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A rapid non-destructive Image Analysis (IA) technique was developed for the

determination of maize kernel endosperm vitreousness. Kernels were analysed using a

Leica Q-Win Q500 IW-DX Image Analyser fitted with Leica Q-Win software and

connected to a Sony XC-75 CCD camera. Kernel translucency measurements were

optimised by using a light system that involved positioning whole kernels on top of a

mask containing round illuminated areas (circles), smaller than the projected areas of

the kernels, allowing light to shine through the kernels only. Correction factors allowing

for constant illumination of kernels were developed to adjust for kernel size variation in

relation to constant light area. Similarly, a correction factor for the effect of kernel

thickness on detected translucency values were developed.

Significant correlations were found between corrected translucency values and vitreous

and opaque endosperm yields as determined by hand dissection. These were:

translucency as a percentage of the whole kernel and vitreous endosperm (mass %)

(Translucency 1), r = 0.77, p<0.00001, and Translucency 1 and opaque endosperm

(mass %), r = -0.72, p<0.00001 for white maize. Similar correlations were found for

translucency as a percentage of endosperm (Translucency 2). Correlation coefficients

increased significantly after kernel thickness corrections. Significant negative

correlations were also found between corrected translucency values and Floating

Number. For yellow maize, Translucency 1 correlation coefficients was r = 0.78,

 
 
 



p<0.00001 and r = -0.71, p<0.00001 respectively with similar correlations for

Translucency 2. Correlations were obtained after applying both correction factors for

exposure and thickness.

The IA technique was evaluated for predicting the yield of vitreous endosperm products

during dry maize milling in laboratory and industrial-scale milling trials. Significant

positive correlations were found between corrected translucency values and yields of

milling products from vitreous endosperm. Experiments using a laboratory-scale

experimental roller milling test without a degerming stage produced the following

correlations: between Translucency 1 and semolina yield (mass %), 0.74, p<0.001 and

Translucency 2 and semolina yield (mass %), 0.70, p<0.001. For industrial-scale

milling, a BOhler industrial-scale maize mill (3 tons per hour) was used. The correlation

between Translucency 1 and extraction at degermer (degermer overtail yield) was 0.93,

p<0.0001. There was a similar correlation for Translucency 2. Yellow maize was

degermed using a pilot-scale Beall-type degermer and the correlation between

Translucency 1 and flaking grits> 3.9 mm was 0.67, p< 0.001.

The IA technique permits the non-destructive analysis of maize endosperm translucency

on large samples of single kernels. It is suitable for rapid quantification of maize

endosperm contents and predicting dry maize milling performance, as kernel

translucency was significantly correlated with vitreousness in all instances. With further

development of specific hardware and software, the technique has potential as an on-

line maize kernel classification system in industrial mills. As the method is non-

destructive, it is also suitable for classification of maize seed breeding material. It is

also a potential method for the measurement of maize opacity as used by the wet milling

industry, where opacity (the opposite of vitreousness) is related to maize starch yield.
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'n Vinnige nie-destruktiewe beeladanalise tegniek (IA) is ontwikkel vir die bepaling van

mieliepit endosperm glasigheid. Pitte is met die Leica Q-Win Q500 IW-DX

beeldanaliseerder toegerus met Leica Q-Win standard sagteware en 'n Sony XC-75

ceo kamera ontleed. Ligdeurlaatbaarheidsmetings van pitte is ge-optimiseer deur

gebruikmaking van 'n Iigsisteem waar heel pitte bo-op ronde verligte oppervlaktes

(sirkels) geposisioneer is. Die verligte gebied se oppervlaktes was kleiner as die

geprojekteerde oppervlaktes van die pitte en die beligting is regdeur die pitte verkry.

Korreksiefaktore is aangebring om konstante beligting van pitte met veranderde groottes

op'n konstante beligtingsoppervlakte te verkry. Korreksiefaktore is ook vir die effek van

pitdikte op waargenome Iigdeurlaatbaarheidswaardesontwikkel.

