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Chapter 7

The Linear F ® e Jahn—Teller
and Pseudo Jahn—Teller

Hamiltonians

The linear E ® e Jahn-Teller (JT) and pseudo Jahn-Teller (PJT) Hamilto-
nians are of topical interest in the field of quantum chemistry, and, in this
chapter, we therefore discuss the relevance of these Hamiltonians in this field.
We present a representation-independent operator approach to the numer-
ical diagonalization of Hjr and Hpjr which also simplifies the analysis of
the isolated exact (Juddian) solutions for these models. In particular, we
give a simple closed form for the analytic ground—-state wave function of the
linear £ ® e resonant pseudo Jahn-Teller (RPJT) Hamiltonian. An analysis
of the ground-state behaviour of the linear £ ® e JT and PJT models is

also presented. Finally, we review the results of some earlier approximate
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many-body analyses of these systems. The application of the CCM to the
linear £ ® e JT and PJT Hamiltonians forms the subject of Chapter 8, and

is therefore not discussed here.

7.1 Discussion of the Hamiltonians

The linear £ ® e PJT Hamiltonian
1
HPJT = §w0 o’ + w ]\fb =+ n (bl + bl) a¥ — n (b; -+ bg) a¥
1
= —wyo+wNy+7 (al - ag) ot + 4 (a;r - ag) o, (7.1)
2
with 4 = 7/4/2 and the bosonic number operator N, defined by

Ny = blby + b5y = ala; +alas (7.2)

was introduced in Chapter 2. The bosonic creation and annihilation oper-
ators in the first (second) line of (7.1) refer to modes of linear (circular)
polarization, and the zero—point energy w of these two modes has been ne-

glected. The (pure) linear £ ® e JT Hamiltonian

Hir = wiNy+17 (bir+b1)0$—17 (b$+52)0y
= wiNy+7 (al—l—ag) ot 4+ (aJ{—I—ag) a7, (7.3)

may formally be regarded as the special case of Hpjt where the two fermionic

levels are degenerate (wg = 0). Both Hjyr and Hpjr have the symmetries

T s 2 {m [Nb + %(az 4 1)}} (7.4)

and

: 1 1
J =4 (bJ{bg - blbg) + Eaz =ald; —alay + 50”’ , (7.5)
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where the expression in terms of operators referring to modes of circular
polarization highlights the physical meaning of the angular momentum com-

ponent J in terms of helicity. It is clear that the eigenvalues of J are elements

5 3 1 .13 5
of the set {'"’_E’_E’_§7§’§’§""}'

7.1.1 Vibronic interactions and non—adiabaticity in quan-

tum chemistry

The linear £ ® ¢ JT and PJT Hamiltonians are clearly relevant in quan-
tum optics, where they describe a simple extension of the Rabi Hamiltonian
to the case of two degenerate perpendicularly polarized field modes. The
Hamiltonians can also be used to model a two-level fermion moving in a cir-
cular ring which can undergo elliptical deformation in a plane [Lo58]. Both
Hamiltonians, and Hjr in particular, have however been extensively studied
in quantum chemistry [Bera, Berb], and we present here an introduction to

non—-adiabatic models in this field.

One of the most important simplifications of the Schrédinger equation
for the electrons and nuclei in a molecular system is the separation of their
respective motions in the adiabatic approximation [Bo27, Bor]. Based on the
mass difference between an electron and a typical nucleus, it is assumed in
this approximation that every instantaneous (fixed) configuration @ of the
nuclei corresponds to a set of stationary electronic states. The ()-dependent
(or so-called vibronic) electron-nuclear interactions which couple different

electronic states are ignored, and each electronic energy eigenvalue is used
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to construct a corresponding adiabatic potential (also known as a potential-
energy surface [Mo87]). The adiabatic potential represents the potential
energy of the nuclei in the mean field of the electrons in the corresponding
electronic state, and the molecular structure for this state is determined by

finding the nuclear configuration (}g which minimizes the adiabatic potential.

