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Chapter 5

Simple Applications of the
CCM to the Rabi Hamiltonian

[n many cases, the non-perturbative nature of the CCM permits calcula-
tions based on very simple model states (typically the noninteracting state)
to be performed well beyond the perturbative region without convergence
problems. However, this is not always the case, as the calculations presented
in this chapter indicate. In fact, for the Rabi system, where the ground
state undergoes a major character change, it can be shown that the calcu-
lation fails due to an essential incompleteness, to arbitrary finite order, in
the CCM ansatz for the ground-state wave function for a particularly sim-
ple, yet in principle valid, choice of the CCM model state and correlation
operator. For a different but equally simple choice, we also show that the

non-Hermiticity of the CCM can lead to the breakdown of the method.
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5.1 Earlier CCM analyses of the Rabi Hamil-

tonian

Of particular relevance for this thesis is the recent application of the CCM
to a multimode Rabi Hamiltonian by Wong and Lo [Wo96b]. Although their
calculation was done in the context of a quantum system tunneling between
two levels in the presence of a phonon bath, their model Hamiltonian repre-
sents a simple generalization of the Rabi Hamiltonian to the case of multiple
bosonic modes, and the Rabi Hamiltonian may thus be regarded as a special
case of the model studied by Wong and Lo. Their results for the ground-
state energy of the multimode Rabi system are qualitatively acceptable, and
furthermore they find that the CCM results give no indication of the spurious
discontinuous localization—delocalization transition of the two-level system

observed in earlier variational studies (see [Lo95] and references therein).

Several comments regarding the work of Wong and Lo [Wo96b] are how-
ever in order. Firstly, they apply the CCM to a unitary transformed version
of the Rabi Hamiltonian (4.1), which leaves the spectrum unaffected. How-
ever, their choice of unitary transform destroys the parity symmetry (4.2)
associated with the Hamiltonian. As a result, their CCM results for the
ground-state energy are, by their own admission, quantitatively inaccurate
for intermediate coupling, and it is furthermore not possible in their approach

to readily obtain accurate CCM results for the first excited state.

A more minor criticism of the CCM analysis of Wong and Lo relates to

their use of the so—called successive coupled cluster approximation (SCCA), a
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variant of the standard SUB-N CCM approximation. At a particular order of
approximation in the SCCA, the similarity transformed Hamiltonian e~ He®
is allowed to act on the CCM model state |®), and the CCM coefficients
and ground-state energy are determined via term-by-term comparison, with
any remaining nonvanishing terms being neglected. At the subsequent level
of approximation, terms are added to the cluster correlation operator S in
such a manner that their contribution cancels the nonvanishing terms in
the previous order of approximation, and the procedure is repeated. The
advantage of this approximation scheme is that it naturally tends to select
the most important terms which are to be included in the cluster correlation
operator, and in some cases (see, e.g. [Wo94, Wo96a]), the SCCA leads to
rapid, accurate convergence of the CCM. However, not only is the intuitively
simple physical meaning of the SUB-NV approximation scheme lost, but it is
also not clear that the SCCA may be rigorously justified, particularly since
there is no gaurantee in the SCCA that the set of configurations {C]|®)},
where the index / runs over all possible configurations generated within the

SCCA, satisfies the requirement of completeness.

5.2 Evidence for a spurious symmetry—breaking

phase transition

We turn now to our CCM calculations for the Rabi Hamiltonian. For ease
of reference, we shall refer to a particular choice of CCM model state and

corresponding creation operators as a CCM scheme. We have considered a
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variety of CCM schemes for the Rabi Hamiltonian (see Table D.1 in Appendix
D). An obvious choice for the model state |®) is the positive—parity g = 0
ground state |0)| |) of Hgapi, which we shall refer to as the noninteracting
model state. For our first NCCM calculation of the Rabi ground-state energy,

we use the noninteracting model state and the correlation operator [Bi96]