Met behulp van handdisseksie is betekenisvolle korrelasie tussen gekorrigeerde

Iigdeurlaatbaarheidswaardes en glasige sowel as ondeursigtige endospermopbrengste

bevestig. Dit was: ligdeurlaatbaarheid as 'n persentasie van die heelpit

(Iigdeurlaatbaarheid 1) en glasige endosperm (massa persentasie), r = 0.77, p<0.00001

en ligdeurlaatbaarheid 1 en ondeursigtige endosperm (massapersentasie), r = -0.72,

p<0.00001 vir witmielies. Soortgelyke korrelasies is vir ligdeurlaatbaarheid as 'n

persentasie van endosperm (Iigdeurlaatbaarheid 2) gevind. Korrelasies is bereken

nadat beide korreksiefaktore ingereken is.

 
 
 



In geval van geelmielies was Ligdeurlaatbaarheid 1 korrelasiekoaffisiante van r = 0.78,

p<0.00001 en r = -0.71, p<0.00001, met ooreenstemmende korrelasies vir

Ligdeurlaatbaarheid 2, gevind. Korrelasiekoaffisiante het betekenisvol toegeneem

nadat pitdikte korreksies aangebring is.

Die IA tegniek is geavalueer vir die voorspelling van die opbrengs glasige

endospermprodukte tydens droa vermalingstoetse in die laboratorium en tydens

industriale vermaling. Betekenisvolle negatiewe korrelasies is aangetoon tussen

gekorrigeerde Iigdeurlaatbaarheidswaardes en f1ottasie-syfersvan heelmielies.

Betekenisvolle positiewe korrelasies is tussen gekorrigeerde

Iigdeurlaatbaarheidswaardes en vermalingsprodukopbrengste van glasige endosperm

aangedui. Eksperimente met "n laboratoriumskaal eksperimentele rollermeuletoets,

sonder "n kiemverwyderingstap (ontkiemer), het die volgende korrelasies opgelewer:

tussen Ligdeurlaatbaarheid 1 en semolina opbrengs (massapersentasie), r = 0.74,

p<0.001 en Ligdeurlaatbaarheid 2 en semolina opbrengs (massapersentasie), r = 0.70,

p<0.001. "nBOhler industriale-grootte mieliemeule is vir industriale proewe (drie ton per

uur) aangewend. Die korrelasie tussen Ligdeurlaatbaarheid 1 en ekstraksie tydens

ontkieming (produkoorloop) was r = 0.93, p<0.0001. "n Soortgelyke resultaat is vir

Ligdeurlaatbaarheid 2 verkry. Geelmielies is m.b.v. "n loodsaanleg Beall-tipe ontkiemer

verwerk en die korrelasie tussen Ligdeurlaatbaarheid 1 en mieliegruis > 3.9 mm was r =
0.67, p<0.001.

Die IA tegniek is geskik vir die nie-destruktiewe analise van mielie

endospermligdeurlaatbaarheid op "n groot hoeveelheid enkelpit monsters. Dit is ook

geskik vir vinnige kwantifisering van mielie endosperminhoud en droa

vermalingspersentasie. Ligdeurlaatbaarheidsmetings is betekenisvol gekorreleer met

glasigheid in aile gevalle. Die tegniek kan na verdere ontwikkeling van spesifieke

harde- en sagteware vir "n aan-Iyn klassifiseringsisteem tydens industriale vermaling

aangewend word. "n Besondere potensiale aanwending van die nie-destruktiewe

tegniek is die klassifikasie van mielietelingsmateriaal. Dit is ook moontlik om mielie

ondeursigtigheid ("opacity") as teenoorgestelde van Ligdeurlaatbaarheid) tydens

natvermaling te evalueer vir voorspelling van mieliestyselopbrengs.
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