Landau argued [Berb] that, in the adiabatic approximation, a given sym-
metric nuclear configuration (), would be unstable if any of the corresponding
electronic states were degenerate, and that the degeneracy would result in
nuclear displacements which destroy the symmetry of Q,. This statement is
not entirely correct. For a system where n sheets of the adiabatic potential
intersect (corresponding to n—fold electronic degeneracy) at a particular nu-
clear configuration @*, it is true that at least one of these sheets does not
have an extremum at the point Q* — this is the essence of the Jahn-Teller
theorem [Ja37, Berb]. However, the adiabatic potential in the neighbourhood
of the point of instability, *, cannot be interpreted as the potential energy
of the nuclei in the mean field of the electrons, and therefore cannot be used
to draw conclusions about the nuclear behaviour. Rather, the correct con-
clusion is that the instability at @* implies that it is necessary to reexamine

the validity of the adiabatic potential in this region.

For the nuclear motion to be localized about a given minimal configu-
ration @g, the quantum w of small nuclear vibrations about Qg should not
allow for tunneling through the potential barrier (centered at the point Q*)

separating (Jo from other minima. A criterion for the applicability of the
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adiabatic approximation is therefore given by [Bera]
w K |€n = €k| 3 (76)

where ¢; denotes the eigenenergy of the i~th electronic state, calculated at
the point Qo. If this condition is satisfied, the physical implication is that
the adiabatic approximation is self-consistent, i.e. that the molecular system
may be modelled as a combination of stable electronic states and localized
vibrational nuclear states. If condition (7.6) is not satisfied, it is necessary to
go beyond the adiabatic approximation. This requires the consideration of
the vibronic electron-nuclear interactions, which couple the electronic states
of the adiabatic approximation as a function of the nuclear configuration Q,
and the resultant effect on the nuclear dynamics is known as the dynami-
cal JT effect. The linear (quadratic) dynamical JT effect occurs when the
vibronic interaction terms, expanded in powers of @, are truncated at first

(second) order in Q.

The linear £ @ e JT Hamiltonian Hjr represents a simple non-adiabatic
molecular model of the vibronic interaction between a two-fold degenerate
electronic level (£) and two degenerate nuclear vibrational modes (e). The
bosonic quanta corresponding to the vibrational modes are thus phonons. In
the case of electronic near-degeneracy, non-adiabatic (pseudo Jahn-Teller)
effects also occur if the electronic level splitting wy is comparable to the
nuclear vibrational excitation energy w. We therefore also consider the linear
E ® e PJT Hamiltonian Hpjr, which generalizes the (pure) JT model to the
case of nondegenerate electronic levels. In both cases it is assumed that the

two levels under consideration are well separated from other electronic levels.
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7.1.2 Analytic solutions in the limit of zero coupling

In the analysis of a Hamiltonian describing an interacting many-body sys-
tem, the eigenbasis of the noninteracting Hamiltonian is often useful both
for TIPT and the CI (diagonalization) method. The linear £ ® e JT and
PJT Hamiltonians are analytic in the limit of zero coupling ~. Consider
the noninteracting JT Hamiltonian H}5° = wiN,. The exact ground states
of H)7? are the states |0)[0)|]) and |0}]0)|1), where in each case the first
(second) ket refers to the bosonic occupation number vacuum for the first
(second) bosonic mode, and the third ket denotes the lower (||}) or upper
(| 1)) level of the fermionic mode. For v = 0 these states are degenerate with
ground-state energy EJr = 0. The state |0)]0)|4) (]0)]0)|1)) is of positive
(negative) Ilpyr parity and corresponds to angular momentum component
j =—=1/2 (j =1/2). The complete spectrum of Hj5® is simply determined;
the n—th excited level has energy E, = nw and is 2(n + 1)-fold degenerate.
The factor 2 arises from the electronic degeneracy, and there are (n + 1) ways

to distribute the n bosonic quanta over the two modes.

In the limit of zero coupling the noninteracting PJT Hamiltonian

o 1
HY5E = swo ot + why (wo > 0) (7.7)

has the exact ground state |0)|0)|)), which uniquely corresponds to the
ground-state energy ERjp = —wo/2. Here the ground state is thus of pos-
itive Ilpyr parity, and has angular momentum component j = —1/2. The
determination of the complete spectrum of Hajy, which is dependent on the

relative magnitudes of w and wy, is straightforward.
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7.1.3 Numerical diagonalization of the JT and PJT

models

Although there is strong numerical support for the conjecture of Reik et.al.
[Re87], and although the linear £ ® e JT and PJT Hamiltonians have fur-
thermore been written in canonical form [Sz97], the integrability of these
models for arbitrary coupling v and fermionic level splitting wy has not been
explicitly demonstrated. We therefore turn to the CI method, which involves
the numerical diagonalization of the Hamiltonian in a finite subspace of the

full Hilbert space.

