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Appendix A

Derivation of the General

Model Hamiltonian

Here we present a first-principles derivation (in the context of quantum op-

tics) of the general Hamiltonian (2.1).

A.1 The two—level atom

Consider an two-level atom, with the two relevant atomic states labeled |a)
and [b), and let fiwy = E; — E, denote the energy gap between the states.
Choose the origin of the atomic energy scale midway between the levels,
so that £, = r—%hwo, and E, = %htﬁg = E, + Awg. The Pauli matrices
(supplemented by the 2 x 2 unit matrix), form a convenient operator basis in

the two-dimensional matrix space corresponding to the atom, and we may
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thus, with a suitable choice of the z—axis, write the Hamiltonian for the atom
as

iH = %hwgoz : (A.1)

A.2 Quantization of the electromagnetic field

Consider now the quantization of the free (zero charge and current density)
electromagnetic field [Man]. After eliminating from Maxwell’s equations (in
rationalized Gaussian units) the electric [E(r,t)] and magnetic [B(r, ¢)] fields

in favour of the classical scalar [®(r,t)] and vector [A(r,t)] potentials via

10A
B = =_-== .
VxA, E=-—— (A.2)

and then enforcing the Coulomb or transverse gauge V - A = 0, one finds

that A satisfies the wave equation

1 5%°A

whilst @ is identically zero. We now treat the field as though it were confined
to a cubical box of volume V' = L* and impose periodic boundary conditions.
If necessary, one may take the limit V' — oo at the end of the calculation.

We expand the vector potential in a Fourier series

- he? g .
A(r,t) = —i bis(t) €T — br (t) e ™ " e, , (A4
(1) = =i 23 g7 (el e bot) € oes,  (A)

with wy = ¢|k|, where the k—sum is over all wave vectors

K —Qg(nmnwm) (g, ny,ne = 0,£1,£2,...) (A.5)
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satisfying the boundary conditions, and where éxs,s = 1,2 represent unit
vectors along the two independent directions perpendicular to the wave vec-
tor k, thereby also satisfying the requirement of transversality imposed by
the Coulomb gauge. Thus (A.4) corresponds to an expansion of the vec-
tor potential A in terms of linearly polarized travelling wave modes. The
fact that (A.4) must satisfy the wave equation (A.3) determines the time

dependence of the Fourier coefficients as

bi o (t) = by .e™ k¢, (A.6)

and the constant in (A.4) has been chosen so that the total energy
Hﬁ d = l / (E2 g Bg) d31‘ (A 7)
2 v '
of the radiation field then assumes the time-independent form
2
Hgela = Y Y hwiby bis - (A.8)
k s=1
By analogy with a system of decoupled harmonic oscillators, this form for the
classical field energy suggests that the field may be quantized by promoting
the Fourier coefficients by s(t) in the expansion (A.4) to operators by s satisfy-
ing Bose commutation relations. Confining ourselves to two perpendicularly
polarized modes, of frequencies w; and w, and which we shall label modes 1

and 2, and neglecting the constant zero point energy of the two modes, we

may then write for the field the Hamiltonian
Hgela = hwy biby + Fiws blb, (A.9)

where the bosonic operators satisfy the standard commutation relations (2.2).

Furthermore, E,, the electric field corresponding to mode n, now becomes
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an operator of the form
En(r,t) = —en {bn €™ + b} e} gy, (n=1,2) (A.10)

where €, = +/ ﬁz—‘;} denotes the electric field per quantum (photon) in mode
N, €kn * €km = Onm since the fields are perpendicularly polarized, and with
a similar expression for the magnetic field. There are many subtleties in the

quantization of the electromagnetic field that have been ignored here (see

e.g. [Mar], [Coh] or [Hua]).

A.3 The dipole interaction Hamiltonian

In order to determine the interaction Hamiltonian for the coupling of the
atom to the field modes, we neglect any interaction with the magnetic field,
and make the co—called dipole approximation [Mar, Man]. If we take the
origin for r at the atomic center of mass, and assume that the fields do not
vary appreciably over distances of the order of the atomic dimensions so that
we may take k-r = 0, then the dipole interaction between the atom and the

two field modes has the form
Hipe =—p-(E1 + Ey) . (A.11)

Here the atomic dipole moment operator p for the N atomic electrons, each

of charge e, located at positions r;,7 = 1,2,..., N has the form

1| N
p:Ne(ﬁZri

1=1

) = er, (A.12)

and

En(r,t) = —e{bn + bf}éun (n=1,2) (A.13)
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due to the dipole approximation. By the atomic parity selection rule, the
diagonal elements of the matrix representing the dipole operator p in the
atomic basis {|a), |b)} are zero, and we only consider atomic levels such that

the off-diagonal elements
Pt = (a|plb) = (alex|b)z + (a|ey|b)y + (alez|b)z
pP. = (bpla) = p;, (A.14)

with 2 representing the atomic quantization axis, are nonzero. It is then
straightforward to show that the interaction Hamiltonian (A.11) assumes

the form

Hu = B (b +b1) (Re (8] 0 — Im[8)] o)

+ k(b + by) (Re [B2] 0° — Im [By] oY) (A.15)

By = ’Pn\/ﬁ (n=1,2) (A.16)

and P, denotes the component of p,;, along é,.

