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Chapter 6

Successful Application of the
CCM to the Rabi Hamiltonian

In order to determine whether quantitatively accurate results for the Rabi
Hamiltonian can be obtained using a CCM calculation which takes into ac-
count the symmetries of the Hamiltonian, we investigate the use of various
coupling-dependent CCM model states for the Rabi Hamiltonian, as well as

the application of the method to a unitary transformed Hamiltonian.
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6.1 Coupling—dependent CCM model states

for the Rabi Hamiltonian

It is significant that, like TIPT, the CCM based on the noninteracting model
state of Schemes I and II breaks down in the transitional region where the
Rabi ground state undergoes the marked change in character discussed in
Section 4.2. This suggests that the noninteracting model state should be
replaced by a coupling-dependent model state capable of following this char-
acter change. For Scheme III, we therefore perform an NCCM calculation
based on a model state of the form |®) = |U,) [see (4.16)], which is a
coupling-dependent, even—parity superposition of the coherent states (4.11),
and which we shall thus refer to as the coherent superposition (CS) model
state (see Table D.1). The CS model state is an exact eigenstate of Hgap,
not only in the wy = 0 (g — oo) limit, but also in the g = 0 limit, where it

reduces to the noninteracting model state. The correlation operator
S = isn (CT)n cf EbTa”‘"—l—Q—g (6.1)
n=1 | i

for Scheme III again incorporates the required even—parity symmetry in the
CCM ground state. Note that the CCM creation operators {(CT)n} have been
chosen so as to satisfy the requirement that the set {(cT)n I‘I’)} is complete,
and also so that their Hermitian conjugates {c"} conveniently annihilate
the CS model state. As for Scheme II, the nested commutator expansion
(3.8), rather than terminating, assumes a closed form (see Equation (D.21)

in Appendix D), and one obtains for the ground-state energy

; 1 i 4\ 4d°
Eé\.coM,HI =-3 wo €891 exp {Z Sy, (g) } = —z- . (6.2)
n=1
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We have used Mathematica [Mat] to set up the energy functional H and
the CCM equations (3.14) for the coefficients {s,} and {5,} (see Equations
(D.23) and (D.25) in Appendix D).

In Table 6.1 we tabulate the resonant Scheme III ground-state energy

results, which are indistinguishable from the CI results on the scale of our

Table 6.1: The ground-state energy of the scaled resonant (w = wo = 1) Rabi
Hamiltonian as a function of the coupling g as determined via a SUB-10 NCCM
Scheme III calculation, labelled EgJCCM’m, and via a SUB-10 NCCM analysis
based on Scheme IV, labeled ng COMIY (see Table D.1). For comparison, we also
tabulate results obtained via a CI diagonalization in a basis of 101 even—parity
states, labelled ES', as well as the results of the benchmark three—parameter

variational calculation, labelled Eg’BW.

CI NCCM,IV NCCM,ITT PBV3
g Eg Eq Eq Eq

0.0 | -0.50000 | -0.50000 | -0.50000 | -0.50000
0.1 | -0.52020 | -0.52020 | -0.52020 | -0.52020
0.2 | -0.58333 | -0.58333 | -0.58333 | -0.58333
0.3 | -0.69762 | -0.69762 | -0.69763 | -0.69757
0.4 | -0.87855 | -0.87847 | -0.87882 | -0.87822
0.5 ]-1.14795 | -1.14642 | -1.14964 | -1.14676
0.6 | -1.52396 | -1.51961 | -1.52343 | -1.52211
0.7 | -2.00825 | -2.00414 | -1.99657 | -2.00685
0.8 | -2.59070 | -2.58827 | -2.57057 | -2.58998
0.9 | -3.26191 | -3.26061 | -3.24192 | -3.26158

1.0 | -4.01693 | -4.01620 | -4.00028 | -4.01677
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figures, as a function of g, along with the benchmark three-parameter varia-
tional ground-state energy results. To moderate order (SUB-10), the results
show good agreement, over the full coupling spectrum, with the results of the
CI diagonalization. Some comments are however in order: To higher order
(~ SUB-20 and above), we find that the NCCM Scheme III solution breaks
down in isolated coupling regions, possibly for numerical reasons. Further-
more, for Scheme I1II, the NCCM result for (o) (which is shown in Figure 6.1
along with the Scheme I results for comparison; explicit expressions for (o)
in both schemes are given in Equations (D.5) and (D.27) in Appendix D)
also fails quantitatively in and above the transitional region, even in mod-
erate order (SUB-10) where the CCM ground-state energy is in very good
agreement with the CI result. In this regard, it is significant that the Scheme
III analysis fails to resolve the (admittedly small) difference between the ex-
act ground-state energy and the so—called baseline energy —4¢?/w for g ~ 1.
Thus the CS model state of Scheme III, though a definite improvement on
the noninteracting model state, is still not entirely capable of tracking the

character change in the Rabi ground state.