For v > 0, the Hamiltonian Hpjyr (for arbitrary wy and thus including
the JT case wg = 0) does not commute with the bosonic number operator
N, and the noninteracting eigenbasis is no longer the most appropriate ba-
sis for the diagonalization of the Hamiltonian. Rather, since the operators
Hpjr, J and Ilpyr form a mutually commuting set, the matrix representa-
tion of Hpjr in a simultaneous eigenbasis of J and IIpjt blocks into sectors
corresponding to fixed eigenvalue j of the operator J and either positive or
negative Ilpjr—parity. This not only results in a considerable reduction in
the numerical effort involved in the diagonalization of the Hamiltonian, but
also, as we will show, yields an explanation of the two—fold degeneracy of all

energy levels in the spectrum of the linear £ ® e JT Hamiltonian.

We present here an operator—based approach to the construction of an ap-
propriate simultaneous eigenbasis of the operators J and IIp;7. We introduce

the operator ¢! and its Hermitian conjugate ¢ via
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Il

Sl =Sl

(bJ{cr“T — bgo*‘") = é ( EO‘+ + &‘.IO'_)

(bla"’ — bgO’y) S (0220‘_ + a.10'+) . (78)

L
2
It is easily shown that

[, J] = [, J] =0

[e, Ipyr] = [CT,HPJT] =0, (7.9)

and also that
(1) = %[(1){)24r (b;)z] = alal. (7.10)

The Hamiltonian Hpjr may, for arbitrary wqg, be rewritten as

1
Hpyr = §w0 Ftw Ny +2yel +2v¢, (7.11)

where the bosonic number operator NV, assumes the form

1
Nb=2CTC+JO'Z—§. (712)
Here Jo* = cct — cfe — %, and the parity operator IIp;r retains the form (7.4).

The operators ¢, ¢! and ¢* obey the relations !

I:c, (CT) 2nj| — 5 (CT)2'n—1 ’ |icv (CT)Zn-I-l] _ (C_I_)?n (Jo'z i %)
o] = [o ()] = o], = [ ()] =0 (ra3)
forn =0,1,2,... . It then follows that
[Nb, (CT)R] =n (ch)n , [e, N3] = ¢ (7.14)

1The subscript + denotes an anticommutator.
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and, as expected,

[J,07] = [J,N;] =0. (7.15)

Consider an arbitrary j—sector, which is an infinite-dimensional subspace of

the full Hilbert space. We postulate that the requirement

) =0 (7.16)

uniquely determines the state |‘II)58f, which is a reference state of angular
momentum component j that will be used as a starting vector for the con-

struction of a suitable basis for this sector. Using (7.13), one obtains
c{o?| @)} = —oc Ty = 0, (7.17)

and from (7.15) it follows that the state {az|lII);-ef} is also an eigenstate
of J with eigenvalue j. The assumed uniqueness of |lI')fff implies that the
reference state must therefore be an eigenstate |¥)™f of o* with eigenvalue
s € {—1,1}. It follows from a similar argument using (7.14) and (7.15) that
the reference state must also be an eigenstate of the bosonic number op-
erator IV, with eigenvalue n;, € {0,1,2,...}. Using the form (7.12) and the

requirement (7.16), it is clear that

nszs—%zo, (7.18)
and also that
i X 1 re
HPJT |\I’)§f = exp [37’( (j + 5) S] I@)L‘E . (719)

There are now two possibilities:

1. The eigenvalue j is positive, so that j = p+ 1/2 with p € {0,1,2,...}.

In this case, condition (7.18) implies that s = 1 and ny = p, and
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we deduce from (7.19) that the reference state |lll)§e=fp+1/2‘s:1 for this

positive—j sector is of even (odd) IIpyr—parity for p odd (even).

[S]

. The eigenvalue j is negative, so that j = —p — 1/2 withp € {0,1,2,...}.
In this case, condition (7.18) implies that s = —1 and n; = p, and we
deduce from (7.19) that the reference state I‘I’>;e=f_p_1/2,s=_1 for this

negative—j sector is of even (odd) Ilpjr—parity for p even (odd).

