) as

defined in Definition 4.3.3, and

4. when every associated derivative descent sequence as defined in Definition 4.3.4 has

at least one converging subsequence to a point in (resp. SG−NN / SS−NN).

We now present a class of well-posed associated derivative coercive functions; this

includes multimodal functions.

Definition 4.4.5. We consider the gradient-only optimization problem to be (resp.

proper / generalized) well-posed associated derivative coercive when

1. the associated gradient field is everywhere uniquely defined,

2. the problem is associated derivative coercive as defined in Definition 4.4.1,
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3. there exits at least one (resp. G/S)-NN-GPS (resp. SG−NN / SS−NN) as defined in

Definition 4.3.3, and

4. when every conservative associated derivative descent sequence as defined in Defi-

nition 4.3.5 has at least one converging subsequence to a point in (resp. SG−NN /

SS−NN).

We note that the classes of functions defined in Definitions 4.4.4 - 4.4.5 still exclude

many problems of practical significance e.g. linear programming problems. Many of these

practically significant problems may be accommodated by altering Definitions 4.4.4 - 4.4.5

to hold only for specific associated derivative descent sequences.

4.5 Practical algorithmic considerations

We now consider some practical algorithmic implications of the foregoing, relying in

particular on the new definitions for an associated derivative critical point presented in

Definitions 4.3.1 and 4.3.2.

We aim to give a fairly general outline for modifying classical gradient based opti-

mization algorithms to become gradient-only optimization algorithms; often this merely

requires subtle modifications to conventional gradient based algorithms. We consider two

classes of optimization algorithms, namely line search descent methods, and approxima-

tion methods; both are prevalent in practical optimization.

4.5.1 Line search descent methods

Line search methods are generally present in first order methods (e.g. steepest descent

and conjugate gradient methods), and second order methods (e.g. in general the modified

Newton methods e.g. Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-

Shanno (BFGS)) [55]. In any event, for a given iteration k, the current position is

given by x{k−1}, k = 1, 2, 3, . . . and search direction u{k} at x{k−1}. In general, line

search methods use function values along the search direction u{k}. In formulating a

rudimentary gradient-only algorithm, the line search simply needs to be modified to only

consider the associated directional derivative along the search direction u{k}. Let us

therefore consider line search bracketing strategies (of which Fibonacci and golden ratio

searches are examples) in the following.

Function-value based bracketing strategies require a minimum of three points to

bracket a minimum of F (λ) = f(x{k−1} + λu{k}) along u{k}. Consequently, three points

from the sequence [w(l− 1), w(l), w(l+ 1)], l = 1, 2, . . . , lmax, are used with w(j) = γj.

The line search iterations l are incremented until either a minimum is located or the

maximum number of line search iterations lmax are reached.
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Once an interval that contains the minimum is located, a minimum of four points

i.e. three intervals are required to refine the minimum. The aim of function-value based

bracketing strategies is to find λ{k} such that for ξ ∈ R and ξ > 0:

F (λ{k} + ξ) = f
(
x{k−1} + (λ{k} + ξ)u{k}

)
> F (λ{k}),

and

F (λ{k} − ξ) = f
(
x{k−1} + (λ{k} − ξ)u{k}

)
> F (λ{k}). (4.7)

Line search bracketing strategies are easily modified to use only associated gradient

information, e.g. see Bazaraa et al. [4], as we will now illustrate.

Modifying bracketing strategies to require only associated gradient information re-

quires a minimum of two points to bracket a sign change in the associated directional

derivative along u{k} from negative to positive. Therefore, two points from the sequence

[w(l− 1), w(l)], l = 1, 2, . . . , lmax, are used with w(j) = γj. The line search iterations l

are incremented until either a sign change in the associated directional derivative F ′A(λ)

is located or the maximum number of line search iterations lmax are reached.

Once an interval is located that contains a sign change, a minimum of three points

i.e. two intervals are required to refine the location of the sign change. The aim of

gradient-only bracketing strategies is to locate λ{k} such that:

F ′A(λ{k} + ξ) =
[
∇A

Tf
(
x{k−1} + u{k}(λ{k} + ξ)

)]
u{k} > 0 (4.8)

and that

F ′A(λ{k} − ξ) =
[
∇A

Tf
(
x{k−1} + u{k}(λ{k} − ξ)

)]
u{k} < 0. (4.9)

Note that we merely locate the point at which the associated directional derivative changes

from negative to positive. The requirement for the associated directional derivative to

equal zero, is therefore relaxed. This is particularly important when considering dis-

continuous functions. However, for smooth functions, the sign change from negative to

positive of course occurs at the point where the associated directional derivative is zero. In

addition, inflection points are handled appropriately, as no sign change in the associated

directional derivative occurs over an inflection point.

Algorithmic implementation

We now consider the algorithmic implementation of the second-order line search BFGS

method for unconstrained minimization. Given an initial point x{0}, the BFGS imple-

mentation proceeds as follows:

1. Initialization: Select real constants ε > 0, ξ > 0 and γ > 0. Select integer

constants kmax and lmax. Set G{0} = I. Set k := 0 and l := 0.
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2. Gradient evaluation: Compute ∇Af(x{k}).

3. Update the search direction u{k+1} = −G{k}∇Af(x{k}).

4. Initiate an inner loop to conduct line search: Find λ{k+1} using the line

search strategy described in Section 4.5.1 by either (4.7) for classical or (4.9) for

gradient only.

5. Test for re-initialization of G{k}: if k mod n = 0 then G{k} = I else

G{k} = G{k−1} +

[
1 +

(y{k})TG{k−1}y{k}

(v{k})Ty{k}

] [
v{k}(v{k})T

(v{k})Ty{k}

]

−

[
v{k}(y{k})TG{k−1} +G{k−1}y{k}(v{k})T

(v{k})Ty{k}

]
,

with v{k} = λ{k}u{k} and y{k} =
(
∇Af(x{k})−∇Af(x{k−1})

)
.

6. Move to the new iterate: Set x{k+1} := x{k} + λ{k+1}u{k+1}.

7. Convergence test: if ‖x{k+1} − x{k}‖ ≤ ε OR k = kmax, stop.

8. Initiate an additional outer loop: Set k := k + 1 and goto Step 2.

4.5.2 Approximation methods

Approximation methods can also be formulated using only associated gradient informa-

tion, e.g. see Groenwold et al. [22].

Let us consider approximation functions f̃ that use the second order Taylor series

expansion of a function f around some current iterate x{k}, given by

f̃ {k}(x) = f(x{k}) +∇A
Tf(x{k})(x− x{k})

+
1

2
(x− x{k})TH{k}(x− x{k}), k = 0, 1, 2, . . . (4.10)

where superscript k represents an iteration number, f̃ the second order Taylor series ap-

proximation to f , ∇A the associated gradient operator and H{k} the Hessian. f(x{k})

and ∇Af(x{k}) respectively represent the function value and associated gradient vector

at the current iterate x{k}. Generally speaking, approximation methods use only func-

tion value information in constructing H{k} (due to the excessive computational effort

associated with evaluating and storing H{k} in the first place).

Consider for example a diagonal spherical quadratic approximation, with H{k} =

c{k}I. The unknown c{k} can be obtained by enforcing f̃ {k}(x{k−1}) = f(x{k−1}), which
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results in

f(x{k−1}) = f(x{k}) +∇A
Tf(x{k})(x{k−1} − x{k})

+
c{k}

2
(x{k−1} − x{k})T(x{k−1} − x{k}), (4.11)

e.g. see Snyman and Hay [56]. The scalar c{k} is then obtained as

c{k} = 2
f(x{k−1})− f(x{k})

(x{k−1} − x{k})T(x{k−1} − x{k})

− 2
∇A

Tf(x{k})(x{k−1} − x{k})
(x{k−1} − x{k})T(x{k−1} − x{k})

. (4.12)

Approximations solely based on gradient information may be constructed by taking

the derivative of (4.10), which gives

∇f̃ {k}(x) = ∇Af(x{k}) +H{k}(x− x{k}), k = 0, 1, 2, . . . (4.13)

Note that at x = x{k}, the associated gradient of the function f(x) exactly match the

gradient of the approximation function f̃(x). Notationally we write the gradient instead

of associated gradient of the approximation function to emphasize the differentiability of

the approximation function.The Hessian H{k} of the approximation f̃ is chosen to match

some additional condition. Let us again consider a spherical quadratic approximation,

with H{k} = c{k}I. Then, c{k} may be obtained by matching the gradient vectors at

x{k−1}. Since only a single free parameter c{k} is available, the n components of the

respective gradient vectors can (for example) be matched in a least square sense.

The least squares error is given by

E{k} = (∇f̃ {k}(x{k−1})−∇Af(x{k−1}))T(∇f̃ {k}(x{k−1})−∇Af(x{k−1})). (4.14)

After substitution of ∇Af̃
{k}(x{k−1}) = ∇Af(x{k}) + c{k}(x{k−1} − x{k}), we have

E{k} =(∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1}))T

(∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1})). (4.15)

Minimization of the least squares error E{k} w.r.t. c{k} then gives

dE{k}

dc{k}
= (∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1}))T(x{k−1} − x{k})

+ (x{k−1} − x{k})T(∇Af(x{k}) + c{k}(x{k−1} − x{k})−∇Af(x{k−1})) = 0, (4.16)
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hence

c{k} =
(x{k−1} − x{k})T(∇Af(x{k−1})−∇Af(x{k}))

(x{k−1} − x{k})T(x{k−1} − x{k})
. (4.17)

If the approximation is required to be strictly convex, we can enforce c{k} = max(β, c{k}),

with β > 0 small and prescribed.