where

We may now, without loss of generality, take the parameters 3; and 3,
to be pure real and pure imaginary, respectively, as shown by the following
argument: Choose the atomic quantization axis Z so as to be perpendicular
to the plane defined by the orthogonal polarization axes of the two modes.
Orient # and § such that &, makes an angle a, with &, with ay = a; 4+ 7/2,
and o, as yet arbitrary. By the atomic angular momentum selection rule (or,

more formally, via the Wigner-Eckhardt theorem) (a|y|b) = £i(a|z|b). Thus
Pn = Pab- & = e (alx|b)eEon (A.17)
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We are free to choose a; such that e¥*®! cancels the phase of (a|z|b), so that
P1 = e|(a|z|b)| is pure real, and P, = *e|(a|z|b)|i is pure imaginary. Thus

the interaction Hamiltonian (A.15) may be written in the final form

Hie = ki (b +b1) 0® — finy (b + by) o (A.18)
where
Wn
m=ellale Bl /o (n=1,2) (A19)

denotes the (purely real) dipole coupling constant for mode n. Combining
the Hamiltonians (A.1), (A.9) and (A.18), and setting & = 1, we obtain the

general model Hamiltonian (2.1).
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Appendix B

Useful Identities and

Commutation Relations

For the model Hamiltonians considered here, the Hausdorff expansion (3.8)
often involves commutators either of Pauli matrices or of operators which
obey bosonic commutation relations. Here we therefore present several iden-
tities for such operators which are useful in the application of the CCM to

these models.
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B.1 Operators for two—level systems

The Pauli matrices 0%,k € {z,y, 2}, and the raising and lowering operators

o* and o~ respectively, have the following form in the eigenbasis of o*:

1 o'd 10
o = , [ =
¢ =id 0 1
1 (01 - 0 —i
o= Lot 4om) = B
2 (10 2 i 0
o 2] | 00
" =ioPfdol= , 0 =o%—io¥= . (B.1)
[ 0 0 | 20
Note that some authors choose to define o* = 1% £ ig¥, resulting in a

rescaling of the dipole coupling constant 7 in our model Hamiltonians.

In the following identities, k,l{,m € {z,y,z}, n is an arbitrary integer, and

« is an arbitrary real number:
2 n 2n+1
(") =()" =1, ()7 =d

exp {iar [} (o* +1)]} = [cos %)Hsm( 2)o*] exp (ia3)

(e
exp {z'fr [% (Jk % 1)]} =17 s (B.2)

The latter identity is particularly useful in verifying the commutation re-

lations between the various parity operators (2.4) and the general model

Hamiltonian (2.1) in Chapter 2.
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We make frequent use of the following products and commutation relations
(here k,I,m € {z,y,z} with £ # [, and €y, is the totally antisymmetric

Levi-Civita symbol):

ool = tepmom , olok = —iepmon, ) [ak, al] = 1€, 0
afe¢t =6t oto® = —ot, [6%,07] = 20

ofoT = —o~ orof =g, [6%,07] = =20~

ot =1—¢¥ gta®=14 o%, [6%,07] = —20%

oo =1+ 07, oot =1—0", [6%,67] = 20*

oot =1(l —0o7) , octo¥=1(1+07) , [0Y,0] = —2i0*

o¥o" =—i{l+0*), o d¥=—-i(l-0%), |[o¥07]=—-2ic"
cto~=2(1+0%*), o ot=2(1-0¢%), [oF,07]=40".

(B.3)

B.2 General commutation relations

Let A,B,C,D denote arbitrary operators. We make frequent use of the

following standard identities:

[A,BC] = [A,B] C+B [A,C]
[AB,C] = A [B,C]+[A,C] B. (B.4)

If [A,B] = [A,D] =0 and also [C, B] = [C, D] = 0, then

[AB,CD] = [A,C]BD+C A[B,D]

= [A,C]DB+ACI[B,D] . (B.5)
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B.2.1 The Hausdorff expansion

For arbitrary operators A and B, we define
B, Al, =8, [B, Al = [[B,A],, , Al [0 =100 192 0. ) (B

Note that [B, A], = [B, A], the usual commutator. Let C(k,m) denote the

binomial coefficient m,—(;&'m—)‘ Then it can readily be shown by induction that,

for any n € {0,1,2,...},

k
A"B = A F ST (-1)" C(k,m) [B,A], AF™ V¥V ke{0,1,2,...,n}
m=0

mn

= Y (~1)™ C(n,m) [B, 4], A™™ (k=n). (B.7)

m=0

Assuming that the exponential is well-defined, one may thus write

e~ 4Bet = ZﬂAnB el

n!

_1\n+m
m&(: . i B Al AT

= i i": Ln_m![B,A]m An—m EA

ml(n —m)
= i[ ’A]m) (i%/ﬁ) e

- > LB, (B)

which is the Hausdorff or nested commutator expansion (3.8) for the similar-
ity transform of B through A (see also [Mer] for an alternative proof). The

commutator

M=

[A",B] = Y (-1)"C(n,m)[B,A],, A"™ — BA™

m=0

Il
M=

(=1)"C(n,m)[B, A],, A"™ (n>0)  (B.9)

m=1

will also be useful in what follows.
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B.2.2 Operators for which the commutator is a num-

ber

Consider now two otherwise arbitrary operators A and B for which the com-
mutator is a c-number, say [A, B] = z. Then, since [4,B]_ =0 V m > 2,

it is clear from (B.9) above that
[A, B =nB"12". [ 0). (B.10)