5 = 545
S = Yo s0(8)", $=30s@ (1) o+, (5.1)
n=1 n=1

which we shall refer to as Scheme I. For this scheme, the nested commutator
expansion (3.8) for the similarity transformed Hamiltonian e=% Hgapie® ter-
minates at third order in S, and it is straightforward to show that the CCM

ground-state energy assumes the form

1
O = —5wo + 4g {31 3(12) + s5 )} . (5.2)

In the SUB-N approximation scheme, both S; and S, truncate at n = N,
and the 2N coefficients {sg‘),.sgf)}, n=12...,N are determined via the
NCCM equations (3.16). Explicit expressions for the similarity transformed

Hamiltonian and NCCM equations for Scheme I are given in Appendix D.

Since the g = 0 ground state has even parity, we expect the ground state
to have the same parity for ¢ > 0. Thus the NCCM calculation based on
Scheme I is restricted to states of positive parity. In this case, terms in the
cluster correlation operator S with n odd are zero, there are only N CCM
coefficients to solve for in the SUB-/N approximation, and the CCM ground-
state energy then depends only on the single coefficient 3 . Starting from

g = 0, we solve for increasing values of the coupling by using the solution
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at the previous coupling as input to the iterative routine for solving the
CCM equations. For simplicity, we only quote results for the scaled resonant

(w = wo = 1) Rabi Hamiltonian.

We find that the even—parity NCCM Scheme I results provide strong
evidence for spontaneous breaking of the parity symmetry IIgay; [Bi96]. For
all N > 6, the positive—parity ground-state solution terminates at a finite
value of the coupling which we shall denote by g\™). There is a qualitative
difference in the nature of the termination depending on whether N/2 is even
or odd. Here we restrict ourselves to the simpler case where N/2 is odd (see
[Bi96] for a fuller discussion of the case where N/2 is even). The ground-state
energy results for N = 10,30, 50 at resonance are shown in Figure 5.1. The
termination points { g )} of the positive-parity NCCM Scheme I results are

clearly visible.

The termination in the positive-parity NCCM Scheme I ground-state
solution is real rather than numerical. For any N, the NCCM equations
(3.16) can in this case be rewritten as a polynomial in 352) (see Appendix D),
and the termination in the ground-state solution then corresponds to the

(2)

vanishing of the relevant real root for sy~ at the termination point g{V)

c

[Bi97]. Figure 5.2 shows these critical values of the coupling as a function of
the cutoff N. An investigation of the behaviour of E, and its derivatives just
below the critical coupling [Bi96] suggests a fit of g™ to the form a — BN,
with v = —2/3. Using a least-squares fit, we find a = 0.665 and b = 0.722,
and the NCCM based on Scheme I therefore strongly suggests a parity—

breaking phase transition at g. = limy o g(N) = 0.665.

c
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Figure 5.1: The ground-state energy Eq of the scaled resonant (w = wy = 1)
Rabi Hamiltonian as a functi’on of the coupling g as determined via a SUB-N,
N=10,30,50, NCCM analysis based on Scheme I (see Table D.1), compared to

results obtained via a CI diagonalization in a basis of 101 even—parity states.
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Figure 5.2: The critical coupling g(EN) as a function of the level of approzima-
tion N in the NCCM Scheme I analysis of the scaled resonant (w = wy = 1) Rabi
Hamiltonian. The solid line is the function 0.665 — 0.722N /3 obtained from a

least-squares fit to ggN) for 62 < N < 98.
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It is straightforward to adapt the NCCM analysis above to the odd—parity
first excited state of the Rabi Hamiltonian. We confine the CCM calculation
to the odd~parity sector by choosing the odd-parity model state |®) = |0)|1),
and restricting the correlation operator to terms of positive parity only as
before. The results are very similar to those obtained for the ground state,

with the odd-parity solution terminating at ¢29¢ = 0.601.
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Motivated by the results obtained by Arponen and others for the LMG
model (see [Ar82, Ar83a, Ar83b, Ro89] and the discussion in Chapter 3),
we also apply the ECCM to the Rabi Hamiltonian [Bi98]. The ECCM,
based on a single symmetric model state, is capable of correctly describ-
ing a symmetry-breaking phase transition. One might therefore expect the
ECCM, based on the noninteracting model state, to be able to successfully
describe the Rabi ground state for all couplings. We thus retain the nonin-
teracting model state and correlation operator S introduced above, introduce

the additional ECCM correlation operator

S o= %43, (5.3)