Since the sequential approximate subproblems are smooth, they may be solved ana-

lytically; the minimizer of subproblem k follows from setting (4.13) equal to 0 [52], to

give

x{k∗} = x{k} − ∇Af(x{k})

c{k}
. (4.18)

4.5.3 Conservative approximations

Global convergence of sequential approximation methods may for example be affected

through the notion of conservatism. Classical conservatism is based solely on function val-

ues, for which Svanberg [58] demonstrated that an approximation sequence k = 1, 2, · · ·
will terminate at the global minimizer x∗ ↔ f ∗, if each kth approximation f̃(x{k∗}) is

conservative, i.e. if

f̃(x{k∗}) ≥ f(x{k∗}) ∀ k. (4.19)

Conservatism may also be affected using only associated gradient information. At iterate

x{k∗}, the update is given by x{k∗}−x{k}, and conservatism is affected if the projection of

the associated gradient ∇Af(x{k∗}) of the actual function f(x) onto the update direction

x{k∗} − x{k} is negative. For univariate functions, an update is conservative if it is an

associated derivative descent update step (see Definition 4.3.4). For multivariate functions

an update is conservative if it is a conservative associated derivative descent update step

(see Definition 4.3.5), i.e. if

∇A
Tf(x{k∗})(x{k∗} − x{k}) < 0. (4.20)

Hence, enforcement of the conditions given by Definition 4.3.4 or 4.3.5 suffice to ensure

a sequence of derivative descent sequences for which proofs of convergence are offered in

Section 4.4. To allow for update steps that are computable we employ a trust region

strategy where we limit ‖x∗ − x{k}‖ ≤ γ.

Algorithmic implementation

Given an initial point x{0}, a {gradient-only}/classical conservative algorithm based on

convex separable spherical quadratic approximations (SSA) for unconstrained minimiza-

tion proceeds as follows:
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1. Initialization: Select real constants ε > 0, α > 1 and initial curvature c{0} > 0.

Set k := 0, l := 0.

2. Gradient evaluation: Compute {∇Af(x{k})}/f(x{k}) and ∇Af(x{k}).

3. Approximate optimization: Construct local approximate subproblem

{(4.13)}/(4.10) at x{k}, using {(4.17)}/(4.12) unless inside an inner loop then use

c{k} as calculated in Step 6(b). Solve this subproblem analytically, to arrive at

x{k∗}.

4. Evaluation: Compute {∇Af(x{k∗})}/f(x{k∗}).

5. Test if x{k∗} is acceptable: if {(4.20)}/(4.19) is satisfied, goto Step 7.

6. Initiate an inner loop to effect conservatism:

(a) Set l := l + 1.

(b) Set c{k} := αc{k}.

(c) Goto Step 3.

7. Move to the new iterate: Set x{k+1} := x{k∗}.

8. Convergence test: if ‖x{k+1} − x{k}‖ ≤ ε, OR k = kmax, stop.

9. Initiate an additional outer loop: Set k := k + 1 and goto Step 2.

4.5.4 Termination criteria

Termination criteria also need some consideration: if the function values and associated

gradients of an objective or cost function contain step discontinuities, these quantities

may not provide robust termination information. Accordingly, we only advocate the

robust termination criterion

‖∆x{k+1}‖ = ‖x{k+1} − x{k}‖ < ε, (4.21)

with ε small, positive and prescribed. (A maximum number of iterations may of course

also be prescribed, but this is not robust.)

4.6 Mathematical programming vs. gradient-only

optimization

We now briefly reflect on some differences between gradient-only optimization and classi-

cal ‘mathematical programming’. Consider the step discontinuities depicted in Figure 4.5.
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Figure 4.5: Plots depicting (a)-(d) the function values, and (e)-(h) the corresponding associ-
ated derivatives of four instances of step discontinuous univariate functions.

In classical mathematical programming, the inconsistent step discontinuity depicted

in Figure 4.5(a) result in a local minimum, whereas the function with the consistent step

discontinuity depicted in Figure 4.5(b) is monotonically decreasing. The step discontinu-

ities depicted in Figures 4.5(c)-(d) again result in local minima.

In gradient-only optimization, the inconsistent step discontinuity in Figure 4.5(a) is

associated derivative negative, as is the consistent step discontinuity depicted in Fig-

ure 4.5(b). The step discontinuities depicted in Figures 4.5(c)-(d) represent non-negative

gradient projection points (S-NN-GPPs) as shown in the associated derivative of Fig-

ures 4.5(c)-(d).

Consider the objective functions depicted in Figure 4.6 (b). Clearly, classical opti-

mization approaches may get stuck in local minima caused by inconsistent step discon-

tinuities, whereas gradient-only optimization approaches will not. Hence, gradient-only

optimization allows for a robust strategy to avoid inconsistent step discontinuities when

the minimizer x∗ of an objective function coincides with a strict non-negative gradient

projection point (S-NN-GPP) x∗g as shown in Figure 4.6 (b).

However, gradient-only approaches will ignore a global minimizer x∗ of an objective

function that occurs over an inconsistent step discontinuity as depicted in Figure 4.6 (a)

and converge to a S-NN-GPP x∗g. Hence, whether function-value based or gradient-only

based criteria is to be used will depend on which one best describes or approximates the

solution of an optimization problem.
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Figure 4.6: Plots depicting a step discontinuous objective function with a (a) distinct mini-
mizer x∗ and strict non-negative gradient projection point (S-NN-GPP) x∗g and
(b) coinciding minimizer x∗ and S-NN-GPP x∗g.

4.7 Numerical study

We start our numerical study with a practical shape optimization problem using a remesh-

ing strategy that results in a discontinuous objective function. We then proceed with

a set of discontinuous test functions aimed to “mimic” non-physical discontinuities in

functions. The advantage of introducing a set of test problems is that they are easily

implemented which allows for focussed research on algorithm development and testing,

without requiring access to a variable discretization PDE solver. The disadvantage of

test problems is that only part of the complexity of PDE based objective functions is

captured.

The algorithmic settings used in the numerical study are presented in Table 4.1 for

the algorithms outlined in Sections 4.5.1 and 4.5.3. The choice of γ = 0.1 is deliberate as

we aim to “mimic” a locally exact line search at the cost of computational efficiency and

the results should be interpreted in view of this. The aim is to highlight the differences

between function value and gradient-only based line search strategies. It is evident that

the probability of getting trapped locally using function-value based line search strategies

is reduced when γ is increased or when some interpolation strategy is used in the line

search e.g. Powell’s method [55]. The latter being evident from the approximation results;

we however note that although many non-physical local minima may be avoided using

either of the two strategies, neither is robust, and the algorithms may still get trapped

in non-physical local minima.
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Table 4.1: Algorithmic settings used in the numerical experiments.

ε γ ζ α kmax lmax

10−5 0.1 10−6 2 3000 3000

Table 4.2: Tabulated results obtained for the unconstrained Michell-like structure.

Algorithm f(x{Nk}) ‖∇Af(x{Nk})‖ ‖∆x{Nk}‖ Nk Nl

BFGS(f) 7.293E-01 3.163E-02 0.000E+00 5 137
BFGS(g) 5.213E-01 3.118E-03 0.000E+00 38 816
SSA(f) 5.805E-01 1.719E-02 7.896E-06 23 10
SSA(g) 5.285E-01 3.438E-03 3.249E-06 103 7

4.7.1 Results

4.7.2 Shape optimization

We now consider the isotropic shape optimization problem outlined in Section 4.1.2. In

addition to the algorithm settings given in Table 4.1 we also limit the maximum step

size of each algorithm to 2. The results for the BFGS(f), BFGS(g), SSA(f) and SSA(g)

algorithms are summarized in Table 4.2 with the respective final designs depicted in

Figures 4.7 (a)-(d). Recall that the (f) postfix indicates classical function-value based

algorithms, whereas the (g) postfix indicates gradient-only optimization algorithms. Ta-

ble 4.2 presents the function value f(x{Nk}), associated gradient norm ‖∇Af(x{Nk})‖,
convergence tolerance ‖∆x{Nk}‖, number of outer iterations Nk as well as the number of

inner iterations Nl.

Consider BFGS(f) which converged after 5 outer iterations Nk and, evidently got

trapped in a local minimum due to a numerically induced step discontinuity. The pre-

mature final design is apparent from Figure 4.7 (a).

Similarly, SSA(f) converged after 23 outer iterations Nk also after getting trapped in

a step discontinuous minimum. The behaviour of the cost function around the converged

solution of SSA(f) is depicted in Figure 4.2 of Section 4.1.2. Significant improvements are

evident by comparing Figure 4.7 (c) to Figure 4.7 (a), although noticeable improvements

could still be made. Clearly, conservative approximation methods are able to overcome

some step discontinuities and of course even more so when conservatism is relaxed.

Conversely, BFGS(g) and SSA(g) were able to optimize the Michell structure without

getting trapped in numerically induced step discontinuities. Consider the similar designs

depicted in Figures 4.7 (b) and (d). It is clear that BFGS(g) and SSA(g) improved

notably on the designs obtained with BFGS(f) and SSA(f).