Clearly js = p+1/2 in both cases. Given the eigenvalue j = +(p + 1/2),
the condition (7.16) therefore fully determines the reference state |¥)™f. For
example, in the occupation number representation of modes of circular polar-
ization, the reference state for the j = p 4 1/2-sector is |p)|0)|1), and that
for the j = —p — 1/2-sector is |0)|p)|}). These examples clearly illustrate

the role of the reference state as the “simplest” state in the given sector.

The operator approach now allows for the construction of a suitable basis
for this j—sector, without the need to specify the explicit form of the basis
states in terms of e.g. linearly of circularly polarized bosonic modes. For an
arbitrary j-sector eigenstate |¥); of Hppyr, we construct the power series

expansion

9 = Y X ()" 10t (7.20)

n=0

Since ¢! commutes with both J and [pjt, it is clear that the state |¥);
has the same J and Ilpjr quantum numbers as the reference state |\P)§e§ ;

Substituting the expansion (7.20) into the Schrédinger equation
HPJT|\IJ)j = E|LI1>5, . (7.21)
and using the relations (7.13), (7.14) and the condition (7.16), one obtains

97



University of Pretoria etd — Van der Walt, D M (1999)

for the coefficients {X;} the recurrence relations

it
0 = 29Xo, 1+ [(p-{- 2n)w + s§w0 — E] Xon+2v(p+n+1)Xont
: 1
0 = 29X, + [(p+ 2n+ 1w — S5%0 = E] Xont1+27(n+ 1) Xonya (7.22)

where s =1 for j =p+1/2 and s = —1 for j = —p — 1/2. These equations
constitute a simple reformulation of the Longuet—Higgins recurrence relations
[Lo58, Ju79, Re81a], generalized to incorporate the case wy > 0. The solution
of these recurrence relations is equivalent to the diagonalization of the tri-

diagonal matrix representation of Hpjr in the j-sector,

[ pw+swo  2WpFI 0 0 0
29vP+1 (p+1)w— Suwo 29v/1 0 0
0 2v/1 (p+2) w+ Lwo 29/p+2 0
0 0 29vP+2  (p+3)w—5wo 29V2
0 0 0 29v2 (p+4) w+ fwo

(7.23)-

In general (i.e. wo > 0 arbitrary), the eigenvalues of the matrix (7.23)
will be different for the cases s = 1, and the eigenstates of Hpj are thus
singlet states of definite parity and angular momentum component j. In
particular, the ground state of Hpjr is a unique positive-parity state, corre-
sponding to j = —1/2, for all values of the coupling 7. Since the Longuet-
Higgins relations (7.22) are invariant under the simultaneous replacements
{wy = —wo,J — —7,8 — —s}, it is clear that the first excited state of Hpjr.
which is a unique negative-parity state corresponding to j = 1/2 and s = 1,

may be obtained by replacing wy by —wg.

The matrix representation of the linear £ @ e JT Hamiltonian Hjt in

the j-sector is obtained by setting wg = 0 in (7.23). The representations
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of Hyr in the j = p+1/2 and j = —p — 1/2-sectors (which are of opposite
parity) are therefore identical, which explains the two—fold degeneracy of
all energy levels in the spectrum of the linear E ® e JT Hamiltonian. In
particular, the diagonalization of (7.23) for {wg =0;p=0,5 = —1/2} and
{wo =0;p=0,7 =1/2} yields the energy of the positive- and negative-
parity ground states of Hjy, which are degenerate for all couplings. Thus
the inclusion of the (vibronic) interaction terms transforms the electronic de-
generacy of the noninteracting ground state of Hjr into a parity degeneracy
(also referred to as a vibronic degeneracy [Berb]) at finite coupling. In the
Hpjr model, the finite fermionic level splitting wq lifts the parity degeneracy
of the ground state for all values of the coupling, and the Hamiltonian Hp;

is in this sense analogous to the Rabi Hamiltonian.