25 o= Y oM, B = > o5 e,
n=1 n=1

and drop the even—parity restriction that the coefficients {sg), 552 g4l), J,(f)}
with n odd must be zero. In the ECCM SUB-N approximation scheme,
both 51,52 and X;,¥; truncate at n = N. The ground-state energy has
the same form (5.2) as before, but as discussed in Chapter 3 the coefficients
{5511),5512)} cannot be obtained independently of {or?(ll),crr(f)}. In the SUB-N
approximation one is thus obliged to solve the CCM equations (3.14) for all
4N unknowns. The ECCM functional Hpap = (®|e*e™ Hpapie®|®), which

is required in order to set up these equations, is shown in Appendix D.

In the SUB-1 approximation, the ECCM Scheme I equations can be solved
analytically (see Appendix D). At resonance (w = wy = 1), one finds, for
g < 1/4, only the trivial solution where all four SUB-1 ECCM coefficients
are identically zero. In this coupling regime the ECCM approximation to

the exact ground state is thus simply the evén—parity noninteracting model
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state [0)| ), with corresponding energy Eo = —1/2. For g > 1/4, the SUB-1
ECCM equations also allow for a mixed—parity solution corresponding to the
lower energy Eq = —4g® — 1/4. Thus the SUB-1 ECCM ground-state energy
is continuous but not differentiable at the crossover point g = 1/4 where the

symmetry of the ground state is broken. This result in plotted in Figure 5.3,

Figure 5.3: The ground-state energy Eq of the scaled resonant (w = wo = 1) Rabi
Hamiltonian as a function of the coupling g as determined via a SUB-1 (solid
line), SUB-2 (thin solid line) and SUB-3 (dotted line) ECCM analysis based on
Scheme I (see Table D.1), compared to results obtained via a CI diagonalization

in a basis of 101 even—parity states (thick solid line).
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where we also present the results of a numerical SUB-N, N = 2,3, ECCM
calculation of the Rabi ground-state energy as a function of the coupling g.
Here similar behaviour occurs to that observed in the SUB-1 case. Although
the ground-state energy approximates the CI result quite closely for all g, it
is evident from the graph there is a narrow coupling region around g ~ 0.4
where smooth SUB-2 and SUB-3 ECCM solutions cannot be found. In Ta-
ble 5.1, we tabulate some of the SUB-3 ECCM coefficients, and it is clear
from the behaviour of the coeflicients with odd index n that the symmetry
of the ECCM ground state is in fact broken at g ~ 0.37. This in good agree-
ment with the NCCM SUB-2 result based on the same scheme, for which the
even—parity ground-state solution terminates at g = 0.397. Due to numerical
limitations, we have not been able to go beyond SUB-3 in the ECCM. At least
in low order, however, the ECCM analysis based on Scheme I provides further

evidence for a parity-breaking phase transition in the Rabi ground state.

