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Chapter 8

Application of the CCM to
Linear £ ® e Jahn—Teller
Systems

In this chapter, we review previous applications of the CCM to the ground
state of the linear £ ® e JT Hamiltonian, and present new CCM results for
the ground and first excited state energies of both the linear £ ® e JT and
PJT models. Given the observed character change in the ground state of
these models, it is not surprising to find that, as is the case for the Rabi
Hamiltonian, a CCM calculation based on a naive choice of the model state
fails in the intermediate coupling regime. We present, however, a CCM calcu-
lation, based on the analytic ground state of the linear E ® e resonant pseudo
Jahn-Teller (RPJT) Hamiltonian, which to first order yields excellent results

for both the ground and first excited states of the models considered here.
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8.1 Previous CCM calculations for the linear

F ® e Jahn—Teller Hamiltonian

Monkhorst presented a critical analysis of the treatment of molecular systems
in the adiabatic approximation, and argued that the CCM is an especially
suitable method for the analysis of such systems in a manner which does not
rely on the adiabatic approximation [Mo87]. Wong and Lo have applied the
CCM to the ground state of the linear £ ® e JT Hamiltonian, which is a
manifestly non-adiabatic model. Initially, these authors applied the unitary
transformation

U=expR, R=X(b-b), (8.1)
with A = n/w, to the Hamiltonian in the form

Hyr = w (blby + blby) + 17 (b] +b1) 0% — 1 (B + b)Y,  (8.2)

and applied the CCM to the transformed Hamiltonian using the SCCA ap-
proximation scheme discussed in Section 5.1 [Wo94]|. The same authors sub-
sequently presented an improved ground-state CCM calculation for Hjr,
referred to as the optimal coupled cluster approximation [Wo96a]. In this
approach, the parameter A in the unitary transformation (8.1) is treated as
a variational parameter, the optimal value A* of which is determined by
a method which combines aspects of both the CCM and the variational
method. Finally, the CCM is applied to the “optimally” (A = A*) trans-

formed Hamiltonian to yield the required ground-state energy results.

The optimal CCM results of Wong and Lo for the ground-state energy

of Hyr are more accurate, over the full coupling spectrum, than those ob-
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tained via previous calculations based on either the variational method or
the method of unitary transformations [Wo96a]. Their calculations, however,
take no account of either of the symmetries J and IIpjr of the Hamiltonian:
in fact, it is evident that the unitary transformation (8.1) destroys both these
symmetries. Besides the resulting loss of accuracy in the ground-state energy
results, their approach is therefore also not readily generalized either to the

first excited state, or to the case of nondegenerate electronic levels (wo > 0).

8.2 Naive applications of the CCM to Hjy

and HPJT

We have generalized the CCM schemes ! employed in our application of the
method to the Rabi Hamiltonian (see Table D.1) to the linear E®e JT
and PJT case of two degenerate bosonic modes. Given the results obtained
for the Rabi Hamiltonian via CCM calculations based on the noninteracting
model state, and the character change in the ground states of Hyt and Hpjr,
it is unreasonable to expect that a CCM calculation based on the model state
|0)[0)]{) would be successful here. Indeed, we have confirmed that, for the
model state |0)|0)|}) and a cluster operator S of the form

S = S0 )+ 5 zw () ()" 0%, (89

n=1 k=0

which represents a simple generalization of Scheme I for the Rabi Hamilto-

nian, the CCM results, although very accurate for weak coupling, again fail

'As before, a CCM scheme refers to a particular choice of the model state |®) and

cluster operator S.
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at intermediate and large coupling. The same holds true for the generaliza-
tion of Scheme II. Although we have not formally proven this, it is highly
likely that the failure of the method is again due to an incompleteness, to any
finite order, in the CCM ansatz for the ground-state wave function. Also,
these calculations do not conserve the J symmetry of the Hamiltonians Hjt

and HPJT.