For the Hamiltonian Hjr, i.e. for wy = 0, the numerical diagonalization
of (7.23) was first performed by Longuet-Higgins ef.al. [Lo58]). Besides the
energy spectrum of the linear £ ® e JT model, the eigenvalues of the matrix
(7.23) with wy = 0 also yield the energies of the linear I's @ 7 JT model.
However, for this model, which describes the vibronic interactions between
a fourfold-degenerate electronic state and a triply—-degenerate nuclear vibra-
tional mode, the quantum number p is replaced by the quantity m. which
assumes half-integer rather than integer values. Numerical results for the en-

ergy levels of the linear I's ® 7 JT Hamiltonian were presented by Thorson

and Moffit [Th68].
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7.1.4 Juddian solutions for the JT and PJT models

As is the case for the Rabi Hamiltonian, analytic solutions for some of the en-
ergy eigenvalues of the Hamiltonians Hyr and Hpjr occur at isolated values
of the coupling v. Using algebraic methods, Judd [Ju79, Ju77] showed that,
for both the linear I's ® 7 and linear F ® e JT models, rational eigenvalues
occur at isolated values of 4 where the Longuet—Higgins recurrence relations
can be solved in closed form. Reik et.al. [Re81a, Re81b, Re81c, Re82] simpli-
fied the analysis of these Juddian solutions by reformulating the eigenvalue
problem for both models in Bargmann’s space of analytical functions, and
extended the search for Juddian solutions to the Rabi and linear £ @ ¢ PJT
Hamiltonians [Re82]. The important contribution of Reik et.al. is the obser-
vation that, at the Juddian points, a Neumann expansion of the wave function
in modified Bessel functions terminates after a finite number of terms. This
allows for the systematic and (at least in principle) straightforward determi-
nation, in closed form, of the values of the coupling v and energy E at the

Juddian points.

Here we rederive the results of Reik et.al. using the operator approach in-
troduced in the previous section. Our motivation is threefold: the equations
which determine the Juddian values of the coupling and energy are more sim-
ply derived in this approach; the operator ¢, which obeys the relation (7.10),
plays the role of the the Bargmann number /Zz in [Re82|, and therefore allows
for the construction of explicit expressions for the Juddian wave functions
in the Dirac rather than the Bargmann representation; finally, the operator

approach yields results which are independent of the explicit realization of
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the bosonic modes. By analogy with the approach in [Re82], we therefore

construct the following (unnormalized) Neumann expansion for |¥);:

) = 3 —mr (ke!)" ™ Ly (26cf) |25

4nna, 1
= winl

+y S (k) Lngprn (26h) [O)E, (7.29)
n=0 :

where k = v/w, I, is a modified Bessel function of the first kind of order n
(see e.g. [Abr]),and as befores =1 (s =—1)forj=p+1/2(j = —p—1/2).
Then

271-'—2‘6
n

o), = >

n=0

]Ij r_ef
Kin! g__% kEl(p+n+ k)! | )J’s
)2n+2k+1

© g & (HCT

+ bRt

i 9
Z il e Fptn kD) )

71,8

Substituting (7.25) into the Schrédinger equation (7.21) we obtain forn = 0,1, 2,. . .,

w E
0 — {I‘) TR _}$n+m2yn + 06" (21 + Yn1)
4w 2w

2
=r g P 1 wo E
0 = Grent{fentg-sgt - hn
+{p+n+l+fc2}:ﬂn+n&4(rn—1 + Yn-1) » (7.26)

where by definition z_; = y_; = 0. Elimating z,,_1 +y,—; from the recurrence

relations (7.26), and introducing the parameters § and v via

Wy —w
6 =
4w
1 2
E = v-—§—2f<z W, (7.27)
one obtains, for the case j = —p — 1/2 where s = —1,
My, M T
il P R n=01,2,...,
Yn+1 My My Yn
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My = —&? (3+1+5+3>

2 2
My, =-r€2(2+1+5+n—g)
— figd e g0 —nl T L} P
Ma, —(f» +2+1 d+n 2)(2+1+5+2) & (n+1)
Ma, =(K2+§+1—5+n—§) (g+1+6+n—g)—K?(n+1),(7-28)

with the initial condition
v _
n‘izyo = — (ﬁ;z e g -4 - 5) Zg . (729)

The parameter x¢ simply fixes the norm of |¥)_,_;/;. For an eigenstate of
Hpjyr corresponding to the positive J eigenvalue j = p 4+ 1/2, a similar analy-
sis with s = 1 yields equations identical in form to (7.28), but with ¢ replaced
by —d — 1/2, or equivalently with wp replaced by —wg. Taking zo = 2 and
s = 1, Equations (7.28) and (7.29) become identical to Equations (3.4-3.8)
and (3.11), respectively, of [Re82], so that the correspondence between (7.24)

and the Bargmann analysis of [Re82] is complete.