We further present for each algorithm their respective histories w.r.t. function value

f(x{k}), associated gradient norm ‖∇Af(x{k})‖ and convergence tolerance ‖∆x{k}‖. The
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Figure 4.7: Michell-like structure: converged designs obtained with (a) BFGS(f), (b)
BFGS(g), (c) SSA(f), and (d) SSA(g).

5 10 15 20 25 30 35

0.6

0.7

0.8

0.9

k

F
u
n
c
ti
o
n
 v

a
lu

e
 f
(x

{k
} )

 

 

BFGS(f)

BFGS(g)

10 20 30

10
−2

10
−1

k

G
ra

d
ie

n
t 
n
o
rm

 |
|∇

 f
(x

{k
} )
||

 

 

BFGS(f)

BFGS(g)

10 20 30

10
−2

10
−1

10
0

k

||
∆
x
{k
} |
|

 

 

BFGS(f)

BFGS(g)

(a) (b) (c)

Figure 4.8: Michell-like structure: BFGS(f) and BFGS(g) algorithms convergence history plot
of the (a) function value f(x{k}) and (b) associated gradient norm ‖∇Af(x{k})‖
(c) and convergence tolerance ‖∆x{k}‖.

respective histories for the BFGS algorithms are depicted in Figures 4.8 (a)-(c) and for

the SSA algorithms in Figures 4.9 (a)-(c).

Monotonic function value decrease for both BFGS(f) and SSA(f) is clearly depicted in

respectively Figure 4.8(a) and Figure 4.9(a) with the respective associated gradient norms

depicted in Figure 4.8(b) and Figure 4.9(b). The convergence histories are depicted in

Figure 4.8(c) and Figure 4.9(c).

Conversely, non-monotonic function value decrease for both BFGS(g) and SSA(g) is

evident in Figure 4.8(a) and Figure 4.9(a) with the respective associated gradient norms
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Figure 4.9: Michell-like structure: SSA(f) and SSA(g) algorithms convergence history plot of
the (a) function value f(x{k}) and (b) associated gradient norm ‖∇Af(x{k})‖ (c)
and convergence tolerance ‖∆x{k}‖.
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depicted in Figure 4.8(b) and Figure 4.9(b). The convergence histories are depicted in

Figure 4.8(c) and Figure 4.9(c).

4.7.3 Analytical set of test problems

We now present a set of five analytical step discontinuous test problems in order to further

illustrate the advantages of gradient-only optimization.

Rosenbrock step discontinuous function f1 is piecewise defined as follows:

f1(x) =



n∑
i=1

1

1.1

(
100

(
x(2i)− x2(2i− 1)

)2
+ (1− x(2i− 1))2

)
,

if 0 ≤ sin(2‖x‖) < 2

3
.

n∑
i=1

1.1
(

100
(
x(2i)− x2(2i− 1)

)2
+ (1− x(2i− 1))2

)
,

if − 2

3
≤ sin(2‖x‖) < 0.

n∑
i=1

(
100

(
x(2i)− x2(2i− 1)

)2
+ (1− x(2i− 1))2

)
,

if − 2

3
> sin(2‖x‖) ≥ 2

3
.

(4.22)

Quadric step discontinuous function f2 is piecewise defined as follows:

f2(x) =



n∑
i=1

 i∑
j=1

x(j)

2

, if sin(8‖x‖) > 0.5.

n∑
i=1

1.3

 i∑
j=1

x(j)

2

, if sin(8‖x‖) < −0.5.

n∑
i=1

1

1.3

 i∑
j=1

x(j)

2

, if − 0.5 ≤ sin(8‖x‖) ≤ 0.5.

(4.23)

Sum squares step discontinuous function f3 is piecewise defined as follows:

f3(x) =



n∑
i=1

1

1.5
ix2(i), if sin

 1

10

n∑
j=1

x(j)

 > 0.5.

n∑
i=1

1.5ix2(i), if sin

 1

10

n∑
j=1

x(j)

 < −0.5.

n∑
i=1

ix2(i) +
1

n
, if − 0.5 ≤ sin

 1

10

n∑
j=1

x(j)

 ≤ 0.5.

(4.24)
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Zakharov step discontinuous function f4 is piecewise defined as follows:

f4(x) =



1

1.5

n∑
i=1

x2(i)+

(
n∑
i=1

ix2(i)

2

)2

+

(
n∑
i=1

ix2(i)

2

)4

,

if sin(‖x‖) > 0.5.

1.5
n∑
i=1

x2(i)+

(
n∑
i=1

ix2(i)

2

)2

+

(
n∑
i=1

ix2(i)

2

)4

+ 0.5,

if sin(‖x‖) < −0.5.
n∑
i=1

x2(i)+

(
n∑
i=1

ix2(i)

2

)2

+

(
n∑
i=1

ix2(i)

2

)4

+ 1,

if − 0.5 ≤ sin(‖x‖) ≤ 0.5.

(4.25)

Hyper ellipsoid step discontinuous function f5 is piecewise defined as follows:

f5(x) =



n∑
i=1

1

1.1
2i−1x2(i) +

1

n
, if sin

2
n∑
j=1

x(j)

 > 0.5.

n∑
i=1

1.1× 2i−1x2(i) +
1

n
, if sin

2
n∑
j=1

x(j)

 < 0,

n∑
i=1

2i−1x2(i), if 0 ≤ sin

2
n∑
j=1

x(j)

 ≤ 0.5.

(4.26)

This set of step discontinuous test problems “mimics” functions that contain non-

physical discontinuities. Our aim is to overcome the discontinuities to obtain x∗g as

outlined in Definition 4.3.3. The region around the solution of f1, f2 and f4 is continuous

as opposed to the region around the optima of f3 and f5 which are discontinuous. The

solution of f1 is given by x∗(i) = 1, i = 1, 2, . . . , n with f ∗1 = 0 whereas the solution of

f2 and f4 is given by x∗(i) = 0, i = 1, 2, . . . , n with f ∗2 = 0 and f ∗4 = 1 respectively. The

solution of f3 and f5 is at a discontinuity and is therefore defined by a derivative critical set

S. The derivative critical sets for both f3 and f5 are defined by x∗(i) = 0, i = 1, 2, . . . , n.

The possible function values at the optima are f ∗3 = {0, 1} and f ∗5 = {0, 1} and depends

on the direction from which the discontinuity is approached. The gradient field for each

test function is given by the analytical gradient of each test function whereas the gradient

at a discontinuous point is defined by the analytical gradient of the active equation of a

test function at that point.

Results are presented for dimension n = 10 of the test problem set given in Sec-

tion 4.7.3. The starting point of each algorithm for each problem is x(i){0} = 4, i =

1, 2, . . . n.

Numerical results are presented in Table 4.3. Nk and Nl respectively represent the

number of function or gradient evaluations in the outer and inner loops. We have not lim-

ited the step size of the approximation algorithms; this is normally not done in algorithms

based on conservatism (although it may sometimes be beneficial).
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Table 4.3: Results for the step discontinuous test problem set.

Function Solution BFGS(f) BFGS(g) SSA(f) SSA(g)

f1 f ∗ 5.969E+04 1.520E-05 3.130E+00 5.440E-04
‖∇Af

∗‖ 3.718E+04 3.333E-03 9.599E-01 2.546E-02
‖x{Nk∗} − x∗‖ 9.771E+00 9.158E-03 5.248E+00 5.497E-02

Nk 4 269 99 757
Nl 66 3310 133 739

f2 f ∗ 4.612E+03 1.106E-08 1.044E+01 5.017E-07
‖∇A

∗‖ 7.918E+02 2.083E-04 1.021E+01 9.291E-04
‖x{Nk∗} − x∗‖ 1.250E+01 2.282E-04 2.683E+00 1.540E-03

Nk 3 173 27 101
Nl 42 2480 106 90

f3 f ∗ 8.353E+00 3.443E-10 8.371E+00 2.573E-09
‖∇A

∗‖ 7.999E+00 3.949E-05 6.344E+00 1.031E-04
‖x{Nk∗} − x∗‖ 2.861E+00 1.843E-05 2.981E+00 5.043E-05

Nk 5 59 25 30
Nl 228 965 93 18

f4 f ∗ 1.136E+08 1.000E+00 3.418E+01 1.000E+00
‖∇A

∗‖ 4.319E+07 1.240E-03 1.157E+01 1.525E-03
‖x{Nk∗} − x∗‖ 1.204E+01 7.679E-06 5.760E+00 7.624E-04

Nk 3 5 30 130
Nl 47 222 50 235

f5 f ∗ 1.037E+04 7.162E-07 2.055E+02 1.051E-06
‖∇A

∗‖ 3.371E+03 2.196E-03 1.238E+02 2.961E-03
‖x{Nk∗} − x∗‖ 1.204E+01 8.454E-04 7.072E+00 1.024E-03

Nk 3 763 39 232
Nl 52 10597 159 222
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The results presented in Table 4.3 show that gradient-only optimization algorithms

are able to robustly minimize step discontinuous objective functions. In contrast, the

classical function-value based optimization algorithms converged to local minima on each

of the problems. It is clear from Table 4.3 that the function-value based approximation

algorithm SSA(f) is able to overcome many of the non-physical local minima. However,

SSA(f) does not represent a robust strategy as it still converged to a local minimum on

each of the test problems.