We have also performed a CCM calculation for Hyr and Hpjt based on

a coupling-dependent model state of the form

) = %{I — 2)[0)]1;0%) — |2)[0)] L;0%)} - (8.4)

Here |z) is a bosonic coherent state with coherent parameter z = n/w, the
bosonic states refer to modes of linear polarization, and the fermionic states
refer to eigenstates of 0. The state (8.4) represents a generalized form
of the model state |¥,) employed in the Scheme III analysis of the Rabi
Hamiltonian. Using a similar form for the cluster operator S to that employed
there, we again find that the CCM breaks down at intermediate and large
coupling. The reason is two—fold: the model state (8.4) does not mimic the
change in character in the ground states of Hyr and Hpjr with sufficient

accuracy, and the J symmetry has again been neglected.

Since an accurate variational calculation similar to that presented in
Chapter 4 for the Rabi Hamiltonian is not available for the linear E @ e
JT and PJT Hamiltonians, it is not possible to generalize the very successful
CCM Scheme IV calculation for the Rabi Hamiltonian to the models con-
sidered here. For a CCM analysis of Hyr and Hpjr, we therefore seek an

alternative model state |®) which must
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e incorporate the symmetries Ilpyt and J,

e allow for the construction of a suitable cluster operator S which con-

serves these symmetries, and

e be capable of tracking the character change in the ground state.

8.3 Successful CCM calculations for Hjr and Hpjt

For the Hamiltonians Hjr and Hpjt, the analytic ground state of the linear

E ® e RPJT Hamiltonian, ?

[GRPITY — \/ID (2K2)1+ o {IO (2;{&‘) - I (QrccT)} [0)[0)[4)  (8.5)

with ¥ = vy/w, and where the operator ¢! was introduced in (7.8), satisfies all
the requirements for an effective CCM model state [Bi99b]. The state |¥FFIT)
clearly has the correct even—parity and j = —1/2 symmetries required of the

ground state. Furthermore, since it is easily shown that

| UEPITY = g | gRPITY | (8.6)

the operator ¢ + x annihilates the model state |®) = |URFIT). This suggests
the following (clearly symmetry—conserving) form for the cluster correlation
operator S:
o n
8= ¥ (CT—I-&) : (8.7)
n=1
We shall refer to this choice of the model state and correlation operator as the

RPJT scheme. Consider the SUB-1 approximation, where S = s; (cT - f-c).

2Here I,, refers to a modified Bessel function of the first kind of order n.
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With the Hamiltonian Hpjyr (for arbitrary wp including the JT case wy = 0)
written in the convenient form (7.11), the nested commutator expansion (3.8)

may be used to obtain the similarity transformed Hamiltonian

1 1
e S Hpyre® = §w@exp{—231cT}oz Tl §w

+ ws; (CT + n) + 2wk (cJr -+ c)

1 1 = QSIK(—Zslcf)m
—w(2 z =
P P ey

(2J) 0%.(8.8)

For the ground state, one may make the replacement 2J — —1. Furthermore,
given the relation ¢|®) = (—«)|®) and its Hermitian conjugate (®|ct = (®|(—&),

it follows that the SUB-1 CCM ground-state energy has the form

E(?CM = ((I)|€_SHPJT68|‘I)>

1 1
= gt 2oK? + 5 (wo — w)exp{2s1k} (%) , (8.9)

where the model state expectation value {¢*) is given by

I (26%) — I (2&2)]

(8.10)

(0%) = (®lo7[|®) = - lfo (2x2%) 4+ I1 (2x2)

Using the commutation relations (7.13), one obtains the overlap equation

0 = (®|(c+~&)eSHpyre’|®)
1 1
= exp{2s1k} (wo —w) (rs — 531) (c®) + F@S1 [1—(c%)]
Wo . v W o g

o sinh {2s;x} + P [1 — cosh {2s1x}]

