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The influence of the sulphur and nitrogen content on the static
recrystallisation behaviour of cold worked low carbon Al-killed
strip steels was investigated. This was in response to the
observation made by some users of these steels that the
recrystallisation process after cold work was "“sluggish” in some
steels and, therefore, this was affecting their productivity as the
continuous annealing lines had to be run slower and the batch
annealing cycles required a higher annealing temperature and

thus more energy input.

Two groups of Al-killed low carbon strip steels, one with low (<10
ppm) and the other with medium to high (> 70 ppm) sulphur
content were studied. It was found that sulphur had an indirect
but significant effect on the recrystallisation behaviour after cold

work of these steels. In the high sulphur content steels, the
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sulphur precipitated as manganese sulphide (MnS) and copper
sulphide (CuS/Cu,S) coarse particles. These sulphide particles,
particularly MnS, were the favoured nucleation sites for
aluminium nitride (AIN) and the heterogeneous nucleation
encouraged the precipitation of AIN during coiling after hot rolling.
The result was that the AIN in medium to high sulphur content
steels was generally associated with coarse sulphides and,
therefore, the mean particle size of the AIN/MnS particles in the
as-coiled steel prior to cold working and annealing, was generally
much coarser than in the steels with low sulphur content. In
these low sulphur content steels, the AIN nucleated
homogeneously in the matrix or heterogeneously on grain
boundaries or dislocations during coiling. Consequently the mean
particle size of AIN in these low sulphur content steels was
significantly finer, often less than 30 nm in diameter and,
therefore, these particles were more effective in retarding the
recrystallisation process through Zener-pinning of dislocations

and moving recrystallisation fronts.

The effect of lower sulphur content was exacerbated by lower
coiling temperatures (~600 °C) i.e. the recrystallisation start time
increased with a decrease in coiling temperature as the AIN
particles remained small due to a low coarsening rate. On the
contrary, no significant sensitivity to coiling temperature was
observed in the time for the start of recrystallisation after cold
work in medium to high sulphur steels within the coiling
temperature range 600 to 650 °C. The conclusion was that

sulphur, in the presence of manganese, does not hinder
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recrystallisation after cold work in Al-killed steels but promotes
heterogeneous nucleation and growth of AIN on the coarser MnS.
The effect is that the effective mean particle size of the AIN
becomes much larger as it is not isolated homogeneously as in
low sulphur steels but is tied to the sulphides. The sulphur (ppm)
dependent empirical expressions for the recrystallisation start
times tso at isothermal annealing temperature of 610 °C for
steels coiled at temperatures of 600 and 650 °C were found to
be:

tso, = 33.78exp(-0.0345S) for 600 °C and

tso, = 0.99exp(-0.008S) for 650 °C.

Recrystallisation arrest was observed during the annealing
process after cold work of as-quenched specimens. The apparent
activation energy of the process that led to the recrystallisation
arrest, being 230 kJ mol™}, is of the order of the activation energy
for the diffusion of aluminium in ferrite, i.e. 196.5 kJ mol™. Since
the precipitation process of AIN is controlled by the slower
diffusion of aluminium, this was an indication of the
nucleation/clustering of fine particles of AIN, which consequently
halted the recrystallisation process through effective Zener drag.
This Zener-pinning effect was used to estimate indirectly the
precipitation start and finish times for the AIN during the

isothermal annealing after cold work of these steels.




UNIVERSITEIT YAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Summary

é;'r%
<

The solubility of AIN in austenite has mostly been studied by
others using the Beeghly selective dissolution technique which
has often been criticised for its limitations in its lack of sensitivity
to the presence of very fine AIN particles, i.e. < 10 nm, and its
failure to separate the AIN from other nitrides. In this study the
thermoelectric power technique [TEP] was used to study the
solubility of AIN in austenite in commercial low carbon Al-killed
steels; one group with a medium to higher sulphur content and
the other with a lower one. The equilibrium solubility equation

thus obtained was determined as:

9710

Log[%Al][%N] = 2.6-T
where the aluminium and the nitrogen contents are in weight
percentages and T is the absolute solution temperature in

Kelvin.

It was found that the AIN solubility equation derived here
predicted slightly higher solubility temperatures for the AIN if
compared to those derived from the Beeghly method. It was also
confirmed that the equilibrium solubility of AIN was not sensitive
to the sulphur content (unlike the precipitation behaviour), which
is in agreement with the results from others obtained through the

Beeghly technique.
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boundaries growing into the deformed matrix by Strain Induced
Boundary Migration (SIBM): (a) and (c) new recrystallised grains
are formed in steels LS2-65 and HS140-104 while in (b) and (d)
the grains are growing into the deformed matrix as indicated by

the arrows in steels LS2-65 and HS140-104 respectively.

Figure 12.23: Steel HS140-104, showing a new grain that
nucleated on a deformation band and is growing in the direction of

the arrows parallel to the deformation bands.

Figure 12.24: Nucleation of new recrystallised grains within
extensively cold deformed regions around pearlite colonies and
FesC particles. (a) steel LS2-65, (b) and (c) steel HS140-104 .

Figure 12.25: Particle pinning of recrystallisation (SRX) in steel
LS2-65: (a) a wavy recrystallisation front, (b) particle pinning of
the SRX front by two AIN particles which were about 100 nm
apart, (c) dislocation pinning in and around the SRX front and (d)

dislocations pinned by AIN particles just behind the SRX front.

Figure 12.26: Recrystallisation front that is growing into the
deformed matrix without encountering particle pinning in higher
sulphur steels HS140-104.
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Figure 12.27: Absolute TEP measurements for the as-coiled
condition of steels (a) LS2-65 and (b) HS140-104 where TEP1 and
TEP2 are as defined in table 11.2 above.

