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Abstract

In this work tunability, implantation damage and recovery of GaAs doping
superlattices implanted with hydrogen ions were studied. The applicability of two
models of the optical properties of semiconductors was also investigated. GaAs
doping superlattices were implanted with 0.5 MeV hydrogen ions at doses of
102 em™, 10™ cm™ and 10" cm™. This gradually modifies their optical
characteristics from superlattice behaviour to something resembling the bulk material
and beyond. Such a processing technique therefore provides a convenient way of
tuning the optical properties of a superlattice semi-permanently. A combined result of
ellipsometry and near infrared reflectance measurements showed that a single
effective oscillator as well as a more advanced three-parameter model could be
applied to the virgin and ion-implanted doping superlattices. This allowed us to
determine the dose dependent effective band gap as well as other model parameters.
Photoluminescence as well as normal and resonance Raman techniques were applied
to study hydrogen ion implantation damage and its recovery. These techniques
showed that implantation damage could be reversed to a large extent by a simple

thermal annealing step.
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CHAPTER 1

Introduction

Extensive theoretical and experimental studies of a different type of artificial
semiconductor in the form of a superlattice composed of ultrathin n-and p-doped
homogeneous semiconductor layers have recently been made [1-3]. These
superlattices have a number of interesting properties such as a tunable effective band
gap, long lifetime of photoexcited carriers, quantization of carriers in space-charge
induced-potential wells, a tunable two-dimensional electronic subband structure and
tunable absorption coefficients. Electrons and holes are spatially separated (indirect
gap in real space). Due to the spatial separation of electrons and holes, the
compensating charge of excess carriers that are induced electrically or optically,
decreases the amplitude of the space-charge-induced superlattice potential and thus
increases the effective gap. In our present work the possibility of tuning the doping
superlattice properties semi-permanently by subjecting it to high-energy (0.5Mev)
hydrogen ion implantation is studied. Different implantation doses were used to shift

the effective band gap from its ground state value to that of the bulk material.

The doping superlattices (DLS) used in this experiment have the following design

parameters: thickness d» = dp =40nm, DSL’s period 80nm , number of periods 30
and total DSL thickness 2.4 um. The n layers were doped with Te: n, =10¥cm™,

whereas the p-layers were doped with Zn: n, =10' cm™.

The main theoretical and experimental approaches used in this work are discussed in
chapters two to five. Chapter 6 provides a discussion and interpretation of the
experimental results. The rest of this chapter is intended to give a brief introduction to

the main concepts and techniques used in this work.



1.1- Dispersion Theory

The optical constants, such as the real refractive index n, extinction coefficient k,
absorption coefficient ¢ , and reflectance R, are of great technological importance for
various optical and optoelectronic device applications. Knowledge of the refractive
index of semiconductors in the energy range below the lowest direct band gap is also
of interest in this respect. Extensive studies concerning this subject already exist,
some of them resulting in quite accurate calculations [4,6]. However, these models
are not very general, as they require the evaluation of some parameters by empirical

methods. As a result, physical insight is limited.

The frequency or wavelength dependence of the optical constants in a dielectric may
be obtained from a single effective oscillator model (SEO), which considers the solid
as an assembly of oscillators, which are set into forced vibration by the radiation. The
single effective oscillator model, in terms of the dispersion energy Ezand oscillator

energy Ep is given as [4,7]

EpEd

Epfd 1.1
E,> —E*

n(E)* —1=

The refractive index dispersion data below the interband absorption edge in more than
100 widely different solids and liquids were analyzed using the SEO model [4]. The
near gap optical properties of a material are dominated by the absorption edge of the
semiconductor. A model that takes this into account is that of M.A. Afromowitz [5].
In this work we show that a single effective oscillator (SEO) model developed by
Wemple and DiDomenico [4] as well as the more advanced three-parameter model of

Afromowitz [5] could be applied to the ion implanted DSL’s.



Applying this theoretical approach to experimental ellipsometry and near infrared
reflectance measurements on a series of GaAs DSL’s implanted with hydrogen at

2

2 to 10" em™?, allowed us to determine the dose

doses ranging from 10" cm”
dependent effective band gap Eg as well as the other model parameters. In this way
we could determine the implantation dose required to change the DSL’s into

something resembling the bulk material.

In the work of M.A. Afromowitz the lowest direct band gap is used. For a superlattice
this corresponds to the effective band gap, which is quite difficult to determine
experimentally, as it depends on the degree of optical excitation of the material. The
electronic excitation spectrum of a semiconductor is generally described in terms of a
frequency dependent complex electronic dielectric constant () = e(w) +isAw),
where &i(@) and eAw) are the real and imaginary parts, respectively. It is well
known that the real part of the dielectric constant &i(w)can be obtained by the
Kramers-Kronig (KK) transform of the imaginary part s2(@). Hence the desired
response information can be obtained, if one is able to determine either the real
(e(w)) or imaginary (£2(®)) parts. The KK transform is the basic relation used in

relating the SEO model to that of the modified Afromowitz model.

1.2- Refractive Index Measurement Above Band Gap

The demand for rapid, non-destructive analysis of surfaces and thin films, especially
films and surfaces occurring in different device technologies, activated an interest in
ellipsometric evaluation. Ellipsometry enables optical constants of materials to be
determined with high accuracy and is therefore a valuable aid in solving a wide

variety of problems in different disciplines.

The fact that ellipsometric measurements can be performed in any ambient is a
definite advantage over other surface-science techniques for industrial applications. In

ellipsometry, one measures the change in polarization state of a linearly polarized



beam of light after non-normal reflection from the sample to be studied. The
polarization state can be defined by two parameters, for example, the relative phase
and relative amplitude of the orthogonal electric-field components of a polarized light
wave. On reflection both electric field components are modified in a linear way, and
therefore a single ellipsometric measurement provides two independent parameters.

Such measurements may be interpreted to yield the optical constants of the reflecting
material or, when the reflecting material is a film-covered substrate, the thickness and

optical constants of the film.

For the measurement of optical constants of substrates, ellipsometry has the
advantages over conventional techniques of applicability to strongly absorbing media
and simplicity of measurement and sample preparation. Ellipsometry can be applied
to surface films throughout the thickness range from partial mono-atomic coverage up
to microns [8]. There is no need to use the KK relations to relate the real and the
imaginary parts, since it gives both values independently. D.J. Brink et al [9] used a
Gartner L119 single-wavelength ellipsometer with a He-Ne (632.8) laser source to
investigate radiation-induced changes to GaAs DSL structure by comparing the
complex index of reflection of untreated and a ¢ - particle irradiated sample. In our
present work, we studied the change in the complex refractive index of GaAs DSL’s
induced by hydrogen ion implantation. Ellipsometry with three different laser sources

were used in this experiment.

1.3- Photoluminescence And Raman Scattering

Ton implantation is a key technology in the preparation of doped semiconductors with
controlled impurity profiles for device applications. Manufacturing and designing
highly sophisticated semiconductors rely on the ability of characterization and
probing of these materials. Optical characterization is one of the best ways, because
the sample is unaltered, as the measurement itself does not cause damage. The optical

beam, which is generally a laser beam, can easily be manipulated.



Two of the main optical characterization techniques are photoluminescence (PL) and
Raman spectroscopy (RS). In PL, light separates the charge carriers within the band
or impurity structure of a semiconductor. Their subsequent recombinations then
produce characteristic light emission. In RS, the energy of an incoming photon is
altered by nonlinear interaction with phonons, carriers, or impurities in the material,

to produce a frequency-shifted outgoing photon.

Several experimental investigations have been made with PL and RS measurement
techniques. D. J. Brink et al [9] have studied the damaged induced in GaAs DSL’s by
a - particle irradiation and its recovery after annealing using PL. H. W. Kunert et al
[10,11] used PL and Raman techniques to study the effect of «, Art and N* ion
implantation in GaAs nipi DSL’s. PL and RS (Normal and resonant) techniques were
used to investigate the hydrogen implantation induced damage in np DSL’s in our

present work.
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CHAPTER 2

Dispersion Theory

2.1- Optical Constants

It is convenient in the theoretical treatment of dispersion to consider separately the
contributions to the dielectric constant due to the bound and the free electron. The free
electron gives higher contribution for the dielectric constant in metal whereas the
contribution from the bound electron is high for non-conducting materials. In
semiconductors, both contributions are important; the bound electrons give rise to the
intense absorption on the short-wavelength side of the main absorption edge while at

long wavelengths free-carrier absorptions become significant [6].

The optical properties of a medium at all photon energies E= h@ /27 can be describe

by the complex dielectric function
&) = e(w)+ieAw), 2.1

where gi(@)and £2(w) are the real and imaginary parts of the dielectric constant.
The complex refractive index N = (n(®)+ ik(@)) where n (@) is the real refractive
index and k(w) is the imaginary part called extinction coefficient, also called

attenuation index is related to the dielectric constant as:

N =[e1(@) +ig2(@)]"? 2.2



The optical constants n(®) and k(@) are real and positive and can be determined by

optical measurements. From equation 2.1 and 2.2, it follows that

ew)y=n>—k?, 2.3a
e2(w) =2nk, 2.3b
1
1 2
2 2N\2
ne (en(@)” +eAw)°)? +e1(w) ’ 242
2
1
1 2
2 292 _
k= [ew)” + gz(;o) 1? —e1(w) ' 2.4b

The absorption coefficient « , which is a function of the real and imaginary parts of

the dielectric constant, is given by [12]:

4 2.5

where 4, is the wavelength of light in vacuum.

Fresnel’s equations give values for the amplitudes of the electromagnetic fields of the
reflected and refracted waves at a boundary between two media. The reflectance R,
which is a measurable quantity, at normal incidence on a single interface (air-material
interface) is given by:

_(n-D’+k’

= — - 2.6a
(n+1) +k



For energies below the band gap or for a transparent region, in which k =0, the real

parts of the refractive index can be deduced from equation 2.6a and given as[13]:

n:(1+JE)
(1-vR)

2.6b

2.2- Kramers-Kronig Relations

Given some physical model, for example an oscillator or some absorbing centers ina

solid, the dielectric constants (@) and &2@) can be calculated. A general

relationship between these two quantities, which allows one to be calculated if the
other is known over a sufficiently wide frequency spectrum, is described by the
following equations. These equations, known as the Kramers-Kronig (KK) relations,

relate the real and imaginary parts of the dielectric constant. They are [14]

e@) =1+ 2 [ZE4D )5 27a
0 -
exw) =22 [249) 47 2.7b

T oa)’z—a)2

2.3- Theoretical Models For The Evaluation Of Refractive Index

Knowledge of the refractive index of semiconductors in the energy range near or
below the fundamental absorption edge is often of interest in device manufacturing.
The magnitude of the refractive index is a function of the wavelength of the incident
light. Some of the theoretical models used for calculating the refractive index
dispersion in the energy range near or below the fundamental absorption edge are

discussed below.

10



2.3.1- Sellmeier Equation

The refractive index dispersion can be given by the first-order Sellmeier equation

[12].

2

N(A)? =A+ B?’{_—, 2.8

C2

where A is the light wavelength in vacuum. This equation is based on an empirical
relation. The refractive-index dispersion obtained from this expression is, therefore,

not through the KK relation and is valid only over a very limited energy range.
2.3.2- Single-Oscillator Model

Wemple and DiDomenico have proposed a semi-empirical single-effective-oscillator
model to analyze refractive-index dispersion in more than 100 widely different solids
and liquids at energies sufficiently below the direct band edge [4]. Their model
requires two parameters, oscillator energy position E, and dispersion energy Eu,

where the imaginary part of the dielectric constant £2(E) of the material is assumed

to be a delta function at E, and the strength of an effective oscillator at energy Ep
/N .
was defined to be 22—1 [5]. Introducing these quantities into the following equation,

based on the KK relation (Appendix A-1),

51(E'):1+£ _E252_(E)2_d , 2.9
r E°-F
we obtain
n(E)* -1= —?’E% 2.10a
E“-E
which can be rewrite as
1 E
Ly 1 p2 2.10b

n(E)*-1 E, E,E,

14
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Experimental verification of the above equation can be obtained by plotting the
inverse of susceptibility 1/ y =1/(n* —1) versus square of the photon energy (E ).
Some typical results are shown in references [4-6]. The left hand side of equation
2.10a is defined as the susceptibility:

7(E)=n(E)* -1. 2.10c
This model will give reasonable results for photon energies well below the absorption
edge in semiconductors. It is noted, however that these energies are not of immediate

interest for devices such as the semiconductor hetero-junction laser. A more complex

model is therefore needed and this will be discussed in the next section.
2.3.3- Modified Single Oscillator Model

The above single oscillator model starts to fail when one approaches to the absorption
edge. To see the invalidity of this model near to the direct band gap, one can start by
expanding the Kramers-Kronig relation’s equation 2.9. In materials exhibiting a band

gap, the dielectric real part £1(E) in the energy region below the direct band gap, in
which £2(E) may be taken as zero, is related to the optical absorption above the gap
by:

eE)-1=n(EY -1=2 _Eg—z(-glsz 2.11
7Z' —_—

for E’<E;<E.
E. is the direct band gap and we have identified &1(E) with the square of the

refractive index n. Expanding equation 2.11 in a power series, the following is

obtained (Appendix A part 2):

2% 1 E* E* ,
e(ENV=1= v(EN == |enE)[—+ —+—+...1dE, 2.12
(E)-1= %(E") ﬂEj (Bt ]

where y(E’) is the susceptibility.

12



Integrating each term in the above equation separately gives a power series expansion

for susceptibility
y(EY=M_ +M _E*+M E*+ . . ., 2.13
where the coefficients are the moments of the £2(E) spectrum, which are given by

M, =2 [exB)EdE, 2.14
T gy

with i =-1,-3,-5,....