+ i [1 —exp{2s1£}](c?) , (8.11)
which determines the coefficient s;, and thereby also the SUB-1 CCM ground-
state energy (8.9) in the RPJT scheme. It is clear from the form (8.9) that, as
expected, the SUB-1 CCM ground-state energy E§™ for the RPJT scheme

is exact in the case of resonance wy = w.
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For ease of comparison with other results, we scale out the w-dependence

of the Hamiltonian by setting w = 1, and introduce the coupling parameter
k? =497 = 4K* = 207 (w=1). (8.12)

In Table 8.1 we compare our SUB-1 CCM results for the ground-state energy
of the (pure) linear F' ® e Hamiltonian (for which wy = 0) to the numerically

exact results obtained via the CI diagonalization, and also to results obtained

Table 8.1: Comparison of the ground-state energy E§™ of the scaled (w = 1) linear
E®e JT (wo = 0) Hamiltonian, obtained as a function of the coupling k* from a SUB-1
CCM calculation based on the RPJT scheme, with the results of other many-body calcula-
tions. In accordance with the other results quoted here, we have added unity (the zero—point
energy of the bosonic modes for w = 1) to our results. The (effectively exact) CI results are
labeled EST. The results from [Wo96a] are the so-called optimal CCM ground-state energy
results obtained there. The other columns, which are reproduced from [Wo96a], represent
results obtained via an earlier CCM analysis [Wo94], and via variational methods and the

method of unitary transformations [Al69, Ba78, Ba77, Zh90, Lo91].

k| EST4+1 | ESCM 41 | [Wo96a] | [Wo94] | [Al69, BaTs) [Ba77] [Zhao] [Lo91]
0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.25 0.7738 0.7739 0.7741 0.7742 0.7766 0.7883 0.7877 0.7767
0.50 0.5780 0.5785 0.5799 0.5806 0.5920 0.6155 0.6119 0.5877
0.75 | 0.3997 0.4009 | 0.4045 | 0.4066 0.4308 | 0.4609 | 0.4522 | 0.4173
1.00 | 0.2330 0.2350 | 0.2415 | 0.2453 0.2838 | 0.3168 | 0.3017 | 0.2586
2.00 | -0.3689 -0.3637 | -0.3441 | -0.3343 -0.2454 | -0.2166 | -0.2577 | -0.3157
3.00 | -0.9189 -0.9117 | -0.8824 | -0.8704 -0.7494 | -0.7281 | -0.7886 | -0.8466
5.00 | -1.9610 -1.9532 | -1.9173 | -1.9051 -1.9750 | -1.7371 | -1.8225 | -1.8716
7.00 | -2.9761 -2.9693 | -2.9345 | -2.9231 -2.7500 | -2.7409 | -2.8418 | -2.8833
10.00 -4.4850 -4.4797 -4.4492 -4.4391 -4.2500 -4.4360 -4.3600 -4.3937
15.00 -6.9907 -6.9870 -6.9625 -6.9538 -6.7500 -6.7458 -6.8780 -6.9042
20.00 -9.4932 -9.4904 -9.4700 -9.4623 -9.2500 -9.2468 -9.3894 -9.4111
30.00 | -14.4956 -14.4937 | -14.4783 | -14.4719 -14.2500 | -14.2479 | -14.4035 | -14.4202

115



University of Pretoria etd — Van der Walt, D M (1999)

via a variety of many-body calculations. It is clear that, even in first order,
our CCM calculation based on the RPJT scheme yields a considerable im-
provement, over the full coupling spectrum, on the earlier “optimal” CCM
results of [Wo96a|, which in turn are far superior to results obtained via
other many-body techniques. Furthermore, the CCM results of Wong and
Lo given in [Wo96a] were obtained in the third level of their successive cou-
pled cluster approximation scheme, and required the numerical solution of
13 nonlinear coupled equations. It is evident that the proper inclusion of
the J and Ilpjr symmetries in our calculation, which requires the numerical
solution of only the single trancendental equation (8.11), leads to a much
simpler and considerably more accurate CCM calculation of the linear £ @ e

JT ground-state energy.