The numerical diagonalization of the Rabi Hamiltonian, which accurately
reproduces the analytic results at the Juddian points, yields a positive-parity
ground state for all values of the coupling, with no evidence for a symmetry—
breaking phase transition. For intermediate and large coupling, the CCM
based on Scheme I therefore fails when applied to the Rabi Hamiltonian.
Nonetheless, for small coupling (¢ < 0.4), the NCCM based on Scheme I
yields results for the ground-state energy which are in better quantitative
agreement with the CI results than any of the other methods considered here,
including the three-parameter variational approach. For small coupling, this
straightforward application of the CCM is therefore the preferred a priori

method for determining the Rabi ground-state energy accurately and quickly.
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Table 5.1: The behaviour of the SUB-3 ECCM Scheme I coefficients as a function of
the coupling g for the ground state of the scaled resonant (w = wq = 1) Rabi Hamiltonian.
Coefficients of both even and odd order n are nonzero for g > 0.38, indicating that the
ECCM ground state is of mized parity in this coupling regime. The odd order coefficients
vanish abruptly between g = 0.38 and g = 0.37, and are effectively zero for g < 0.37, where

the ground state is therefore of positive parity.

g | n | o o) o
0.50 | 1 | -5.126 x107! 1717 x10— -7.549 x10~! 1.843 x10~!
2 | 1.348 x10~! -1.902 x10~! | 1.020 x10~! -9.711 %102
3 | 1.164 x10~2 -3.941 x10~2 | 2.366 x10~2 -3.648 x1072
0.45 | 1 | -3.508 x10~} 1.217 x10~1 -5.315 x107! 1.457 x10~!
2 | 1.359 x10~t -1.992 x10~! 1.391 x10~* -1.312 x10~!
3 | 1.157 x10~2 -3.620 x1072 | 2,727 x10~2 -3.927 x10~2
0.40 | 1 | -2.095 x10~! | 7.465 x10~2 -3.123 x10~1 | 9.821 x10—2
2 | 1.184 x10~! -1.876 x10~' | 1.456 x10~! -1.508 x10~!
3 | 9.046 x10~2 -2.363 x10~2 | 1.884 x1072 -2.850 x10~2
039 | 1 | -1.706 x10~' | 6.100 x10—2 -2.529 x10~1 | 8.194 x10~2
2 | 187 %107! -1.841 x10~! 1.458 x10~1 -1.547 x10~!
3 | 7.747 x10~2 -1.939 x10~2 | 1.568 x10~2 -2.402 x1072
0.38 | 1 | -1.195 x10~! 4.287 x1072 -1.762 x10~1! 5.885 x10—2
2 | 1.086 x10~} -1.802 x10~! 1.458 x10~1! -1.588 x10~!
3 | 5.701 x10~® -1.366 x10—2 1.121 x10~2 -1.742 x10~2
0.37 | 1 | 3.356 x10~17 | -1.206 x10~17 | 4.888 x10~17 | -1.683 x10~17
2 | 1.031 x10~! -1.761 x10~' | 1.453 x10~! -1.628 x10~!
3 | -1.649 x10~!8 | 3.807 x10~'® | -3.222 x10~!8 | 5.063 x10~!8
036 | 1 | 2.350 x10~2! | -8.791 x10—22 | 3.414 x10~2! | -1.207 x10—2!
2 | 9.971 x1072 -1.729 x10~! 1.383 x10~! <1.601:x10~!
3 | -1.208 x10722 | 2,550 x10722 | -1.423 x10™22 | 2,939 x10~22
0.35 | 1 | 9.415 x10~27 | -3.648 x10~27 | 1.344 x10~2% | -4.852 x10—27
2 | 9.624 x10—? -1.696 x10~! 1.313 x10—! -1.573 x10~1
3 | -4.714 x1072% | 9.446 x1072% | -2.732 x1072% | 9,122 x10~28
0.30 | 1 | 6.794 x107%0 | _2.858 x10—%C | 8.247 x10~60 | _3.350 x10—80
2 | 7.775 x10~2 -1.505 x10~1 9.785 x10—2 -1.411 x10~!
3 | -1.556 x107%! | 3.143 x107%! | 4,082 x10~%! | -1.579 x10~%!
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5.3 Incompleteness of the CCM ground—state

ansatz

It is possible to illustrate numerically that the breakdown of the method is
formally due to the incompleteness, to any finite order, of the exponential
CCM ansatz (3.3) for the ground-state wave function for the model state
and creation operators of Scheme I. We investigate whether it is possible, to

good approximation for all values of the coupling g, to write
[Ter)(g) = €°|@) . (5.4)