0.14 | 1

(n*1)"

6o
o o5
@

0.08 ¥
Band Gap for
bulk GaAs.
E/E, )*=0.151
0.06 F (E/ ") 0
0.04 0.06 0.08 0.10 0.12 0.14 0.16

(ElEp)2

Figure 2.1a. The reciprocal susceptibility of bulk GaAs plotted versus (E/E p)z,

where E is the photon energy and Ey is the energy position parameter in the single-

effective-oscillator [5]. The dashed line (vertical) represents the room temperature

band gap of bulk GaAs.
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The moments of higher order in the above equation weight the low-energy spectrum,
and their contribution to the susceptibility become significant only as E approaches
E. . As the single-effective-oscillator model does not represent the low-energy range

of the &2(E) spectrum accurately, one should expect a discrepancy between the model

and the data as E approaches E;, as illustrated in figure 2.1a [5].

Afromowitz has suggested an improved model for the variation of the imaginary part
of the dielectric constant £2(@) with photon energy in semiconductors. This model is
constructed using an empirical form, which agrees closely with the data on the low-

energy side of the spectrum (figure 2.1b). The model with three parameters is as

follows:
77E4 , Eg SESEf
eAE) = . 2.15
0, otherwise
Direct substitution of this form into the moment equation 2.14 results in
n
M. =E;(Ef4 ~E%), 2.16
M =1(E* -E%). 2.17
/4
Expanding equation 2.10a in a power series gives:
n(E)2—1=—E—d+E2£d3+E4ES—+E6ﬂ+. . e 2.18
EP EP P EP7

Constraining the susceptibility y(E) calculated from the modified model (2.13) to fit

the data at low energy to the order of E* and equating with equation 2.18 we get

E’=-=M +M_E*. 2.19
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Where the new parameters E; and 7 in equation 2.15 can be determined by equating

like terms in the above equation as:

n 4 4 _E 77 2 E
Z(Ef—Eg)—E—‘: and (E E )—'—i,

then we obtain

1
=(2E, - E;)?, 2.20

n= ik 2.21

2E> (B - E?)

The actual &2(E) spectrum of GaAs compared with that of the empirical model

(dashed curve) and the single-effective-oscillator model is shown in the figure2.1b

below [5].

20 r———————r T "
[ A ]

15F GaAs / | ]
10F 1

[ / E,=36.1 l ]

& g ]
® O05F | ]
9 [ log (3.65) = 0.5623 ]
oof I ]
log(E,) = log(1.424) = 0.1535 l ]

05 F I ]
log(E,) = log(4.96) + 0.695 1

0.0 0.2 0.4 0.6 0.8

Log(E)

Figur2.1b. Representation of the & E) spectrum of GaAs. The solid curve is

calculated from data [5,15]. The delta function represents the single-effective-

oscillator model. The dashed curve is the empirical model used in this calculation [5].
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The dashed line fits reasonably to the actual curve in the low-energy side of the

£2(E) spectrum. This is the region, which contribute most heavily to the higher order
moments, which are important in predicting the index of refraction for energies

approaching Ez . Substituting equation 2.15 into 2.12, we get the final expression for

the dielectric susceptibility (z(E) *-1) (Appendix A part 2):

E* —E?
Z(E)=M_1+M_3E2+%E4ln{ﬁ}’ 2.22a

which can also be written as:

2 4 2 2 2
n(E)2—1=ﬂ+EdE +77E ln{2Ep E."-E ) 2.22b
3 2 2
E, EP b4 Eg —-E

The parameters E,, Ep, and E_ appearing in equations 2.21 and equation 2.22 are

known for many binary semiconductors and may be calculated for ternary and

quaternary compounds by interpolation. Afromowitz gave these parameters values for
Al Ga, As, GaAs,_ P, and In Ga,_, P alloys [5].
2.4- Reflectance R

2.4.1- Reflection at a planer interface between two isotropic media

When a light wave is incident on a surface, it is a common observation that part is
reflected and part is transmitted. It is found experimentally that the fraction of the

total energy, which is reflected, depends on the index of refraction n of the material.

16



Figure 2.2a.

}

MEDIUM (0)

MEDIUM (1)

I

Figure 2.2a shows the oblique reflection and transmission of a plane

wave at the planar interface between two semi-infite media 0 and 1.

Consider the reflection of an optical plane wave at a planar interface between two
semi-infinite homogeneous optically isotropic media 0 and 1 with complex indices of
refraction No and N1, respectively. The total fields inside media 0 and 1 obey
Maxwell’s equations and the usual boundary condition (BC) at the interface (figure

2.2a). Snell’s law relates the angle of incidence go and refraction ¢ as follows:
N1Sing1 = NoSingo. 2.24

The amplitude and polarization of the reflected wave can be determined from the
continuity of the tangential components of the electric E and magnetic H field vectors

across the interface. Let (Ei,Eis), (E» E») and (E,,E,) represent the complex

amplitude of the components of the electric vectors of the incident, reflected and

transmitted waves, respectively.

17



Matching the tangential E and H fields across the interface leads to [16 pp 272],

Lp _, _Nicosgy—Nocosp 2.24a
E, N, cos @, + N, cos @,
E. - N,cos¢, — N, cos ¢, 2.24b

E, ° N,cosg,+N,cosg

E
oy o ZNoCOSg 2.24c
E, N, cos@, + N, cos ¢,

2N, cos
.= 0€08 6y , 2.24d
E, N,cos ¢, + N, cos ¢,

which are Fresnel’s complex-amplitude reflection (r) and transmission (t) coefficients

for the p and s polarizations. We can write the complex Fresnel’s coefficients as

o = |nfe 2.25a
rs =|rie’™, 2.25b
t, =t 2.25¢
t, =1t ]e’™ . 2.25d

Where ‘tpl and Irp| give the ratios of the amplitudes of the electric vectors of the

transmitted and reflected waves respectively to that of the incident wave for p

and |rs| for s polarization. &» and J,, are the phase

polarization and similarly for |¢

shifts upon reflection and refraction of the p polarization of light respectively, and

similarly for &= and &, . In addition to polarization, the reflectance R is a measurable

quantity and is given by

Ry = I"p|2 , 2.26a

for p polarization and

18



2

Rs =\rs

) 2.26b

for s polarization.

For normally incident light from the first medium (air n = 1) to the second medium

equation 2.26 will be given by equation 2.6a.
2.4.2- Reflection by an ambient-film-substrate system

As shown in figure 2.2b, we assume that the film has plane parallel boundaries of
separation (film thickness) di and is sandwiched between semi-infinite ambient

(immersion) and substrate media.

FILM (1)

|

| \\
SUBSTRATE (2) |

K

Figure 2.2b shows the oblique reflection and transmission of a plane wave by ambient

(0)-film (1)-substrate (2) system with plane parallel boundaries.

The ambient, the film and the substrate are all homogeneous and optically isotropic,

with complex indices of refraction No, N1 and N2, respectively. We assume that

19



when the incident wave first meets the 0-linterface, part of it is reflected in medium 0
and part is refracted in to the film, according to the interface Fresnel’s transmission
and reflection coefficients. The refracted wave inside the film subsequently suffers
multiple internal reflections at the 1-0 and 1-2 film-bounding interfaces, which are, in
general, not perfectly reflecting. Thus each time the multiply reflected wave in the
film strikes the 1-0 or 1-2 interface, a component wave is leaked (refracted) into the

semi-infinite ambient or substrate medium, respectively.

If the Fresnel reflection and transmission coefficients at 0-1(1-0) and 1-2 interfaces
are denoted by r,,,1,,(r,%,,) and r,,1,, respectively, the complex amplitudes of the
successive partial plane waves that make up the resultant reflected wave in medium 0
are given by 1y, totiohae 2 s totohohs € F s tutiohio e € **F - . ., where B is the
phase change that the multiply-reflected wave inside the film experiences as it
traverses the film once from one boundary to the other. In terms of the free space
wavelength A,, the film thickness d1, the film complex index of refraction N1 and
the (complex) angle of refraction in the film ¢, the phase angle (film phase

thickness) is given by [16]

B = 2#(%)N ,cOS @, 2.27a

0

or applying Snell’s law

1

d : >
B= 27z(/1—1)(N12 ~ NZsin’® ¢,)2, 2.27b
0

where ¢o is the angle of incidence in medium 0.
Addition of the partial wave leads to an infinite geometric series for the total reflected

amplitude R (total complex- amplitude reflection).

_ -j2p 2 -ji4p 2. 3 _ji6p
R =1, +1,t,,r5€ + 1ty t10T0 s € +toit0T0 Tiz € + ... 2.28
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Substituting r,, =-r, and t,t,, =1 —r012 (as can be proved from equations 2.24)

we get:

~jZ2p
Yoy + r,€

R = 2.29

-izp
1+ryr,e

This equation is valid when the incident wave is linearly polarized either parallel (p)
or perpendicular (s) to the plane of incidence. Thus, we may restore the information
on polarization by adding the p and s subscripts. The interface Fresnel’s complex
reflection coefficient can be evaluated from equation 2.24. The product of equation
2.29 with its complex conjugate (R =R"-R) will give the corresponding value for

the reflectance R of the material. And for a normal angle of incidence it is given by:

2.30

. 2 . 2 2
R:R._R:{CD+ABsm 2,8} +{(BC—AD)sm 2,8}

D?*+F*sin*2p D* +B*sin’2p
Where
A=(N,-N,XN,+N,)
B=(N,-N,)N,—-N,)
C=(N,—=Ny)N,+N,)+(N,—N, )N, +Ny)cos2p
D=(N,+Ny)(N,+N,)+ (N, —Ny)N,-N,)cos2p
,B=2ﬁM

0

This method of addition of multiple reflections becomes impractical when
considering the reflection and transmission of polarized light at oblique incidence by a
multilayef film between semi-infinite ambient and substrate media. Hence a two by
two matrix method is usually used to derive the reflectivity of a multi-layer [16 pp

332-340].
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CHAPTER 3

Ellipsometry And Polarized Light
3.1- Uniform Transverse-Electric (TE) Plane Waves Of Light

The electric vector of a linearly polarized uniform transverse-electric (TE) wave

varies with position r and time t according to

E(r,t)=[Ecos(at — .7 + 8)lit, 3.1

i-a=1, K-u=0.
Where @ is the angular frequency, & is the propagation vector and § is a phase
constant, which depends on the choice of origin. The polarization of this wave can be
generalized from linear to elliptic by superposition of two linearly polarized waves

with different polarization and phase. Equation 3.1 then becomes

E(7,t)=[Ecos(wt - & -7 + 8)Ji + [E'cos(wt =& -7 + 5,) , 32

3.1.1- The Jones Vector Of A Uniform TE Plane Wave

If it is assumed that the wave propagates along the positive direction of the z-axis of a
xyz Cartesian coordinate system and if, in addition, the unit vectors & and & are
chosen parallel to the positive directions of the x- and y-axes respectively equation 3.2

becomes

E(z,t) =[E, cos(at —277[z +6,)1% +[E, cos(ar —g/%z +5 )13 33
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Because the wave is uniform, the electric field is the same at all points in a plane

wave front, at a fixed z position and because it is traverse-electric (TE), there is no

. .o 2T,
field component along the direction of propagation x = (—f—)z .

Equation 3.3 can be written in a more concise form by:

1- Writing 3.3 in a 2x2 matrix form as:

E_cos(at —z—ﬂz +6,)
E(z,0)=| _ 2’}[ : 34
Eycos(a)t—Tz +0,)

2- Separating the time and space components as:
; E
E(z)cos(wt) = e /2% =€ 5 |cos(ar). 35
J

Where n is the index of refractive and 4, is the vacuum wavelength.

3- Dropping the spatial information about the wave by considering the field over one

fixed transverse plane Z = 0 of the xyz coordinate system.
Ee
EQ0) = 8, | 3.6

The vector E (0) is called the Jones vector of the wave. The Jones vector contains

complete information about the amplitudes and phases of the field components and

hence about the polarization of the wave.

24



Equation 3.6 can be written in a more general form as

EX
E=[ } 3.7
E

where E, =|Ex|ej5‘, E, =lEy|ej§y ,
and the dependence on z can be explicitly included as
E(z) = e ™' R E(0). 3.8a

Writing this equation in a matrix form

E,] e-j2nz7z//7,, 0 E, 28b
E. |- 0 e—j2nZﬂ'//7n E | '

Which is the transformation of a Jones vector under a coordinate translation parallel
to the direction of propagation (the primes referring to the new coordinate).
The Jones vector after a counter clockwise coordinate rotation through an angle

about the z-axis is given by

E,, =R()E_,, 39
where the rotation matrix R(«) is given by
R(a) = I: co.sa sin a} . 310
—-siha cosa
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3.1.2- The Wave Intensity

The wave intensity I is simply expressed as the sum of the squared amplitudes of the

component oscillations along two mutually orthogonal directions.

1=|E| +|E,| =E; E,+E;} E, 3.11

E.I

and in a more compact form

I=E"-FE, 3.12

where E* is the Hermitian adjoint of E, defined as the complex conjugate of the

transpose of the matrix.
3.1.3- State Of Polarization

Information about the ellipse of polarization can be extracted from the two-

component cartesian Jones vector of equation 3.7, if we take the ratio

Ey — lEy’ ej(éy_‘sx)

= , 3.13
x E, |E,
where
£,
4 =E—, arg(y)=6,-9,.

For (6, - 6,) =0, the polarization is linear and for (5, —6,) # 0,7 the polarization
becomes elliptic. Circular polarization is a special case of elliptical polarization; that

is for (4, —51)=i%7z and lEyl =

Ex
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3.2- Propagation Of Polarized Light Through Polarizing Optical
Systems

3.2.1- Transmission Type Device

Polarizer and quarter wave plate:

For a light wave propagating through an isotropic medium, the outgoing (E,) and the

incoming ( E;) Jones vectors are related by a transformation matrix called the Jones

matrix T and it is written as follows

E E, -j2ndr/ 4, 0 E,
=1 *i=|¢ endnii | g | 3.14
Eoy Eiy 0 e Eiy

Where n is the refractive index of the isotropic medium of thickness d and A, is the

wavelength of the light in vacuum. For an absorbing medium n is substituted by
n—ik (k is the extinction coefficient). The wave propagating through the medium

will be retarded by 2ndx/ A,, and the medium is called an isotropic retarder (or

phase-plate).