The derivation of (7.28) is valid for arbitrary wp, including the JT case
wg = 0. Furthermore, it can be shown [Re82] that, in the case p = —1/2, the
solution of (7.28) yields the energy eigenvalues £ = (v — 25%) w of the Rabi
Hamiltonian. Thus the set of equations (7.28) are to be solved for both §
and § - —d — 1/2, and in each case for arbitrary nonnegative integers p as

well as for p = —1/2.

Juddian solutions for Hjyt, Hpyr and Hgap; occur whenever the Neumann
series (7.24) terminates at finite order; such a termination occurs at the

N-th term if and only if both the conditions'v = N and ¥y =y +ynv =0
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are met [Re82]. By (7.27), the condition v = N ensures that the energy
corresponding to these solutions lies on the Nth baseline, defined for the JT
and PJT systems by
; 1 1 27?2
Baseline _ N — - — 2) = ( _ _) .l S -
Ex ( 5 2k° | w N 5]~ (7.30)

The quantity Ly is a polynomial of degree N in x?. For given values of

the parameters p and ¢, the conditions v = N, Xy = 0 therefore algebraically
determine the values of the coupling for which Juddian solutions on the N-th

baseline exist.

For v = N =0, the condition £ = z¢ + yo = 0 reduces to
pT—28=0, (7.31)

which is independent of the coupling x, and thus yields an analytic solution,
valid for all coupling, for p =p*,d =d*. The case p* = —1/2,6* = —1/4,
which refers to the Rabi Hamiltonian with degenerate atomic levels, was
discussed in Chapter 4. Here we consider also the case of the linear £ ® e
resonant (wg = w) pseudo Jahn-Teller Hamiltonian Hgpjt, for which § = 0.
For Hgpjt, the condition (7.31) is therefore satisfied for p* = 0, which corre-
sponds to the negative J eigenvalue j* = —p* —1/2 = —1/2 and s = —1. In
this case the reference state |¥)*f has the form [0)[0)||), where |0)[0) is the
bosonic vacuum for any particular realization of the bosonic modes. Thus

we find that the ground (j = —1/2) state [¥FFIT) of the RPJT Hamiltonian

Hrpjr = —wo® + wa{al + wa;ag

2
+7 (a+af) ot + 9 (al +a2) 0" (7.32)
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assumes the closed form
W5™) = Anear {1 (2c") — I (2x¢) O)IO)IY) . (7.33)

where Agrpjr is a normalization constant, and the corresponding ground-
state energy is
1 272

ERPJT EIBa.selme = i o, 34
W= — (7.34)

This solution, which is analytic for all coupling v, clearly highlights the
advantages of the operator approach. Expressed in terms of bosonic modes

of circular polarization, |UFFIT) assumes the explicit form

2kt

llligtPJT ArpiT Z {\/WI NEY L) — m

|k>lk+1>|T)}, (7.35)

which allows for the determination of Agpjr via

co [ ik rAkt2 i
AgrpiTr = {EO (k!k! . El(k + 1)!)}
_ {IO (252) + _[1 (252) }—1/2 . (736)

For v = N > 0, the conditions X5 = 25 + yy = 0 may be used to find
other Juddian solutions for Hgrapi, Hy, and Hpjyr. It has been conjectured
[Re87] that an expansion of the wave function in generalized spheroidal func-
tions terminates at all values of the coupling, rather than only at the Juddian
points. Despite very strong numerical evidence, this conjecture has not been
proved. However, the Juddian solutions may be still used to gauge the accu-
racy of approximate many-body techniques, even if only at isolated values
of the coupling. In particular, the converged CI (diagonalization) results

for the spectra of Hyr and Hpjr can be shown to be exact for all practical
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purposes. Also, it can be shown [Re81a] that, for large coupling -, all eigen-
values of Hjyr and Hpjr approach the baselines (7.30). In particular, both
the ground and first excited state energies of these Hamiltonians approach

the value EBaseline — FRPIT — _,/9 _ 942/4 in the limit v — oo.