Let f(B) now be an arbitrary function of B only, subject to the usual re-
striction that a convergent power series expansion
oo
f(BYy=-Y u,B" (B.11)
n=0

exists. It is clear from (B.10) that we may formally write

14,78) = L 18) . (B.12)

where, for the purposes of evaluating the derivative, the operator B is treated
as a real variable (see, e.g. [Mer] or [Hak]). We have also generalized (B.12)
to show that, for any integer n > 0,
[A", f(B)] = Y_ C(n,m) f™)(B) z™ A™™™, (B.13)
m=1
where f(™)(B) is a convenient shorthand for %1, and we define f(°(B) =
f(B). The relation (B.13) is easily proved by induction. A final identity

which we have often used is the Glauber-Weyl formula [Mer]

etel = eAtB+2/2 (B.14)
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B.3 Bosonic commutation relations

For the bosonic annihilation and creation operators, b and b' respectively,
the standard commutation relation reads [b, b?} = 1, so that the relations

(B.12) and (B.13) apply with A=b6, B=>band 2 =1 or A = b7, B =15 and

z = —1. Thus for f an arbitrary function of the given argument only,
d f(b") d f(b)
| = t = .
[b, £(8")] = - and [f, £(5)] = Ti (B.15)

In particular, for any integer n > 0

. (bJr)n—l

]

[6h,6"] = —nbn
)
]

= 0 [ ()] = ()"

= [6%,6"] b= —nb", (B.16)

and for all n,k >0

4 Min(n,k)
[b”, (b*)‘] = 3 ml(n__::ﬁ!(k = B . (B
Other useful identities include
ettt = gbtbt+1/2
[b,b*b]m = b

| = o{(#'-1)" - ()"}
lexp {iam b'b},b] = b exp{iam b'b} (e7iem —1)
[exp {im b'b},b]

phof] = (-n)mbt -

= —20bexp {i'.rr bfb} (a=1)
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[(6%)", 6] = o {(¢%6+1)" — (b'5)"}

[exp {iafr bTb}, bT] = b exp {iaﬂ' bTb} (eé""’" — 1)

lexp {in 16}, = —20bt exp{ir b}  (a=1)
b8, b]o = [bft, bT]O =b'p
[b1, b]l = —b (6", bf]l = bf
[bfb,b]m = [bfb,bT]m =0 ¥Ym>2, (B.18)

where it is important to note that the relations (B.15) are in general only
valid in the case where f is strictly a function of the indicated argument only,

so that a power series expansion for f of the form (B.11) exists.
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Appendix C

Explicit Forms for Variational

Expressions

Here explicit expressions are shown for the expectation values of the Rabi
Hamiltonian, the operator 0% and the boson number operator b'b in the var-
ious variational states considered in Chapter 4. The equations which deter-
mine the corresponding variational parameters are also shown. The analytic
behaviour of these parameters in the limit of small coupling is discussed in

cases where this is useful for numerical purposes.
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C.1 The mixed—parity two—parameter ansatz (4.30)

The expectation value of Hgap; in the state (4.30) is given by
(Hﬂabi)var($7y) = (‘I’V“(w:y”HRabiPI’var(fay))

. Il 1—g? 9 yz
= 2w0(1+y2)—|—wa: +Sg(1+y2 s [Cal)

The minimization of (C.1) with respect to the variational parameters z and

y yields the following results [Qi98] for the optimal values zope and yope, and
the variational ground-state energy Ey*" = (HRabi)Var (Zsty Yopt):

o 1
Yopt = Topt = 0 3 E(y Y= _’Z'WO (C‘.Z)

% L 16g% — wwy
opt = 1692 + wwy

|
Topt = F=—1/256g% — w?w

for g < ,/wwg/4, and

8gw
42  ww?
Var .o _ 0
By™t = W g (C.3)

for g > \/wwy/4. As a check, note that the correct limiting behaviour
2 4g*
yopt — *1 5 Topt —3 :Fzg . E(\)/ar — _i (04)

w

obtains as g — oo.

The expectation values of ¢* and b'b are given by
2
z ar yﬂ - ]'
(J )V Wi ( 2pt 1)
yopt +
(BTBy¥> = g2 (C.5)
with zope and v,y determined via (C.2) and (C.3).

146



University of Pretoria etd — Van der Walt, D M (1999)

C.2 The good—parity two—parameter ansatz (4.38)

The expectation value of Hgap;i in the state (4.38) is given by

(Hravi)z '~ (2,0) = (U5BY%(z,v)| Hpani| U5BV(2, v))
B 1 1 — o2
= (15w
3;2 2 +1 2 9 1
+w (1 -f-v'-’) ([tanh:c ] + v [coth-:c ] )

Tv 4.2\ ~1/2
+8g (1+v2) (1 - ) (C.6)

The derivative of ( Hj Rabi)szz (z,v) with respect to v yields the first equation,

0 = [t -en (-45,0) ]
_ [wo T w mgpt (tanh 2, — coth mgpt)] Vopt
_ [4 o g (1 —exp {—4a:§pt}) _1/2] , (C.7)
to be satisfied by the optimal values z,p¢ and vep. For the case of positive

PBV2

parity (i.e. for the ground state), the derivative of (HRabi)+

(z,v) with

respect to z yields the second variational equation

- 2 2 2
0 = Wit (tanh Topt + Ugps cOth mopt)

g mgpt ([sech :L'gpt]z = vfpt [CSCh xtz)pt]z)
o e (L )

flem 4:.5'3,[3t exp{—élmgpt} (©8)
1 —exp {—4$gpt} - '

The corresponding expression for the negative—parity (first excited) state is

obtained by making the substitutions

tanhz?, +— cothz?,
2 : 2
[sech mgpt] —_ = [csch mzpt] ; (C.9)
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Note that (C.7), being quadratic in vept, is easily solved to yield an analytic
expression for the parameter vope in terms of xop, so that the variational
(PBV) approach based on the two-parameter state (4.38) thus only requires
the numerical solution of one non-linear equation (C.8) in the single un-

known zqp.