Here |¥cr)(g) represents the (essentially exact) positive-parity ground-state
ket determined as a function of g via the CI diagonalization, |®) = |0)|]) is
the noninteracting model state, and S is the cluster correlation operator (5.1)
of Scheme I in the SUB-N approximation, restricted to terms of even parity
as before. We expand both sides of (5.4) in a basis consisting of bosonic
oscillator states multiplied by eigenfunctions of ¢%, and determine the coef-
ficients {sg)(g),sf)(g)}, n = 2,4,6,...,N, via term-by-term comparison.
Due to the intermediate normalization condition (3.4) imposed by the CCM,

the state |Ur)(g) must be scaled so that the coefficient of |0)|]) is unity. For

the sequence sgi)(g), sg) (9),...,89(g),...;1 = 1,2, we numerically determine
the ratio
; 3(5)2(9)
RY(g) = Jim | =L i=1,2. (5.5)
n—0oo S (g)
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At resonance (w = wo = 1),.we find

RM <1, R® <1 at g =0.665
RY ~1, R®~1 at g~0.8
RY>1, R® >1 at g=1.0. (5.6)

In order for a SUB-N CCM calculation to yield an acceptable approximation
to the exact ground state, it is essential that one should safely be able to
neglect coefficients in S of order n > N. Our results for the ratio R indicate
that, for the model state and cluster operator of Scheme I, this is not always
possible. For ¢=20.8, the exact resonant Rabi ground state cannot be ade-
quately approximated by the exponential form (5.4) for any finite value of
N, and it is in this sense that the exponential ground-state ansatz renders
the CCM incomplete !. Note that the CCM breaks down at a value of the
coupling below the critical value determined above. This incompleteness is a
serious defect not only of the CCM, but also of other methods reliant on the
exp S form, and is compounded by the fact that the model state and creation
operators of Scheme I represent perhaps the most obvious choice for a CCM

analysis of the Rabi system.

There is some overlap between the breakdown of the CCM observed here
and that reported by Arponen [Ar82] who, based on a SUB-2 NCCM anal-
ysis of the LMG model, conjectured without proof that a SUB-N NCCM

INote that the incompleteness, to arbitrary finite order, of the CCM based on scheme I
does not contradict the fact that the CCM formalism is in principle exact — an expansion
of the form (5.4) does exist for arbitrary coupling g, provided that the cluster operator S
is not truncated at all. Of course, this is of no practical significance in the application of

the method, where a truncation at finite order is unavoidable.
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analysis of the LMG ground state based on a spherically symmetric model
state would fail for any value of N. In the LMG model, however, a true
phase transition occurs in the thermodynamic limit, and the breakdown of
the NCCM correctly signals the onset of symmetry-breaking. Also, unlike
the situation for the LMG model with a finite number of nucleons, the failure
of the CCM for the Rabi Hamiltonian cannot simply be ascribed to the onset
of near—degeneracy in the ground state for intermediate coupling. To show
this, we have repeated the even—parity NCCM Scheme I calculation for the
case of degenerate atomic levels (wy = 0), where the analytic positive- and

negative—parity ground states (4.16) are degenerate for all couplings.