Suppose light is travelling in a direction perpendicular to the optical axis of a
medium, which is uniaxially linearly birefringent and transparent. If the wave is
linearly polarized parallel to the optical axis, the wave will experience a specific

refractive index n, and will travel at speed c / n,, if the wave is orthogonal to the
optical axis, the wave will experience a different refractive index n, and will travel at
aspeed ¢ / n,. Where n, and n, are called the ordinary and extraordinary refractive

indices of the medium respectively.
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For waves having components parallel (x) and perpendicular (y) to the optical axis,

the effect of the propagation through a distance d is described by

E E. —j2ned7r/ﬂo 0 E.
*l=T1| *|=|¢ : =1, 3.15a
E E, 0 o J2ndrl A\ E

Here the medium is acting as a linear retarder (like a quarter wave plate).

One can rewrite the transmission matrix T as

5|1 O
T=e™ [ ’ .5} : 3.15b
0 e’

where 8, =2/m,d/ Ayand 6 = 2:d

0

(ny,-n,).

The quantity (n, —n,) is called the birefringence of the medium. For negative

birefringence the x (optical axis) and y-axes are called the fast and slow axes

respectively.

For a medium, which is both isotropically- refracting and isotropically- absorbing at
the same time, a plane wave is retarded and attenuated, after travelling a distance d.
This medium acts as an isotropic retarder and absorber. This can be described by a
Jones matrix by direct substitution of the complex index of refraction (n —ik ) in place

of the real index of refraction n in equation 3.14 and is given by

- J2n=k)dz/

_ 0
T = 0 -i2n-k)dzl J | 3.16

k is the called the extinction coefficient (attenuation) of the medium.
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The amplitude of oscillation of the electric field (linear, circular or elliptic) decay with

distance according to

1

Ad) = A0)e ™, 3.17
while the intensity of the wave I = A* fall off as }

1(d) = A*(0)e™ 3.18
where A(0)is the initial amplitude and

47k
a =
/10

, 3.19

is the absorption coefficient. Since the absorption and refraction properties of the

medium are both isotropic, the ellipse of polarization remains unchanged.

If the medium is uniaxially linearly dichroic, a linearly polarized wave will be

attenuated by different amounts depending upon the direction of the vibration with
respect to the optical axis. Let k, and k, be the extraordinary and ordinary extinction
coefficients for light linearly polarized parallel and perpendicular to the optical axis

respectively. The Jones matrix can then be obtained by generalizing equation 3.16 as

follows

T - -j2ndr/ A, e_j2ked7r/ﬂ.0 3.20
=¢ 0 - I2kedm ] Ay | )
Which can be rewritten as
. -1a1d . 1 d 1 0
T - e-]2nd7r/ﬂ.0 e ? 10 _ e—]2ndﬂ/ﬂ.oe-5a1 -
0 e_iazd 0 e?2 R 3.21
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4 4
7k,  a, _ 4, 4 a=4—ﬂ(ko —k,),

where o =——-
2’0 2’0 2’0

represent the extraordinary, ordinary and relative absorption coefficients, respectively.

The quantity (k, —k,) is called dichroism. The medium acts as a linear partial

polarizer. A special case of the linearly dichroic device is an ideal linear polarizer. In

this case k, =0, k, = and the Jones matrix assumes the simple form.

7= 2rdnl &y [(1) g} 3.22

3.2.2- Reflection-Type-Device

A reflected electric field E, from a sample (S) can be given as a product of the Jones
reflection matrix B and the incident electric field E, as E, =RE,, where the

reflection Jones matrix is given by:

_| 7 0 _ lrple_j5P 0 323
& |:0 rs] { 0 rle % | )

Figure 3.1 shows a typical ellipsometer arrangement. A well collimated beam of

monochromatic circularly or unpolarized (natural) light from the source L is passed
through the linear polarizer P and a linear retarder or compensator C. Light incident to
the sample S is polarized and the state of polarization is controlled by the azimuth
positions of the polarizer and compensator around the beam axis. The linear analyser
A followed by a photodetector D analyzes the modified state of polarization of the
light beam reflected from the sample. The orientation of the polarizer, compensator
and analyzer around the beam axis are specified by the azimuth angles P, C and A,

respectively.
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3.3- Operating Principle Of The Ellipsometry

3.3.1- Ellipsometer Transmission

The polarizer and the analyser have transmit (t) and extinguish (¢) axes with the
transmit axis at angles P and A to the x-axis respectively (figure 3.1). The
compensator (quarter wave plate in this case) has fast (f) and slow (s) axes with the
fast axis at an angle C to the x-axes. For unpolarized or circularly polarized light

incident on the polarizer the output becomes linearly polarized, and is given by
e 1
Er=A4, [o] , 3.24

where the superscript denotes the coordinate system while the first subscript denotes

the ellipsometer component and the second either its input (I) or output (O). A, is a

complex constant. The coordinate system t- has to be rotated through the angle
a = -(P-C) to change to the new fast (f) slow (s) system at the input side of the

compensator.

EL=R((P-CHE",.

A cos(P-C) —-sin(P-C)|1
- "Plsin(P-C) cos(P-C) ’

_a, [c?s(P -C )} . 3.25
sin(P-C)

The Jones matrix for the compensator in the f-s system is given by

. 1 o0
TC = AC 0 e—jé'c ’
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hence the electric vector at the output side of the compensator
1 0 |cos(P-C) cos(P-C)
f J L. )
= =A.A . =A.A . . 3.26
Eco=TcEa=4 P[O e % :|[sin(P—-C):| ¢ PL"‘% sin(P-C)

To examine the effect of the sample (S) upon reflection the coordinate system has to

be changed from f-s to x-y or p-s. Rotating f-s through an angle of -C does this.

E;’IS =R(-C) Eﬁo ’

cos(C) —sin(C)}|: cos(P-C) }

=A.A )
¢ P[sin(C) cos(C) || e’ sin(P-C)

_ _ pdbc of ; _
cosCcos(P—-C)—e’“sinCsin(P C)} 3.27

=A A ‘ .
¢ P[sinCcos(P—C)+e_"5C cosCsin(P-C)

The electric field vector after reflection from the sample is
ps xy ps ps r 0 ps
ESOZESO:TS ESI=I:OP rleSI’

where r,and r, are the complex amplitude reflection coefficients for p and s

polarized light. Therefore

_ _ ,7Ibc a3 1 -
r,[cos Ccos(P—C) —e™* sinCsin( P C)]}_ 3.28

P = AA -
Eso=AcA r,[sinCcos(P—C) +e ' cosCsin(P-C)
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Rotate the p-s system through an angle A to change to the t-e system at the analyser
E.=RAE

cosA sin A:l{rp[cochos(P—C) —e % sinCsin(P - C)]} 329

r.[sinCcos(P~C) +e™’¢ cosCsin(P—C)]

=A.A
¢ P[—sinA cos A

—aa| P08 Alcos Ccos(P —C) - e sinCsin(P — C)]+ r, sin A[sin C cos(P - C) + e"** cos Csin(P - C)]
~ T — r, sin Afcos Ccos(P - C)— e % sinC sin(P — C)]+ r, cos A[sin C cos(P - C) + e % cos Csin(P - C)]

Finally at the analyser output,

te te e 1 0 te
EA0=TAEAI=AA|i0 0:|EAI’

CAAA [rp cos Afcos Ccos(P — C) —e ™% sin C sin(P — C)]+r, sin A[sin Ccos(P - C) + e " cos Csin(P - C)]]
T LA P

A, H 3.30

Where A, = A,A.A, and

L =r, cos Alcos C cos( P—C) - e ¢ sin C sin( P — C)] + r, sin Alsin C cos( P -C) +e7%% cos C sin( P-C)]

The intensity (I) of the light emerging from the analyser is given by
I=E'E

where E* is the Hermitian adjoint of E
I=EEs=1a[ |1 =c6lrf , 3.31

where G =|A;[" =|4,|"|Ac||As| and |L] =L - L.
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Hence the detected signal intensity can be written as a function of ellipsometer
parameters: I = f(P,C, A, e %, r, r,)and the parameters are
e The azimuth angle setting P, C and A

e The slow and fast relative complex amplitude transmission of the compensator

e The s and p Fresnel’s complex reflection coefficients of the optical system.
For fixed angles o =12[— and C =§ equation 3.31 is a periodic function of the

polarizer and the analyser azimuth angles with a period of z. Thus if a null is

obtained at (P,A), an infinite number of trivially related nulls are obtained at

(Ptmn,Axnr), where m and n are integers.

3.4- Null Ellipsometry

Null ellipsometry is based on finding a set of azimuth angles for the polarizer,
compensator and analyser (P, C, A) such that the light flux emerging from the
analyser is extinguished. Besides the three azimuth angles, the relative retardation &
of the compensator is a fourth parameter that can be adjusted in a search for the null
condition, if a variable-retardation compensator is used. Ideally the null condition
corresponds to a zero detected signal (I =0 ), which implies that L =0. Fixing the

value of the relative retardation (3. ) at an angle equal to 7 /2 and applying the null

condition to equation 3.30 we obtain

3.32

r A{tanC+e‘j‘5C tan(P——C))}

=-L =—tan ,
p r 1-e¢ 7 tanCtan(P-C)

s

Where p is the ratio of Fresnel reflection coefficients r, and r, for p and s

polarization respectively for one set of nulling angles (P, C, A). The ratio p can

therefore be measured with ellipsometry.
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For fixed values of 6, = % and C = g , equation 3.31 will reduce to

p =—tan Aexp[—j2(P - 4lﬂ')] . 333

If (P, A) represent one set of nulling angles, an associated pair

(P,A)=(P +%7r,7r — A) represents another distinct set of angles. One can rewrite

£ 1n terms of its magnitude | p| and its phase 4 as

_'p _ iA
p= L2 = o, 334
Where
|p| =tan A=tany
1 3.35
=2P+—7m =6, -0
2
T
Then p=tanye” =-*£. 3.36
r

s

The angles w(0° <y <90°) and A0’ < A<360°) are called ellipsometric angles
of the reflector (sample). y is the angle whose tangent gives the ratio of the

amplitude attenuation (or magnification) while A gives the difference between the

phase shifts experienced upon reflection by the p and s polarizations, respectively.
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CHAPTER 4

Theoretical Considerations On Doping Superlattices

4.1- Structure Of A Doping Superlattice

Semiconductor doping superlattices (DSL’s) are composed of a sequence of ultra-thin
crystalline layers of alternating doping of n- and p- type, in some cases separated by
undoped (i) intrinsic layers (n-i-p-i crystal). In a compositional superlattice, the two
different semiconductors with different band gaps should have a nearly equal lattice
constant to minimize lattice mismatch. But a doping superlattice consists of a
homogeneous material modulated only by a periodic n- and p- doping. The amounts
of impurities used for the doping are relatively small and hence induce only a minor

distortion of the crystal lattice of the host material.

A superlattice has some striking features: (1) In a doping superlattice the conduction
and the valence bands are modulated by a periodic space charge potential created by
the dopants. As a result the conduction band minima are shifted by half a superlattice
period with respect to the electron state near the top of the valence band (indirect band
in real space). (2) A large deviation of electron and hole concentrations from the
equilibrium values even at very low excitation intensities. This is due to the
enhancement of the electron and hole recombination lifetime relative to that of the
bulk. (3) This deviation of carrier concentration varies the space charge, which result
in a substantial change of the effective energy gap. The effective gap of the DSL is
thus no longer a fixed parameter of the system, but a quantity, which may be tuned by
changing the non- equilibrium electron and hole concentrations. Such doping
superlattice structures can be grown by the organo- metallic vapour phase epitaxy

(OMVPE) process.
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4.2- Electronic Structures

4.2.1- Self Consistent Calculation

The periodic potential in a doping superlattice is exclusively space charge induced.
This is in contrast to the compositional superlattices, where the different band gap of
the components induces periodic variations of the band edges. A particular advantage
of doping superlattices with respect to the theoretical treatment of the electronic
structure is that we are dealing with a homogeneous semiconductor, which is only
modulated by the superposition of a periodic superlattice potential. For a doping
superlattice with no other impurities present than shallow donors and acceptors, one
can express the space-charge distribution of the individual doping atoms by a

homogeneous distribution function en,(z) for donors and -en,(z) for acceptors
varying periodically in superlattice direction z; where n, and n, represent the donor

and acceptor concentration respectively. Then the charge distribution of these

impurities is given as [2]
Po(2) = e[np(2) —n,(2)]. 4.1

The contribution of these bare ionized impurities to the superlattice potential v,(z) is

then given by the solution of the Poisson equation (in SI units):

0*v,(z) e e’
802 = pO(Z) =
Z ER€

[n,(2)—n,(2)]. 4.2

ERE,

o

where £, and ¢, are the static dielectric constant of the bulk semiconductor and the

permittivity of free space. Poisson’s equation is subjected to the boundary conditions:

WV, (2)

=0, 0)=0.
oz vo(0)

z=0
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In one dimension equation 4.2 has a solution [1}:

2 z 4
vi(2)=— Idz’ jdz" [n,(2)-n,(2)], 4.3
Eo€r o

Except for the case of a compensated doping superlattice, which contains the same

amount of donors and acceptors per period d, i.e.

d/2 d/2

[dn, ()= [dan,(2), 4.4

-d/2 -d/2

the condition of macroscopic neutrality of the crystal requires a periodic electron or
hole space charge distribution —en(z) or ep(z), respectively. These mobile charges

provide a Hartree contribution to the superlattice potential [1]

4

vy(z) = ¢ ]dz’ .[dz” [n(2) +p(2)]. 4.5

Er€, 9

The exchange and correlation correction due to the free charge carriers can also be

taken into account by adding the factor V,.(z) to the superlattice potential (P. Ruden

and G.H.Déhler 1983) [2]

2 4r 2
1% ——0.611(—° 3 4.6
we(?) (47Z8R80 )(3n(z))

The final superlattice self-consistent potential v_(z) is the sum of the bare ion

contribution (4.3), the Hartree part (4.5) and the exchange and correlation potential
(4.6)

Vie(2) = vi(2) + vy (2) + Ve (2) 4.7
For a known shape of the superlattice potential v _(z) the discrete energy eigenvalues

&; ,can be obtained for the electrons and holes in the potential wells by solving the
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Schrodinger equation. The self-consistent one-particle Schrodinger equation, which

have to be solved, is [1]

{_(h2 /2m)A+ vsc(z)}¢i.p.x. (r)= Eiu (K)¢i.p.x. (r) 4.8

The subscript i stands for electrons in the conduction band (c), light (vl) and heavy
holes (vh) and possibly spin-orbit split-off holes (vs). The index ©=0, 1, 2, ...and the
wave vector k are the quantum numbers of the subbands.