The expectation values of 0% and the photon number operator b'b in the

state (4.38) are given by

P |
<O_z>PBV2 — (Zpt )

Uopt + 1

2
(bTB)PBYZ % (tanh x2. + vl coth mopt) ; (C.10)
op

with zopt and vepe determined via the variational equations (C.7) and (C.8).

C.3 The good—parity three—parameter ansatz (4.41)

In the state (4.41), Hgani has the expectation value

<HRa.bi>iBV3 (xla Ia, U) (LIIPBVS(:BI-: Lo, U )1HRabi|@iBV3($la Ty, U))

= A [—wg 'u —1)
+ w (501 [ta,nh azl]i + vig? [coth :cglil>

+ 8gvBi(zy,x3)] (C.11)

with

B:l:(CUI,iE?) e Al,:i:AZ,:F {(332 o wl)e"(mmxz)?ﬂ o (332 _ xl)e—(m-i-a:z)?/?} )
(C.12)
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The minimization of (HRab;)iBVS (21,22, v) with respect to v yields a quadratic
equation for vep in terms of x opy and 3 ope. The solution with the lowest

energy is always given by

2
Vopt = wo + wci(ml,opt5$2,opt) = s (WO + wcﬂ:(ml,oph $2,opt)) : (Clg)
8.QTB:I:(-TEI,opta m?,opt) SgB:I:(Il_.opta m22,0131:)

where

Cilzy,a3) = —a8 [ta.nhxf]:l:1 + 22 [coth :cg]il

For the ground state, we are then left with the two coupled non-linear equa-

tions to be solved numerically for @y opt and 3 opt, namely

0 = wxi0pt (ta,nh $gpc + ‘,Ef,opt [sech 'Tgpt]z)
4+ 4 g VoptT1opt (1 +exp {_2$?|0pt})_3/2 (1 — exp {—23:%’0]”})—1/2 X
exp {—Qccf’opt} X (Jil'lopt + 371,opt] exp {_é [331,0[3'3 - $2=°Pt]2}
1 2
4 [ 61— E1,008] €XD {—5 [1,0pt + 22,0p¢] })
+ 2 g vopt (1 + exp {—2miom})—1/2 (1 — exp {—ng’opt})—lﬂ X
I::cg,opt - :Ef,opt + 1} 2

1 1
(eXp {—5 [1,0pt — mQ,opt]z} — exp {—5 [Z1,0pt + mz,opt]2}> (C.14)

and

0 = wvgpt T2 opt (Coth a:gpt — azg‘opt [csch 5’3zpt]2)
— 4 g Vopt2,0pt (1 + exp {—QEf’Gpt}) i (1 — exp {—ng,opt}) hals X
exp {—ziﬂg,opt} # ([xz,opt + 1,0pt] €XP {—% [Z1,0pt — xz,optlz}
+ [Z2,0pt — Z1,0pt] €XP {—% (1,00t + m2.0131:]2})

4+ 2g Uopt (l + exp {_gxiopt})—ln (1 o {_23:%,0]){})—1/2 y
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‘::E%,opt o m%,c.]::;f: =+ 1] X
1 2 1 2
(GXP {_i [ml,opt = IZ,Opt] } + exp {_5 [:L'l,opt o :’L'Z,opr.] }) . (015)

The corresponding expressions for the first excited state are obtained by

making the substitutions

exp {—23:2-2’0pt} +— —exp {—me'opt} (i = 1,2)
1 2 1 2
exp {—5 [#1.0nt F Z50p8] } S —exp {_5 [1,0pt + T2,0pt] }
tanh2?, <— coth xipt
[sech :cgpt] " gy g [csch mgpt]g ; (C.16)

We note that there are classes of solutions with x; op¢ = 0 (ground state) and
T3.0pt = 0 (excited state), but these do not minimize the energies, and so are

not considered.

In the limit of very small couplings, it is possible to obtain asymptotic

expressions for the parameters vops, 1,0pt and zzept, for the ground state,

_29

Uopt = w+LxJ0’
2 -1/2

-‘Tl,opt — §{1+%} 5 (Cl?)
29‘ Wwo -1/2

T2 0pt —+ :{l‘i'%} ’

which yield good starting values for the numerical solution routines.

The situation for the first excited state is more complex, and depends
explicitly on whether the system is sub- or supra-resonant. In fact, for the
sub-resonant case (w < wp), the asymptotic forms are the solutions of tran-
scendental equations; however, one can show that in the limit of zero cou-

pling, #1,0pt and wvap are zero, but x4 4p¢ is a non-zero constant dependent on
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the frequencies. For the other two cases, the asymptotic expression are

Uopt — -1

vy

T1opt — = (C.18)
for the case wg = w, and
gt w02;w
S %g {1 - %}—1/2, (C.19)

for the case wy < w.