4.8 Conclusions

We have studied the unconstrained minimization of functions containing step or jump

discontinuities and for which associated gradients can be computed everywhere. Step or

jump discontinuities arises during the solution of systems of (partial) differential equa-

tions, when variable spatial and temporal discretization techniques produce discontinu-

ities that are artifacts of the approximate numerical strategies used. While discontinu-

ous, we demonstrate that these problems may effectively be minimized if only gradient

information is used. Various algorithmic options were discussed and numerical results

presented for a practical shape optimization problem as well as a set of analytical test

functions. We presented a mathematical framework for gradient-only optimization that

includes convergence proofs for piece-wise smooth step discontinuous functions classes of

functions.

The implications of our approach are that variable discretization strategies, which

are so important in numerical discretization methods, may be used in combination with

efficient local optimization algorithms, notwithstanding the fact that these strategies

themselves introduce step discontinuities.

 
 
 



CHAPTER 5

Adaptive remeshing in shape optimization

As discussed in Chapter 2, Persson and Strang have previously proposed an un-

structured remeshing strategy based on a truss structure analogy, which we in

turn rendered quadratically convergent. Herein, we turn our quadratically con-

vergent mesh generator into an adaptive generator, by allowing for a spatially

varying ideal element length field, computed using the Zienkiewicz-Zhu error in-

dicator. The remeshing strategy makes (semi) analytical sensitivities available for

use in gradient based optimization algorithms. To circumvent difficulties associ-

ated with local minima due to remeshing, we rely on gradient-only optimization

algorithms as presented in Chapters 3 and 4. Numerical results are presented

for an orthotropic cantilever beam, an orthotropic Michell-like structure and a

spanner design problem.

This chapter is arranged as follows. Firstly, we present an overview of adaptive

mesh refinement in shape optimization in Section 5.1, followed by a description of

the gradient-only shape optimization problem in Section 5.2. Thereafter we briefly

outline the gradient-only optimization algorithm used in this study in Section 5.3.

We then discuss the structural analysis, including the a posteriori error analysis

and mesh refinement strategy, in Section 5.4. Our adaptive mesh generation

strategy is presented in Section 5.5, followed in Section 5.6 by a sensitivity analysis.

Section 5.7 contains all the numerical results, which includes a convergence study

and three example problems. Some conclusions are offered in Section 5.8.
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5.1 Introduction

In Chapter 2, we presented a remeshing strategy for finite element based shape optimiza-

tion [66]. Recall that this remeshing strategy is based on a truss structure analogy [42],

and the equilibrium position of the truss system is solved for using Newton’s method. As

described the method uses (semi) analytical sensitivity information, which is computed

efficiently, and which makes the use of highly efficient gradient based optimization al-

gorithms possible. However, the numerically computed objective function of the shape

optimization problem is discontinuous as shown in Chapter 3. These discontinuities are

due to changes in the mesh topology1 that result from the remeshing strategy. Many

of these discontinuities manifest themselves as local minima in the objective function,

causing difficulties for conventional gradient-based optimization algorithms [2].

These difficulties are often accommodated by “smoothing” of the objective function.

Approaches for smoothing the objective function include the construction of inherently

smooth objective functions by avoiding remeshing altogether, and by using mesh move-

ment strategies [9]. Surrogate approaches may also be used to construct smooth rep-

resentations of the discontinuous objective function, and to reduce the magnitudes of

the discontinuities [48]. However, mesh movement strategies are susceptible to element

distortion and inversion, while surrogate methods scale poorly with problem dimension.

Controlling the discretization error is computationally expensive, since multiple finite ele-

ment analyses (FEAs) are usually required for each candidate shape design [16, 23, 30, 48].

Alternatively, the discontinuous objective functions may be optimized directly. Se-

lected approaches include conventional gradient-based optimization algorithms used in

combination with restart strategies, and derivative free optimization methods [7, 11, 14].

These strategies are usually also computationally expensive due to the high number of

required iterations, and/or poor scaling with problem dimensionality.

As a further alternative, we have demonstrated in Chapter 3 [65] that gradient-only

optimization is able to robustly and efficiently optimize the discontinuous objective func-

tions that occur in shape optimization. As pointed out in Chapters 3 and 4, gradient-only

optimization algorithms are conventional gradient based optimization algorithms - which

invariably exploit not only first-order gradient information, but also zeroth order function

value information - modified to no longer use function value information. Hence, the com-

putational efficiency of gradient-only optimization algorithms is sometimes comparable

to “conventional” gradient based optimization algorithms, provided that computationally

efficient sensitivities are available.

In this chapter, we aim to extend the remeshing shape optimization strategy proposed

in Chapter 2, by adding error indicators, with the objective of improving the accuracy of

the computed structural response for a fixed number of degrees of freedom. In addition,

1Mesh topology is understood to refer to the number of nodes and nodal connectivity of a mesh.
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Figure 5.1: FE-error indicator integration into optimization

(semi) analytical sensitivities are made available for use in gradient-only optimization ap-

proaches. We can indeed incorporate error indicators freely, since we are able to robustly

and efficiently optimize the discontinuous objective functions resulting from changes in

the mesh topology.

Shape optimization may be a natural companion to a posteriori adaptive finite ele-

ment mesh refinement, since both techniques share the computational burden of multiple

analyses [16, 23, 30, 48]. A large portion of the computational burden associated with a

posteriori adaptive finite element mesh refinement in once-off analyses is already accom-

modated for during shape optimization. A posteriori error indicators can be incorporated

into finite element based shape optimization environments using two distinctly different

approaches [48], namely whether changes in mesh topologies are allowed between opti-

mization iterations or not.

Approaches that require the mesh topology to remain fixed between optimization

iterations only update the mesh topology after the optimization update, as depicted in

Figure 5.1(a). Hence, a single FEA is required for each candidate shape design if the error

remains sufficiently small after a shape design update. Otherwise, multiple analyses are

required per candidate shape design in order to reduce the error. Since the function values

computed with different mesh topologies differ for the same candidate shape design, the

optimization update may have to be repeated with the updated mesh topology [48]. This

strategy may be efficient when design changes are small and no error control is required

between design updates.

Alternatively, the mesh topology may be updated to control the discretization error

during each optimization update, as depicted in Figure 5.1(b). Multiple finite element

analyses may be required for each candidate shape design to control the discretization
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error, i.e. to limit the size of the jump discontinuities resulting from different mesh topolo-

gies, allowing for the efficient use of classical gradient based algorithms [48].

In this chapter, we implement the latter approach, but relax the strict error control re-

quired when using classical gradient based algorithms, as shown in Figure 5.1(c). We are

able to relax the error analysis and strict discretization error control for each candidate

shape design, since gradient-only optimization allows us to robustly and efficiently opti-

mize the resulting discontinuous cost functions, as we have previously demonstrated [65].

Instead of obtaining a converged error for each candidate shape design, we allow the error

to converge as the shape designs converge [61].

Our proposed strategy requires only a single FEA for each candidate shape design.

This is achieved by mapping the computed error indicator of a given shape geometry to

the geometry obtained after an iteration of our gradient-only optimization algorithm. The

mapping of the error indicator field between two shape geometries is merely a relocation of

the nodal positions of the error indicator mesh from one shape geometry to the next using

radial basis functions, as opposed to a linearization of the error indicator field between

two shape geometries [10]. The advantage of this mapping is that the required number of

computations are fewer than that required to compute a linearized error indicator field,

or the actual error indicator field which would require a full FEA.

5.2 Shape optimization problem

The problem under consideration is the equality constrained shape optimization problem,

for which the Lagrangian is given by

L(x,λ) = F (Ω(x)) +
m∑
j=1

λjgj(x), x ∈ X ⊆ Rn and λ ∈ Rm, (5.1)

where the objective function F (Ω(x)) is a scalar function that depends on the geometry

Ω of the structure, which in turn depends on the control variables x that describe the

geometrical boundary ∂Ω. The equality constraints gj(x) = 0, j = 1, 2, · · · ,m are scalar

functions of the control variables x. For the sake of brevity, the cost function and the

constraints will respectively be denoted by F(x) and g(x); this notation will however

imply dependency on Ω(x). We choose to represent the geometrical boundary ∂Ω by

a simple piecewise linear interpolation between the control variables. However, Bezier

curves or B-splines, etc. may of course also be used.

Normally, the saddle point of (5.1) is solved for using the dual formulation

max
λ
{min

x
L(x,λ)}. (5.2)
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We however solve (5.1) using the gradient-only dual formulation [65]

g
max
λ
{

g

min
x
L(x,λ)}, (5.3)

with
g

max
λ

defined as follow: find λ, such that

∇T
λL(x,λ+ γvv)v ≤ 0, ∀ v ∈ Rm. (5.4)

Similarly,
g

min
x

is defined as follows: find x, such that

∇T
xL(x+ δuu,λ)u ≥ 0,∀ u ∈ Rn such that x+ δuu ∈ X, (5.5)

with X the convex set of all possible solutions, ∇x the partial derivatives w.r.t. x, ∇λ
the partial derivatives w.r.t. λ and δu and γv real positive numbers. Note that we have

only exploited gradient information of L(x,λ).

5.3 Optimization algorithm

We will use the gradient-only sequential spherical approximation (SSA) algorithm pre-

sented by Wilke et. al. [65] to optimize the discontinuous shape optimization problem.

For the sake of completeness and brevity, we merely outline the algorithm here (for details

on the algorithm, and a motivation for using gradient-only optimization methods in the

first place, the reader is referred to [65]):

1. Initialization: Select real constants ε > 0, α > 1, initial curvature c{0} > 0 and

initial point [x{0} λ{0}]. Set k := 1, s := 0.