Separating the quasifree particle solution for propagation parallel to the doping layer

with kinetic energy A’ /2m, from the z-dependent motion in the superlattice

direction one obtains

Bir () = €xp(in 1 Wi (1S, k. (2) 4.9

where u,;, (r)is the lattice periodic parts of the Bloch function of the i-band at «,

and &, . (z) is the envelope function of the i, # subband with momentum «,. The

ipx,

Schrédinger equation then reduces to

Sy (@D (D) = £, (K)E . (2) 4.10

[2mi dz?

and the subband energies become

£, (K)=P’k/2m, +¢ ,(x,) 4.11

The x, dependence of ¢, ,(x,) in equations 4.10 and 4.11 may be disregarded by

neglecting the interaction between neighbouring potential wells and the envelope

function becomes:

& ux, (D) = D exp(ik md)E, , (z—md). 4.12

Where ¢;, and &, (z) are the eigenvalues and eigenfunctions for a single potential

well.
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ignoring the contribution from the Hartree potential (4.5) and the exchange and
correlation correction (4.6). The subband energies and the envelope wave functions
are exact solutions of the harmonic oscillator within the parabolic part of the

respective potential, with

g, = H—2—1"[u+ Ly inev). 4.14a
' EoExM, 2
and
_ Ny an 1 .
&,, =hi[—=—]"[u+=], (ineV). 4.14b
EoExM, 2

for electrons and holes (light and heavy) respectively.

Energy values given by equations (4.14) are the offset values from the bottom of the
potential well in which the electrons and holes are situated. The band edge energy
should be included to obtain the total energy from which the effective band gap can

be calculated. Total electron energy in the conduction band is therefore
. =E,-Vy+¢,,, 4.15a

and the total energy in the valence band is

p,=Vy—¢€ 4.15b

vh,u?

The effective band gap is then given by
eff .0 _
Eg - ¢c - ¢v ’
=E, -2V, +&4+6,,- 4.16a

The ground state effective band gap at room temperature (300k) for d, = d,= 40 nm

is given by

ET =E' -2V, +¢,,+¢,, =(1.422 —0.55 +0.021 +0.07)eV =0.963¢V 4.16b
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4.2.2- Effective width approximation

Usually, the so-called effective width approximation is used to describe the DSL
potential v,(z) , which include flat and linear neutral parts and parabolic sections in
between. This approach is especially suitable at low temperatures and for large
superlattice periods d =d, +d, +2d, [17]. In another variation n-i-p-i crystals
constitute a semiconductor structure with a series of n and p types in between which
undoped regions can be arranged. Figure 4.2a shows homogeneously doped n and p
layers of thickness d, and d, with donor concentration n, and acceptor
concentration n,, respectively, with intrinsic layers of thickness d; in between. The

rectangular blocks represent the homogeneous doping profiles, which are symmetric

with respect to the origin, placed in the middle of an n-type doped layer.

G.H.Déhler et al (1982) [3] calculated the periodic space charge potential of such a

nipi superlattice with the following approximations. (1)- Assume that the impurity
space charge is exactly neutralized in the central region of width d,” and d poin the

respective n-and p-layers by free carriers, whereas the impurity space charge is

uncompensated in the remaining fractions of the doping layers of width [3]

2d' =d, -d’ 4.17a
and

2d; =d, -d?, 4.17b

respectively, due to the free carrier diffusion into the intrinsic layers where electrons
and holes neutralize each other (See figure 4.2b). (2)- Any subband effects resulting
from the quantization of the motion in the direction of periodicity may be neglected, if

the layers are sufficiently thick.






See figure 4.2c for the space charge potential calculation. The periodic space charge

potential v,(z) for —d/2 < Z < d/2 will be the contribution from the neutral part of the

doped layer (1), the ionized region (2) and the intrinsic layer (3). The space charge

potential in the corresponding regions is then [3]:

(1) Constant in the neutral part of the doping layers, i.e.,

0 for |z|<
Vo(2) = 44 5 4.21
2AV  for ( P)<|zi<§
(2) Parabolic in the ionized impurity regions, i.e. in SI units,
e n d}
26‘ N )(l | 22
vo(2)= 0 or 0 0° 4.
e’n d dp d- d—-d
2AV — 4z or P <le < £
Go =570 for 5 <l <=5
(3) Linearly increasing in the intrinsic layers i.e.,
d’ d;
vo(2) = (e 2080y Ee 1] - <<y, 423

R

And the amplitude or the total modulation width 2AV of the space-charge potential

(see figure 4.1c) is given by

24V = (5)=vo() = (-5 )[”D(d)

0

P (;1”) +n,d’d.]. 4.24
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The potential v,(z)is modulating the conduction and the valence bands. For the band

edge one has

£(D)=E, +v,(2), 4.25a
and e(D)=E, +v,(2), 4.25b
with E.=E,+E,. 4.25¢

Therefore, the effective energy gap E.” of the doping superlattice, i.e., the energy

difference between the lowest electron states in conduction band and the uppermost

hole states in valence bands, is reduced by 24V compared with the unmodulated

bulk value E;’ due to the periodic space-charge potential (quantum effects are

neglected)
Ej"=6(z=0)-¢,(z=d/2)=E;-24V . 426

the difference between electron and hole quasi-Fermi-levels Ag,, corresponds
approximately to E;* as long as there are neutral regions of a finite width, d % and

d}, in the doping layers.

For a thin layer or for d’ and dp equal to zero, the space charge potential v,(z),

(4.22) and (4.23) and the amplitude 4.24 can easily be shown to reduce to [2]:

2
d
(;ﬁ)zz for |z|$ 2"
vo(2) = i L 4.27
24V - E o for Sl 2
26,6, 2 2 M2
for the parabolic parts in the doping layers,
e’n,, d d d-d
v (2) = 7l-—2) for =<7/ < £y, 4.28
o) =GN e=) for F<ld <)
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for linear parts in the intrinsic regions and

2

2 2
24V =( e ))(nDd +nAdP +nandi
EyER 8 8 2

n

), 4.29a

is the maximum height of v, (z) (total modulation depth) [2]

Which also reduces to

2 2
g4y =& o 4.29b
Eo€p
for d,=d,,n,=n,andd, =0.

4.2.3- The Pumping Factor -r

In the formulation of D.V.Ushakov et al (1997) [17], for optically or electrically
excited DSL’s a pumping factor r is introduced in the expressions for the effective

doped layer width, equation 4.17. And hence the effective doped layer width is now

given as:
n™®
2d; =d,(1- y=d,(I-r), 4.30a
nD n
(2)
- p npd,
2d,=d,(1- y="2"2(1-r), 4.30b
n,a, n,
n®
where r= R 4.30c
nan
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is the pumping factor [17]. From macroscopic electroneutrality condition follows the
equality

p® =n® +n,d, —npd, = n®+N, 4.31

where N is givenby N=n,d, —nyd,.
The pumping factor r is a function of the two-dimensional carrier concentration
(n®and p?@) and varies between almost zero and up to one for a highly excited

superlattice. The potential profile depth as a function of this pumping factor can easily
be derived from equation 4.24 with appropriate substitutions (Appendix B). And this

1s written as follows:

2
24y =8 9g  Wa M) 4oy gy 4 . 432
dey6p 2n, 14 4n,d,
(ny +npld,
and this will reduce to
e’n,d r
24V = 212d, +d, [1-rRk1- , 4.33
Eoép 1+g_dL
d

n

for n, =n, and d, =d,. And for DSL without the intrinsic layer, 4.32 reduces to

2 2
e‘nyd,;

24V = [1-rP. 4.34

de,ep

Equations 4.32-4.34 show that the pumping factor has a larger influence for a

compensated superlattice without the intrinsic layers.
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CHAPTER 5

Sample Parameters, Experimental Set-up, Measuring

Techniques And Equipment Used

Sample parameters, measuring techniques, experimental set-up and equipment used
throughout the whole experiment will be discussed in this chapter. This chapter is
divided in to four parts: part A concentrates on sample parameters, part B will discuss
the ellipsometry measurements, part C will cover the near infrared reflectance
measurements, and part D will concentrate on photoluminescence and Raman

(resonant and normal) measurements.

Part A:

5.1- Sample Parameters
5.1.1- Growth of GaAs doping superlattices by OMVPE

The GaAs doping superlattice (DSL) structures were grown by low-pressure OMVPE
on semi-insulating GaAs substrates at a temperature of 650°C. Purified hydrogen
was used as the carrier gas with a flow rate of 600cm® / min. Trimethylgallium
(TMG) and arsine (As H,) were used as the group III and V sources for the growth of
GaAs, with a III/V ratio of 1/150. In the doping superlattices, the n-layers were doped
with tellurium atoms to produce a donor concentration of n, =10 atom/cm’® and
the p-layers were doped with zinc atoms to produce an acceptor concentration of

n, =10" atom/ cm® . The doping concentrations in the DSL’s were chosen to be as
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high as possible in order to produce a large space charge poténtial at the p-n
interfaces, and thus achieve a large modulation of the host band structure. An
undoped GaAs buffer layer 0.5micron thick was first deposited on the GaAs substrate.
The first superlattice layer deposited on the buffer layer was p-doped, while the last
(top) layer was n-doped in the sample. In this experiment the thicknesses of the n-

doped (d,, ) and p-doped (d ) layers of the DSL’s are the same and equal to 40nm.

n Pl n | P Substrate

Figure 5.1 shows the layer sequence in the 'np’ doping superlatice.

The layer thickness dn=dp=40nm.

5.1.2- Post Growth Modification Of GaAs Doping Superlattices

Four pieces of GaAs doping superlattices were cut from the same disc. Three pieces
were implanted with hydrogen ions while one remained virgin. The hydrogen ions
were implanted with a beam diameter of about 2mm. The hydrogen implantation
doses for the three samples were 1072 em™, 10™ cm™ and 10" cm™ . Ellipsometry,
near infrared reflectance, PL and Raman measurements were taken for these samples.

After these measurements, the samples were annealed at high temperature for about

two hours, to remove implantation related damage. The sample with 10% cm™
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2- Compensator:

A similar divided circle assembly, complete with opposing verniers, mirrors,
magnifiers and fine motion tangent adjustment supports a rotating dovetail mount,

designed to accommodate a suitably mounted (mica) quarter wave plate.

3- The Analyzer:

The final component is a telescope and rotating Glan-Thompson prism assembly
identical to the collimator but supported by a bearing, which permits it to rotate
around a central axis to change the angle of incidence and reflection to and from the
substrate surface. This angle is measured with a horizontally divided circle, diameter
6.5/8 in., divided into increments of 20 minutes and read by opposing verniers to an

accuracy of 20 seconds.

5.2.3- Experimental Techniques

The experimental procedure for the measurement of ellipsometric angles will be given
in this section. This section is divided in to two parts: part one is devoted to the

calibration of Ellipsometer while part two discusses the measuring procedure.

5.2.3.1- Ellipsometer Calibration

The analyser, compensator (quarter wave plate) and the polarizer circle should be
calibrated before taking measurements to avoid offsets of the actual O degree settings.
The following steps were used for the calibration of the ellipsometer in the order:
analyser-polarizer and finally the compensator. One can also do it the other way round

(polarizer- analyser and compensator).
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1- Calibration Of The Analyzer Circle

Steer the probe beam through the aperture to the telescope of the ellipsometer
while the quarter wave plate is in position.

Mount a clean quartz plate, for which the refractive index is known, in the
sample holder. The quartz plate must be thick enough or coated at the back
(black) to avoid additional reflections from the back surface.

Set the ellipsometer table to 180°.

Rotate the sample (quartz) holder until the reflected beam retraces to the
incoming laser beam. Fine tune left/right and up/down with the three levelling
screws attached to the sample holder for final adjustments.

Rotate the table through 180° —@,, where 6, is the Brewster angle, and
fasten. This angle differs for the different probe beams used. The probe beams
(He-Ne-laser) used are red (632.8nm), yellow (594nm), and green (543.5nm)
and the corresponding Brewster angles for quartz are 55°32 =55.53°,
55°34 =55.57° and 55°36’ = 55.60° respectively.

Rotate the telescope until the ellipsometer table shows an angle equal to the
Brewster angle.

Set the analyser circle to zero transmission to locate the zero position of the
analyser (analyser is at horizontal). This setting shows the deviation 4A from
the actual analyser position, which is at 0° (44 could be >0 or <0). 44

must be subtracted from the reading A, to find the correct analyser position

(A=A, - AA).

2- Calibration Of The Polarizer Circle

Remove the quartz plate. Rotate the telescope back to 124°28 = 124.47°,
124°26'=124.43° and 124°24’ =124.40° for the red, yellow and green

laser beams respectively.

Rotate the table back to 180° and check that the beam still passes through the

telescope.
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e Remove the quarter wave plate and leave the analyser at zero transmission
(44).

e Set the polarizer to the zero beam transmission position. This setting is the
90° setting of the polarizer (polarizer is vertical). Let AP (=0 or <0) be the
deviation of the polarizer from the actual value at zero transmission setting.

AP must be subtracted from the reading P; to find the correct polarizer

position (P = P, —AP).

3- Calibration Of The Quarter Wave Plate Circle (Compensator)
e Replace the quarter wave plate (compensator).
e With table at 180° the polarizer is set at +45° + AP and the analyser at
—45° + MA.
e The setting that extinguishes the beam will give the desired inclination of

+45°of the fast axis of the compensator. The compensator circle was set at

and locked in this orientation. Now the ellipsometer is calibrated.