The expectation values of o* and the photon number operator b'b in the
three-parameter variational state (4.41) are given by

(07)PBVS = (ngt_l)

Uczrnpt + 1

PBV3 1
1 S NN (P 2 2 2 2
<b b = — 1 opt aND T7 ooy + Vo T3 o cOth 25 1 )
Uopt + 1

(C.20)

It is often useful to express the wavefunctions for Hamiltonians such as
the Rabi Hamiltonian in terms of their expansion in a basis of products of
oscillator and two-level states, as these are often the form in which initial
conditions are formulated. We present here the expansions for the three-

parameter ansatze for the ground and first excited states:
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[lI!iBVB(;rI,:z:g,U)) = A, |Arse i Z [2n
n=0 1/ (2?’1
2 /9 i 2n+1
+ vA;_ e "2 |2n + 1))
n=0 14/ (27’& + 1
2n+1
|1D13Bvs(mlsm2av)> — A'L— AI,— e-—-a:?/ \/—-|2n+1 I‘L
2 i $2n
+ vAyg 722 3 2 |2n)|1) (C.21)
n=0 (2?’2,)'

The expansions for the two-parameter states can be found by setting z; = z, = 2

in these equations.
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Appendix D

Explicit Forms for CCM

Expressions

We present here explicit expressions for the similarity transformed Hamil-
tonian (3.5) and the CCM equations (3.14) for the various CCM schemes
employed in the ground-state analysis of the Rabi Hamiltonian (see Table
D.1). Where quantities other than the ground-state energy are required,
we also give expressions for the energy functional Hrap; and the expectation

value of these quantities in the CCM.

In Table D.2, we also show how the four ground-state CCM schemes
may be modified to deal with the odd—parity first excited state of the Rabi
Hamiltonian. It is intuitively clear, however, that the first excited state
results may be obtained from the ground-state formalism by making the

replacement wy — —wy, and in practice we have taken this simpler route to
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generate, in addition to the ground-state results, first excited state results

for the each of the CCM schemes considered here.

Table D.1: The four schemes, labelled I—IV, employed in the ground-state
CCM analysis of the (unrotated) Rabi Hamiltonian, showing the choice of model
state |®) and cluster correlation operators for each scheme. For all schemes, the
cluster correlation operator S, which is required for the calculation of the NCCM
ground-state energy, is shown. For Schemes I and III, the operator S, which
is required for the calculation of other ground-state properties of the system in
the NCCM, is shown, and for Scheme I, the operator ¥ required for an ECCM

ground-state energy calculation is also shown.

Scheme | Model state |®) Cluster correlation operators S, S, ©
I 0)[4) §=251+5

=2, Sg)(bf)n

S =2, s (bhn-1ot

S=1+4+8 + 5’2
5‘1 =Yoo Smb”
>
=% 4+ 3,

D=1 (1)bn
22_ o] (2)bn 1 -

I 0)] L) S=%2 s, (cf) .t =bte®

111 |Ty) [see (4.16)] S =38, (cf)n , ¢ =bla*42g/w
S=1432,5c" c=bo"+2g/w

IV | 1R (opt, vopr)) [see (4:38)] | S = Tg2 s (¢f)",  of =blo®
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Table D.2: The four schemes, labelled I'—IV’, employed in the CCM analysis

of the first excited state of the Rabi Hamiltonian, showing the choice of model

state |®) and cluster correlation operators for each scheme. For all primed

schemes,

the cluster correlation operator S is identical to that used for the

corresponding unprimed (ground-state) scheme, and the model state is chosen so

as to incorporate the odd-parity symmetry of the first excited state.

Scheme | Model state |®) Cluster correlation operators S, S, &
r 10y 1) S=5+5
Sy =3 (1)(bf)n
Sy =2, B (phyn-1g+
S=1+5+ 5"2
G =y sgn
85 =2, §£L2)b”_1cr"‘
D= 45,
S =2, olMpn
T,=% (2)bn 15—
I’ 0)/1) § = o%i sn (c*) .t =blo"
1 |W_) [see (4.16)] 5= s, ( ) ot =bto® +2g/w
8 =143 18:¢",  e=bo"+2¢g/w
v’ |OPBY2 (20, vopt))  [see (4.38)]

B = 3 By (CT) , cf=bte"
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D.1 NCCM Scheme I

For Scheme I, we obtain the following form for the similarity transformed

Hamiltonian:
1
e S Hpaie® = §wgo"' + wb'b + g (bf + b) (o"" - a_)
-+ Z sfnl) {nw (bf)ﬂ + ng (bf) ‘- (0'+ -} o_)}
+ ) s (2) {[(n—l)w—i—wg] (b*) ot
+ g(n—1) (bT) "ot — 4g (Z)T)n_1 (45T - b) O'z}
E £ )
—4g i > 5@ {(n -1) (bT)n+nr_3 a’o’t
n (b,r)n+n-'_2 (bT " b) o_+}
1633 S B n () o
The energy functional
H = (@|§e_5Hﬂabies|®)
= _%wg + 4g s + 4g 511) @)
oo k+1
- Z k! é}(:] {wk s’ +4g 5(2) +4g(k +1) 3,(\_22 +4g> n sg)sﬁz_n}
n=1

+4Z k—1)! {gdkg—é-gk.sk -|—[w(k—l)+wg]

kt1 o 15 k-1 i)
—4g> (n— st )sk+2 =49 st

k k+l-n @)
—4g Y Z n S(l) Sy 5k+2-n n,} : (D2}

n=1 n'=
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may now be used to set up the CCM equations (3.14) for {sk s k= e 2

85
0 = wksk)-{-flgs )-|-4g(k+l) s§c+2+4gz:ns Sklz e
n=1
0 = g8ra+gk s+ [wk—1)+w] s? 4gz 1) s@s2,
4g2 s - 492 Z s S (D.3)
n=1 n=1l n'=1
and for {5, 5 k = R e
0 = 4gbps s\2 + wk! .§§€I) + 4g(k — 1)! §i2) +4g > nl 5&1)5533_2_,:
n=Maxz[k—1,1]
oo ntl1-—k @) (@)
—16gz Z n—1)! (2) St Snid—_k_n!
n=k n'=1
0 = g6ua+gokt st +gkl 3 + gk — DI(1 - Ga)(1 — &2) 5,
+(k— 1wk —1)+w) 582 +g Z nl(n + 2 — k) 30s8,
n=Maz[k—1,1]
—4g Z n! 3(2 _+— 8¢ Z n—1)! 535 (2)
n=Maz[k-1,1] n=k+1
oo nt+l—-k
—SQZ > (n—1) @B (D.4)
n=k n'=1