2. Gradient evaluation: Compute ∇T
xL([x{k} λ{k}]).

3. Approximate optimization: Construct the local gradient-only approximate sub-

problem

∇f̃ {k}(x) = ∇T
xL([x{k} λ{k}]) +H{k}(x− x{k}) (5.6)

at x{k}, using H{k} = c{k}I where I is the identity matrix and

c{k} =
(x{k−1} − x{k})T(∇T

xL([x{k−1} λ{k}])−∇T
xL([x{k} λ{k}]))

(x{k−1} − x{k})T(x{k−1} − x{k})
. (5.7)

(In an inner loop, use c{k} as calculated in Step 6(b)). Solve this subproblem

analytically, to arrive at x{k∗}.

4. Evaluation: Compute ∇T
xL([x{k∗} λ{k}]).
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5. Test if x{k∗} is acceptable: if

∇T
xL([x{k∗} λ{k}])(x{k∗} − x{k}) ≤∇Tf̃(x{k∗})(x{k∗} − x{k}) = 0 (5.8)

goto Step 7.

6. Initiate an inner loop to effect conservatism:

(a) Set s := s+ 1.

(b) Set c{k} := αc{k}.

(c) Goto Step 3.

7. Move to the new iterate: Set x{k+1} := x{k∗}.

8. Update multiplier: Set λ{k+1} := λ{k} + λs
{k+1}, with λs

{k+1} the multiplier

update step.

9. Convergence test: if ‖[∆x{k} ∆λ{k}]‖ < ε , OR ‖∆x{i}‖ < ε, ∀ i = {k − 4, k −
3, . . . , k} , OR k = kmax, stop2.

10. Initiate an additional outer loop: Set k := k + 1 and goto Step 2.

5.4 Structural analysis

In shape optimization, the cost function F(x) = F
(
u(X (x))

)
is an explicit function

of the nodal displacements u, which in turn is a function of the discretized geometrical

domain X . The discretized geometrical domain X is described by the control variables x

which represent the geometrical boundary ∂Ω. The nodal displacements u are obtained

by solving the approximate finite element equilibrium equations for linear elasticity

Ku = f , (5.9)

where K represents the assembled structural stiffness matrix and f the consistent struc-

tural nodal loads, from which the unknown displacements u can be computed. From u,

we can then locally compute elemental stress fields

σ̂e = CBeue, (5.10)

with constitutive relationship C, element kinematic relation Be and element displace-

ment ue. By combining the local stress fields σ̂e of adjacent elements, we obtain a global

2The notation used is ∆φ{k} = φ{k+1} − φ{k}.
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discontinuous stress field σ̂ over the entire structure, since inter-elemental stress con-

tinuity is not enforced. As the true stress field is continuous, error indicators may be

recovered from the discontinuous stress field [70].

As said, shape optimization and a posteriori adaptive finite element refinement may

naturally compliment each other, since both imply multiple FEAs. Instead of only con-

ducting a FEA for each candidate shape design, we also recover error indicators from

these FEAs. The recovered error from a given shape design is then used to discretize an

updated shape design, causing the refinement strategy to converge as the shape design

converges.

5.4.1 Recovery-based global error indicator

Although many recovery-based error indicators exist which range from so-called global

to local indicators [69], we will herein opt for only the well-known Zienkiewicz-Zhu (ZZ)

global error indicator [71]. We do so merely to avoid distraction - other indicators may

equally well be used. The ZZ error indicator approximates the exact error in the energy

norm by considering the difference in the energy norm of the smooth stress field σ̆ and

the discrete stress field σ̂ as follows:

‖e‖2 =

∫
Ω

(σ̆ − σ̂)TC−1(σ̆ − σ̂)dΩ. (5.11)

The smooth stress field σ̆ is obtained from a least squares fit through the discrete nodal

stress values. This requires a system of the size of the number of nodes to be solved. For

the ith element the square of the energy norm of the finite element solution ‖υ̂i‖2 is given

by

‖υ̂i‖2 = uTi Kiui. (5.12)

The corrected energy norm ||v‖, which is used to approximate the exact energy norm, is

given by

‖υ‖2 = ‖υ̂‖2 + ‖e‖2, (5.13)

where ‖e‖2 and ‖υ̂‖2 are computed by summing the elemental contributions, given by
r∑
i

‖ei‖2 and
r∑
i

‖υ̂i‖2, where r is the number of elements. Using the corrected energy

norm ‖v‖, the average element error ē is computed by taking a fraction of the root mean

square of the corrected energy norm, defined as

ē = ι
‖υ‖√
r
, (5.14)

where ι represents the relative error tolerance. We choose to keep the number of nodes

constant in our remeshing strategy, and as a result, we select ι = 1. For our numerical
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studies, we compute the global error η as

η =

√
‖e‖2

‖v‖2
. (5.15)

5.4.2 Refinement procedure

Using the computed error, we seek a refinement strategy to indicate spatial refinement

(respectively de-refinement) of the mesh. For this, we modify the refinement procedure

of Zienkiewicz and Zhu [71] to suit our r-refinement strategy: for the ith element at the

kth iteration, we compute the refinement ratio ξ
{k}
i as

ξ
{k}
i =

‖e{k}i ‖
ē{k}

. (5.16)

In turn, we use the refinement ratio ξ
{k}
i to compute the ideal element length3

ĥ
{k}
i =

h
{k−1}
i(
ξ
{k}
i

)1/p
, (5.17)

with h{0} chosen as the ideal element length of a uniform mesh for the first iteration.

This also defines the initial number of nodes for our r-refinement strategy. Here, p is

usually selected as the polynomial order of the shape functions away from singularities,

and adjusted near singularities [71]. Our mesh generator naturally generates linear strain

triangle (LST) elements, for which we found experimentally that p < 4 may result in

oscillatory behavior. Hence, we have somewhat arbitrarily selected p = 5 herein [61]. We

then smooth the discrete elemental scalar field ĥ{k} using nodal averaging to obtain a

piece-wise continuous ideal element field h̃{k} described by a finite element interpolation.

Finally, we normalize the continuous ideal element field h̃{k} to obtain

h̆{k} =
h̃{k}

h̄{k}
κh{0}, (5.18)

with h̄{k} the average continuous ideal element length h̃{k} and κ a scaling factor. We

select κ as constant, but allowing κ to vary (as some function of the initial area, current

area, number of initial boundary nodes and current boundary) may well be beneficial.

Finally, we limit the minimum ideal element length

h̆{k} = hmin ∀ h̆{k} < hmin. (5.19)

3Ideal element length refers to the “unloaded” truss lengths of the truss members in our truss structure
analogous mesh generator [66] - also see Section 5.5.

 
 
 



CHAPTER 5. ADAPTIVE REMESHING IN SHAPE OPTIMIZATION 99

5.5 Adaptive mesh generator

Our mesh generator solves for the equilibrium of a truss structure [42], which doubles as

the finite element mesh, using the ideal element length field h{k}, k = 1, 2, 3, . . . as the

unloaded truss lengths, as opposed to directly optimizing the mesh according to some

optimality criterion [37, 60]. It has been demonstrated [42, 65, 66] that this approach

generates “good” meshes.

We start with an initial uniform mesh X {0} at k = 0, using a uniform ideal element

length field h{0} [66]. After each analysis we compute the ideal element length field h̆{k}

using the refinement strategy described in Section 5.4.2. Recall that we then merely

relocate the nodal positions of the computed ideal element length field to the new can-

didate shape design obtained from the optimization step, to avoid multiple analyses per

candidate shape design, as illustrated in Figure 5.1(c). (We will describe the details of

the mapping of the error field in Section 5.5.2.)

As with our previous mesh generator [66], we partition the mesh X {k} along the

interior nodes X {k}Ω and boundary nodes X {k}∂Ω, which allows independent treatment

of the boundary nodes ∂Ω{k} and interior nodes Ω{k}. Superscript k denotes the iteration

counter, which we will omit for the sake of brevity, unless we explicitly want to highlight

the dependency on k.

The boundary nodes X ∂Ω are seeded according to the ideal element length field h̆{k}

along the geometrical boundary ∂Ω, with nodes explicitly placed on the control variable

locations x. This ensures accurate representation of the defined geometrical domain Ω.

Therefore x ⊂ X ∂Ω, with ∂Ω described by a piece-wise linear interpolation of x. The

boundary nodes X ∂Ω remain fixed during the current iteration of the mesh generation

process. We therefore only solve for XΩ in finding the equilibrium of the truss structure

F Ω

(
z(XΩ)

)
= 0. (5.20)

The equilibrium of the truss structure is related to the interior nodes XΩ via the force

function

z(XΩ) = z
(
l(XΩ), l0(h̆{k},XΩ)

)
= K(l0 − l), (5.21)

which depends on the constant spring stiffness K, the length of the truss members

l(XΩ) and the undeformed truss lengths l0

(
h̆{k},XΩ

)
. The undeformed truss lengths

l0

(
h̆{k},XΩ

)
depend on the ideal element length field h̆{k}, as well as the interior nodes

XΩ, since the ideal element length field h̆{k} is evaluated at the midpoint of each truss

member.