7.2 Physical characteristics of the JT and PJT

ground states

The ground-state behaviour of the linear £ ® e JT and PJT Hamiltonians
is analogous to that of the Rabi ground state, in that a marked change in
character occurs in the ground state in the intermediate coupling regime.
Again, this character change manifests itself in the ground-state expectation
value of the operator o*, which is readily evaluated using the CI method.
In the ground state of Hpjr with wy > 0, the fermion is more likely to be
found in the lower state for small coupling, and (almost) equally likely to
be found in either the upper or lower state at large coupling. The crossover
between these two regimes, though not discontinuous, takes place in a fairly
well-defined region of coupling, which is dependent on the the fermionic
level splitting wg. For Hyr, the same behaviour is observed, provided that
the ground state is restricted to, say, even Ilpjr parity (or equivalently to
the negative J eigenvalue j = —1/2). Thus, as before, one may use the
expectation value (o*) or, more effectively, the fluctuation Ac?, to identify

the transitional coupling region.
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The physical nature of the crossover observed here may be seen by exam-
ining the behaviour of the ground state of the (part of a) molecular system
described by either the JT or PJT Hamiltonian, for large values of the scaled
coupling . Consider first the simpler Hamiltonian Hjr. Denoting the en-
ergy gap between the two sheets of the adiabatic potential corresponding
to the ground state by A(Q), it is readily shown that Ay = A (Qy) = 8wk?,
where (Jo represents the minimum-energy nuclear configuration [Berb]. For
large s, it is evident that Ag is much larger than the nuclear vibrational
quantum w. Thus the criterion (7.6) is satisfied, and the lower sheet of the
adiabatic potential may be interpreted as the ground-state potential energy
of the nuclei in the average field of the electrons. Quantizing the motion
of the nuclei in this potential, one obtains the observed form (7.34) of the
ground-state energy for large coupling [Berb]. The criterion Ag ~ w provides
a simple measure of the onset of this type of ground-state behaviour, so that

we expect a change in character of the ground state of HjT at
1
7

This is in good agreement with the transitional coupling region for Hjt iden-

trans

(7.37)

tified by considering the behaviour of Ac*. Although the finite fermionic
level splitting wp in the linear £ @ e PJT model affects the shape of the
adiabatic potentials, the ground—state behaviour for large coupling is similar
to that described above for Hjr [Berb|, and a similar transitional region is

observed.
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7.3 Approximate many—-body approaches to
the JT and PJT models

The approach outlined in Section 7.2 above may be used [Berb] to obtain
quantitatively accurate results for the spectrum of both Hjr and Hpjr in
the limit of large coupling 7. Accurate results for these models can also be
obtained in the opposite limit of small 7, using an operator version of time-
independent perturbation theory (see [Bera, Berb] and references therein).
For both Hjr and Hpjr, however, physically realistic values of the vibronic
interaction constant mostly correspond to the region of intermediate coupling

[Berb], where quasi—analytic results cannot be obtained.

In the intermediate coupling regime, accurate results for the spectra of
the Hamiltonians Hjyr and Hpyr can be found using quasi-exact numeri-
cal methods such as the CI (diagonalization) approach. Generally, however,
these methods do not provide much physical insight into the nature of the
solution, and a variety of other many-body techniques have therefore been
applied to the linear £ ® e JT and PJT models, with the bulk of the work
being done on the former. Most of these calculations have involved either
variational techniques (see [Berb, Lo91] and references therein), or some form
of unitary transformation (see e.g. [Fu6l]). In many cases, these methods are
used in combination; recent examples include a variational calculation based
on a correlated squeezed state [Lo91] for Hyr, and a similar calculation for
Hpyr [Hu98]. None of these calculations, however, yield quantitatively accu-

rate results in the physically interesting region of intermediate coupling. As
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is always the case, the failure of the variational method can be attributed
to a shortcoming in the variational ansatz for the wave function. As for the
method of unitary transformations (which is often just a variational shift
of the Hamiltonian rather than the wave function), the transformations em-
ployed often destroy either or both of the symmetries J and Ilpjr. This
eliminates the use of these symmetries as an aid in simplifying the solution

of the Hyr and Hpjy eigenvalue problems.

Given the excellent variational results [Bi99a] obtained for the Rabi Hamil-
tonian via a trial state of the coherent superposition form (4.38), we have
attempted to perform a variational calculation for both & JT and HpjT based
on an analogous ansatz for the case of two bosonic modes. The resulting
ansatz is not, however, a state of good j quantum number, and this calcula-

tion therefore fails at intermediate and large coupling.
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