Note that equations (D.3) may be solved for s(.”, s , so that these coeffi-
k k

cients are known quantities when solving (D.4). The expectation value of o*

assumes the form

(o)NOMI = _1 48 Z 155® (D.5)
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D.1.1 Termination of the even—parity NCCM Scheme

I calculation

If the CCM calculation is restricted to the even—parity sector, then
s =53 =9 (D.6)

for all odd n, and the only coefficient required in order to determine the CCM
ground-state energy is z = sgz). In the SUB-2 approximation, the equations

(D.3) then reduce to

3 W, ww+tw) W

ig 1642 g O (D7)
For g — 0 at scaled resonance (w = wy = 1), equation (D.7) has one real root
corresponding to a positive, and two real roots corresponding to a negative
ground-state energy. One of the latter roots describes the exact ground state
at g = 0, and the other gives a spurious solution with lower energy. As the
coupling g is increased, these two roots meet and form a complex conjugate
pair at

g = 3(20+14v7) 7" = 0.3972. (D.8)

Thus the physical even—parity SUB-2 solution terminates at this point, above
which there exist only a single real root corresponding to an unphysical posi-
tive ground-state energy, and a pair of complex conjugate roots correspond-
ing to a complex ground-state energy. This behaviour is illustrated in Figure
D.1. In the even—parity SUB-N approximation, it may be shown using Math-
ematica [Mat| that the CCM equations (D.3) may always be reduced to a

polynomial of order N + 1 in 2, and for all N/2 odd behaviour similar to
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that in the SUB-2 case is observed. In the case N/2 even, there is no un-
physical negative root for sf) which, together with the physical root, can
form a complex pair at finite coupling, and the physical solution therefore
does not terminate. In this case, however, the CCM ground-state energy
corresponding to the physical root peels off the exact ground-state energy in

the same coupling region where the N/2 odd solution terminates.

Figure D.1: The behaviour of the three roots for the single CCM coefficient

322) in the even—parity SUB-2 NCCM Scheme I analysis of the scaled resonant
(w=wo=1) Rabi Hamiltonian. The termination point at g = g£2) = 0.3972,
where the physical and unphysical negative roots meet to form a complez conju-

gate pair, is indicated by the symbol ®.

2 I I I T
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1.5 XK KKK KK KHHHH KKK KHHHKHXKEXHHHKKHKKHHHH AKX )

Unphysical positive root
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-0.5 %xxxxxxxxxxxxxxXxXxXXx
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Xxxxx
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a4 ><><® ]
X

X

xX
XXX

XXX XK
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9 I 1 1 I
0 0.1 0.2 0.3 0.4 0.5
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D.2 ECCM Scheme I

The similarity transform e=% Hrapie® has the same form as for the NCCM,

but the functional H in the ECCM SUB-N approximation is now given by

11
= (q)leEe—SHRabieSm)) — ZC; (Dg)
with
1
01 = = 5“—’0
C, = d4dg 0{2)
N J LTI_N-'C_N_ Ln—Nk 2—...—3k3J
Cy = Z Z Z .. Z n! nw
n=1kyny=0 ky_;=0 ko=0
3(1) [ (1) ]vz—NkN—...—2k2 [a’él)]kz e [0%)} kn
(n— Nch 2k Ry
B=m— N" Ln—m—Nk —...—3k3J
2
€ = ZZ Z Z > (n—1)! 4ng
n=lm=1 ky=0 ky_;=0 k=0
o0 ] i ek o)
(n—m — Nkw — ... — 2k) kol . .. k!
I el e "“”‘NJ e
C: = Y, XL 3 (n—1)!4[we + (n — 1))
n=1m=1 kny=0 ky_1=0 kz=0
s(2) [09) e [crél)}kg e [a}&)]kf\r a(2)
(n—m— Nkn — ... —2k)lks! .. . Ekn!
N LERR) ] (Rt
Ce = ) 3. e 3. (n—2)14(n—1)g
n=1 ky=0 kxy_1=0 ka=0
8(2) [Gil)]n—Q—NﬁnN—...—Zkg {iaél)]kg o [JE\P]kN
(n—2— Nky — ... — 2ks)'ka! ... ol
- I_-}%;J Ln NLNJ [_n—Nsz_m_skSJ
n=1ky=0 ky_;=0 kz=0
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5@ [ogll]n—NkN—...—%z [0(1)]1@ A3 [af\})] K

2
N Ln+n = Lﬂ+n —2— NkNJ Ln+n'—2-—NkN-...—3k3j
Cs = >, > Z i) (n+n' —2)! 4ng
n,n'=1 kyx=0 ky—1=0 k2=0
n4n’'—2—-Nkpy—...—2k k k
s,(ll)sg:) [Jil)] ’ [agl)] — [a%)] 4
(n+n'—2—Nky —...—2k) k! .. kn!

| A +n'—m—2—-Nk
n+nNm 2J L”’ n'—-m NJ

Min[n+n'—2,N] |

“--3 x> ¥

nn'=1 k=0 ky_1=0
Ln-f-n um—-?—éNkN—...—.'!ksj
> (n+n'—3)16(n —1)g
ko=0
ndn'—m—2—Nky—...—2ko k k
@@ [0 (o)™ o] ot
(n+n'—m—2— Nkny—...—2ky)lks! ... kn!