Figure 12.28: TEM replica micrographs and EDS spectrum for the
higher sulphur content (140 ppm) steel HS140-104 in the as-
coiled condition, coiled at 600 °C. (a) AIN particles observed at
low magnification, (b) about 150 nm particle in micrograph (a)
now observed at higher magnification, (c) EDS spectrum of the

particle in micrograph (b).

Figure 12.29: TEM replica micrographs and EDS spectrum for the
medium sulphur content (70 ppm) steel LS70-38 in the as-coiled
condition, coiled at 600 °C. (a) AIN particles observed at low
magnification, (b) about 80 nm particle in micrograph (a) now
observed at higher magnification, (c) EDS spectrum of the particle

in micrograph (b).

Figure 12.30: TEM thin foil micrograph and EDS spectrum for the
low sulphur content steel LS2-65 in the as-coiled condition, coiled
at 600 °C. (a) micrograph showing a typical AIN particle, (b) the

EDS spectrum for the particle in (a).

Figure 12.31: TEM thin foil micrograph and EDS spectrum of the
AIN particles that were observed in the former for the low sulphur
content steel LS2-65 in the as-coiled condition, coiled at 650 °C

for 1 hour.

XX1v



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A

&
&
. UNIBESITHI YA PRETORIA

List of figures

Figure 12.32: The recrystallisation start time ts¢, and the AIN
mean particle size as measured from thin foils, are plotted as a
function of the sulphur content in steels HS140-104, LS70-38 and
LS2-65. The cross hatched area represents possible particles that
were “missed” due to a lower limit of detection of about 20 nm by
thin foil TEM.

Figure 12.33: Crystallographic orientation relationship between
AIN and MnS: (a) an AIN particle that nucleated on MnS (b)

diffraction pattern of AIN on [2110] zone axis, (c) diffraction

pattern of MnS on [110] zone axis, (d) diffraction patterns of
both AIN (in open symbols) and MnS (in solid symbols) (e)

schematic diagram of the diffraction pattern in (d) with

(111),,4//(0001), + [110]y,6//[2110] -

Figure 13.1: Comparison of the TEP equilibrium solubility model
from this work with the models from other workers; details for the

other curves are given in the appendix.

Figure 13.2: The time dependent particle volume fraction V,, the
inverse of the particle radius 1/r, and the Zener drag force P, =
(37/4)(V./r) modelled for steel HS140-104 at 610°C after solution
treatment at 1300°C, quenching into water and 70 percent cold

work.

Figure 13.3: Estimated temperature and time dependent Zener
drag force P, = (3y/4)(V./r) for as-quenched steel HS140-104 at
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times t (in parenthesis) when the recrystallisation resumes after

the arrest.

Figure 13.4: Schematic presentation of the apparent incubation
time due to the initial slow movement of the recrystallisation
fronts in steels HS140-104 and LS2-65 which were coiled at 600

°C and isothermally annealed at 610 °C, where L = Lmin.

Figure 13.5: (a) Modelled driving force AGv, (b) activation
energy AG* and (c) the critical radius r* for the homogeneous
nucleation of AIN, CuS and MnS in austenite and ferrite. Solid

symbols are for austenite and open ones for ferrite.
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Table 2.1: Typical chemical composition of hot rolled low carbon

steel sheet and strip®.

Table 5.1: The equilibrium solubility limit of MnS in austenite.

Table 10.1: Chemical compositions of the low carbon strip steels
that were studied: HS = high sulphur and LS = medium to low
sulphur, the first numeral is for the sulphur content and the

second for the nitrogen content, both in ppm.

Table 11.1: The hot rolling and coiling schedule simulating the
industrial hot rolling and coiling processes on the Gleeble 1500™,
the interpass time is before the rolling pass, RT = reheat

temperature, FMH = finishing mill head and F = rolling pass.

Table 12.1: TEP measurements for the various steels that were
solution treated at different temperatures for 12 minutes and
quenched into water. The TEP values are within an error of =+
0.033 pV K* while the AS value is taken relative to the TEP value
at 800°C.

Table 12.2: Empirical expressions for predicting the
recrystallisation start time tso, as a function of the sulphur
content in ppm derived from the results in figure 11.21 above; CT

= coiling temperature.

Table 12.3: Absolute TEP values for the steels LS2-65 and HS140-

104 which were solution treated at 1150 °C for 10 minutes, hot
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rolled in 4 passes and then coiled at 600 °C for 1 hour; TEP1 =
absolute TEP value immediately after coiling while TEP2 =
absolute TEP value after annealing at 800 °C for 2 hours cooled to
600 °C and annealed for 10 minutes and quenched in water. Error
= 0.033 pVv K.

Table 13.1: TEP coefficients Kan for AIN obtained from the five

steels that were studied and compared to published values.

Table 13.2: Parameters that have been used to calculate the
activation energy for the isothermal and homogeneous nucleation
of AIN in ferrite AG*an.

Table 13.3: Estimated volume fraction V, of the precipitated AIN
during isothermal annealing at 610 °C in 70 percent cold worked
steels HS140-104, LS70-38, LS2-65 and HS90-12.

Table 13.4: Isothermal annealing temperatures and times, the
modelled particle radii r and their corresponding modelled
Zener drag force P, in J m™ at the point when the recrystallisation

resumes after the arrest.

Table 13.5: Parameter values for the calculations of AGv, AG*

and r* for the homogeneous nucleation of MnS, AIN and CusS.
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