5.2.3.2- Measurements Of The Ellipsometric Angles

In this section the measurement techniques will be discussed step by step. Three
different probe beams at different intensity were used in this experiment. All
measurements were performed in air in a dark room over a range of angles of
incidence between 50° and 80° inclusive in steps of 5°. For each and every angle of
incidence five measurements were taken and the average values were recorded to
minimize the experimental error. A monochromatic beam passed through a variable
polarizer (P) to produce light with a known polarization state. This light interacts with
the optical system (sample) and its polarization is modified. A variable polarization
analyser measures the modified state of polarization at the output. The procedure is as

follows (Refer to figure 5.2b):
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Steer the probe beam through the ellipsometer.

Mount the sample in the sample holder and set the ellipsometer table to 180°
and fasten. Note that the sample holder and ellipsometer table rotate separately
about the same axis.

Rotate the sample holder until the reflected beam retraces the incoming beam
and fasten the holder. The overlap is checked on the pinhole (see figure
45.2b). Use the levelling screws if necessary.

Turn the ellipsometer table to 780° minus angle of incidence.

Swing the telescope to the angle of incidence and fine-tune it to get the
reflected beam to pass through the centre of the analyzer.

Adjust the analyzer circle and the polarizer circle in such a way that the
reflected light through the analyzer extinguishes. These extinction settings of
the analyzer and the polarizer were determined by the direct visual method.

Two possible extinction settings of the analyzer (A and A,) and the
polarizer (P and P ,) are always found. The extinction setting A, and Ay
should always be in the fourth and first quadrant respectively while P, is
either in the first or second and P, > P,. The deviation 4A and AP must be

subtracted from the readings before evaluation.

Extinction Settings:

The extinction settings of the polarizer and analyzer were obtained by the direct visual

method. This is done by direct viewing of the reflected beam with a Gauss eyepiece

on the telescope while simultaneously adjusting the analyzer and polarizer circles.

This method suffers from the disadvantage that measurements must be made in a dark

Variation of intensity:

The second polarizer P2 shown in fig5.2b was set at horizontal and remained fixed

throughout the whole experiment. The first polarizer P1 was used to vary the
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intensity, as a DSL is very sensitive to the illuminating laser power (intensity). The

quarter wave plate (QW) with its fast axis set at 45 ® to the optical axis was located
after the horizontal polarizer. Hence the light beam incident to the ellipsometer
aperture becomes circularly polarized. Having a circularly polarized beam will avoid
the false null position relating to the laser source instead of the sample. The pinhole

(PH) was used for the back reflection adjustment.

Part C:

5.3- Near Infrared Reflectance Measurements

In this section, the experimental set-up, equipment, experimental techniques and

method of obtaining reflectance will be discussed briefly.

5.3.1- Experimental Set-up

The schematic layout of the experimental set up and instrumentation used for the near
infrared room temperature measurements are shown in figure 5-3b (section 5.3.3). A
0.64m Jobin Yvon monochromator with a cooled germanium photodiode and lock-in
amplifier was used for this experiment. The germanium photodiode is connected to a
200V high voltage source. The slit width was set to 1mm, which gave a resolution of
12 angstrom. The spectral recording was made with a step length of 5 angstrom.
Samples were illuminated with a collimated white light beam about 1mm wide from a
low power (20W) tungsten halogen lamp at an angle of incidence of 5 ’ measured
from the sample normal. The reflected signal from the sample, which passed through
the collimating lens and horizontal polarizer, was chopped at about 15 Hz before
passing through the entrance slit of the monochromator. This was necessary because a
lock-in amplifier was used to process the recorded signal. The incident polarization
(horizontal) of the light was maintained after reflection by putting a second polarizer

between the sample and the monochromator. This prevents depolarization, which may
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occur due to reflection. Reflected light was focused by a lens of 100mm focal length

on to the entrance slit of the monochromator.

5.3.2- Equipment

This section gives a brief discussion on the operation of the equipment used in the

near IR measurements.

1- Germanium Photodiode

The reflectance measurement was made in the wavelength range 8000-to 15000
angstrom. A solid-state detector (germanium photodiode) was used to detect signal in
this wavelength range. This detector operates at liquid-nitrogen temperature. The
solid-state detector is basically a reverse biased p-n junction diode. When photons
with energy greater than the band gap (0.74ev(~16740 angstrom) for germanium at
0°C) pass through the junction electron-hole pairs are produced in the junction. The
internal electric field in the depletion zone sweeps the electrons towards the n-side of
the junction and the holes towards the p-side. This current is recorded by the lock-in
amplifier. The reverse bias is provided to ensure separation of the electrons and holes

before recombination can occur.

Noise in photo detector

Noise can arise from the random generation and recombination of carriers, giving
fluctuating carrier concentrations (in particular minority-carrier concentration) and
also from the random diffusion (thermal noise) of carriers across the junction. This is

minimized by cooling the detector.
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2- Monochromator

Entrace Slit

Mirror )
C.Mirror

Grating

Exit Slit —7
C.Mirror

Figure 5.3-a Schematic layout of 0.64 m Jobin Yvon Monochromator.

When there is a need to separate light of different wavelengths with high resolution, a
diffraction grating is usually the tool of choice. A large number of parallel, equally
spaced slits (grooves) on a reflecting or transparent substrate constitute a diffraction
grating. The grooves result in diffraction effects that concentrate reflected or
transmitted light energy into discrete directions. With a large number of grooves the
intensity maximum is very sharp and narrow, providing the high resolution required
by spectroscopic applications. In this experiment, a 0.64m focal length concave mirror

and a 1200 grooves/mm grating, Jobin Yvon Monochromator was used (figure 5.3a).

5.3.3- Experimental Techniques

This section is devoted to the experimental procedure used for the room temperature

near infrared measurements.
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The schematic layout of the experimental set-up and instrumentation used for
photoluminescence (PL) and resonant Raman (inelastic light scattering)

measurements is shown in figure 5-4a.

A 0.64m Jobin Yvon Monochromator with S-20 photomultiplier were used for this
experiment. The slit width was set to 0.5mm. Samples were illuminated with a
linearly polarized He-Ne (632.8nm) laser beam. The polarizer and filter shown in
figure 5.4a were only used for the resonant Raman scattering (RR). The polarizer was
used to vary the incident and the outgoing polarization of the laser, since this
measurement is polarization sensitive. The scattered light was focused by a lens of

100mm focal length onto the entrance slit of the monochromator.

5.4.2- Equipment

1-Photomultiplier (PM)

Figure 5.4b shows a schematic diagram of the photomultiplier. The photomultiplier
used for both resonant Raman and photoluminescence measurements was a S-20 with
a photocathode made of Na,KSb-Cs for a wide spectral coverage (0.4 zm to
09 um) and a low work function. The front of the photomultiplier tube (PMT)
contains a photocathode, which emits electrons (photocurrent) when a photon strikes
it (photoelectric effect). The photomultiplier also has numerous secondary electrodes,
called dynodes (made of CsSb). Their potential is increased in succession along the
length of the PM tube. The photomultiplier amplifies the photocurrent by accelerating
the electrons onto successive surfaces (dynodes) from where additional electrons are
ejected (figure 5.4b suggest the process). A resister chain is used to maintain a
potential gradient between the dynode stages. This use of electron multiplication
provides extremely low noise amplification of the initial photocurrent signal. The

final current is collected by the anode.
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A wavelength range of 800 to 960 nm was used for the PL measurements while a 634-
to 955 nm range was used for resonance Raman measurements. The He-Ne laser
sources indicated by A and I in figure 5.4a were used for the alignment and excitation
respectively. The laser spot from source A, which passed through the monochromator,
collimating and collecting lenses should overlap to the spot due to laser source I at the
sample. RR and PL measurements were made with an excitation power of 15mW He-

Ne laser beam and at a sample temperature of 13 K.

The excitation source required for PL measurements may be any source that generates
photons with sufficient energy to excite electron-hole pairs. In this work a He-Ne (cw)
laser source at 632.8 nm was used. Photoluminescence measurements are generally
performed well below room temperature. Cooling of the semiconductor samples
results in sharper, more readily identifiable peaks. Lower temperature reduce the
thermal broadening of the excited carrier energies, which at temperature T is roughly
K,T [19 pp 79]. This gives a significant broadening that at room temperature is
~25meV, but reduce to ~6meV at 77k and less than 1meV at liquid helium

temperatures.

Resonant Raman spectroscopy has proved to be a useful technique for measuring and
studying the subband quantum levels. In this technique the exciting laser line has to
be close to a strong, real interband excitation. For this experiment a He-Ne laser
source at 632.8 nm was used. When a laser is incident on DSL’s, the scattered light
will be frequency shifted. The observed shift in frequency, which arise from the

intersubband excitations, such as between x =0 and u =1 states in a quantum well

will give information about the existence of discrete bound state and their spacing.

5.5- Normal Raman Measurement

Raman spectroscopy has become one of the most widely accepted techniques for the
characterization of DSL materials. In particular, its application as a non-destructive

technique for examining the damage that accompanies ion implantation is well
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5.5.2- Experimental Techniques

Light is scattered from the surface of a sample, the scattered light is found to contain
mainly wavelengths that were incident on the sample (Rayleigh scattering) but also
different wavelengths at very low intensities that represent an inelastic interaction of
the incident light with the material. If the incident photon imparts part of its energy to
the lattice in the form of phonons (phonon emission) it emerges as a lower-energy
photon. This down-converted frequency shift is Stokes-shifted. And it is this weak

Stocks-mode scattering that is usually monitored.

One of the main factors influencing the design of RS experiments is that the weak
Raman signal is spectrally very near the exciting laser light. Thus the weak Raman
phonon peak must be measured against a background of intense Rayleigh scattering.
Raman measurements require a fairly strong laser source, well-designed optics to

filter out the Rayleigh signal, and a sensitive detector to record a very weak signal.

A typical Raman experimental setup is shown in figure 5.5. The laser is focused on
the DSL’s with a lens and the signal usually is collected in a backscattering
configuration. This Raman signal is directed into a double monochromator to

discriminate against the unwanted Rayleigh light and spectrally resolve the signal.

Note that the same photoluminescence and Raman measurements were also made for

the annealed samples.
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CHAPTER 6
Results And Discussion

In this chapter the experimental and theoretical results will be discussed. The
experimental results obtained from single wavelength ellipsometer measurements,
near infrared room temperature reflectance measurements, photoluminescence and
Raman (normal and resonant) spectroscopy measurements are given in this chapter.
The analysis of the results is also included in the corresponding parts of the
measurement techniques used. For convenience this chapter is divided in to three
sections in the following orders:

(1) Ellipsometry Measurements,

(2) Near Infrared Reflectance Measurements,

(3) Photoluminescence and Raman measurements.

6.1- Ellipsometry Measurement
6.1.1- Evaluation Of Ellipsometric Angles And Graphical

Representation

The first problem to be addressed is how i and A are used to determine the sample’s
optical constants. From the experimental set-up for the ellipsometer discussed in the
previous chapter, the experimental ellipsometric angle ¥, and A4,, can be obtained
from equations 3.32 and 3.35 [16]. Consider a single interface (air-solid absorbing
substrate) with (n—ik) the complex refractive index of the second absorbing

medium, where n and k has the usual meaning. Using Fresnel’s equations, it can be

shown that [20,21]
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tan®(@)[cos* Q) —sin’ Qy)sin’ (A)] 6.1

n*—k* =sin (¢)|:1 + [1+sin2y)cos(A))°

ok = sin*(@)tan’(p)sin(4dy)sin(4) 6.2
[1+siny)cos(A)}

Substituting the experimental ellipsometric angles ¥, and A4, obtained into the above

equations, one can determine the optical constants n and k for a single interface
system. However in this experiment a doping superlattice, which is a multi-layer stack
of n and p doped GaAs grown on a semi-insulating GaAs substrate plus the naturally
existing oxide layer on top of the DSL is used. However the thickness of individual
superlattice layer is much less than a wavelength of the incident laser beam. One can
therefore treat the whole superlattice stack as a single layer by using an effective
medium approach [22]. Therefore the samples are considered as an air-thin film
(oxide layer)-substrate (DSL) system. For this system the equations become much
more complicated because they are dependent on the refractive indices, the film
thickness, the angle of incidence, and the wavelength. Hence a computer technique

that shows the graphical representation of the dependence of y and 4 on the

properties of the sample is used. This is done as follows:

The Fresnel’s complex reflection coefficients, r, and r,, can be calculated using a
matrix formalism of thin-film reflection [16] (pp333-340) and by estimating the
unknown optical constants. This allows one to calculate the theoretical values for the
ellipsometric angles, ¥, and 4,. The estimates are then improved until a best match
(on the graphic representation), according to a least squares method, is obtained
between the theoretical (y, and 4,) and experimental (v, and 4,) ellipsometer
angles. These estimates then give the optical constant values. Table 6.1b shows the

optical constants obtained for the samples used in this experiment. The graphical

representations for all probe beams used are shown below.
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Figures 6.la to 6.1c show ellipsometric angle versus angle of incidence for a bulk

GaAs sample for three different probe beams.
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Figure 6.1. A best fit of model parameters to the experimental ellipsometric angles for

bulk GaAs with a He-Ne laser beam at 632.8 nm (a) 594nm (b) and 543.5nm (c).