We have therefore also performed an NCCM calculation based on a coupling-
dependent model state of the even—parity two—parameter variational form
(4.38) (see Scheme IV in Table D.1), which also reduces to the exact ground
state in both the limits of small and infinitely large coupling. For Scheme IV,
we use the same (even—parity) correlation operator S as for Scheme II. This
computationally convenient choice has some drawbacks: The set of states
{(c*)n |@)}; n=0,1,2,... does not span the many-body Hilbert space, and

the Hermitian—adjoint destruction operators {c"}, n > 1 do not annihilate
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Figure 6.1: The ezpectation value of o, in the ground state of the scaled resonanit
(w =wo = 1) Rabi Hamiltonian as a function of the coupling ¢ as determined via
a SUB-N, N =10,50, NCCM analysis based on Scheme I (thin solid lines), as well
as via a SUB-10 NCCM analysis based on Scheme III (dotted line), compared to
results obtained via a CI diagonalization (solid line} in a basis of 101 even—parity

states.

-0.4 SUB-10, scheme III

the model state. The purpose of this calculation, however, is simply to show
that the CCM may be successfully applied to the Rabi Hamiltonian provided
that a suitable model state is chosen. As for Schemes II and III, the nested

commutator expansion (3.8) assumes a closed form (see Equation (D.28) in
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Appendix D), and we obtain for the ground-state energy in Scheme IV

1 il
ke SRR G {— wo cosh a ('vgpt - 1)

1/1 —l—vgpt 2

_ Vops €XP ( —222
+ wy sinh a i ( Opt)

\/ 1 —exp (-—43:31,,;)

VoptTo
\/1 — €Xp (_4xopt)
Kad ¢ 2n PontTonk
4+ 22 (2n +1) 250, Song1 |9 + w
n=0 \/ 1 —exp (—4$§pt)
— 2n—2 2 YoptTopt
4 Z 2nw Topt  So2n |W Zopt & 49 ’(63)

n=1 \/1 — exp (—4$gpt)

with
a= i 2 Sony1 Tt (6.4)
n=0
Here the parameters zop¢ and vept are predetermined via the variational equa-
tions (C.7) and (C.8) at each value of the coupling g. Since the creation
operators for Scheme IV do not satisfy the requirements (3.1) and (3.2), the
coefficients {s,} cannot be determined via the standard NCCM equations

(3.16). In Section D.5 of Appendix D, we derive a consistent set of equations

for these coefficients in the SUB-N approximation scheme.

It is clear from ground-state energy results shown in Table 6.1 that
the NCCM based on Scheme IV yields excellent agreement with the CI
diagonalization for all couplings. Thus it is possible to obtain very good
CCM ground-state energy results for the Rabi Hamiltonian, provided that
a coupling-dependent model state is chosen which, besides the parity sym-

metry, also incorporates the important physical features of the exact ground
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state, in particular the change in character in the transitional region. It is also
straightforward to adapt the NCCM Scheme IIT and IV approaches above in
order to determine the odd—parity first excited state energy E; via the CCM
(see Table D.2 in Appendix D). In Table 6.2 we tabulate the NCCM Scheme
IV results for E;, which are again in very good agreement with the CI re-
sults. Note, however, that when considered over the full coupling spectrum,

the three-parameter variational calculation outperforms even the Scheme IV

Table 6.2: The first excited state energy of the scaled resonani (w = wy = 1)
Rabi Hamiltonian as a function of the coupling g as determined via ¢ SUB-10
NCCM Scheme IV calculation, labelled EY°™MIY | compared to results obtained
via a CI diagonalization in a basis of 101 odd-parity states, labelled ECY, and via