However, the ideal element length field h̆{k}(e) is taken as a constant background field

[10, 27, 50, 61] during the mesh generation process, i.e. we do not recompute the error field

or linearize the error field when the interior nodes XΩ of the mesh vary. Consequently, the
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dependency of the ideal element length field h̆{k}(e) on the spatially varying a posteriori

error field e is constant and the sensitivity zero. Lastly, the displacement field u(XΩ)

depends on the interior nodes XΩ.

The reduced truss system in Eq. (5.20) is solved directly via the quadratically con-

vergent Newton’s method, which is given by

∂F Ω

∂XΩ
∆XΩ = −F Ω. (5.22)

The update of nodal coordinates is given by

XΩ
n+1 = XΩ

n + ∆XΩ, (5.23)

and for a constant ideal element length background field the consistent tangent ∂FΩ

∂XΩ is

given by
∂F Ω

∂XΩ
=
∂F Ω

∂l

∂l

∂XΩ
+

∂F Ω

∂l0
{k}

∂l0
{k}

∂XΩ
. (5.24)

We obtain quadratic convergence using Newton’s method.

5.5.1 Boundary nodes

A first approach to accommodate a spatially varying ideal element length field may be

to merely change the ideal element length and boundary spacing, while the number of

boundary nodes and interior nodes follow from our previous uniform remeshing strat-

egy [66]. However, limited improvements are achieved using this naive strategy.

In this study we let the number of boundary nodes follow from the spatially varying

ideal element length field by first placing nodes along the boundary X ∂Ω. Since we aim to

keep the number of nodes constant, the remaining nodes are seeded in the interior domain

XΩ. Although this strategy may seem simplistic, we found other strategies to determine

the number of boundary nodes, like using ratios of the circumference to interior area

together with the error along the circumference to the interior, susceptible to oscillations.

As stated before the boundary nodes remain fixed once they have been placed along

the boundary, which reduces the size of the Newton system when solving for the truss

equilibrium. Consequently, an increase in the number of boundary nodes X ∂Ω results in

a decrease in the interior nodes XΩ and vice versa, as we want to keep the total number

of nodes fixed. To reduce the computational effort, we use the nodes that describe the

ideal element length field h̆{k} as an initial guess for our interior nodes. To keep the total

number of nodes constant, we need to either remove or add nodes to those nodes used

in representing h̆{k}. We do so by ranking the nodes and elements according to their

error densities. We remove nodes by starting with nodes with smaller error densities, and

add nodes by introducing nodes at the centroids of elements with higher element error
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densities.

5.5.2 Mapping the error field between candidate shape designs

The ideal element length field h̆{k} for the kth iteration is obtained by mapping the

computed ideal element length field after the analysis of the (k − 1)th iteration to the

candidate shape design for the kth iteration. We achieve this by merely mapping the

nodal positions, without requiring connectivity information, using radial basis functions

(RBF). We therefore have total flexibility on whether we want to use or discard the nodal

connectivity of the previous geometry. In this study we pay the computational penalty

of re-triangulation at every iteration to keep our strategy unsophisticated, while allowing

for large shape changes.

The details of the mapping strategy using radial basis functions are outlined in the

Appendix.

5.6 Sensitivity analysis

Recall that the cost function F(u(X (x))) is an explicit function of the nodal displace-

ments. Specifically, in all the examples herein, the cost function F is the nodal displace-

ment at the point where a point load F is applied, expressed as

F(u(x)) = uF(x). (5.25)

The displacement field u(x) depends on the discretized geometrical domain X , which is

obtained by solving for the nodal positions of a truss structure at equilibrium. The ideal

element lengths h̆{k} of the truss structure are obtained from the error analysis discussed

in Section 5.4. Then, the sensitivity of the displacement uF w.r.t. the control variables

x is obtained by computing
duF

dx
=
duF

dX
dX
dx

. (5.26)

The computation of duF

dX is obtained by direct differentiation of the finite element equilib-

rium equations Ku = f , given by

dK

dX u+K
du

dX =
df

dX . (5.27)

For the fixed applied external loads f we will restrict ourselves to in this study, df
dX = 0

and (5.27) reduces to

K
du

dX = −dK
dX u. (5.28)
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We compute dK
dX by direct differentiation of the analytical stiffness matrices for the linear

strain triangular elements [57, 66], which allows to solve for du
dX , to then obtain duF

dX .

The sensitivities of the nodal coordinates X w.r.t. the control variables x, dX
dx

, are

obtained by differentiating the truss structure equilibrium equations from the mesh gen-

eration in Section 5.5. Recall that we partitioned X along the interior nodes XΩ and

boundary nodes X ∂Ω. Also recollect that the boundary nodes X ∂Ω are seeded according

to the ideal element length field h̆{k} along the geometrical boundary ∂Ω, and that they

remain fixed during the mesh generation process. Hence, the equilibrium of the truss

structure F Ω only depends implicitly on the interior nodes XΩ.

Consider the dependency of the equilibrium equations F Ω on x:

F Ω

(
l(XΩ(x),X ∂Ω(h̆{k}(x))), l0(h̆{k}(x),XΩ(x),X ∂Ω(x))

)
= 0. (5.29)

The equilibrium equations F Ω depend on the deformed lengths l(XΩ,X ∂Ω) and unde-

formed lengths l0(h̆{k}(x),XΩ(x),X ∂Ω(x)) of the truss members. The truss member

lengths l(XΩ,X ∂Ω) in turn depend on the interior nodes XΩ and boundary nodes X ∂Ω.

The undeformed lengths l0(h̆{k},X ∂Ω) are evaluated at the midpoints of the truss mem-

bers, which depend on the interior nodes XΩ and the boundary nodes X ∂Ω. In addition,

the ideal element length field h̆{k}(x) changes as a function of x due to the RBF mapping.

By taking the derivative of (5.29) w.r.t. to the control variables x we obtain

dF Ω

dx
=
∂F Ω

∂l

∂l

∂XΩ

∂XΩ

∂x
+
∂F Ω

∂l

∂l

∂X ∂Ω

∂X ∂Ω

∂h̆{k}
∂h̆{k}

∂x

+
∂F Ω

∂l0

∂l0

∂h̆{k}
∂h̆{k}

∂x
+
∂F Ω

∂l0

∂l0

∂XΩ

∂XΩ

∂x
+
∂F Ω

∂l0

∂l0

∂X ∂Ω

∂X ∂Ω

∂x
= 0, (5.30)

to give

(
∂F Ω

∂l

∂l

∂XΩ
+
∂F Ω

∂l0

∂l0

∂XΩ

)
∂XΩ

∂x
= −

(
∂F Ω

∂l

∂l

∂X ∂Ω

∂X ∂Ω

∂h̆{k}
+
∂F Ω

∂l0

∂l0

∂h̆{k}

)
∂h̆{k}

∂x

− ∂F Ω

∂l0

∂l0

∂X ∂Ω

∂X ∂Ω

∂x
. (5.31)

From (5.31) we may solve for ∂XΩ

∂x
, when

(
∂FΩ

∂l
∂l
∂XΩ + ∂FΩ

∂l0
∂l0
∂XΩ

)
and the right-hand side of

(5.31) are known. We compute the right-hand side with a finite difference perturbation,

and recall that
(
∂FΩ

∂l
∂l
∂XΩ + ∂FΩ

∂l0
∂l0
∂XΩ

)
is available from the Newton update, as noted in

Section 5.5. Once we have solved for ∂XΩ

∂x
, we obtain ∂X

∂x
as the union between ∂X∂Ω

∂x
and

∂XΩ

∂x
, where ∂X∂Ω

∂x
is obtained numerically.
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5.7 Numerical study

In our numerical studies, we will consider two remeshing strategies. Firstly, we use

a remeshing strategy which we will refer to as uniform, which uses an ideal element

length field that is spatially uniform, and also kept constant as the optimization iterations

progress [66]. Secondly, we will use the newly developed remeshing strategy presented

herein, which is characterized by a spatially varying ideal element field that changes as

the optimization iterations progress, to which we will refer as adaptive.

The parameters used in the remeshing strategies, the finite element analyses and the

optimization algorithm are as follows. For the adaptive remeshing strategy we set the

mesh refinement parameter p in (5.17) to 5, while the minimum element length hmin is

selected as 0.1h{0}, unless otherwise stated. The material considered is an orthotropic

Boron-Epoxy in a tape lay-out, i.e. the fibers are all aligned in a single direction, aligned

with the global x-axis. In other words, we do not determine an optimal fiber orientation.

We assume plane stress conditions and use classical laminate theory (CLT). The material

properties used are a longitudinal Young’s modulus of E1 = 228 GPa, a transverse Young’s

modulus of E2 = 145 GPa, and a shear modulus of G12 = 48 GPa. The last independent

parameter in CLT is Poisson ratio ν12 = 0.23, since ν21 follows from the symmetry relation

E1ν21 = E2ν12.

The selected parameters for the gradient-only conservative sequential spherical ap-

proximation algorithm [65] are the curvature factor α = 2, initial curvature c{0} = 1,

convergence tolerance ε = 10−4, and a maximum number of outer iterations kmax = 300.

The Lagrange multiplier update step is selected as λs
{k+1} = ∇T

λL([x{k+1} λ{k}]). We

also limit the maximum step size to 1, which was experimentally found to result in good

convergence rates, but this value will in general of course strongly depend on scaling of

the problem. Before we proceed, we first validate the (semi) analytical sensitivities and

study the convergence rates of the meshing strategies.