He-Ne (nm) | BULK DSLHI12 DSLH14 DSLV DSLH16
Red (632.8) | -11.6 -22.0 -21.7 -19.9 -16.2
Yellow (594) | -11.1 -19.6 -18.9 -18.1 -14.3
Green(543.5) | -9.8 -17.9 -16.7 -16.1 -13.1

Table 6.1a shows slope of the A curves around A =90° for figures 6.1, 6.2 and 6.4.
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Figures 6.2a to 6.2d show ellipsometric angles versus angle of incidence for virgin

and hydrogen implanted DSL’s. A He-Ne laser at 632.8 nm is used as a probe beam.
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Figures 6.2(a to d) show a best fit of model parameters to the experimental

ellipsometric angles for an unimplanted (virgin) GaAs doping superlattice sample (a)
and for hydrogen implanted GaAs DSL samples with implantation doses 102 cm™
(DSLH12) (b), 10™ cm™ (DSLHI4) (c) and 10™ cm™ (DSLHI6) (d).
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Figures 6.3a to 6.3d show ellipsometric angles versus angle of incidence for virgin

and hydrogen implanted DSL’s. A He-Ne laser at 594 nm is used as a probe beam.
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Figures 6.3(a to d) show a best fit of model parameters to the experimental

ellipsometric angles for an unimplanted (virgin) GaAs doping superlattice sample (a)

and for hydrogen implanted GaAs DSL samples with implantation doses 10" cm™

(DSLHI2) (b), 10™ cm™ (DSLHI4) (c) and 10%° cm™ (DSLHI6) (d).
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Figures 6.4a to 6.4d show ellipsometric angles versus angle of incidence for virgin

and hydrogen implanted DSL’s. A He-Ne laser at 543.5 nm is used as a probe beam.
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Figures 6.4(a to d) show a best fit of model parameters to the experimental
ellipsometric angles for an unimplanted (virgin) GaAs doping superlattice sample (a)
and for hydrogen implanted GaAs DSL samples with implantation doses 102 cem™
(DSLHI2) (b), 10™ cm™ (DSLHI4) (c) and 10" cm™ (DSLHIG6) (d).

75



6.1.2- Graphical Comparison Of Extinction Coefficient Values

For an absorbing material such as a semiconductor (DSL) the reflectance R, = r, T,

for p-polarized light does not reach zero as the angle of incidence is varied, but rather
exhibits a minimum whose value depends on the extinction coefficient k. The

ellipsometric angle y is a function of R,, and it exhibits a minimum value around

this point. Figures 6.1, 6.2, 6.3 and 6.4 all show the minimum values of y . Figures
6.2, 6.3 and 6.4 confirm that a GaAs DSL (virgin or implanted) with lower extinction
coefficient has a lower value of y . The same characteristic feature of ¥ as a function
of extinction coefficient is shown in figure 6.1 for a bulk GaAs. The angle of

incidence at which R, is minimum is called the pseudo-Brewster angle. Another

important angle of incidence is the principal angle at which the difference 4 between

the phase-shifts &, and &, (3.35) experienced by s- and p- polarization upon

reflection is 90°. The difference between the pseudo-Brewster angle and the principal
angle is usually small (less than 1° in the visible) and tends to zero as the extinction
coefficient k approaches zero [16]. In contrast to transparent materials, absorbing
materials (semiconductors) show a gradual change in A around the principal angle.
The smaller the value of the extinction coefficient k, the more sharp the change in
A (higher slope) around the principal angle. This characteristic feature is observed in
this experiment if one compares the slope around the principal angle for each and

every graphical representation in figures 6.1, 6.2, 6.3 and 6.4 (table 6.1a). The slopes

of the A curve for angles of incidence @ where 70° <@ <80°, that is around the

principal angle are tabulated in table 6.1a for the figures 6.1 to 6.4.

6.1.3- Optical Constant

In estimating the optical constants of the DSL the refractive index of the naturally
existing thin transparent oxide layer was assumed to be 1.64. The thickness of this

layer was also assumed somewhere between 2 and 6 nm [23]. Good model fits
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were obtained for all samples at all wavelengths for a thickness of 4nm, which is
consistent with the work of D.J. Brink et al [9]. Laser power were reduced to below
0.1lmW (intensity ~10°Wm™) until a consistent, i.e. power independent, set of

ellipsometric angles, ¥ and A, were obtained. We assumed that the superlattice was
essentially unexcited at these power levels. This intensity is somewhat lower than

photo luminescence work [24] performed at intensity levels of around 2 x 10*Wm™,
which resulted in a very low excitation level of a similar superlattice. The only
remaining unknown quantity is then the complex index of refraction for the
superlattice, treated as a single effective medium. A summary of best-fit parameter

values is provided in table 6.1b.

Red 632.8nm Yellow 549.0nm Green 543.5nm
GaAs Sample n k n k n k
Bulk 3.856 0.196 3.932 0.235 4.081 0.308
DSLV 3.86 0.27 3.93 0.34 4.09 0.40
DSLHI12 3.86 0.17 3.93 0.25 4.09 0.27
DSLH14 3.86 0.18 3.93 0.29 4.09 0.36
DSLH16 3.86 0.50 3.93 0.64 4.09 0.70

Table 6.1b. Optical constants n (real refractive index) and k (extinction coefficient)
determined by ellipsometry for bulk, virgin and ion implanted superlattices.
Implantation doses are 10* cm™ (DSLHI2), 10" cm™ (DSLHI14) and 10" em™
(DSLHI®6).

As expected in a normally dispersive medium, both n and k increased slightly towards
shorter wavelengths. That is, the wavelength of the probe laser is inversely
proportional to the extinction coefficient of the material [25]. This is also consistent
with the SEO model as the probe wavelengths are still well below the energy position,

E,, of the single oscillator model. For a superlattice the effective band gap is lower

and therefore the photon energies for the three probe laser wavelengths are further
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beyond the absorption edge than in a bulk material and hence a larger k value can be
expected. As shown in table 6.1b, this was actually observed as k changed from 0.196
(bulk) to 0.27 (DSL). For the other two probe wavelengths at 594 and 543.5 nm, k
changed from 0.24 to 0.34 and from 0.31 to 0.40 respectively. Within the accuracy of
our experiment and in line with earlier observations [9] the real refractive index

(above the band gap) for a DSL remains approximately the same as for bulk material.

As expected, ion-implantation results in optical changes. These changes manifest
themselves as a change in the index of refraction n and also in extinction coefficient,
k. Several papers have shown that the extinction coefficient k is a more sensitive
indicator of damage than the refractive index n [9,25]. Values obtained in our present
work also prove this sensitivity on k rather than on n (table 6.1b). The extinction
coefficient k, that is direct measure of the damage created by implantation, changes
rather slowly for the low dosage samples (10 cm™ to 10" cm™ in this work) and
then increases sharply for the higher dose (10% cm™ ), (refer table 6.1b). In the work
of Q. Kim et al [25] they have shown that for a Mg-ion-implanted GaAs sample, both
the refractive index and extinction coefficient increased with implantation dose. This
is also consistent with this work (for only the extinction coefficient) if a comparison is
made between the values of the three implanted samples, DSLH12, DSLH14 and
DSLH16 (refer table 6.1b). However, for the range of doses investigated, n was nearly
unaffected by implantation. Hydrogen-ion implantation initially lowered the value of
k to something close to the bulk material value, presumably due to the formation of
traps at defect sites. At a very high implantation dose, however, k increased again by

almost a factor of two.

6.2- Near Infrared Reflectance Measurement

6.2.1- Reflectance Spectrum

Near-infrared room-temperature reflectance measurements were taken with the set up

shown in figure 5.3b and the corresponding results are shown in figures 6.5a and 6.5b.
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In figure 6.5a, two major differences are observed in the reflectance spectrum of bulk
and virgin DSL. Firstly, the bulk sample shows a higher reflectance value for most of
the wavelength range investigated, indicating that the superlattice stack behaves
slightly differently even well below the effective band gap. Note that they have nearly
equal values around 980nm. Secondly, the DSL spectrum shows some regular but
weak oscillations (interference peak) at wavelengths longer than about 1300nm.The
starting point of the oscillation should be an indication of the point where the DSL
becomes transparent. This oscillation is due to a slight difference in refractive index,
which produces multiple reflections (constructive/destructive interference) between
the air-DSL and DSL-bulk interfaces. At around 1350nm the modulation is disrupted,
presumably due to the presence of a strong absorption feature of water vapour, which
could not be completely eliminated by flushing with dry nitrogen. Above the effective
band gap the DSL is no longer transparent and the DSL bulk interface plays no role at
all. One can consequently roughly estimate the position of the effective band gap by

noting the wavelength where the oscillations start.

Figure 6.5b present reflectance spectra obtained at room temperature in the range
800nm to 1450 nm for hydrogen ion implanted DSL’s at three different doses. The
strong dependence of reflectance on the implantation dose is clearly shown in this
figure. For the implantation dose of 10”cm™ and 10" cm™, the reflectance
increases with increasing dose. However the situation for the sample (DSL) implanted
at a dose of 10" cm™ is quite different. The reflectance of this sample between 800
nm and ~980 nm is higher than for both the virgin GaAs DSL and bulk GaAs. It is
lower than both bulk and virgin DSL in wavelength range of ~980 nm to ~1120 nm
and finally has nearly the same values as the bulk as one goes to the longer
wavelength side while it is higher than the virgin DSL. Generally speaking the
reflectance spectrum for the DSL at 10" cm™ roughly resembles that of bulk GaAs
at longer wavelengths, as is also shown in the calculations of constant parameters in
the SEO model (next section). Note that all spectra exhibit some interference

modulation at wavelengths beyond 1300 nm.
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Figure 6.5a shows the near infrared room temperature reflectance spectra for bulk
GaAs (Top and left hand axis) and for a virgin doping superlattice (Bottom and right

hand axis).
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Figure 6.5b shows the near infrared room temperature reflectance spectra for

hydrogen ion-implanted GaAs doping superlattices. The implantation doses are

10" em™ (DSLH12) middle, 10™* em™ (DSLHI4) bottom and 10" cm™ (DSLHI6)

top curves.
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6.2.2- Evaluation Of The Real Refractive Index

As already stated before, the oscillations in the reflectance spectra are due to a low
refractive index contrast at the DSL-bulk interface. As the amplitude of these
oscillations is quite low compared to the average reflectance, one can, to a good first
approximation, ignore the DSL-bulk interface by simply extrapolating a smooth curve
through the oscillations. This approximation changes the system from a double
interface (air-DSL-bulk) to a single interface (air-DSL) and hence allows the

_+VR)
1-vR)

refractive index of the superlattice. Note that a p-type reflectance is always lower than

application of equation 2.6b [n ] for the evaluation of the effective

for an s-type for angles of incidence other than zero and 90. They are equal at these
angles. In this experiment the angle of incidence was nearly zero (normal incident)
hence the formulas for either the parallel (R,) or the vertical (R,) reflectance
components can be used as R in equation 2.6b. R here is the measured reflectance

value. Applying equation 2.6b to the spectra in figures 6.5a and 6.5b allows the

determination of the index of refraction and therefore also the inverse of
susceptibility, # = (n® —1)”’, enabling one to construct an experimental plot

according to equation 2.10b given below

1 _ 1 _ﬂ__l__Ez
X(E) n(E)2—1 E, E,E, .

p

Plots of the inverse of susceptibility, z~* =(n° —I)*, versus square of photon

energy E? are shown in figure 6.6a for bulk GaAs and a virgin DSL, where the
dashed lines in the figures are defined by equation 2.10b and are the best single-
effective-oscillator (SEO) fit to the data in the low energy range, as this model works

well in this region.
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Figure 6.6a plot of inverse susceptibility 1 =(n® —-1)" versus photon energy
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012

0.08

0.06

BULK GaAs ]

0.06 0.08 0.10

0.14 0.16 0.18

Figure 6.6b Plots of inverse susceptibility 17 =@® -1)" versus (E/E » )* for bulk

GaAs, where E is the photon energy and E, is the energy position parameter in the

single-effective-oscillator model. Dashed lines are the best single-effective-oscillator

fit to the data.
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For the bulk material a good fit is obtained for photon energies below 1.2 eV (~1.4
eV ? on the figure), but between this point and the room temperature band gap at 1.42

eV (2 eV? on the figure) a considerable deviation is observed. This is exactly in

accordance with the work of Afromowitz [5]. For an easy comparison between this

work and that of Afromowitz inverse of susceptibility (n® —1)” versus (E/ E,)? is

plotted in figure 6.6b for a bulk sample.

The negative curvature deviation observed at short wavelengths is due to the
proximity of the band edge and the excitonic absorption. The largest deviation occurs
when strong excitation peaks are present below the interband edge [4]. This
emphasises the reason why the more advanced three-parameter model, which takes
care of the effect of the near band gap, was developed. S.H. Wemple et al [4] and
Afromowitz (for AlAs) [5,26] also obtained an exact fit of the SEO model to the
reflection data without any deviation (not shown). At longer wavelengths, a positive
curvature deviation from linearity is usually observed due to the negative contribution
of the lattice vibrations to the refractive index [4]. The curve for the virgin DSL has
roughly the same shape, but seems to be shifted as a whole to lower energies. This is
due to the position of lowest effective energy band gap of the DSL. Unfortunately the
curve is very noisy at lower energies as the limits of our detection arrangement is

approached and the straight-line fit is not as good for the DSL as for the bulk material.

Since the best straight line fit in figures 6.6a is represented by equation 2.10b, the

E .
and —= respectively.

pEd d

slopes and intercepts obtained should correspond to —

And from this correspondence the two parameters of the SEO model, i.e. the

dispersion energy E, and the energy position E,, are determined. The values are
E,=3.65 eV, E,=36 eV for the bulk GaAs and E,=3.27 eV, E ;=29 eV for a virgin

DSL (table 6.2a). The dispersion and the energy position values for the bulk material

agrees exactly to the result reported by Afromowitz [5] while slightly lower values
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are obtained for a virgin DSL. This is reasonable as the effective band gap for a DSL

is lower than that of the bulk material.

Bulk DSLV DSLH12 DSLH14 DSLH16
Slope -7.590E-3 | -1.046E-2 | -4.254E-3 |-7.972E-3 |-7.0722E-3
Intercept | 1.0111E-1 | 1.1201E-1 | 7.1254E-2 | 1.0736E-1 | 6.1007E-2
Ep(eV) 3.65 3.27 4.09 3.67 2.937
Ea(eV) 36.098 29.22 57.43 34.18 48.143

Table 6.2a. Single effective oscillator (SEQ) parameters for bulk, virgin and ion
implanted DSL’s. Implantation doses are 107 cm™ (DSLHI2), 10" cm™ (DSLHI14)
and 10" cm™ (DSLHI6).
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Figure 6.6¢ plot of inverse susceptibility y™' =(n® —1)" versus photon energy

squared (E*) for hydrogen ion implanted GaAs doping superlattice. The
implantation doses are 107 cm™ (DSLHI2) middle, 10" cm™ (DSLH14) top and
1076 em™ (DSLHI6) bottom curves.
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The inverse susceptibility spectra for the ion-implanted samples are shown in figure
6.6c. The corresponding SEO parameters are summarized in table 6.2a. At an
implantation dose of 10'2 cm™ the inverse susceptibility dropped and substantially
modifies the parameter values to E, = 4.09¢V, Eq = 57 eV. This is not primarily due
to a change in effective gap, but rather to some overall change in material properties
combined with a partial destruction of the superlattice space charge potential due to
the formation of traps at defect sites. Further implantation to a dose of 10" em™
modifies the superlattice to something resembling the bulk material with E, = 3.67¢V,
Eq = 34.18eV. Increasing the dose to 10'® cm™ results in such severe lattice damage
that a straight-line fit can no longer be made to the low-energy region (photon energy
less than 1 eV) where the single oscillator model should fit well. Clearly the model is
no longer valid. At photon energies beyond 1 eV a straight-line fit is possible giving
values of E, =2.94 eV and Eq = 48 eV, but the validity is certainly questionable.