]
—m—Nky
Min[n4n',N] LMJ Ln+n Nnii J

R Y >

n,n'=1 k=0 kpn—1=0
Ln-i-n —m—Nsz—...—akaj
> (n+n'—1)! 16g
ko, =0
n'—m—Nky—...—2k; k: k
NN ELC il FTC) L A0 L0
(n+n —m— Nky — ... — 2ky) kol ... k!
N Mz'n[n+n’+n"—2,N] Ln+n-’+1_;\;f_2—mj '.n+n,+nHA73Tm_NkN_]
Cu = — 3, 2 2 >
n,nf,n'=1 m=1 k=0 kn—1=0
Ln+n'+n”—2—mé—NkN—...—3k3J
> (n+n' +n" — 3)! 16ng s s
ko =0
ntn'+n""—m—2—Nky—...—2k k k
o] A PG L A, )
: .10
(n+n'4+n"—2—m—Nky —...—2k)ks! ... ky! ( )

The 4N ECCM Scheme I equations are
OH oH oH oH

s asy? 7 oo 9o

k=1,2,...,N. (D.11)
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D.2.1 The SUB-1 case

Here the ECCM equations above are analytically soluble, and yield the trivial

(even—parity) solution

sgl) = 352) = o{l) = 052) =0
1

for g < \/wwy/4, and the doubly-degenerate (odd-parity) solution

25692 — wiw?
8gw

1 [16g% —
2V 16¢% + wwyq
/25692 — ww?

64g*

sgl) agl) ==

g, = F
4g* 1

for g > /wwe /4.

D.3 NCCM Scheme II

The similarity transformed Hamiltonian is given by
e~ Hpapie® = %ng (CT) 0% +wcle + 2g (CT + c)
oo .0}
—!—wZnsn (CT)n -{—QQZn 8 (CT)H“I (D.14)
n=1 n=1
with ¢f = bto?, [c, CT] = [b, bT} =1 and

F (cf) = exp [G (cT)] , G (cT) = -2 i Sop—1 (cT) o . (D.15)
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Using the overlap form (3.7) of the CCM equations, we obtain the following

set of simultaneous equations for {sg; & =1,2,3,...} (see also Appendix B):
1
0 = 29841 + whk! s + 29(k + 1)k! spy1 — swo(®[F® (1) [@) . (D.16)

We have used Mathematica [Mat] to evaluate the functional derivative

OFF (¢t g* A _
FO) = G(C’E)k) = 5@ =) el

and the form of the equations is greatly simplified by the fact that (®|c! = 0.

D.3.1 Analytics for the SUB-1 and SUB-2 cases

In the SUB-1 approximation, one obtains the solution s; = —2¢/(w + wy),

valid for all coupling, with corresponding ground-state energy

1 4q?
Eq _§w0_w+w0 (D.18)
In the SUB-2 case, one finds the analytic solution
—w (w4 wg) + \/uﬂ (w 4+ wo)? — 16g%wwq
s =
) 4guwyg
w
Sy = 5-53? (D.19)
with corresponding ground-state energy
1 3 ? — 1642
B = s w (w +WU) 4 \/w (Ld +w0) g wWwo (DQO)
2 2wg 2wg

below g{?) = %\/g (w4 wp). Above this value of the coupling, there are no
physical solutions to the SUB-2 NCCM Scheme II equations. At resonance
(w =wg = 1), the SUB-2 NCCM Scheme II solution (which is always of even—

parity) thus terminates at g{® = 0.5.
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D.4 NCCM Scheme III

For Scheme III, the similarity transformed Hamiltonian e~ Hg,p,;e° assumes

the form

e~% Hpapie® = %ng (c ) 0% +wele — 4i+w2n Sy ( T)n (D.21)

n=1

with ¢l = bfo® 4+ 2g/w, [c, CT] = [b,bf] =1 and

F(d)zew[6()], ¢()=Ta{(Z-¢) - ()"} o2

n=1

The energy functional H is given by

F = (‘I)lge_SHRabi Sl@)

1 2 e
- g1 55,5 0y (1) aire () o)
k=0
1 27,2 4 4g*
—5&?08_89 v” exp {Z (-Jg) sn} £ +w Z nn! s,3, (D.23)
= n=1 n=1
where C'(n, k) denotes the binomial coefficient {_ET and
OFF (c*)
FO () =22\ D.24
(C ) 9 (car)k ( )

The CCM equations (3.14) for {s;; £k =1,2,3,...} (see also Appendix B)

are given by

S i
2 ’ w

n=0

+ wkk! sy, (D.25)

and those for {3x; £k =1,2,3,...} by

1 27,2 - dg
0 = oo 355 {3 ) (2)7 2 [1air () 03]
n=1 m=0 k
s 2 r4g\" 4g\* N
—gwoe 89°/w" exp {HZ::I (;g) sn} (f—) + wkk! 3 , (D.26)
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so that the expectation value of o* assumes the form

o0

P e ORIl Y {g C(n, k) (4_9) - (| F® () |¢>)}

=1 w

P oo 4 n
_e“Sgi’/w2 exp {Z (Eg) Sn} ; (DQT)
n=1

In (D.25), (D.26) and (D.27) we have again used Mathematica [Mat] to eval-
uate the derivatives explicitly, and as before (®|c' = 0. For Scheme III, it is

not possible to solve even the SUB-1 CCM equations analytically.