For wy = 0, we find that the even—parity NCCM Scheme I ground-state
solution again terminates at intermediate coupling. As before, we test the

CCM ansatz (3.3) for completeness by writing

[esd 2n 00 m2n+1
Vi) = ;\/—)[2?’&“) gml%ﬂ-l)m

= ¢%9), (5.7)

where |W,) is the positive-parity ground state (4.16) with z = 2g/w (scaled
so as to meet the normalization condition (3.4)), and |®) (.5) represents the
model state (even—parity cluster correlation operator) of Scheme I. Given
the explicit expansion (5.7) for the exact ground state |¥ ), it can be shown
analytically that

(4) i)
i Sn ) an n 4.9 s
Ao = 220 = 5‘(,—), i=12, (53
(g)  an an’ \ ¥

Sn
where the parameters {a(!)};i = 1,2 are independent of the coupling g. These

parameters obey a set of algebraic recurrence relations which we have not
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been able to solve in closed. form. We therefore scale out the w-dependence

by setting w = 1, and numerically investigate the ratios
(1)

1) — %nta
A,Sl) = ag)
(2) aﬂl
A = 0 (5.9)

as a function of n. We find that both quantities increase uniformly with
increasing n. At n = 51, the ratio A has converged to the value 0.406, and
Al attains the value 0.396. Although the convergence of A% with increasing
n is not rapid enough to state the true limiting value with certainty, the

important conclusion is that

AW = Tim A > 0.396

A = lim A® = 0.406 . (5.10)
n—o0
Therefore
RW(g) = lim RY(g) = 44Mg* > 1.584¢’
R?(g) = lim RP(g) = 4AP¢* = 1.624¢" (5.11)
and it is clear that
1
R > 1 forg> = 0.795
(9) 2 1dorg 2 ——mms
1
R > 1 forg> —— =0.785. 5.12
(9) 2 o A (5.12)

Thus for g > 0.785 (and, depending on the true limiting value A1), possibly
even below g = 0.785), the exact positive—parity ground state |V, ) cannot,
to any finite order, be adequately approximated by the exp S form required
by the COM. This proof of incompleteness for the case wy = 0 is strengthened
by the fact that, unlike the wy # 0 case where the exact ground state had to

be determined numerically, the state |[¥.) is here known analytically.
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5.4 An alternative CCM calculation based on

the noninteracting model state

Given the above incompleteness for scheme I, we are therefore led to consider
alternative CCM schemes for the Rabi Hamiltonian. Using (4.11) and (4.37),
it is easily shown that the positive-parity ¢ — oo ground state (4.16) may

be written in the form

2
w,) = e exp{ (=) st o) (5.13)
Thus for Scheme II (see Table D.1), we retain the noninteracting model state
|®) = |0)[{) of Scheme I, but introduce a new correlation operator

8= i Sn (cT)n , ct =blo” . (5.14)

n=1
The nested commutator expansion (3.8), although non-terminating, now as-
sumes a closed (exponential) form, and the CCM ground-state energy is
given by

1
E§CCM'H = —3%o + 2gs; . (5.15)

This calculation is also restricted to the positive-parity sector, as is obvious
from the form of both the model state and the CCM creation operators.
Explicit expressions for the similarity transformed Hamiltonian and NCCM

equations for Scheme II are given in Appendix D.

We find that the CCM yields results (not shown here) for the ground-
state energy which again fail, in a manner very similar to that observed
for Scheme I, at intermediate and large coupling. Although we have not

proved this, the breakdown of the NCCM based on Scheme II for intermediate
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coupling is almost certainly due to an incompleteness similar to that shown
for Scheme I. Furthermore, the failure of this approach at large coupling
is particularly significant, since it is obvious from (5.13) that the ¢ — oo
ground state |¥y) is of SUB-1 form with s; = —2g/w. The two-parameter
variational calculation presented in Chapter 4, which was based on a trial
state of SUB-1 Scheme II form, correctly determines the limiting behaviour
of s; as g — oo. For the CCM, which is based on a similarity rather than
a unitary transform (see the discussion in Chapter 3), it can however be
shown analytically (see Appendix D) that s; = —2g/(w + wg) in the SUB-1
approximation, and at resonance the SUB-1 result is thus not even correct
to leading order. Thus, for Scheme II, the CCM also fails as a result of the

non-Hermiticity of the method.
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