The other three unknown parameters in the Afromowitz model 77, Ef and E; were

also determined in this experiment and are tabulated in table 6.3. These constants
were evaluated in the following way. Firstly £2(E) =2nk is determined using the
data’s for real (n) and imaginary (k) parts of the refractive index obtained from the

ellipsometer measurement (table 6.1b), well above the energy band gap but below E

(~4 to 5 eV). From this and equation 2.15

2

nE*, E <E<E,
g2(E) =

0, otherwise

the proportionality constant 7 was determined. The optical constants obtained from

ellipsometer using 632.8 nm were used for the parameter calculation. This is because

of a better fit to the £2(E) spectrum at lower photon energy than at higher photon

energy (figure 2.1b).
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Bulk DSLV DSLH12 DSLH14 DSLH16
Er (eV) | 4.968 4.469 5.636 5.00 -
E; (eV) | 1.400 1.188 1.303 1.395 Imaginary
n 0.10258 0.14138 0.08767 0.09421 0.26169

Table 6.2b. Values for the Afromowitz parameters for bulk, virgin and ion implanted
DSL’s. Implantation doses are 107 cm 2 (DSLHI12), 10 cm™ (DSLHI4) and
10"° em™ (DSLHI6).

As before values for the bulk material (7=0.103, E, =4.97¢V, E, =1.40eV )
agrees well with the published values of Afromowitz [5] (7=0.102 , E, =4.96¢V ,

E, =142¢V). For the untreated DSL somewhat different parameter values

(n=0.141, E, =4.47 ¢V , E, =]1.18¢V ) are obtained. As expected the effective

band gap is substantially lower than that of the bulk material, but it is still higher than
the gap for a room temperature ground state superlattice (~0.963eV). It is therefore
evident that even the low intensity light source used in this measurement produced
some partial excitation of the superlattice caused by a partial neutralization of the
space charge potential by photo carriers. According to equation 4.16, illumination
dropped the space-charge potential to about half (0.27eV) of the ground state value
(0.55eV). In spite of this the sample still behaves like a superlattice and can be used

to study the influence of ion implantation.

As expected, ion implantation is a violent process in which energetic ions are forced
into the target material. During their slowing down in the solid, large amounts of
damage are inflicted on the sample until the implants come to rest. It is important to
bear in mind that, unless the implantation-related damage is annealed out, a process
that is accompanied by excessive diffusion (i.e., intermixing of layers), most
measurable changes in the implanted layer are due to damage and not directly to the

presence of the implanted species [19].
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As shown in table 6.2b, implantation to a dose of 10'2 cm? raised the effective gap to
1.3 eV and according to equation (4.16) reduces to space charge potential to 0.15 eV
due to traps at defect sites. Increasing the dose to 10" cm™ moves the effective band
gap to almost the bulk material value. At this point 2V, is essentially zero due to a
complete neutralization of the bare space charges. Further implantation (to 10'® cm?)
mainly affects the material properties of the GaAs lattice itself as the DSL space
charge potential is already neutralized. The Afromowitz model fails for this high dose

sample as it produces an imaginary value for the effective band gap (table 6.2b).

If the parameter constants E,, E,, and E . can be measured in a separate experiment,

the real refractive index of a semiconductor (below the band gap) can be obtained by

equation (2.22b), which was derived from the two and three parameter models.

The parameters E,, Ep, and E . are all obtained in this experiment and the real

refractive index as a function of photon energy can therefore be calculated (equation

2.22b).

4.4

42} .

[ DSLH12 .
wl /—’// :

38F BULK

Refractive Index n

s6fF DPSLV  psLH14 ]

34} ]

32k . , , , ’ .
0.8 0.9 1.0 1.1 1.2 1.3 1.4 15

Energy (eV)
Figure 6.7a Plot of refractive index obtained using 2.22b versus photon energy for
bulk, virgin DSL and hydrogen ion implanted GaAs doping superlattice. The
implantation doses are 10% cm™ (DSLHI2) and 10™ ¢cm™ (DSLHI4). Closed circles

are refractive index data for bulk GaAs taken from reference [27,28] for comparison.
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Figure 6.7a shows the calculated refractive index value versus energy in a limfted
range for samples: bulk, DSLV, DSLH12 and DSLH14. In this figure a positive
curvature at the right end of each curve is observed. This indicates that the material is
no longer transparent above this point (it is an indication of the position of the direct

lowest band gap).

6.3- Photoluminescence And Raman Measurements

Photoluminescence has become a very powerful tool in characterizing and detecting
impurities and defects in semiconductors and DSL’s [9,10,29]. A given impurity
produces a set of characteristic spectral features that serves to identify it. In figures
6.8a and 6.8b photoluminescence spectra covering the range of 800 nm to 880 nm
- obtained from the virgin and implanted GaAs doping superlattices before and after
annealing is displayed respectively at excitation intensity 15W / cm?® and 13 K sample

temperature.
6.3.1a- Photoluminescence Measurement Before Annealing

Photoluminescence (PL) measurements were performed mainly to monitor
implantation damage and the recovery of the superlattice opto-electrical structure after
thermal annealing. The intensity of PL is very sensitive to the presence of lattice
defects as these usually provide an alternative, non-radiative, recombination channel
for optically generated electron-hole pairs [29]. As shown in figure 6.8a the untreated
DSL exhibited a PL spectrum with a broad peak centred at 850 nm and a tail
extending to past 880nm. This shift of effective energy gap from about 820nm for
bulk GaAs to longer wavelengths is due to the spatial separation between the
electrons in the n-layer and the holes in p-layer. [lluminating a DSL at a moderate
intensity shifts the effective band gap back towards that of the bulk material. This can

be explained in the following way:
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When light of intensity around 15W/ cm?is incident on a DSL’s two-dimensional
carrier concentration, electrons and holes are generated. The (negative) electron space
charge compensates the (positive) donor space charge in the n-layer and the hole
space charge does the opposite in the p-layer [1]. The modulation of the band edges is
thus reduced and the effective band gap of the DSL is shifted to a higher value and

finally approaches that of the gap of bulk material as the excitation intensity is

increased.
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Figure 6.8a shows photoluminescence spectra of virgin (DSLV) and ion-implanted
DSL’s. The implantation doses are 10" cm™ (DSLH12), 10" cm™ (DSLH14) and

10 em™ (DSLHI16). The PL signals for DSLHI2 and DSLHI4 are magnified
(x 100).

As observed with ellipsometry and IR reflectance, ion implantation gradually shifts
the effective band gap and therefore also the PL peak towards shorter wavelengths.
For an implantation dose of 10" cm™ the PL peak reached the band edge position for
bulk GaAs, but it was considerably reduced in intensity and smeared out due to the

presence of a high density of lattice defects. The similarity in peak position of the PL

89



spectrum of this sample (DSLH14) with bulk GaAs is expected, since nearly the same
energy gap values for DSLH14 (1.39¢V) and bulk (1.4eV) were obtained from

ellipsometry and the room temperature near IR reflectance measurement. At a higher

implantation dose (10"° cm™ ) no further shift in peak position was observed, but the
PL intensity dropped even lower. This is expected as implantation increases since
more non-radiative recombination channels are induced, which considerably reduce
the PL intensity. Note that at very low excitation intensities, a PL signal could only be

detected for a virgin DSL’s (not shown).

The effect of ion implantation on the variation of the space charge potential depth and
therefore on the shift of the effective band gap of the DSL’s can be explained in terms

of the pumping factor r [17] (4.30c),

Where n® is the injected two-dimensional carrier density (injected optically or
electrically). The varying space charge associated with a variable electron (n®) and

hole ( p®) concentration induced a strong change in the effective energy gap E ,

which is always smaller than the band gap of the unmodulated semiconductor

material, E g . For a compensated doping superlattice N =0 (refer equation 4.31), the

pumping factor r changes from nearly zero up to 1 for high excitation [17]. As the
value of r increases, the space charge potential depth (4.34) decreases thereby
increasing the effective band gap. At r = 1 the space charge potential become zero and
the DSL’s behave like bulk material. In this experimental work, a compensated DSL’s
was used, and hence the value of r is nearly zero at a ground state [17]. Which results

in reducing equation 4.34
2 2
24V = —"4”0‘1" [1-r7,

Eo€r
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to a ground state space charge modulation depth (equation 4.29b)

2 2
e‘npd,;

deye,

24V =

Photoluminescence measurement, figure 6.8a, shows the shift in effective band gap
from the ground state value (~1279nm) to the energy (~880nm) value shown in the

spectra for the virgin DSL’s. This is because the intensity of the excitation laser

(15Wem™) generates electrons and holes thereby increasing the two dimensional
carrier densities. This results in changing the value of the pumping factor from nearly

zero to some value between zero and 1 say r, However, ion implanted samples

irgin *

possess a higher effective pumping factor (7,,,>7,,,), as can be expected from

imp = Pyirgin
equation 4.34 and from the effective band gap shift obtained in the PL measurement
(figure6.8a). This is presumably due to the introduction of traps at defect centres in
doped layers by the ion implantation, which possibly results in: (1) preventing the out
diffusion of optically injected (generated) carriers, (2) enhancing the electron hole

recombination life time and hence allowing the generated carriers to neutralize the

space charge impurities, which in turn reduce the modulation depth. In other words,
reducing the effective concentration of ionized impurities given by nj, =n,(1-7,,.;,)

to n}, =n,(I—r,,) [17], and hence reducing the modulation depth. The concluding

rimp
remark, which can be made at this point, is that ion implantation introduces an

effective pumping factor, which tunes the DSL’s.

6.3.1b- Photoluminescence Measurement After Annealing

Figure 6.8b shows the photoluminescence spectra for jon implanted samples annealed
at 500°C and 600°C . After annealing at 500°C for two hours, the DSL implanted

at 10” cm™ recovered almost completely as the PL peak closely matches that of the

virgin DSL sample in shape, position and intensity (fig.6.8b DSLH12). Annealing the
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DSL sample implanted at 10" cm™ , however, showed only partial recovery (see
figure 6.8b DSLH14a). An additional annealing step at 600° C for another two hours
moved the peak position to almost the right value (figure 6.8b DSLH14b), but the PL
intensity still only recovered to about a third of the original value, indicating that a
considerable defect density was still present. A similar behaviour was observed for
the higher implantation dose sample (only shown for annealing at 600° C for sample
DSLH16b). It should be realized, however, that PL is a very sensitive measure of

implantation damage.
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Figure 6.8b shows recovery of ion-implanted DSL’s after thermal annealing

according to photoluminescence measurements for ion-implanted DSL’s. The
implantation  doses are 10" cm™ (DSLHI2), 10" cm™ (DSLH14) and
10" cm™ (DSLHI6). Curves (a) represent samples annealed at 500°C and curves
(b) are for samples annealed at 600°C .
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6.3.2a- Normal Raman Measurement Before Annealing

Raman scattering can be used to determine the damage due to ion implantation and
can monitor the effectiveness of annealing. Sharp phonon modes, which are
characteristic of crystalline materials, change to broad peaks if the material becomes
amorphous. As a crystalline material becomes amorphous, the intensity of the RS
signal decreases [19]. In our present work, room temperature normal Raman spectra
were recorded using a laser Ar*at 514 nm as excitation source in the backscattering
geometry as shown in the figure 5.5. The Raman spectra obtained for the virgin and

ion implanted samples are shown in figure 6.9a.

P T T e Lo

NOT ANNEALED

Al/], =14

Al/1,=0.5
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RAMAN SIGNAL (arb. un.)

DSLH12

200 300 400 500 600 700
RAMAN SHIFT (cm™)

Figure 6.9a. Raman spectra of virgin and ion implanted doping superlattices excited
by 514 nm laser light and recorded in the back scattering configuration. Change in

the peak height of the LO line is indicated as Al | 1,, where Al =1—1,, and 1, is the

peak height for the virgin sample. An artificial baseline offset has been introduced to

separate the spectra.
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In this figure, we compare three Raman spectra collected for not-annealed implanted

samples, DSLH12 and DSLH14, and a virgin DSL (DSLV). The symbols I, and [

denote the respective intensities of the sharp optical modes observed for virgin and
implanted samples respectively and Al = —1,. These Raman spectra represent the
collective response of the whole GaAs lattice and are sensitive to lattice damage. In
most semiconductors the LO-line (290 c¢m™ for GaAs) broadens and drops in
intensity as implantation dose is increased [30,31]. In this experimental work the
opposite effect was observed. Notice the gradual increase of the sharp LO- phonon
mode with increasing implantation dose in figure 6.9a. This can be understood if it is
born in mind that the DSL’s are heavily doped (10'®cm™ ) and that free carriers cause
a plasmon to LO coupling, which drops its peak height. As implantation damage
reduces the free carrier density one can therefore expect a more prominent LO peak as

long as the material is not substantially amorphised by the implantation.