In Table 8.2 we present the results of a SUB-1 CCM calculation, based
on the RPJT scheme, of the ground—state energy of the scaled (w = 1) linear
E ® e PJT Hamiltonian in the sub-resonant cases wg = 0 (this is again the
pure JT case) and wy = 0.5, as a function of the coupling k2. Here we also
show the percentage error in the CCM results, as compared to the (converged)
results of a CI diagonalization of Hp;r in a basis consisting of 101 even—parity
J = —1/2 states. Similar results for the supra-resonant cases wy = 1.5 and
wo = 2.0 are tabulated in Table 8.3. It is clear that, already in the SUB-1
approximation, the CCM ground-state energy results for the RPJT scheme
are extremely accurate over the full coupling regime and for a wide range
of values of the fermionic level splitting wo, with a percentage error, relative
to the CI results, of no more than 0.38 % (see Figure 8.1) for the range of

parameters considered here.

116



Table 8.2: The ground-state energy ESM of the scaled (w=1) linear EQe
PJT Hamiltonian, in the sub-resonant cases wg = 0.0 and wo = 0.5, obtained as
a function of the coupling k? from a SUB-1 CCM calculation based on the RPJT

scheme, compared to results (labeled ES') obtained via a CI diagonalization. Also
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shown is the percentage error |E§CM - E§I| JE§* x 100.

wo k2 E§1 ESCM | 9% Error
0.0 0.00 0.0000 0.0000 0.00
0.25 -0.2262 -0.2261 0.04

0.50 -0.4220 -0.4215 0.12

0.75 -0.6003 -0.5991 0.20

1.00 -0.7670 -0.7650 0.26

2.00 -1.3689 -1.3637 0.38

3.00 -1.9189 -1.9117 0.38

5.00 -2.9610 -2.9532 0.26

7.00 -3.9761 -3.9693 0.17

10.00 -5.4850 -5.4797 0.10
15.00 -7.9907 -7.9870 0.05

20.00 | -10.4932 | -10.4904 0.03

30.00 | -15.4956 | -15.4937 0.01

0.5 0.00 -0.2500 -0.2500 0.00
0.25 -0.4125 -0.4125 0.00

0.50 -0.5679 -0.5679 0.00

0.75 -0.7180 -0.7178 0.03

1.00 -0.8639 -0.8635 0.05

2.00 -1.4191 -1.4179 0.08

3.00 -1.9481 -1.9463 0.09

5.00 -2.9736 -2.9716 0.07

7.00 -3.9832 -3.9815 0.04

10.00 -5,4892 -5.4878 0.03

15.00 -7.9932 -7.9922 0.01

20.00 | -10.4950 | -10.4943 0.01

30.00 | -15.4967 | -15.4963 0.00
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Table 8.3: The ground-state energy ESM of the scaled (w = 1) linear E® e
PJT Hamiltonian, in the supra-resonant cases wg = 1.5 and wy = 2.0, obtained as
a function of the coupling k* from a SUB-1 CCM calculation based on the RPJT

scheme, compared to results (labeled E§T) obtained via a CI diagonalization. Also
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shown is the percentage error 'EgCM - EEI| /ES x 100.

wp K2 EOCI EECM % Error
1.5 0.00 -0.7500 -0.7500 0.00
0.25 -0.8510 -0.8510 0.00

0.50 -0.9540 -0.9539 0.01

0.75 -1.0589 -1.0588 0.01

1.00 -1.1656 -1.1654 0.02

2.00 -1.6095 -1.6085 0.06

3.00 -2.0745 -2.0728 0.08

5.00 -3.0402 -3.0382 0.07

7.00 -4.0264 -4.0245 0.05

10.00 -5.5174 -5.5159 0.03

15.00 -8.0111 -8.0101 0.01

20.00 | -10.5082 | -10.5074 0.01
30.00 | -15.5054 | -15.5048 0.00

2.0 0.00 -1.0000 -1.0000 0.00
0.25 -1.0845 -1,0845 0.00

0.50 -1.1714 -1.1713 0.01

0.75 -1.2607 -1.2604 0.02

1.00 -1.3525 -1.3519 0.04

2.00 -1.7440 -1.7407 0.19

3.00 -2.1708 -2.1645 0.29

5.00 -3.0945 -3.0861 0.27

7.00 -4.0625 -4.0549 0.19

10.00 -5.5413 -5.5354 0.11

15.00 -8.0266 -8.0224 0.05

20.00 | -10.5196 | -10.5164 0.03
30.00 | -15.5129 | -15.5107 0.01
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Figure 8.1:

The percentage error, as compared to the results of a CI diago-
nalization, in the ground-state energy of the scaled (w = 1) linear E®e PJT
Hamultonian obtained from a SUB-1 CCM calculation based on the RPJT scheme,

as a function of the coupling k? and the two-level splitting wy.
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In order to determine ground-state expectation values other than the

energy in the SUB-1 RPJT scheme, we construct the energy functional
FPJT [81, §1] = (‘I)le_SHP'JTESJ@> + §1<(I)[ (c 1= K) e_SHPJTeS](I’) ; (813)

The NCCM bra state coeflicient §; is determined via the equation

O H, .
8§1JT = To -I— SlTl =0 5 (814)
where
—8 S
T, = O(®|e ;f”e [©) = k(wo — w)exp {251k} (c?)
1
3(<I>| (C + ﬁ:) G_SHpJTeS|@>
Tl = a
S1
1 1
= 2rexp{2s16} (wo — w) (KJ - 531) () + 5 €XP {2516} (wo — w) (07)
1
- %w [1—(c*)] + %wo cosh {2s;k} — 3w sinh {2s;k}
1
— —wexp{2s1x} (¢*) . (8.15)

2

The NCCM ground-state expectation value of the operator ¢* in the SUB-1

RPJT scheme is then given by

(0%)°M = exp {2s:5} (6%) (1 — 515, + 263;) + ;—1 sinh{2s;x}, (8.16)
K

with s; and §; determined via (8.11) and (8.15), respectively. In Figure 8.2,

our results for (%)™, for the representative cases wp =0 and wy = 2.0

?

are compared to the numerical diagonalization results. Our CCM results,

though quantitatively inaccurate for intermediate and large coupling, are at

least qualitatively acceptable over the full coupling spectrum.
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Figure 8.2: The ground-state ezpectation value (c%) for the scaled (w=1) linear
E ®e PJT Hamiltonian, in the representative cases wg = 0.0 and wg = 2.0, ob-
tained as a function of the coupling k* from a SUB-1 CCM calculation based on
the RPJT scheme (dotted lines labeled (UZ)CCM), compared to results obtained via

a CI diagonalization (solid lines labeled (a*)°").
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The first excited state energy of Hpjr is useful in e.g. the analysis of
the optical absorption properties of the linear £ @ ¢ PJT model. Since the
symmetries of the Hamiltonian Hpjp are built into our calculation, it is
straightforward to extend the CCM analysis based on the RPJT scheme to
the first excited state of Hpyr, which is an odd-parity state corresponding

to j =1/2. This can be done by repeating the ground-state analysis above,
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but with a model state of the form

1
I (2-2) + I (

|®) o {L(2x¢) = L (26c) }l0)O) 1) . (8.17)

However, it is easily shown that this is equivalent to the following procedure:
the first excited state of Hpr is, due to the invariance properties of the (ex-
act) Longuet-Higgins relations discussed in Chapter 7, given by the ground
state of the new Hamiltonian obtained by making the replacement wy — —wy
in Hpyr; for the first excited state in the CCM, one therefore simply makes
this replacement in Equation (8.9), which determines the CCM energy, and
in Equations (8.11) and (8.15), which determine the CCM coefficients s, and
51. The calculation is otherwise identical to that presented above for the
ground state. It is important to note, however, that the model state (8.17)
is not the analytic first excited state of the resonant (wg = w) linear £ @ ¢
pseudo Jahn-Teller Hamiltonian, Hrpjr. Also, for the pure JT case (wo = 0),
the procedure outlined above clearly gives the same energy results as for the
ground state, reproducing the known two-fold degeneracy of the Hjy ground

state.