5.7.1 Gradient sensitivity comparison

We compare our analytical sensitivities to numerical sensitivities obtained with the for-

ward finite difference method. We compute the sensitivity of the displacement at the

point of load application (uF) w.r.t. the indicated control variables of the bow-tie struc-

ture [66] depicted in Figure 5.2. The control variables are linearly spaced along the top

and bottom with the relevant dimensions as indicated in Figure 5.2.

Calculation of the finite difference values is done without Delaunay triangulation steps,

to avoid the introduction of discontinuities (due to the addition or removal of nodes) in

the finite difference sensitivity analysis. In Table 5.1, we tabulate the sensitivities w.r.t.

the control variables for a spatially varying ideal element length field, which confirms that

our computations are correct and accurate. The spatially varying ideal element length
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Figure 5.2: Bow-tie structure used to validate the (semi) analytical sensitivities and study the
convergence behavior of the remeshing strategies.

Table 5.1: Analytical and forward finite difference sensitivities calculated for the bow-tie struc-
ture depicted in Figure 5.2.

Point Analytical Numerical Point Analytical Numerical
(×10−3) (×10−3) (×10−3) (×10−3)

1 -0.043653 -0.043653 5 0.044330 0.044330
2 -1.044313 -1.044312 6 1.073200 1.073201
3 -0.045178 -0.045178 7 0.028182 0.028182
4 -0.211877 -0.211875 8 0.136393 0.136392
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Figure 5.3: (a) System degrees of freedom (SDOF) and (b) global error η{k} for the mesh
convergence study on the bow-tie structure for initial uniform element lengths
h0 = {1.5, 1, 0.8}.

field was obtained after 10 remeshing update iterations using an initial undeformed truss

length of h0 = 2. The numerical gradients are computed with a perturbation of 10−6.

5.7.2 Convergence rates

Again consider the bow-tie structure depicted in Figure 5.2. The structure is meshed

using three initial undeformed truss lengths h0 = {1.5, 1, 0.8}. The convergence criterion

for the error indicator is given by

η{k} − η{k−1}

η{k}
< 10−6. (5.32)

Results are presented in Figure 5.3, with the system degrees of freedom (SDOF) depicted

in Figure 5.3(a) and the global error indicator depicted in Figure 5.3(b). From Fig-

ure 5.3(a) it is clear that the system degrees of freedom remain practically constant as the

iterations progress. Figure 5.3(b) reveals that the final global error η{max(k)} is lower than

the global error of the initial uniform mesh η{1}, for each of the three initial undeformed

truss length choices. We also observe that the required number of refinement iterations

reduces as the system degrees of freedom increase. Note that the global errors η{k} for

the various undeformed truss lengths cannot be compared with each other, since each

uses a different σ̆ field. For each of the initial uniform element lengths h0 = {1.5, 1, 0.8},
we depict the initial meshes in Figure 5.4(a)-(c), the final meshes in Figure 5.4(d)-(f) and

the ideal element length fields in Figure 5.4(g)-(i).

We depict the convergence of the displacements of the bow-tie structure in Fig-

ure 5.5. To do so, we approximate the analytical solution u∗F using Richardson’s ex-

trapolation method [29], since an analytical solution is not available for this problem.

For Richardson’s extrapolation method we have used the initial uniform element lengths

h0 = {1.6, 0.8, 0.4} to compute uniform meshes, with h0 representative of the average
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using the uniform and adaptive mesh generators.

 
 
 



CHAPTER 5. ADAPTIVE REMESHING IN SHAPE OPTIMIZATION 107

F, u F

30

x

Figure 5.6: Initial geometry of the cantilever beam using 13 control points x.

element length. To approximate the asymptotic convergence rate, we fit a straight line

in a least squares sense through the four data points with the highest system degrees of

freedom. As shown, the error of the adaptive mesh is less than that of the uniform mesh

for a given number of degrees of freedom, while the convergence rate is superior.

5.7.3 Cantilever beam

Next, we progress to the equality constrained design of the orthotropic cantilever beam

depicted in Figure 5.6. The structure has a predefined length of 30 mm and a thickness

of 1 mm. A point load F of 10 N acts at the bottom right corner of the structure. The

boundary of the structure is controlled by the 13 control points or design variables x

that can only move vertically. The boundary is linearly interpolated between the control

points and the control points are linearly spaced along the top of the cantilever beam.

We minimize the displacement uF at the point of load application, subject to an equality

constraint on volume, expressed as V (x) = V0, with V0 = 150 mm3, the prescribed volume

of the structure.

Convergence histories for the value of the Lagrangian L(x{k}, λ{k}), the constraint

function |g(x{k})|, the Lagrange multiplier λ{k} and the system degrees of freedom are

depicted in Figure 5.7(a)-(d) for the uniform and adaptive mesh generators. (We have

used an initial ideal element length of 1.05 for the uniform mesh generator and 1 for the

adaptive mesh generator to get a comparable number of system degrees of freedom for

the converged shapes.)

The required number of iterations and final designs are comparable. The system

degrees of freedom of the uniform remeshing strategy changes as the geometry varies,

since the defined geometrical domain changes while the uniform mesh generator maintains

a constant element length. The number of system degrees of freedom of our adaptive

remeshing strategy is roughly constant; the small variations present being the result

of nodes being eliminated during convergence of the mesh generator. The interesting

aspects of this example are depicted in Figure 5.8. The initial and final designs are

respectively depicted in Figure 5.8(a)-(b), and Figure 5.8(c)-(d), with the final ideal

element length fields depicted in Figure 5.8(e)-(f), for the uniform and adaptive mesh
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Figure 5.7: The cantilever beam convergence histories of (a) the Lagrangian L(x{k}, λ{k}), (b)
absolute value of the constraint function g(x{k}), (c) Lagrange multiplier λ{k},
and (d) system degrees of freedom (SDOF) for a uniform and adapted mesh using
initial ideal element lengths h0 of respectively 1.05 and 1.

generators respectively - note the superiority of the latter mesh. The converged designs

depicted in Figure 5.8(c)-(d) reflect the parabolic shape known as the analytical solution

of the equivalent beam problem.

5.7.4 Michell structure

Next, we consider the equality constrained design of the orthotropic Michell-like structure

depicted in Figure 5.9. The structure also has a predefined length of 30 mm and thickness

of 1 mm, and a point load F of 10 N acts at the center bottom of the structure. The

boundary of the structure is controlled by the 16 control points x, which can only move

vertically. Again the boundary is linearly interpolated between the control points and

the control points are linearly spaced along the top and the bottom of the structure. We

minimize the displacement uF at the point of load application, subject to an equality

constraint on volume, expressed as V (x) = V0, with V0 = 75 mm3, the prescribed volume

of the structure.

Convergence histories for the value of the Lagrangian L(x{k}, λ{k}), the constraint

function |g(x{k})|, the Lagrange multiplier λ{k} and the system degrees of freedom are

depicted in Figure 5.10(a)-(d) for the uniform and adaptive mesh generators. We have

used an initial ideal element length of 0.7 for the uniform mesh generator and 0.8 for the
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Figure 5.10: The Michell structure convergence histories of (a) the Lagrangian L(x{k}, λ{k}),
(b) absolute value of the constraint function g(x{k}), (c) Lagrange multiplier
λ{k}, and (d) system degrees of freedom (SDOF) for a uniform and adaptive
mesh using initial ideal element lengths h0 of respectively 0.7 and 0.8.

adaptive mesh generator.

The required number of iterations for the uniform mesh generator is roughly half that

required for the adaptive mesh generator, but the latter mesh is superior. Again the

system degrees of freedom of the uniform remeshing strategy changes as the geometry

varies, while the initial and final system degrees of freedom of the adaptive remeshing

strategy remains almost constant.

The initial and final designs are respectively depicted in Figure 5.11(a)-(b) and Fig-

ure 5.11(c)-(d), with the final ideal element length fields depicted in Figure 5.11(e)-(f),

for the uniform and adaptive mesh generators. While different, the converged designs

depicted in Figure 5.11(e)-(f) are similar and compare well with results obtained during

previous studies [20, 66].

5.7.5 Spanner design

Finally, we consider the shape design of the full spanner problem presented in Figure 5.12,

which is subjected to multiple load cases. The objective is to minimize 1
2
(uFA − uFB),

with uFA and uFB the vertical displacements at the point of load application, for the two

independent load cases FA and FB respectively. The spanner is subjected to an equality

constraint on volume, expressed as V (x) = V0, with V0 = 70 mm3, the prescribed volume
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Figure 5.11: Initial (a)-(b) and final (c)-(d) designs of the Michell structure with the associated
final ideal element length field (e)-(f), for a uniform and adapted mesh using
initial ideal element lengths h0 of respectively 0.7 and 0.8.
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of the structure.

The upper and lower boundaries of the geometry are described using 11 control points

each. In addition, the control points are linearly spaced along the length of the spanner.

The structure has a predefined length of 24 mm and thickness of 1 mm. The magnitude

of the point loads FA and FB is 1 N each. Symmetry is not enforced; deviations from

symmetry may be used to qualitatively evaluate the obtained designs since this problem

should result in a symmetric geometry. The ideal element length field h̆{k} for the mesh is

obtained by nodal averaging of the ideal element length fields obtained from the different

load cases.