6.3.2b- Normal Raman Measurement After Annealing

As shown in figure 6.9b samples implanted at 10 cm™ (DSLH12) and 10% cm™
(DSLH14) and annealed at 500°C recovered almost completely as far as their
Raman spectra are concerned. The sample implanted at 10 cm * (not shown)
exhibits only partial recovery after annealing at 500°C and 600°C in the sense that
the TO Raman peak, which is symmetry forbidden in the backscatter configuration by
selection rules, became quite prominent and the LO mode was lower than for the
virgin sample. This effect is attributed to the disordering of the crystalline structure. A
similar effect was observed in the work of S.G. Kim et al work [32]. S.G. Kim et al
investigated the damage induced and its recovery after annealing for GaSb implanted
with Ga. They have shown that with increasing dose, the LO phonon becomes weaker

while the TO mode becomes stronger.
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Figure 6.9b shows the Raman spectra for 514 nm laser excitation after thermal
annealing at 500° . As in figure 6.9a differences in peak height for the LO Raman line

are indicated as Al ] 1,. An artificial baseline offset has been introduced to separate

the spectra.

6.3.2¢c- Resonance Raman Measurement

In resonant Raman work the final result of the process is to transfer an electron from

the g, to the g, (1 <h) state in the quantum well of the conduction band. For these

measurements there are selection rules (not studied in this work) that distinguish
between single particle and collective excitation spectra. These can be separated by
varying the polarization of the incoming and outgoing light. The single particle
spectrum consists of transitions between the energy levels in the conduction band

quantum well.
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In general, the intensity of these spectra is very weak and it can only be observed by
doing resonance Raman spectroscopy; that is, the exciting laser line must be close to a
strong, real interband (conduction to valence band) excitation [24,33,34]. In our
present work, the laser line wavelength was chosen to correspond to the k =0 (k is the
wave vector) split-off valence band to conduction band transition at about ~1.96eV
(633 nm). As this resonant scattering process is specifically related to the modulation
potential in a doping superlative (GaAs) structure, it is useful to monitor its

destruction by ion implantation and its recovery after thermal annealing.

The bare single-particle intersubband excitation energies are measured by the spin-flip
scattering signal, which is polarized, perpendicular to the exciting beam. In this
experiment the scattering signal is observed at 90° to the exciting beam and is
vertically polarized (Z) while the exciting beam is horizontally polarized (X). This is
denoted as Z(XZ)X scattering. Figure 6.10a and 6.10b show the single particle
excitation for a virgin DSL and ion-implanted samples before and after annealing
respectively. In the figures A= 1 stands for all possible transitions between first-
nearest subbands, A= 2 between second and A= 3 between third nearest. Three
peaks indicated by A= 1, 4= 2 and A= 3 sitting on the top of the hot-band
luminescence (spontaneous conduction to split-off band transitions) were clearly
observed for the virgin DSL (figure 6.10a). For the ion implanted sample at
10*2 cm™? before annealing the peaks are generally diminished, particularly A4 =2 and
A=3. As implantation increased to 10" cm™ peaks 4=2 and A= 3 were smeared
out while a broad shifted and very low peak at A= 1 still remained indicating that
some superlattice behaviour still existed, but the sample implanted at 10" cm™ (not

shown) did not produce any trace of the resonant peaks.

In the work of G.H. Dohler et al [24] they showed that the intersubband spacing

£ ua—€.,, for A= 1 and A= 2 is much less sensitive to changes of the two-
- . . . 03] . _
dimensional carrier concentration n'”, than the gap energies ¢, , —¢, [24]. Our

experimental results of PL and resonance RS also support this. In our work the traps

96



produced by ion implantation were the main source of the changes in n® when
comparing virgin samples to implanted samples. This is reflected by a change in the
pumping factor r. The effect on the carrier concentration dependent shape of the

superlattice potential is a decrease of the subband spacing as a function of increasing

subband population. The decrease of the subband energy difference &, —¢.,

(> v) is a result of the flattening of the quantum well [1]. Therefore one can expect

a peak shift in characteristic spectra as a result of decreased subband spacing.
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Figure 6.10a. Single particle resonant Raman spectra of ion implanted DSL’s excited

by 632.8 nm laser light in a Z(XZ)X 90° scattering configuration. The baseline
offsets for the three curves are real. They are due to the hot-band luminescence

caused by spontaneous conduction to split-off band transitions.
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Figure 6.10b shows the recovery of ion-implanted DSL’s after thermal annealing at

500°C according to single particle resonant scattering. An artificial baseline offset

has been introduced to separate the spectra.

The resonance Raman scattering technique can show this energy shift. In our present
work, a measurable peak shift is obtained for the sample implanted at 10™ cm™
(~25cm™) compared to that of the virgin DSL’s (see figure 6.10a). The peak for the
sample implanted at 10" cm™ , DSLH12, remained at nearly the same position as that
of the virgin DSL. However, from the PL measurement, a measurable shift in
effective band gap (&, , —¢,) towards a higher energy was observed for both

samples, implanted at 10”2 cm™ and 10" cm™ (see figure 6.8a). This confirmed the

@

higher sensitivity of the gap energy &, ,,, —¢, to changes in n'” compared to the

s u+A

intersubband spacing ¢, —¢, and therefore to the work of G.H. Déhler [24].

Recovery of the superlattice structure after annealing is summarized in figure 6.10b.
Clearly all DSL’s including the heavily implanted 10 cm™ sample, exhibited a fair

degree of recovery. Note that the peak positions also recovered.
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CHAPTER 7
Conclusion

In this work, we have studied (1) the applicability of the two (SEO) and three
parameter (Afromowitz) models, (2) the semi permanent tunability of the DSL’s with
energetic hydrogen ion-implantation and (3) the recovery process of these hydrogen
jon implanted DSL’s samples after normal thermal annealing. The DSL’s were

implanted at three different implantation doses 10*°cm™ (DSLH12), 10 em™

(DSLH14) and 10%cm™ (DSLH16). Single wavelength ellipsometry and near
infrared reflectance measurements show that a GaAs DSL’s can be modelled as a
SEO well below the effective band gap and by the Afromowitz three-parameter model
closer to the band gap. These techniques also prove the applicability of these models

for DSL samples implanted with hydrogen up to a dose of 10 cm™ , however when

the dose reaches 10*® cm™ both models break down.

It was found that the hydrogen ion implanted GaAs DSL samples exhibit different
features from that of virgin DSL’s. Ellipsometry confirms the changes in free carrier
concentration with implantation dose, as it indicates a slight difference in extinction
coefficient for the lower implantation samples (DSLH12 and DSLHI14) and large
variation for higher implantation dose sample (DSLH16) with respect to the virgin
DSL’s. PL. measurements show an intensity drop and peak shift towards higher
energy with increasing implantation dose. This is due to radiationless recombinations
via defect centres and trapping of free carriers. Normal Raman spectroscopy showed
an inverse relation between Raman peak height and ion- implantation due to plasmon

to LO coupling. A measurable shift in subband spacing was also observed for the

sample implanted at 0™ cm™ with the resonance Raman scattering measurement.
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Note that all results, including ellipsometry above the band gap, infrared reflectance
recorded below the band gap as well as PL indicated that an implantation dose of
10" em™ modified the optical response of the DSL’s to something resembling the
bulk material. In this way the optical constants as well as the effective band gap can

be tuned semi-permanently to the bulk values.

Raman spectroscopy and PL showed that the implantation effects could be reversed to
a substantial degree by a simple thermal annealing step. Damage caused by ion-
implantation with small doses (DSLH12) was minor, and even at low-temperature

annealing restored the samples back to their full crystalline structure.

Suggestion For Future Work

The near infrared reflectance measurements presented in this work suffered from two
shortcomings. Firstly, the spectra were rather noisy, especially in the long-wavelength
regions. This can be improved drastically by using a modified Fourier transform
spectrometer. During the course of this work it could unfortunately not be done due to

time and cost constraints.

A second limitation of the present work is the slight excitation of DSL’s during
measurements. This can in principle be avoided by placing the samples under
investigation at the exit slit of the mononchromator, where they will be illuminated at
a much lower intensity level by below-band gap radiation. Again time constraints

prevented us from implementing this modification.
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APPENDIX A

Mathematical derivations for some equations given in chapter two are given in this

appendix. This section is divided into parts 1 and 2.
PART 1:

In one dimension, the delta function, written 5(x—a), is a mathematical improper

function having the properties [35]:

1) 6(x—a)=0 for x#a, 1
and

Q) j5(x —a)dx =1, 2

if the region of integration includes x = a, and is zero otherwise.

From the definition above it is evident that, for an arbitrary function f(x),

3 [f(o(x-a)dx=f(a). 3

The single oscillator model requires two parameters, oscillator energy position Ep
and dispersion energy Es, where the imaginary part of the dielectric constant e2AE)

of the material is assumed to be a delta function at E, and the strength of an effective

oscillator at energy E, was defined to be %Ed. (Section 2.3.2 pp 11).
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Writing the above statement mathematically as:

7E,
eAE)=4 2 .
0 for E+#E,

for E=E,

Or writing this in terms of a delta function:

7k
2

e(E) = S(E)—<. 5

Introducing this quantities (5) into the following equation of the KK relation

a(E)=1+2 [Z2E) g, 6
TgE*-F

we obtain

7k
S(E)—=LdE.
E’? (E) 2
Taking out the constant from the integral as
w4E—é’ d 7
=1+E, J’E2 ——7O(E)E
0
and applying the delta property 3 to the above equation at energy E = E, we get:

E)-1=n(E)*-1= EyE, 8
g(E)-1=n(E)" - —ET——IZE’

p
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which is the single effective oscillator formula, equation 2.10a (Section 2.3.2 Pp 11).

Note that the region of integration in equation 7 includes E = E, and the constant a

is zero in this case.

PART 2:

A function given by:

fG-a)= 3 C,(x-ay,

is a power series with its interval of convergence centred at a, where a is any fixed

number and n is the term order. In particular, if f(x—a) possesses a derivative of all

orders at a, then we call

f(x—a)= i&)_(_’f__a)" ,
n=0

n!

the Taylor series of f(x—a) about the number a.

Rewriting equation 2.11, chapter 2 pp 12

EeAFE)

e(E)-1=n(E)* -1= (E’)——— ——Ez-dE
as:
I N
Z(E’)—”E{«f (B) 1 [E] dE
E

aliowed a power series expansion.

10

11
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1 .
For simplicity let us first consider the function f (x)=1———. The power series

expansion of this function using equation 9 is:

1

f(x)= =I+x+x*+x +.. 12
1-x
Similarly the power series expansion of - in equation 11 is given by:
1-[E
E
2 27?2 27?
f(x)= ! = ! ~=1+ £ + E) + (5) +... 13
1-x 1 F E E E
E

Putting the above equation into 11 we get:

Z(E’)z%EIez(E)—é{1+(%) +(%] +(%) +}JE

0 2 4 6
=3 Iez(E) i+E3 +E5 +E7 ... (dE 14
g E E E E

+

which is equation 2.12 in chapter 2 page 12.
The imaginary part of the dielectric constant £2(E)in the energy region defined by

E, <E<E;isgivenby the Afromowitz model as (2.15) [4],

nk*, E, <E<E f
gAE) = 15

0, otherwise
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Substituting the above equation into equation 14 we get:

Eg

E
20 f o3 , E* E°
E)=—"S |E'+EF"+—+—+...[dE. 16
Y(E) ﬂ{j[ + +E+E3+

Integrating this results in:

2= e - e e - 52} 2 e, ﬂf[L_L}nE* {LL}

2

4 lnE 6 8 10 6 8 10

MM ErE | E2 +E4+E6+... _n)E° E | E
z |InE, © |E; 2E, 3E,

4 2 4 6 2 4 6
=M_1+Mﬁ3E’2+Q—E;— lnEﬁ—E'2 —E4—E6+... - lnEz—E BT _E
7 E? 2E! 3E° E

E* : :

KB =M+ M B+ ED) - ED) 17
2 4 6

where F(E?)=InE; —E2 E o E6 —rs 18
E; 2E; 3E;

and

2 4 6

fz(E’Z):lnEgz—E’ _EE 19

2 4 6

E, 2E;, 3E,
The functions f,(E?) and f,(E?) are a Taylor series expansion of In(E; —E*)
and ln(Ez —E?) respectively. This can be proved by expanding the functions

In(E} —E*) and In(E; -E*).
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Note that the derivatives in the expansion should be taken with respect to E > and

evaluated at E* =0 . Therefore one can write equation 17 as:

2(E)=M_ + M_3E2+ﬁf;—{{ln(5; —EN-fn(E? -EH Y

=M_ +M_,E’+

e {(Ef —Ej)}
V4 (Eg—E )

Direct substitution of the following equations (see chapter 2 page 14-15)
n 4 4
M. ="L(E*-E
27 ( ! g)
M =1(E*-E%)
/4
1
Ey = (2EP2 _E82)2

7= i1
2E,* (Ep* — Eg?)

into equation 20 will results in (see chapter 2 pp16):

E EE? 4 2 _p2?2_ g2
n(E)’ —-1=—%+ dE3 GIE g2 2Eg £
E E, T E, ~-E?

20

21a

21b

22¢

22d

23
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APPENDIX B

In this section the introduction of the pumping factor r to the potential depth profile

equation given by (Chapter 4 pp 46)

2

+32 -32
2AV=v0(i)—v0(O)=( ¢ )[nD(d") +nA(dP) +npd;d.], 1
2 EgEp 2 2

is shown.

The effective doped layer width in terms of the pumping factor r is given by equation
4.30,

(2)

2d* =d (1-2—)=d, (1-r), 2a
nD n
and
(2)
2d; =d,(1-L y="0dn (1, 2b
d n
n,a, A
where r is defined as
(2)
r= n 2¢
nan
d

Substituting the above equations: d, =

dn
n(1- dd ==22a-
5 (I-r) and d, 2nA( r)

into equation 1, we get:
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2
24y =00 [dn (_y2 Do (2 L og (1=, 3
de,ep | 2 2n,

2
My [ e Dt oy | ey e |
4,6, 2 2n, 2 2n,

=e2npdn(1_,)(dn(r;D+nA)+2di]{l_ rd,(np +n,) }

4,6, n, 4dn, +d, (n, +n,)

’
N 4dn,
d,(n,+n,)

=———>(-r)

4,64 n,

e’n,d [dn(rz20+n,,)+2di] 1—

which is the equation given in chapter 4 page 49.
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