the benchmark three—parameter variational calculation, labelled Ef Bv3,

CI NCCM,IV PBV3
g Er E; Ej

0.0 | 0.50000 | 0.50000 0.50000

0.1 | 0.28067 | 0.28064 0.28074

0.2 | 0.02337 | 0.02328 0.02396

0.3 ]-0.27391 | -0.27386 | -0.27237
0.4 | -0.61609 | -0.61555 | -0.61376
0.5 [ -1.01018 | -1.00895 | -1.00774
0.6 | -1.46444 | -1.46268 | -1.46256
0.7 | -1.98701 | -1.98518 | -1.98587
0.8 | -2.58432 | -2.58283 | -2.58373
0.9 | -3.26028 | -3.25924 | -3.25999

1.0 | -4.01658 | -4.01590 | -4.01643
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NCCM calculation at a fraction of the computational cost.

Due to the fact that the creation operators and model state of Scheme
IV do not satisfy the requifements (3.1) and (3.2), it is difficult to set up
a consistent set of equations for the NCCM bra state coefficients {5,}. We
have therefore not calculated the expectation value of observables other than
the Hamiltonian in the NCCM Scheme IV ground state. However, given
the ground and first excited state energy results presented above, we do not
expect that the CCM would yield more accurate results for quantities such
as o” than those obtained via the even—parity three-parameter variational

calculation.

6.2 The method of unitary transformations

The method of unitary transformations offers an alternative approach to
the application of the CCM to the Rabi Hamiltonian. In this approach, a
unitary rotation U = exp R, R' = —R is applied to the Hamiltonian, leaving
the spectrum unchanged, and the CCM is then applied to the transformed
Hamiltonian HY = UTHU. In their analysis of the multimode Rabi system,
Wong and Lo [Wo96b] applied a unitary displacement transformation of the
form

U =expRi, Ri= %9 (b’f 3 b) ! (6.5)

w

to the Hamiltonian. We have performed an NCCM calculation, based on the
model state and creation operators of Scheme I, for the transformed Rabi

Hamiltonian HR!,,. Since the transformation (6.5) does not conserve the
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parity Il api, this NCCM calculation is not restricted to the even—parity sector
as before, and it is no longer possible within the CCM to distinguish between
the ground and first excited states on the basis of their parity symmetry.
Due to the disregard for the parity symmetry, the CCM ground-state energy
results are quantitatively inaccurate in and above the transitional region (as is
the case for the multimode Rabi system considered in [Wo96b]). Futhermore,
since the results are considerably less accurate than those obtained via, say,
the even—parity two-parameter variational calculation, these results are not

presented here.

We have also considered the application of the CCM to the transformed

Hamiltonian H%?, ., where U, represents a more general unitary rotation of
Rabi»

the form
Uy=expR;, Ry=p/ (bT — b) +iyo? . (6.6)

However, since the transformation (6.6) does not conserve parity, the same
comments apply as for (6.5). The NCCM ground-state energy results (not
shown here) are in excellent agreement with the diagonalization results for
large coupling (g > 0.7), and are comparable to the results obtained via the
three-parameter variational calculation in this region. The CCM solution,
however, terminates upon entering the transitional region from above, and

is therefore not shown here.

Thus, despite moderate success, neither of the above CCM calculations
based a unitary transformed Rabi Hamiltonian yield good results over the
full coupling spectrum. This is at least partly due to the fact that both

rotations destroy the parity symmetry IIgap;. One may also consider a parity—
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conserving unitary transformation of the Rabi Hamiltonian of the form

Us=expRs, Rs= i—g (b-b") 0" (6.7)
The algebra involved in an NCCM analysis of the rotated Hamiltonian HE2,
becomes prohibitively involved beyond the level of the SUB-1 approximation.
Note however that, since the CS model state |¥U.) of Scheme III may be

written in the form

[U,) = e /2 exp Rs|0)] 1), (6.8)

it is clear that a SUB-1 NCCM Scheme I calculation on the rotated Hami-
tonian Hggbi is equivalent to a SUB-1 NCCM Scheme III calculation on the
unrotated Rabi Hamiltonian (4.1). Although this is no longer true in the
SUB-N, N > 2 approximation, we do not expect the results of this calcu-
lation to differ qualitatively from those obtained via our NCCM Scheme III

analysis of the unrotated Rabi Hamiltonian.
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