D.5 NCCM Scheme IV

Here the similarity transformed Hamiltonian
Hiw = e SHpae®
1
_ 1 t) = t t e
- QwoF(b)J +wblb + 2g (b + b) &
o0 n 20 n-1
+w Y n s, (bTa”’) +29> ns, (chrr) (D.28)
n=1

n=1

with
F)zexp[a()], G0)=-2% s (5)""0r  (D29)

obviously has the same form as for Scheme II.

In this section, all expectation values refer to the model state
|(I)) T |‘I}EBV2(xopt:'Uopt)) (D30)

(see (4.38)) of Scheme IV, i.e.  (A) = (®|A|D) for arbitrary A. Note
also that the optimal values 2o, and vope of the variational parameters are

predetermined via (C.7) and (C.8) at each value of the coupling g.
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The Hermitian conjugate ¢ = ba® of ¢! = bfo® does not annihilate the model

state |®). However, since

o) = b7/0) = 22,|0) , (D.31)
it follows that
@) = ax5,|®), e = 2,4,6, o
@) = alilc]®) = 2l bo®|0) m=1,3,5... . (D.32)

This, together with the fact that [c c*] [b bf] =1, allows us to set up the

equations for {sx; £ =1,2,3,...} by constructing, for m = 2,4,6,..., the

overlaps
= (Hamb™) + Y C(m, )(Hil;,bm ")
r=1
= 2By MY 4 Z C(m,r)as" (Hin)

" even

i3 Z C(m,r)am:"" (HGMb) , (D.33)

f‘ odd
and, for m = 1,3, 5, ..., the overlaps
(CmHsim) - <bm—lbo_x r:I;«WCCM,IV> o :;tlENCCMIV (bO':B)
=, 30 Clmyr) < z {1 pm= '">
r=0
m—1
= acg;;l (" Hamb) + Z C(m,r):t::;:’"_l < ‘"’HSI’;I)16>
r=2

r even

‘{‘Zcmf‘" optr<x 51m> D34

T odd
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Here Ej ™1 is the NCCM Scheme IV ground-state energy (6.3), and

HY) =

Fr)
(12) = Jou (PO

nn! .
+ w Z (n——?"'j-'-:co}]t I(bo‘) Sn

nn! _
tw mw .

T even
o0

n—r—1
+ 2g Z T T Ti%on S
(n—r—1)!
n=r+1
1 odd

+ 29 Z e ),mE;J 2(b0®) 5.,  re€{2,4,6,...}

n=r+2 r—
n even

(HDB) = 5en(FOb0%) + {wady, +29 (bo™)} 8.4

nn! -
+WZ(TI, )’ opt (bg) Sn
T odd

o

te 2 (nm!)r 25 ™ (b16) s

n=r+1
7L even

+ 29 Z (n — - (n—r—1) Topt 2<bTb>

n=r+2 r =
7l odd

+2g Z Py ),wﬁp‘t’ BBy sns 1€ {8,500
Teven

(") = Swo (FOboo")

o0

nn!
tw Yy el l(bfb)
ey (1)
e nn!
o & o (7)o

N even
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+ 2¢ Z n_r_l),a:gp; {bo®) s,

n—r+1
n odd

+ 2g Z ' g e <bfb> Sn s r € {2,4,6,...}
n=r+2

T even

’ 1
<0-$H5(1n)1> = 5&)0 <F(r) % z>+ {w (bO’ )+2g} (5,.,1
T ;, (n—r)!
1 odd
=2 nn! e r
+w ) —(n _r)!:cgpt Yba®) s,

nn!
n—r
Tt n

n=r+1
7L even

+2.g Z )ixgptr 2(1)0’ ) Sn

n_r+2
T odd

n—r=1
"’gn;l (n—T‘ )'m"pt Sn s S {1?3’57'-'}
v o —1
(%) = 2
Uopt + 1
bipY = mgpt h 22
< > = 12y (tan :r:opt—}-v tcothxopt)

2wopl: Uopt

b) = T (- ewl-ad))

(bo®c®) = gwoptvoitixj E Qmom] (1 —exp{ 4:copt])_1/2 . (D.35)
op

-1/2

We have again used Mathematica [Mat] to set up the derivatives F(") as a

function of the set {G(k); RS ) A } with

G () | 252, B (B " btor s, ke{0,2,4,...)

kT n—k
a(bf) 22,, . o= L}, (bT) % 55 ke{1,3,5,...}
(D.36)

(k)

One may readily prove the identity

(@]exp [G (b)] = (@] cosh o — (D) (Si“h O‘) blo® (D.37)

mopt
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with

Q= Z 2 San+1 .’L‘gg:-l 5 (D38)

n=0

which is the final element required in order to set up the CCM equations

(D.33) and (D.34).
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Appendix E

Acronyms and Abbreviations

Acronym /abbrevation

Explanation

Relevant chapters

CCM Coupled cluster method 1,3,5,6,8
CI Configuration—interaction 1,4,7
ECCM Extended coupled cluster method 1,35
JT Jahn-Teller 1,2,7,8
PJT Pseudo Jahn-Teller 1,2,7,8
LMG Lipkin-Meshkov-Glick 1,5
NCCM Normal coupled cluster method 1,3.5,6,8
PAV Projection after variation 4

PBV Projection before variation 4

RBIT Resonant pseudo Jahn—Teller 1,2,7,8
RWA Rotating—wave approximation 1,4
TIPT Time-independent perturbation theory | 1,4
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