In Table 8.4 we present the results of a SUB-1 CCM calculation, based on
the RPJT scheme, of the first excited state energy of the scaled (w = 1) linear
E ® e PJT Hamiltonian, in the cases wy = 0.5 and wy = 1.0, as a function
of the coupling k?. We also show the percentage error in the CCM results,
as compared to the (converged) results of a CI diagonalization of Hpjt in a
basis consisting of 101 odd-parity j = 1/2 states. Though not as good as the
ground-state results, the CCM results for the first excited state energy are

still very accurate, over the full coupling spectrum, for the range of wy
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Table 8.4: The first excited state energy ECM of the scaled (w = 1) linear E @ e
PJT Hamiltonian, in the cases wp = 0.5 and wy = 1.0, obtained as a function
of the coupling k* from a SUB-1 CCM calculation based on the RPJT scheme,
compared to results (labeled EX') obtained via a CI diagonalization. Also shown

is the percentage error ‘EFCM - E1CI| /EST x 100.

wp k2 ElcI EFCM % Error

0.5 0.00 0.2500 0.2500 | 0.000000

0.25 -0.0935 -0.0930 | 0.531421
0.50 -0.3325 -0.3307 | 0.528784
0.75 -0.5351 -0.5317 | 0.636452
1.00 -0.7176 -0.7124 | 0.726559
2.00 -1.3505 -1.3387 | 0.874016
3.00 -1.9123 -1.8967 | 0.815322
5.00 -2.9620 -2.9454 | 0.559254
7.00 -3.9785 -3.9641 | 0.361388
10.00 -5.4874 -5.4763 | 0.201573
15.00 -7.9925 -7.9848 | 0.096169
20.00 | -10.4946 | -10.4888 | 0.055698
30.00 | -15.4966 | -15.4927 | 0.025425

1.0 0.00 0.5000 0.5000 | 0.000000
0.25 -0.0560 -0.0558 | 0.395322
0.50 -0.3173 -0.3156 | 0.552823
0.75 -0.5307 -0.5267 | 0.757497
1.00 -0.7197 -0.7130 | 0.921794
2.00 -1.3633 -1.3466 | 1.227422
3.00 -1.9277 -1.9047 | 1.192903
5.00 -2.9764 -2.9511 | 0.848603
7.00 -3.9904 -3.9682 | 0.554943

10.00 -5.4963 -5.4792 | 0.310645

15.00 -7.9986 -7.9868 | 0.148102

20.00 | -10.4993 | -10.4903 | 0.085685

30.00 | -15.4997 | -15.4936 | 0.039062
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considered here. For wg > 1, the SUB-1 calculation based on the RPJT
scheme breaks down, indicating that the model state (8.17) is not a physically

realistic starting state for the first excited state beyond wy = 1.

In Figure 8.3 we plot the percentage error in the results of the SUB-1
RPJT scheme calculation of the first excited state energy of Hpyr, as com-
pared to results obtained via the CI method, as a function of k2 and ws.
For the range 0 < wp < 1, the maximum percentage error of 1.2 % occurs
at intermediate coupling for the resonant case wg = 1. Thus we have shown
that, even to first order, the CCM can yield very accurate results for the
ground and first excited states of the linear E® e JT and PJT Hamiltoni-
ans, provided that a model state is chosen which not only mimics the physical
behaviour of these states, but also incorporates the correct J and IIpjT sym-

metries.
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Figure 8.3: The percentage error, as compared to the results of a CI diagonal

ization, in the first excited state energy of the scaled (w = 1) linear E@ e PJT

Hamiltonian obtained from a SUB-1 CCM calculation based on the RPJT scheme

as a function of the coupling k? and the two-level splitting wo
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