Convergence histories for the value of the Lagrangian L(x{k}, λ{k}), the constraint

function |g(x{k})|, the Lagrange multiplier λ{k} and the system degrees of freedom are

depicted in Figure 5.13(a)-(d) for the uniform and adaptive mesh generators. This time,

the required number of iterations for the uniform mesh generator are slightly more than

that required for the adaptive mesh generator. Again the system degrees of freedom

of the uniform remeshing strategy changes as the geometry varies, while the system

degrees of freedom of our adaptive remeshing strategy remains roughly constant after

an initial unstable 80 iterations. The results depicted in Figure 5.14 compare well with

results obtained in previous studies [25, 63]. Due to changes in the SDOF, as depicted

in Figure 5.13(d), some oscillatory behavior is observed in the Lagrangian L(x{k}, λ{k})

within the first 70 iterations, see Figure 5.13(a).

5.8 Conclusions

In this study we successfully extended our uniform remeshing strategy [66] to incorporate

the well known Zienkiewicz and Zhu global error indicator and refinement strategy. As

demonstrated on a bow-tie structure we significantly improve on the quality of the results

obtained with uniform meshes.

In addition, we showed how gradient-only optimization allows us to efficiently incor-

porate error indicators and refinement strategies, since we only require a single finite

element analysis followed by a posteriori error computation for each candidate shape

design, without sacrificing optimization robustness. We demonstrated our strategy on

three equality constrained example problems.
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Figure 5.13: The full spanner convergence histories of (a) the Lagrangian L(x{k}, λ{k}), (b)
absolute value of the constraint function g(x{k}), (c) Lagrange multiplier λ{k},
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using initial ideal element lengths h0 of respectively 0.7 and 1.
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CHAPTER 6

Conclusion and recommendations

This chapter summarises the findings of this study and makes recommendations

for further research and investigation.

We have applied gradient based optimization techniques to shape design problems.

In doing so, we have created a novel unstructured remeshing shape optimization environ-

ment, based on a truss structure analogy. The remeshing environment is quadratically

convergent in solving for the equilibrium positions of the truss structure.

As may be expected, the objective function value in general decreases as the number

of control points are increased. This is a direct result of the number of possible design

configurations increasing. However, due to unstructured remeshing, non-physical step

or jump discontinuities may be introduced into the optimization problem. These dis-

continuities arise when (partial) differential equations are discretized using non-constant

methods: the functions become discontinuous but gradient information is computable

everywhere since every point has an associated discretization for which (semi-) analytical

sensitivities can be calculated. Although the magnitude of these discontinuities decreases

with mesh refinement, their number increases. For the gradient based algorithms, the

severity of the anomaly is alleviated as the mesh is refined. Polynomial refinement e.g.

linear strain triangles, further decreases the magnitude of the discontinuities.

Although these local minima may be overcome efficiently and effectively using a simple

multi-start strategy, the computational efficiency and robustness of multi-start strategies

may be improved on using gradient-only optimization strategies.

To illustrate, we proposed gradient-only implementations of the BFGS algorithm and

a SAO algorithm for discontinuous problems, and applied these algorithms to a selection

of problems of practical interest, both unconstrained and constrained. These are the

design of a heat exchanger fin, the shape design of an orthotropic Michell-like structure,
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and a material identification study using a modified Voce law, all discretized using non-

constant methods. In each instance, the gradient-only based algorithms found superior

solutions to the classical methods that use both function and gradient information.

As opposed to surrogate methods based on design of experiment (DOE) techniques,

which scale poorly, gradient-only algorithms based on classical optimization algorithms

that scale well, may also be expected to scale well (provided the gradient computations

scale well); this may well become an important application of gradient-only methods.

Another envisaged application of gradient-only algorithms are any problem for which

gradient computations are inexpensive.

In addition, we successfully extended the uniform remeshing strategy presented in

Chapter 2 to incorporate the well known Zienkiewicz and Zhu global error indicator and

refinement strategy. It significantly improves on the quality of the results obtained with

uniform meshes. We showed how gradient-only optimization allows us to incorporate

error indicators and refinement strategies efficiently, since we only require a single finite

element analysis followed by a posteriori error computation for each candidate shape

design, without sacrificing optimization robustness.

The implications of our approach are that variable discretization strategies, which

are so important in numerical discretization methods, may be used in combination with

efficient local optimization algorithms, notwithstanding the fact that these strategies

themselves introduce step discontinuities.

Among others, future endeavors should in our opinion concentrate on the inclusion

of constraint functions, in particular step discontinuous constraint functions e.g. stress

constraints, as well as the reduction of the required computational effort.

An investigation of whether linearizing the error indicator field improves the conver-

gence of the gradient-only optimization strategies should in our opinion also be conducted.
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Appendix

Gradient-only optimization requires the computation of accurate gradients. Various ap-

proaches are at our disposal to do this, e.g. direct differentiation and automatic differ-

entiation. Finite difference schemes should be used with more caution; erroneous sign

changes in particular are undesirable. The use of analytical or semi-analytical gradients

renders gradient-only optimization computationally competitive. We do not explicitly

give the sensitivities for the heat transfer problem; it is the easiest problem, and the

approach is similar to the developments presented in Chapter 2.

Analytical sensitivities for the material identification

study

In this study we compute the analytical sensitivities by direct differentiation of (3.44)

and (3.45) with respect to the design variables i.e. θ0, c, σys, σ
0
4 and σ0

y.

We start with θ0. Since only (3.45) depends on θ0, the sensitivity of σi+1
y w.r.t. θ0 is

given by
dσi+1

y

dθ0
=

dσi
y

dθ0
+
(

1− σi
y

σys
+

σi+1
4

σi
y

)
∆εip

+ θ0

(
1− dσi

y

dθ0
1
σys

+ σi+1
4

d
dθ0

( 1
σi
y
)
)

∆εip.
(6.1)

We note that (3.45) depends on (3.44), therefore both equations depend on c. In com-

puting the sensitivity of σi+1
y w.r.t. c, we obtain

dσi+1
y

dc
=

dσi
y

dc
+ θ0

(
1− dσi

y

dc
1
σys

+ σi+1
4

d
dc

( 1
σi
y
)

+
dσi+1

4

dc
1
σi
y

)
∆εip,

(6.2)

and
dσi+1

4

dc
=
dσi4
dc

+
(
εi+1
p − εip

)
. (6.3)
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Since only (3.45) depends on σys, therefore the sensitivity of σi+1
y w.r.t. σys is given by

dσi+1
y

dσys
=

σi
y

dσys
+ θ0

(
1− dσi

y

dσys
1
σys
− σiy d

dσys
( 1
σys

)

+ σi+1
4

d
dσys

( 1
σi
y
)
)

∆εip.
(6.4)

Both (3.44) and (3.45) depend on σ0
4, therefore the sensitivity of σi+1

y w.r.t. σ0
4 is given

by
dσi+1

y

dσ0
4

=
σi
y

dσ0
4

+ θ0

(
1− dσi

y

dσ0
4

1
σys

+
dσi+1

4

dσ0
4

1
σi
y

+ σi+1
4

d
dσ0

4
( 1
σi
y
)
)

∆εip,
(6.5)

whereas the sensitivity of σi+1
4 w.r.t. σ0

4 is given by

dσi+1
4

dσ0
4

=
dσi4
dσ0

4

= 1. (6.6)

Since only (3.45) depends on σ0
y, the sensitivity of σi+1

y w.r.t. σ0
y is given by

dσi+1
y

dσ0
y

=
σiy
dσ0

y

+ θ0

(
1−

dσiy
dσ0

y

1

σys
+ σi+1

4

d

dσ0
y

(
1

σiy
)
)

∆εip. (6.7)

Radial basis function mapping

The radial basis function s(z) with z ∈ R2 for the two dimensional case, is given by

s(z) =

nb∑
j=1

αjφ(‖z −X ∂Ω
j ‖) + p(z), (6.8)

with p a polynomial, nb the number of boundary nodes and φ a given basis function with

respect to the norm ‖z‖. The coefficients αj and the polynomial p are determined by the

interpolation conditions

s(X ∂Ω
i ) = d∂Ω

i , i = 1, 2, . . . , nb (6.9)

with d∂Ω
i the displacement of the ith boundary node. In addition it is required that

nb∑
j=1

αjq(X ∂Ω
j ) = 0, (6.10)

for all polynomials q with a degree less or equal than that of polynomial p. We rewrite

(6.9) into a matrix form as

d∂Ω = Mα+ Pβ, (6.11)

where M is an nb× nb matrix with the ith row and jth column containing the evaluation

of the basis function φ(‖X ∂Ω
i −X ∂Ω

j ‖). For two dimensional interpolations P is an nb×3
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matrix with the ith row given by [1 X ∂Ω
ix X ∂Ω

iy ], where X ∂Ω
ix and X ∂Ω

iy are respectively

the x and y coordinates of the ith boundary node. Similarly, (6.10) can be written in a

matrix form

P Tα = 0. (6.12)

We therefore need to solve the two systems of linear equations (6.11) and (6.12). We

start by rewriting (6.11) to obtain

α = M−1d∂Ω −M−1Pβ, (6.13)

which we substitute into (6.12) to obtain

P T(M−1d∂Ω −M−1Pβ) = 0.

We then solve for β from

P TM−1Pβ = P TM−1d∂Ω, (6.14)

and α from (6.13). After solving for α and β the RBF s(z) is defined and can be used to

update the interior nodes XΩ as the geometry changes. The boundary displacements d∂Ω

are obtained from the control variables x and piece-wise linear boundary interpolation.
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